
Fast Homomorphic Evaluation of

Deep Discretized Neural Networks

Florian Bourse1, Michele Minelli2,3,

Matthias Minihold4, and Pascal Paillier5

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
2 DIENS, École normale supérieure, CNRS, PSL Research University, Paris, France

3 INRIA
4 Horst Görtz Institut für IT-Security, Ruhr-Universität Bochum, Germany

5 CryptoExperts, Paris, France

Abstract. The rise of machine learning as a service multiplies scenarios

where one faces a privacy dilemma: either sensitive user data must be

revealed to the entity that evaluates the cognitive model (e.g., in the

Cloud), or the model itself must be revealed to the user so that the

evaluation can take place locally. Fully Homomorphic Encryption (FHE)

offers an elegant way to reconcile these conflicting interests in the Cloud-

based scenario and also preserve non-interactivity. However, due to the

inefficiency of existing FHE schemes, most applications prefer to use

Somewhat Homomorphic Encryption (SHE), where the complexity of

the computation to be performed has to be known in advance, and the

efficiency of the scheme depends on this global complexity.

In this paper, we present a new framework for homomorphic evaluation

of neural networks, that we call FHE–DiNN, whose complexity is strictly

linear in the depth of the network and whose parameters can be set

beforehand. To obtain this scale-invariance property, we rely heavily on

the bootstrapping procedure. We refine the recent FHE construction by

Chillotti et al. (ASIACRYPT 2016) in order to increase the message

space and apply the sign function (that we use to activate the neurons in

the network) during the bootstrapping. We derive some empirical results,

using TFHE library as a starting point, and classify encrypted images

from the MNIST dataset with more than 96% accuracy in less than 1.7

seconds.

Finally, as a side contribution, we analyze and introduce some variations

to the bootstrapping technique of Chillotti et al. that offer an improve-

ment in efficiency at the cost of increasing the storage requirements.

Keywords: Fully Homomorphic Encryption, Neural Networks, Boot-

strapping, MNIST.



2 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

1 Introduction

Fully Homomorphic Encryption (FHE). An FHE scheme provides a way

to encrypt data while supporting computations through the encryption envelope.

Given an encryption of a plaintext x, one can compute an encryption of f(x)

for any computable function f . This operation does not require intermediate

decryption or knowledge of the decryption key and therefore can be performed

based on public information only. Applications of FHE are numerous but one

particular use of interest is the privacy-preserving delegation of computations to

a remote service. The first construction of FHE dates back to 2009 and is due

to Gentry [Gen09]. A number of improvements have followed [vDGHV10, SS10,

SV10, BV11a, BV11b, BGV12, GHS12, GSW13, BV14], leading to a biodiversity

of techniques, features and complexity assumptions.

All known FHE schemes are obtained by first building a leveled Somewhat

Homomorphic Encryption (SHE) scheme, which can evaluate circuits of a-priori

bounded depth (usually, only the multiplicative depth is considered, because the

noise growth introduced by additions is negligible compared to that introduced

by multiplications). In order to obtain unbounded computation capabilities on

encrypted values, an FHE scheme can be built from an SHE scheme with a

technique called bootstrapping, which intuitively means using the homomorphic

properties of the scheme to decrypt and then re-encrypt, refreshing the ciphertext

to enable further computation. However, this process is very costly. Hence, there

have been numerous works on trying to obtain more efficient bootstrappings

[AP13, AP14, DM15, CGGI16b, CGGI17], and on trying to minimize the num-

ber of bootstrappings required for evaluating a circuit [LP13, PV16, BLMZ17].

Another approach is to simply avoid bootstrapping altogether and use an SHE

scheme, adjusting the parameters to be able to carry out the desired computa-

tion.

In practice, there are now two main freely available libraries for fully homo-

morphic encryption. The first one, HElib [HS14, HS15], which implements the

BGV scheme [BGV12], is the most widely used in applications. It allows for

packing of ciphertexts and SIMD computations, amortizing the cost for certain

tasks. It is able to perform additions and multiplications in an efficient way, but

the bootstrapping operation is significantly slow. In practice, it is often used as a

somewhat homomorphic scheme. The second one, TFHE [CGGI16a], features a

very efficient bootstrapping operation but, as a downside, this has to be applied

after every gate computation. This library is more efficient than HElib when used

for realizing an FHE. However, for simple tasks requiring small computational

depth, HElib used as an SHE will perform better. Moreover, TFHE is currently

not capable of amortizing large SIMD computations as well as HElib does.

