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Abstract

We revisit the quantum algorithm for computing short discrete logarithms
that was recently introduced by Eker̊a and H̊astad. By carefully analyzing the
probability distribution induced by the algorithm, we show its success probability
to be higher than previously reported. Inspired by our improved understanding
of the distribution, we propose an improved post-processing algorithm that is
practical, enables better tradeoffs to be achieved, and requires fewer runs, than the
original post-processing algorithm. To prove these claims, we construct a classical
simulator for the quantum algorithm by sampling the probability distribution
it induces for given logarithms. This simulator is in itself a key contribution.
We use it to demonstrate that our quantum algorithm achieves an advantage
over Shor’s algorithms, not only in each individual run, but also overall, when
targeting cryptographically relevant instances of RSA and Diffie-Hellman with
short exponents.

1 Introduction

In a groundbreaking paper [7] from 1994, subsequently extended and revised in a later
publication [8], Shor introduced polynomial time quantum computer algorithms for
factoring integers and for computing discrete logarithms in F∗p.

Although Shor’s algorithm for computing discrete logarithms was originally de-
scribed for F∗p, it may be generalized to any finite cyclic group, provided the group
operation may be implemented efficiently using quantum circuits.

More recently, Eker̊a [2] introduced a modified version of Shor’s algorithm for com-
puting discrete logarithms that is more efficient than Shor’s original algorithm when
the logarithm is short. This work was originally motivated by the use of short discrete
logarithms in instantiations of cryptographic schemes based on the computational in-
tractability of the discrete logarithm problem in finite fields. A concrete example is the
use of short exponents in the Diffie-Hellman key exchange protocol when instantiated
with safe-prime groups.

This work was subsequently generalized by Eker̊a and H̊astad [3] so as to enable
tradeoffs between the number of times that the algorithm needs to be executed, and the
requirements it imposes on the quantum computer. These ideas parallel earlier ideas
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by Seifert [6] for making tradeoffs in Shor’s order finding algorithm; the quantum part
of Shor’s general factoring algorithm.

Eker̊a and H̊astad furthermore explained how the RSA integer factoring problem
may be expressed as a short discrete logarithm problem, giving rise to a new algorithm
for factoring RSA integers that imposes less requirements on the quantum computer
than Shor’s general factoring algorithm taking into account Seifert’s tradeoffs. The
new algorithm does not directly rely on order finding.

As it is seemingly difficult to construct and operate large-scale quantum computers,
any reduction in the requirements imposed on the computer by the algorithm when
solving cryptographically relevant problems is potentially important and merits study.
In this paper we improve the post-processing in the aforementioned algorithms to
further reduce the requirements on the quantum computer when computing short
discrete logarithms and factoring RSA integers.

1.1 Preliminaries

To compute an m bit logarithm d, the generalized algorithm by Eker̊a and H̊astad [3]
exponentiates group elements in superposition to m + 2m/s bit exponents for s ≥ 1
an integer. Given a set of s good outputs, a classical post-processing algorithm then
recovers d by enumerating an s+ 1-dimensional lattice.

The number of runs required increases in s, in exchange for a reduction in the
exponent length in the quantum algorithm. Hence, increasing s trades work in each
quantum algorithm run for work in the classical post-processing. Assuming use of
sequential double-and-add exponentiation, the quantum circuit size and depth, and
the required coherence time, are thus all reduced by a constant factor.

To minimize the work performed in each run, s would ideally be selected large.
However, as good outputs cannot be efficiently recognized, the algorithm needs to be
run s/p times and all subsets of s outputs exhaustively post-processed, where p denotes
the probability of obtaining a good output. This exponential complexity in s restricts
the achievable tradeoff.

One of our key contributions in this paper is to show that if outputs from n runs
of the quantum algorithm are included in an n + 1-dimensional lattice, for some s
and sufficiently large n > s, then d may be recovered by reducing the lattice and
applying Babai’s nearest plane algorithm [1]. Enumerating exponential in s many
s + 1-dimensional lattices may thus be avoided, at the expense of reducing a single
n+1-dimensional lattice. The new post-processing algorithm is very efficient, practical
for comparatively large s, and requires considerably fewer quantum algorithm runs,
than the post-processing algorithm originally proposed.

1.2 The discrete logarithm problem

Let G under � be a group of order r generated by g, and let

x = [ d ] g = g � g � · · · � g � g︸ ︷︷ ︸
d times

.

Given x, a generator g and a description of G and � the discrete logarithm problem
is to compute d = logg x. In the general discrete logarithms problem 0 ≤ d < r, whereas
d is smaller than r by some order of magnitude in the short discrete logarithm problem.
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1.3 Notation

In this section, we introduce notation used throughout this paper.

• u mod n denotes u reduced modulo n constrained to 0 ≤ u mod n < n.

• {u}n denotes u reduced modulo n constrained to −n/2 ≤ {u}n < n/2.

• due, buc and duc denotes u rounded up, down and to the closest integer.

• | a+ ib | =
√
a2 + b2 where a, b ∈ R denotes the Euclidean norm of a+ ib.

• |u | denotes the Euclidean norm of the vector u = (u0, . . . , un−1) ∈ Rn.

1.4 Earlier works

In this section, we recall the generalized algorithm for computing short discrete loga-
rithms in [3] as the purpose of this paper is to improve upon it.