The quest for privacy-preserving machine learning. Machine Learning

As a Service (MLAS) is becoming popular because of its versatility. These appli-

cations typically have high computation and data-storage requirements, which



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 3

make them less suitable as client-side technologies. Moreover, since the process

of training a cognitive model is time and resource-consuming, the trained pre-

diction algorithm is often considered critical intellectual property by its owner,

who is typically not willing to share its technology or proprietary tools, resulting

in that machine learning algorithms are most conveniently cloud-based.

However, this setting raises new issues concerning the privacy of the uploaded

input data. Users want to send their encrypted data to a cloud service that

offers privacy-preserving predictions, and fulfills this task using its powerful yet

undisclosed, state-of-the-art predictive models. In this paper, we put forward a

new and versatile FHE framework that makes it efficient for the cloud to operate

a neural network dedicated to some specific machine learning task. The network,

previously trained on plaintext dataset, does not have access to the input data in

the clear, but is only given user-provided encrypted inputs and returns encrypted

predictions.

Obviously, encrypting the user’s data ensures its confidentiality, since the

private key under which the data is encrypted is assumed never to leave the

owner’s controlled domain. In this setting, only the legitimate owner of the se-

cret key can decrypt the result returned by the delegated computation that has

been homomorphically performed in the cloud. The cloud service only learns

superficial information, but can still charge the user for using the service.

Neural networks (NNs) are often built from medical, financial or otherwise

sensitive data. They are usually trained to solve a classification problem: all

possible observations are categorized into classes and, given a training dataset

of observation/class pairs, the network should be able to assign the correct class

to new observations. Such framework can be easily applied to problems like

establishing a diagnosis from medical observations.

In this work we do not consider the problem of privacy-preserving data-

mining, intended as training a neural network over encrypted data, which can

be addressed, e.g., with the approach of [AS00]. Instead, we assume that the

neural network is trained with data in the clear and we focus on the evaluation

part.

Another potential concern for the service provider is that users might be

sending malicious requests in order to either learn what is considered a company

secret (the neural network itself), or specific sensitive information encoded in

the weights (which could be a breach into the privacy of the training dataset).

In this latter case, a statistical database can be used in the training phase, as is

discussed in the differential privacy literature [Dwo06].

Prior works. Cryptonets [DGBL+16] was the first initiative to address the

challenge of achieving blind, non-interactive classification. The main idea con-

sists in applying a leveled SHE scheme such as BGV [BGV12] to the network

inputs and propagating the signals across the network homomorphically, thereby

consuming levels of homomorphic evaluation whenever non-linearities are met.



4 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

In NNs, non-linearities come from activation functions which are usually picked

from a small set of non-linear functions of reference (logistic sigmoid, hyperbolic

tangent, . . . ) chosen for their mathematical convenience. To optimally accommo-

date the underlying SHE scheme, Cryptonets replace their standard activation

by the (depth 1) square function, which only consumes one level but does not

resemble the typical sigmoidal shape. A number of subsequent works have fol-

lowed the same approach and improved it, typically by adopting higher degree

polynomials as activation functions for more training stability [ZYC16], or by

renormalizing weighted sums prior to applying the approximate function, so that

its degree can be kept as low as possible [CdWM+17]. Practical experiments have

shown that training can accommodate approximated activations and generate

NNs with very good accuracy.

However, this approach suffers from an inherent limitation: the homomor-

phic computation, local to a single neuron, depends on the total number of

levels required to implement the network, which is itself roughly proportional

to the number of its activated layers. Therefore, the overall performance of the

homomorphic classification heavily depends on the total multiplicative depth of

the circuit and rapidly becomes prohibitive as the number of layers increases.

This approach does not scale well and is not adapted to deep learning, where

neural networks can contain tens, hundreds or sometimes thousands of layers

[HZRS15, ZK16].

Finally, we note that other approaches based on multiparty computation

(MPC) have been proposed, e.g., [BPTG15, MZ17, MRSV17], but they require

interactivity between the party that holds the data and the party that performs

the blind classification. Even though practical performances of MPC-based solu-

tions have been impressive compared to FHE-based solutions, they incur other

issues like network latency and high bandwidth usage. Because of these down-

sides, FHE-based solutions seem more scalable for real-life applications. In this

work, we focus on a non-interactive, blind evaluation, and we rely on FHE.

Our contributions. We adopt a scale-invariant approach to the problem. In

our framework, called FHE–DiNN, each neuron’s output is refreshed through

bootstrapping, resulting in that arbitrarily deep networks can be homomorphi-

cally evaluated. Of course, the entire homomorphic evaluation of the network will

take time proportional to the number of its neurons or, if parallelism is involved,

to the number of its layers. Evaluating one neuron is now essentially independent

of the dimensions of the network: it just relies on system-wide parameters.

In FHE–DiNN, unlike in standard neural networks, the weights and biases,

as well as the domain and range of the activation function cannot be real-valued

and must be discretized. We call such networks Discretized Neural Networks or

DiNNs. This particular form of neural networks is somehow inspired by a more

restrictive one, referred to in the literature as Binarized Neural Networks (BNNs)

[CB16] where signals and weights are restricted to the set {−1, 1} instead of Z



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 5

as in the case of DiNNs (so BNNs are a special case of DiNNs). Interestingly,

it has been empirically observed by [CB16] that BNNs can achieve accuracies

close to the ones obtained with state-of-the-art classical NNs, at the price of an

overhead in the total network size, which is largely compensated by the obtained

performance gains. For the sake of scale-invariance, we decided to choose as

activation function the sign, so the signal which is propagated has values in

{−1, 1}, and cannot grow out of control. So the evaluation of DiNNs boils down

to repeatedly computing the sign of a weighted sum of ±1 inputs.

In order to perform this classification on encrypted data, we adapt the recent

construction by Chillotti et al., known as TFHE [CGGI16b] to support sign and

weighted sum as the two basic operations of the scheme, the sign being computed

during a bootstrapping procedure in order to refresh the ciphertext.

As a side contribution, we also present a few techniques to optimize the

usage of TFHE in applications: how to reduce the required bandwidth, how to

reduce the overall noises in the ciphertexts, and a slightly faster alternative to

the bootstrapping procedure that also produces ciphertexts with less noise, at

the expense of a bigger bootstrapping key.

Finally, we conducted experiments on the MNIST dataset [LBBH98]. We

used the library keras [C+15] to train two simple neural networks with one hid-

den layer containing 30 (respectively, 100) neurons and we converted them into

DiNNs by simply discretizing the weights and using the sign as activation func-

tion. Of course, this introduced a loss in accuracy, and although much better

accuracies could certainly be obtained through various optimizations or by di-

rectly training a DiNN (rather than converting a canonical neural network), this

was not the goal of this work. Our aim was conducting experiments to measure

the accuracy of the homomorphic classification and comparing it to that in the

clear. We found that, for a security level of 80 bits, our implementation takes

about 0.49 s (respectively, 1.65 s) seconds per classification (with no underly-

ing parallelism whatsoever) and achieves 93.71% (respectively, 96.35%) accuracy

when evaluated homomorphically.

Comparison with Cryptonets [DGBL+16]. In Cryptonets, propagated sig-

nals are reals properly encoded into compatible plaintexts and a single encrypted

input (i.e., an image pixel) takes 2 · 382 · 8192 bits (= 766 kB). Therefore, an

entire image takes 28 · 28 · 766 kB ≈ 586 MB. However, with the same storage

requirements, Cryptonets can batch 8192 images together, so that the amortized

size of an encrypted image is reduced to 73.3 kB. In the case of FHE–DiNN, we

are able to exploit the batching technique on a single image, resulting in that

each encrypted image takes ≈ 8.2 kB. In the case of Cryptonets, the complete

homomorphic evaluation of the network takes 570 seconds, whereas in our case it

takes 0.49 s (or 1.6 s in the case of a slightly larger network). However, it should

be noted that (a) the networks that we use for our experiments are considerably

smaller than that used in Cryptonets, so we also compare the time-per-neuron



6 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

and, in this case, our solution is faster by roughly a factor 36; moreover (b)

once again Cryptonets support image batching, so 8192 images can be classified

in 570 seconds, resulting in only 0.07 s per image. Cryptonets’ ability to batch

images together can be useful in some applications where the same user wants

to classify a large number of samples together. In the simplest case where the

user only wants a single image to be classified, this feature does not help.

Regarding classification accuracy, the NN used by Cryptonets achieves 98.95 %

of correctly classified samples, when evaluated on the MNIST dataset. In our

case, a loss of accuracy occurs due to the preliminary simplification of the MNIST

images, and especially because of the discretization of the network. We stress

however that our prime goal was not accuracy but to achieve a qualitatively

better homomorphic evaluation at the neuron level.