Given a generator g of a finite cyclic group of order r and a group element x = [ d ] g
where d is such that 0 < d < 2m ≪ r, the generalized algorithm computes the
logarithm d = logg x by inducing and observing the system

|Ψ 〉 =
1

22`+m

2`+m−1∑
a, j=0

2`−1∑
b, k=0

exp

[
2πi

2`+m
(aj + 2mbk)

]
| j, k, [ e = a − bd ] g 〉

yielding a pair (j, k) where j and k are integers on the intervals 0 ≤ j < 2`+m and
0 ≤ k < 2`, respectively, and some group element y = [ e ] g ∈ G.

Above ` ≈ m/s is an integer for s ≥ 1 a small integer constant that controls the
tradeoff between the number of times that the algorithm needs to be executed and the
requirements it imposes on the quantum computer.

When observed, the system collapses to y = [ e ] g and (j, k) with probability

1

22(2`+m)

∣∣∣∣∣∑
a

∑
b

exp

[
2πi

2`+m
(aj + 2mbk)

] ∣∣∣∣∣
2

where the sums are over all a and b such that e ≡ a − bd (mod r). Assuming that
r ≥ 2`+m + 2`d, this simplifies to e = a − bd. Summing over all e, we obtain the
probability P of observing the pair (j, k) over all e as

P =
1

22(2`+m)

∑
e

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

exp

[
2πi

2`+m
((e+ bd)j + 2mbk)

] ∣∣∣∣∣∣
2

=
1

22(2`+m)

∑
e

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

exp

[
2πi

2`+m
b {dj + 2mk}2`+m

] ∣∣∣∣∣∣
2

where we have introduced the functions b0(e) and b1(e) that determine the summation
interval for b. For more information on these functions, see Section 2.2.

The above analysis implies that the probability P of observing a given pair (j, k)
is determined by its argument α or, equivalently, by its angle θ, where

α(j, k) = {dj + 2mk}2`+m and θ(α) =
2πα

2`+m
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and the probability

P (θ) =
1

22(2`+m)

∑
e

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

eiθb

∣∣∣∣∣∣
2

.

In [3], a pair (j, k) is said to be good if |α(j, k) | ≤ 2m−2, and it is demonstrated
that the quantum algorithm will yield a good pair with probability p ≥ 1/8. More
specifically, lower bounds on both the number of good pairs, and on the probability of
observing any specific good pair, are demonstrated.

Given a set of s distinct good pairs, there is a classical post-processing algorithm
that recovers d with high probability using lattice-based techniques.

More specifically, the set {(j1, k1), . . . , (js, ks)} of s pairs is first used to form a
vector v = ( {−2mk1}2`+m , . . . , {−2mks}2`+m , 0) ∈ Zs+1 and an s + 1-dimensional
integer lattice L with basis matrix

j1 j2 · · · js 1
2`+m 0 · · · 0 0

0 2`+m · · · 0 0
...

...
. . .

...
...

0 0 · · · 2`+m 0

 .

For some constants m1, . . . , ms ∈ Z, the vector

u = ({dj1}2`+m +m12
`+m, . . . , {djs}2`+m +ms2

`+m, d) ∈ L

is then such that the distance

R = |u− v | =

√√√√ s∑
i=1

(
{dji}2`+m +mi2`+m − {−2mki}2`+m

)2
+ d2

=

√√√√√ s∑
i=1

{dji + 2mki}22`+m︸ ︷︷ ︸
α2
i

+ d2 ≤ 2m
√

s

24
+ 1

as |αi | ≤ 2m−2 for good pairs (j, k). By enumerating all vectors in L within distance
R of v one may thus recover u and d as the last component of u.

For small s, the enumeration is expected to be feasible to perform in practice, as
the dimension of L is small allowing a reduced basis to be computed, and as only a
few vectors need to be enumerated. To understand why the latter claim holds, note
that the volume of a hypersphere of radius R in D = s+ 1 dimensions is

VD(R) =
πD/2

Γ(D2 + 1)
RD ≤ π(s+1)/2

Γ( s+1
2 + 1)

2(s+1)m
( s

24
+ 1
)(s+1)/2

(1)

where Γ is the Gamma function. The volume of the fundamental parallelepiped in L
is detL = 2(`+m)s = 2(s+1)m and this volume contains a single lattice vector.

Heuristically, we therefore expect to enumerate up to approximately

VD(R)

detL
≤ π(s+1)/2

Γ( s+1
2 + 1)

( s
24

+ 1
)(s+1)/2
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vectors in L to recover u from v. The exact number depends on the placement of the
hypersphere in ZD and on the shape of the fundamental parallelepiped in L.

As we do not know how to efficiently recognize good pairs, the quantum algorithm
has to be executed cs times for some constant c ≈ 1/p = 8 to generate a set of cs pairs.
All subsets of s pairs from these cs pairs are solved for d using the above classical post-
processing algorithm. With high probability, at least one of these subsets are expected
to consist of s distinct good pairs and to yield d.

The main drawbacks of the above approach are that the complexity of solving for
d is exponential in the tradeoff factor s, restricting the achievable tradeoff, and that
the quantum algorithm has to be executed cs times.

1.5 Our contributions

One of our key contributions in this paper is to demonstrate that if the quantum
algorithm is run n ≥ s times, and if all n pairs thus produced are included in an
n + 1-dimensional lattice L on the above form, then the number of vectors that need
to be enumerated in this lattice to recover u from v decreases in n.

If n is selected sufficiently large there will hence only be one vector in L within
distance R of u. Mapping v to the closest vector in L using Babai’s [1] nearest plane
algorithm is then sufficient to immediately recover u and d without even having to
enumerate the lattice. The exhaustive enumeration of exponential in s many s + 1-
dimensional lattices may thus be avoided, at the expense of reducing a single n + 1-
dimensional lattice and applying Babai’s algorithm.

For cryptographically relevant combinations of m and s, we provide concrete esti-
mates of the number of runs n required to allow u and d to be recovered from v given
a bound on the number of vectors that we at most accept to enumerate. We verify
our estimates by simulating the quantum algorithm and solving sets of n simulated
outputs for d using the post-processing algorithm.

To compute the estimates, and to simulate the quantum algorithm for known log-
arithms, we first analytically derive a closed-form expression for the probability Φ(α)
of the quantum algorithm yielding a pair with argument α. By numerically summing
Φ(α) over partial intervals in α, we then construct a high resolution histogram for
Φ(α) and use it to sample arguments α and pairs (j, k) representative of those that
would be yielded by the quantum algorithm. This simulator, and the analysis of the
probability distribution, are in themselves key contributions.

The analysis shows the probability of observing a good pair, by the definition in [3],
to in general be above 3/10. It is hence much greater than the lower bound of 1/8
given in [3] would imply. More importantly, even if the pair returned is not good, it
will still be close to being good. The new post-processing algorithm leverages this fact,
and our improved understanding of the probability distribution.

1.6 Overview

The remainder of this paper is structured as follows:
We derive a closed-form expression for Φ(α) in Section 2. By summing Φ(α) over

intervals in α, we construct a high-resolution histogram for the distribution induced
by Φ(α) in Section 3, and describe how the histogram may be sampled to simulate
the quantum algorithm. In Section 4 we proceed to describe our new post-processing
algorithm in full detail, to estimate n as a function of m and s, and to verify these
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estimates by performing simulations. We conclude the paper in Section 5. In ap-
pendix A, we quantify the advantage achieved by our algorithm when targeting RSA
and Diffie-Hellman with short exponents.

2 Deriving closed-form expressions

In this section, we derive closed-form expressions for the probability P (θ(α)) of ob-
serving a specific pair (j, k) with angle θ, or equivalently, with argument α.

Furthermore, we count the number of pairs N(α) with argument α and use it to
derive closed-form expressions for the probability Φ(α) of observing any one of the
N(α) pairs (j, k) with argument α.

2.1 The probability of observing (j, k) and e

As explained in Section 1.4, the probability of observing a pair with angle θ is

P (θ) =
1

22(2`+m)

∑
e

∣∣∣∣∣∣
b1(e)−1∑
b= b0(e)

eiθb

∣∣∣∣∣∣
2

=
1

22(2`+m)

∑
e

∣∣∣∣∣∣
#b(e)−1∑
b=0

eiθb

∣∣∣∣∣∣
2

︸ ︷︷ ︸
ζ(θ,#b(e))

where #b(e) = b1(e)− b0(e). If θ = 0, then

ζ(0,#b(e)) =

∣∣∣∣∣∣
#b(e)−1∑
b=0

eiθb

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
#b(e)−1∑
b=0

1

∣∣∣∣∣∣
2

= (#b(e))2.

Otherwise, if θ 6= 0 then

ζ(θ,#b(e)) =

∣∣∣∣∣∣
#b(e)−1∑
b=0

eiθb

∣∣∣∣∣∣
2

=

∣∣∣∣∣ eiθ#b(e) − 1

eiθ − 1

∣∣∣∣∣
2

=
1− cos (θ#b(e))

1− cos θ
.

The closed-form expressions for ζ(θ,#b(e)) enable us to exactly compute the prob-
ability of observing a specific pair with angle θ for a specific e in terms of the angle
and the length #b(e) of the summation interval in b for this e.

In the next section, we analyze the function #b(e). We proceed in Section 2.3 to
sum ζ(θ,#b(e)) over all e to derive a closed-form expression for P (θ).

2.2 The summation interval for a given e

In Section 1.4, we defined e = a − bd, where 0 < d < 2m and 0 ≤ a < 2`+m and
0 ≤ b < 2`. This implies that e is an integer on the interval

−(2` − 1)d ≤ e = a− bd < 2`+m. (2)

Divide the interval for e into three regions, and denote these regions A, B and C,
respectively. Define the middle region B to be the region in e where #b(e) = 2` or
equivalently 0 = b0(e) ≤ b < b1(e) = 2`. Then by (2) region B spans 0 ≤ e <
2`+m − (2` − 1)d. This is easy to see, as for all b on the interval 0 ≤ b < 2` there must
exist an a on the interval 0 ≤ a < 2`+m such that e = a− bd.
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It follows that region A to the left of B spans −(2` − 1)d ≤ e < 0 and that region
C to the right of B spans 2`+m − (2` − 1)d ≤ e < 2`+m. Regions A and C are hence
both of length (2` − 1)d. Regions A and C are furthermore both divided into 2` − 1
plateaus of length d, as there is, for each multiple of d that is subtracted from e in
these regions, one fewer value of b for which there exists an a such that e = a − bd.
The situation that arises is depicted in Fig. 1.

A B C

e

#b(e) = b1(e)− b0(e)

1

2

3

4

-39

−
(2

`
−

1
)d

=

-26

−
2
d
=

-13

−
d
=

0 25

2
`+

m
−
(2
` −

1)
d
=

38

2
`
+

m
−

2
d
=

51

2
`
+

m
−
d
=

64

2
`
+

m
=

Figure 1: The interval length #b(e) = b1(e)− b0(e) for m = 4, ` = 2 and d = 13.
A similar situation arises irrespective of how these parameters are selected.

2.3 The probability of observing (j, k) over all e

We are now ready to sum ζ(θ,#b(e)) over all e to express the probability

P (θ) =
1

22(m+2`)

2`+m−1∑
e=−(2`−1)d

ζ(θ,#b(e))

on closed form by first noting that if the sum is split into partial sums over the regions
A, B and C, respectively, it follows from the previous two sections that the sums over
regions A and C must yield the same contribution.

Furthermore, region B is rectangular, and each plateau in regions A and C is rect-
angular. Closed-form expressions for the contribution from these rectangular regions
may be trivially derived.

This implies that

22(m+2`) P (θ) =

−1∑
e=−(2`−1)d

ζ(θ,#b(e))

︸ ︷︷ ︸
region A

+

2`+m−(2`−1)d−1∑
e=0

ζ(θ,#b(e))︸ ︷︷ ︸
region B

+

2`+m−1∑
e=2`+m−(2`−1)d

ζ(θ,#b(e))

︸ ︷︷ ︸
region C

=
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(2`+m − (2` − 1)d) · ζ(θ, 2`)︸ ︷︷ ︸
region B

+ 2d ·
2`−1∑
#b=1

ζ(θ,#b)︸ ︷︷ ︸
regions A and C

.

If θ = 0 then

2`−1∑
#b=1

ζ(0,#b) =

2`−1∑
#b=1

(#b)2 =
2`

6
(2` − 1)(2`+1 − 1)

so the probability of observing the pair (j, k) over all e is

P (0) =
1

22(m+2`)
·
(

(2`+m − (2` − 1)d) · 22` +
2`d

3
(2` − 1)(2`+1 − 1)

)
.

Otherwise, if θ 6= 0 then

2`−1∑
#b=1

ζ(θ,#b) =
2`−1∑
#b=1

1− cos (θ ·#b)
1− cos θ

=
1

1− cos θ

[
(2` − 1)− 1

2

(
cos((2` − 1)θ)− cos 2`θ

1− cos θ
− 1

)]
so the probability of observing the pair (j, k) over all e is

P (θ) =
1

22(m+2`)
· 1

1− cos θ
·
(

(2`+m − (2` − 1)d) · (1− cos 2`θ) +

2d ·
[

(2` − 1)− 1

2

(
cos((2` − 1)θ)− cos 2`θ

1− cos θ
− 1

)])
.

2.4 Identifying and counting pairs (j, k) with argument α

In this section we identify and count all pairs (j, k) that yield α.

Definition 2.1. Let κ denote the greatest integer such that 2κ divides d.

Definition 2.2. An argument α is said to be admissible if there exists a pair (j, k) ∈ Z2

where 0 ≤ j < 2`+m and 0 ≤ k < 2` such that α = {dj + 2mk}2`+m.

Claim 2.1. All admissible α = {dj + 2mk}2`+m are multiples of 2κ.

Proof. As 2κ | d < 2m and the modulus is a power of two the claim follows. �

Lemma 2.1. The set of integer pairs (j, k) on 0 ≤ j < 2`+m and 0 ≤ k < 2` that yield
the admissible argument α is given by

j =

(
α− 2mk

2κ

(
d

2κ

)−1
+ 2`+m−κ t

)
mod 2`+m

as t runs trough all integers on 0 ≤ t < 2κ and k runs trough all integers on 0 ≤ k < 2`.
Each admissible argument α hence occurs with multiplicity 2`+κ.

Proof. As α ≡ dj + 2mk mod 2`+m, it follows by solving for j that

j = ((α− 2mk)d−1 + 2`+m−κ t) mod 2`+m

for k on 0 ≤ k < 2` and t on 0 ≤ t < 2κ, and so the lemma follows. �
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2.5 The probability of observing a pair (j, k) with argument α

It follows from the above analysis that the probability Φ(θ(α)) of observing one of the
pairs (j, k) with argument α is Φ(α) = N(α) · P (θ(α)) where

N(α) =

{
2`+κ if α is admissible
0 otherwise.

2.6 The notion of t-good pairs

In this section, we introduce the notion of t-good pairs, prove upper bounds on the
probability of obtaining a t-good pair, and show how the pairs are distributed in t.

Definition 2.3. A pair (j, k) is said to be t-good, for t an integer, if{
2t−1 ≤ |α(j, k) | < 2t when 0 < t < `+m
α(j, k) = 0 when t = 0.

Definition 2.4. Let ρ(t) denote the probability of observing a t-good pair.

Lemma 2.2. For 0 < t < `+m, the probability ρ(t) < 22−|m−t|.

Proof. For 0 < t < `+m, the probability

ρ(t) =
∑
(j, k)

Φ(α(j, k)) =
1

22(m+2`)

∑
α

N(α)
∑
e

ζ(θ(α),#b(e))

where the first sum is over all pairs (j, k) such that 0 ≤ j < 2`+m, 0 ≤ k < 2` and
2t−1 ≤ |α(j, k) | < 2t. The second sum is over at most 2t−κ admissible arguments α
that each occurs with multiplicity N(α) = 2`+κ. The third sum is over at most 2`+m+1

values of e. As ζ(θ,#b(e)) ≤ 22`, this implies

ρ(t) ≤ 2t−κ · 2`+κ · 2`+m+1 · 22`

22(m+2`)
= 21−(m−t).

Furthermore, as 1− cos (θ ·#b(e)) ≤ 2, and as 1− cos θ ≥ θ2/5 for | θ | ≤ π,

ζ(θ,#b(e)) =
1− cos (θ ·#b(e))

1− cos θ
≤ 10

θ2
.

As | θ(α) | = 2π |α | /2`+m ≥ 2tπ/2`+m, this implies

ρ(t) ≤ 2t−κ · 2`+κ · 2`+m+1

22(m+2`)
· 10

θ2
≤ 20

π2
· 2m−t < 22+(m−t)

and so the lemma follows. �

Lemma 2.2 shows that the probability mass is concentrated on the t-good pairs for
t ≈ m, except for very large κ as t = 0 then attracts a non-negligible fraction of the
probability mass. The situation that arises is visualized in Fig. 2.

In the region denoted A in Fig. 2, all logarithms d are odd so κ is zero. As d
decreases from 2m − 1 to 2m−1 + 1, the probability mass is redistributed towards
slightly smaller values of t. This reflects the fact that it becomes easier to solve for
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d = 2m−1 + 2m−3 ⇒ κ = m− 3

t
0 m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m−1 + 2m−2 ⇒ κ = m− 2
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m

0.1

0.2

0.3

0.4
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0.1

0.2

0.3

0.4
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t
m

0.1

0.2

0.3

0.4

ρ(t)
d = 2m − 1⇒ κ = 0

t
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Figure 2: Histograms for ρ(t) for various d and m = ` = 256. Essentially the
same histograms arise for any permissible combination of m and `.
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d as d decreases in size in relation to 2m. The redistributive effect weakens if d is
further decreased: The histogram in region B where d = 2m−5 − 1 is representative of
the distribution that arises when d is smaller than 2m by a few orders of magnitude.
Further decreasing d has no significant effect on the distribution.

In the region denoted C in Fig. 2, all logarithms d are divisible by a great power
of two to illustrate the redistribution that occurs when κ is close to maximal. As the
admissible arguments are multiples of 2κ, it follows that ρ(t) = 0 for 0 < t < κ, so
the corresponding histogram entries are forced to zero and the probability mass re-
distributed. This effect is only significant for very large κ; it does not occur in practice
for cryptographically relevant problem instances.

Based upon the above analysis and Fig. 2, we conjecture the probability p of ob-
serving a good pair to, in general, be considerably greater than the lower bound of
p ≥ 1/8 in [2, 3] guarantees. In general, it should be safe to assume a lower bound of
p ≥ 3/10 for random d on 2m−1 ≤ d < 2m.

3 Simulating the quantum algorithm

In this section, we combine results from the previous sections to construct a high-
resolution histogram for the probability distribution for given d. Furthermore, we
describe how the histogram may be sampled to simulate the quantum algorithm.

3.1 Constructing the histogram

To construct the high-resolution histogram, we divide the argument axis into regions
and subregions and integrate Φ(α) numerically in each subregion.

First, we subdivide the negative and positive sides of the argument axis into 30+µ
regions where µ = min(`− 2, 11). Each region thus formed may be uniquely identified
by an integer η by requiring that for all α in the region

2|η| ≤ |α | ≤ 2|η|+1 and sgn(α) = sgn(η)

where m − 30 ≤ | η | < m + µ − 1. Then, we subdivide each region into subregions
identified by an integer ξ by requiring that for all α in the subregion

2|η|+ξ/2
ν ≤ |α | ≤ 2|η|+(ξ+1)/2ν

for ξ an integer on 0 ≤ ξ < 2ν and ν a resolution parameter. In this paper, we fix
ν = 11 to obtain a high degree of accuracy in the tail of the histogram.

For each subregion, we compute the approximate probability mass contained within
the subregion by applying Simpson’s rule, followed by Richardson extrapolation to
cancel the linear error term. Simpson’s rule is hence applied 2ν(1 + 2ν) times in each
region. Each application requires Φ(α) to be evaluated in up to three points (the two
endpoints and the midpoint). As the distribution is symmetric around zero, we need
only compute one side in practice. When evaluating Φ(α), we divide the result by 2κ

to account for the density of admissible pairs.
This approach to constructing the histogram is only valid if κ is small in relation

to m, as we must otherwise account for which α are admissible. For small κ, this is
not necessary, as the variation in Φ(θ(α)) is negligible for small variations in α.
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3.2 Sampling the distribution

To sample an argument α from the histogram for the distribution, we first sample
a subregion and then sample α uniformly at random from the set of all admissible
arguments in this subregion. To sample the subregion, we first order all subregions
in the histogram by probability, and compute the cumulative probability up to and
including each subregion in the resulting ordered sequence. Then, we sample a pivot
uniformly at random from [0, 1), and return the first subregion in the ordered sequence
for which the cumulative probability is greater than or equal to the pivot. Sampling
fails if the pivot is greater than the total cumulative probability.

To sample an integer (j, k) from the distribution, we first sample an admissible
argument α as described above, and then sample (j, k) uniformly at random from
the set of all integer pairs (j, k) yielding α using Lemma 2.1. More specifically, we
first sample an integer t uniformly at random from the interval 0 ≤ t < 2κ and then
compute (j, k) from α and t as described in Lemma 2.1.

4 Our improved post-processing algorithm

In this section, we introduce our new post-processing algorithm. It allows d to be re-
covered from a set {(j1, k1), . . . , (jn, kn)} of n > s pairs produced simply by executing
the quantum algorithm n times.

In analogy with the original post-processing algorithm, the set of n pairs is used to
form a vector v = ( {−2mk1}2`+m , . . . , {−2mkn}2`+m , 0) ∈ ZD and a D-dimensional
integer lattice L with basis matrix

j1 j2 · · · jn 1
2`+m 0 · · · 0 0

0 2`+m · · · 0 0
...

...
. . .

...
...

0 0 · · · 2`+m 0


where D = n+ 1. For some constants m1, . . . , mn ∈ Z, the vector

u = ({dj1}2`+m +m12
`+m, . . . , {djn}2`+m +mn2`+m, d) ∈ L

is such that the distance

R = |u− v | =

√√√√ n∑
i=1

(
{dji}2`+m +mi2`+m − {−2mki}2`+m

)2
+ d2

=

√√√√√ n∑
i=1

{dji + 2mki}22`+m︸ ︷︷ ︸
α2
i

+ d2 =

√√√√ n∑
i=1

α2
i + d2 .

This implies that u and hence d may be found by enumerating all vectors in L
within a D-dimensional hypersphere of radius R centered on v. The volume of such a
hypersphere is VD(R) as defined in equation 1.

For comparison, the fundamental parallelepiped in L contains a single lattice vector
and is of volume detL = 2(`+m)n. Heuristically, we therefore expect the hypersphere to
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contain approximately v = VD(R) / detL lattice vectors. The exact number depends
on the placement of the hypersphere in ZD and on the shape of the fundamental
parallelepiped in L.

Assuming v to be sufficiently small for it to be computationally feasible to enumer-
ate all lattice vectors in the hypersphere in practice, the above algorithm may be used
to recover d. As the volume quotient v decreases in n, the number of vectors that need
to be enumerated may be reduced by running the quantum algorithm more times and
including the resulting pairs in L. However, there are limits to the number of pairs
that may be included in L, as a reduced basis must be computed to enumerate Lj ,
and the complexity of computing such a basis grows rapidly in the dimension of Lj .

In this section, we show how to heuristically estimate the minimum number of runs
n required to solve a specific known problem instance for d with minimum success
probability q, for a given tradeoff factor s, and for a given bound on the number of
vectors v that we at most accept to enumerate in L.

4.1 Estimating the minimum n required to solve for d

The radius R depends on the pairs (ji, ki) via the arguments αi. For fixed n and fixed
probability q, we may estimate the minimum radius R̃ such that

Pr

R =

√√√√ n∑
i=1

α2
i + d2 ≤ R̃

 ≥ q
by sampling αi from the probability distribution as described in Section 4.2. Then

Pr

[
v =

VD(R)

detL
≤ VD(R̃)

2(`+m)n

]
≥ q, (3)

providing an heuristic bound on the number of lattice vectors v that at most have to
be enumerated, that holds with probability at least q.

Given an upper limit on the number of lattice vectors that we accept to enumerate,
equation (3) may be used as an heuristic to estimate the minimum value of n such
that v is below this limit with probability at least q.

To compute the estimate in practice, we use the heuristic to compute an upper
bound on v for n = 1, 2, . . . and return the minimum n for which the bound is below
the limit on the number of vectors that we accept to enumerate.

As the volume quotient v decreases by approximately a constant factor for every
increment in n, the minimum n may be found efficiently via interpolation once the
heuristic bound on v has been computed for a few values of n.

4.2 Estimating R̃

To estimate R̃ for m, s and n, explicitly known d, and a given target success probability
q, we sample N sets of n arguments {α1, . . . , αn} from the probability distribution as
described in Section 3.2. For each set, we compute R, sort the resulting list of values
in ascending order, and select the value at index d(N − 1) qc to arrive at our estimate
for R̃. The constant N controls the accuracy of the estimate. Assuming N to be
sufficiently large in relation to q, and to the variance of the arguments, this approach
yields sufficiently good estimates.
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4.2.1 On sampling failures

The sampling of argument pairs may fail. This occurs when the pair being sampled
is not in the regions of the argument axis covered by the histogram constructed for
the probability distribution. If the sampling of at least one argument in a set fails,
we err on the side of caution and over-estimate R̃ by letting R = ∞ for the set. The
entries for the failed sets will then all be sorted to the end of the lists. If the value of
R̃ selected from the sorted list is ∞ no estimate is produced.

4.3 Results and analysis

To estimate n as a function of m and s, and to verify the estimates in simulations, we
fix q = 0.99 and consider the hard case d = 2m − 1.

For relevant combinations of m and s, we let ` = dm/se, fix N = 106 when
estimating R̃, and record the smallest n > s for which the volume quotient v < 2.
For some m and s, we verify the estimate by sampling M = 103 sets of n pairs
{(j1, k1), . . . , (jn, kn)} and solving each set for d with the post-processing algorithm.
If d is thus recovered, the verification succeeds, otherwise it fails. We record the
smallest n > s such that at most M(1− q) = 10 verifications fail.

logarithm size m
128 256 512 1024 2048 4096 8192

tr
a
d

e
o
ff

fa
c
to

r
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 7 / 8 6 6 6 6 6 6
6 10 8 7 7 7 7 7
7 13 10 / 9 8 8 8 8 8
8 18 11 10 9 9 9 9

10 – / 32 15 12 11 11 11 11
20 – – / 71 32 / 31 24 22 21 21
30 – – – / 60 41 / 40 35 32 31
40 – – – – / 62 50 / 48 45 / 44 42
50 – – – – – / 65 58 / 57 54 / 53
60 – – – – – – / 69 65
70 – – – – – – – / 76

Table 1: The estimated (A) and simulated (B) number of pairs n required for u
to be the closest vector to v in L allowing d to be recovered via Babai’s algorithm.
If A = B, we only print A, otherwise we print B/A. Dash indicates no information.

Table 1 was produced by executing these procedures. To reduce the lattice bases,
the block Korkin-Zolotarev (BKZ) algorithm, introduced by Schnorr [4, 5], was em-
ployed, as implemented in fpLLL 5.2, with default parameters and a block size of
min(10, n+ 1) for all combinations of m, s and n. For these parameter choices, a basis
takes at most minutes to reduce and solve for d in a single thread.

The estimated values of n are verified by the simulations, except when v is close
to two, in which case the estimated and simulated n may differ slightly. Note that the
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variation becomes stronger when the factor whereby v increases or decreases for each
increment of decrement of n is small in relation to two.

Compared to the post-processing algorithm originally proposed, the new post-
processing algorithm efficiently achieves considerably better tradeoffs with practical
time complexity for cryptographically relevant parameter choices. It furthermore re-
quires considerably fewer quantum algorithm runs. Asymptotically, the number of
runs required n tends to s + 1 as m tends to infinity for fixed s, when we require a
solution to be found without enumerating the lattice.

4.4 Further improvements

Above, we fixed a high minimum success probability q = 0.99 and considered the hard
case where d = 2m−1. Furthermore, we required that mapping v to the closest vector
in L should yield u without having to enumerate vectors in L.

In practice, some of these choices may be relaxed: Instead of requiring u to be
the closest vector to v in L, we may enumerate all vectors in a hypersphere of limited
radius centered on v. In cryptographic applications, the logarithm d may in general
be assumed to be randomly selected on 2m−1 ≤ d < 2m. If not, the logarithm may be
randomized; solve x� [ c ] g for d+ c with respect to the basis g.

Other options include selecting m slightly greater than the bit length of d, excluding
subsets of pairs (j, k) from the lattice to eliminate pairs with large |α(j, k) |, and
centering d around zero by admitting negative logarithms.

5 Summary and conclusion

We have introduced a new efficient post-processing algorithm that is practical for
greater tradeoff factors, and in general requires considerably fewer quantum algorithm
runs, than the original post-processing algorithm. To estimate the number of runs
required, we have analyzed the probability distribution induced by the quantum algo-
rithm and developed a method of simulating the quantum algorithm.

With the new post-processing, our quantum algorithm achieves an advantage over
Shor’s algorithms, not only in each individual run, but also overall, when targeting
cryptographically relevant instances of RSA and Diffie-Hellman with short exponents,
depending on how parameters are selected. The reader is referred to appendix A for a
detailed analysis and quantification of the advantage.
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A Our advantage

In this appendix, we analyze our algorithm’s advantage when targeting RSA or the
Diffie-Hellman key exchange scheme in safe-prime groups with short exponents.

A.1 Diffie-Hellman

The portions of the FIPS 800-56A recommendation [9] that pertain to Diffie-Hellman
key exchange in G ⊂ F∗p were recently revised by NIST.

The previous version mandated the use of randomly selected Schnorr groups and
supported moduli p of length up to 2048 bits. The new version supports moduli of
length up to 8192 bits. For lengths exceeding 2048 bits, it mandates the use of a fixed
set of safe-prime groups, originally developed for TLS and IKE [10,11].
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Migrating from Schnorr groups to safe-prime groups with full length exponents
would result in a significant performance penalty. NIST therefore permits the use of
short exponents; the exponent length m must be on 2z ≤ m ≤ dlog2 re, where z is
strength level of the group and r = (p− 1)/2 is the group order.

strength in each run overall
dlog2 pe level z m s n v #ops adv #ops adv

2048 112
224 1 1 1.3 · 103 672 6.1 672 6.1
224 7 10 6.5 · 10−4 288 14.2 2880 1.4

3072 128
256 1 1 1.3 · 103 768 8.0 768 8.0
256 8 11 2.4 · 10−1 320 19.2 3520 1.7

4096 152
304 1 1 1.3 · 103 912 9.0 912 9.0
304 9 12 4.8 · 10−1 372 22.0 4464 1.8

6144 176
352 1 1 1.4 · 103 1056 11.6 1056 11.6
352 10 13 4.5 · 10−2 424 29.0 5512 2.2

8192 200
400 1 1 1.3 · 103 1200 13.7 1200 13.7
400 11 14 7.5 474 34.6 6636 2.5

Table 2: Sample estimates for the complexity of computing short discrete loga-
rithms in the FIPS 800-56A groups originally developed for TLS and IKE.

In Table 2 we provide estimates of the complexity of computing short discrete
logarithms in these widely used safe-prime groups. The estimates were computed as
in Section 4.3, for maximal d = 2m − 1 and ≥ 99% success probability, except that we
accept to enumerate vectors in L. We tabulate m, s and n, for s = 1, and for s the
greatest tradeoff factor such that n− s ≤ 3 with v close to two.

The number of group operations that need to be computed, in each run of the
quantum algorithm, and overall in n runs, are tabulated for each tuple m, s and n,
along with our advantage, defined as the fraction between 2 dlog2 re, the number of
group operations in each run of Shor’s algorithm [2,7,8] for general discrete logarithms,
and the number of group operations, in each run or overall, in our algorithm. We
assume that standard double-and-add exponentiation is used.

Note that the latter comparison is quite generous to Shor as our algorithm has
≥ 99% probability of recovering d after n runs. Multiple runs of Shor’s algorithm may
be required to achieve a similar bound on the success probability.

As may be seen in Table 2, our algorithm reduces the number of group operations
in each run by up to a factor of 34.6 for these m, s and n. It provides an advantage, not
only in each run, but also overall, even for large tradeoff factors, due to the new post-
processing algorithm being more efficient and requiring fewer runs. We have verified
the estimates by post-processing simulated outputs.

A.2 RSA

Let p, q > 2 be two large distinct primes of length l bits. Then N = pq is said to be
an RSA integer. To factor N into p and q, we propose to do the following:

Pick a random element g ∈ Z∗N . Let r denote the unknown order of g. Let
p̃ = (p − 1)/2 and q̃ = (q − 1)/2. Then r divides 2p̃q̃ / gcd(p̃, q̃). Let f(N) = (N −
1)/2 − 2l−1 = 2p̃q̃ + p̃ + q̃ − 2l. Compute x = gf(N) ≡ gd for d on 0 ≤ d < r. Then
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d = f(N) mod r = p̃ + q̃ − 2l−1, assuming r > 2l−1, so the discrete logarithm d is
short. To factor N , it hence suffices to compute d using our algorithm, and to solve
p+ q = 2(d+ 2l−1 + 1) and pq = N for p and q.

Recall that in our algorithm for computing short discrete logarithms [3], we require
d to be on 0 ≤ d < 2m, which implies m = l − 1. Furthermore, we require r ≥
2`+m + 2`d, where ` = dm/se for s an integer. This implies s ≥ 2 if the requirement
that r ≥ 2`+m + 2`d is to be respected with high probability.

In Table 3 we provide estimates of the complexity of factoring RSA integers. The
estimates were computed as described in Section 4.3, for ≥ 99% success probability
and maximal d = 2m − 1. Note that selecting d maximal slightly over-estimates the
hardness of factoring random RSA integers. We tabulate m, s and n, for s = n = 2,
and for s the greatest tradeoff factor such that n− s ≤ 3 whilst keeping v sufficiently
small to avoid having to enumerate the lattice.

The estimates are tabulated as described in Section A.1, except that we compute
our advantage in relation to a single run of Shor’s order finding algorithm. We have
verified the estimates by post-processing simulated quantum algorithm outputs.

in each run overall
dlog2Ne m s n v #ops adv #ops adv

2048 1023 2 2 1.4 · 105 2047 2.0 4094 1.0
1023 17 20 3.3 · 10−7 1145 3.6 22900 0.18

3072 1535 2 2 1.4 · 105 3071 2.0 6142 1.0
1535 21 24 5.7 · 10−9 1683 3.6 40392 0.15

4096 2047 2 2 1.4 · 105 4095 2.0 8190 1.0
2047 24 27 1.0 · 10−10 2219 3.7 59913 0.14

6144 3071 2 2 1.4 · 105 6143 2.0 12286 1.0
3071 31 34 8.2 · 10−7 3271 3.8 111214 0.11

8192 4095 2 2 1.4 · 105 8191 2.0 16382 1.0
4095 34 37 5.1 · 10−14 4337 3.8 160469 0.10

Table 3: Estimated complexity of factoring RSA integers with ` = dm/se and
s ≥ 2 in multiple runs, with ≥ 99% success probability and maximal d = 2m − 1.

As may be seen in Table 3, we obtain an advantage in each run of the algorithm,
that translates into a reduction of the size and depth of the quantum circuit.

For s = 2, we perform the same number of operations overall in the two runs,
as Shor’s algorithm does in a single run. Hence, the benefit of reduced circuit size
and depth in each individual run comes at no cost in terms of the overall number of
operations that need to be performed. For s > 2, we obtain a greater advantage in
each individual run of the algorithm, at the expense of performing a greater number
of operations overall than Shor’s algorithm does in a single run.

Compared to the advantage Seifert’s algorithm [6] achieves over Shor in each indi-
vidual run and for a specific tradeoff factor s, our algorithm achieves a further advan-
tage by approximately a factor of two.
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A.2.1 Breaking RSA with an advantage in a single run

When using the new post-processing algorithm, we may let ` = m− δ for some small
δ, instead of letting ` = dm/se for s an integer. This tweak allows us to remove the
obstacle that prevented us from achieving an advantage over Shor’s algorithm in a
single run above, without affecting the analysis of the algorithm.

Experiments, in which we select random N = pq and estimate the distribution of
orders of elements g selected uniformly at random from Z∗N by partially factoring p−1
and q−1, indicate that selecting δ = 20 results in a very high probability of respecting
the requirement that r ≥ 2`+m + 2`d.

dlog2Ne m ` n v #ops adv

2048 1023 1003 1 1.4 · 109 3029 1.35
3072 1535 1515 1 1.4 · 109 4565 1.35
4096 2047 2027 1 1.4 · 109 6101 1.34
6144 3071 3051 1 1.4 · 109 9173 1.34
8192 4095 4075 1 1.4 · 109 12245 1.34

Table 4: Estimated complexity of factoring RSA integers with ` = m − δ for
δ = 20 in a single run, with ≥ 99% success probability and maximal d = 2m − 1.

In Table 4 we provide estimates for the complexity of factoring RSA integers in
a single run of our quantum algorithm with ` = m − δ for δ = 20. As evidenced,
tweaking ` enables us to achieve an advantage over Shor’s order finding algorithm in
a single run, at the expense of enumerating a moderate number of lattice vectors.

The enumeration is easy to perform in practice. It is facilitated by the lattice
being two-dimensional, and by the last component of the vector sought being d. The
fact that 0 < d ≤ 2m and d ≡ (N − 1)/2 (mod 2) may hence be used to prune the
enumeration. We have verified that the tweaked algorithm achieves ≥ 99% success
probability by post-processing simulated quantum algorithm outputs.
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