Finally, we also achieve scale-invariance, meaning that we can keep on com-

puting over the encrypted outputs of our network, whereas Cryptonets are

bounded by the initial choice of parameters. In Table 1 we present a detailed

comparison with Cryptonets.

Neurons Size of ct. Accuracy Time enc Time eval Time dec

Cryptonets 945 586 MB 98.95% 122 s 570 s 5 s

Cryptonets? 945 73.3 kB 98.95% 0.015 s 0.07 s 0.0006 s

FHE–DiNN30 30 ≈ 8.2 kB 93.71% 0.000168 s 0.49 s 0.0000106 s

FHE–DiNN100 100 ≈ 8.2 kB 96.35% 0.000168 s 1.65 s 0.0000106 s

Table 1: Comparison with Cryptonets and its amortized version (denoted by

Cryptonets?). FHE–DiNN30 and FHE–DiNN100 refer to neural networks with

one hidden layer composed of 30 and 100 neurons, respectively.

Outline of the paper. The paper is organized as follows: in section 2 we define

our notation and we introduce notions about fully homomorphic encryption

and artificial neural networks; in section 3 we present our Discretized Neural

Networks and show a simple technique to build these models; in section 4 we

explain how to homomorphically evaluate a DiNN and present our main result;

in section 5 we present some technical refinements that allow us to improve

the efficiency of the evaluation and that can be useful also for other FHE-based

solutions; finally, in section 6 we give experimental results on data in the clear and

on encrypted inputs, draw some conclusions and identify several open problems.

2 Preliminaries

In this section we clarify our notation and recall some definitions and construc-

tions that are going to be useful in the rest of the paper.



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 7

2.1 Notation

We denote the real numbers by R, the integers by Z and use T to indicate R/Z,

i.e., the torus of real numbers modulo 1. We use B to denote the set {0, 1},
and we use R [X] for polynomials in the variable X with coefficients in R, for

any ring R . We use RN [X] to denote R [X] /
(
XN + 1

)
and ZN [X] to denote

Z [X] /
(
XN + 1

)
and we write their quotient as TN [X] = RN [X] /ZN [X], i.e.,

the ring of polynomials in X quotiented by
(
XN + 1

)
, with real coefficients

modulo 1. Vectors are denoted by lower-case bold letters, and we use ‖·‖1 and

‖·‖2 to denote the L1 and the L2 norm of a vector, respectively. Given a vector

a, we denote its i-th entry by ai. We use 〈a,b〉 to denote the inner product

between vectors a and b.

Given a set A, we write a
$← A to indicate that a is sampled uniformly at

random from A. If D is a probability distribution, we will write d← D to denote

that d is sampled according to D.

2.2 Fully homomorphic encryption over the torus

Learning with errors. The Learning with Errors (LWE) problem was intro-

duced by Regev in [Reg05]. Let n be a positive integer and χ be a probability

distribution over R for the noise. For any vector s ∈ {0, 1}n, we define the LWE

distribution lwen,s,χ as (a, b), where a
$← Tn and b = 〈s,a〉+ e ∈ T, with e← χ.

Then the LWE assumption states that, for s
$← {0, 1}n, it is hard to distin-

guish between (a, b) and (u, v), for (a, b)← lwen,s,χ and (u, v)
$← Tn+1.

Sub-Gaussians. Let σ > 0 be a real Gaussian parameter. We define the Gaus-

sian function with parameter σ as ρσ (x) = exp
(
−π |x|2 /σ2

)
for any x ∈ R.

Then we say that a distribution D is sub-Gaussian with parameter σ if there

exists M > 0 such that for all x ∈ R,

D (x) ≤M · ρσ (x) .

Lemma 2.1 (Pythagorean additivity of sub-Gaussians). Let D1 and D2

be sub-Gaussian distributions with parameters σ1 and σ2, respectively. Then D+,

obtained by sampling D1 and D2 and summing the results, is a sub-Gaussian with

parameter
√
σ2
1 + σ2

2 .

LWE-based private-key encryption scheme. We recall the Regev encryp-

tion scheme from [Reg05]. Let µ ∈ {0, 1} be a message and λ the security pa-

rameter; we encrypt and decrypt as follows:

Setup (λ): for a security parameter λ, fix n = n (λ) and return s
$← {0, 1}n

Enc (s, µ): return (a, b), with a
$← Tn and b = 〈s,a〉+ e+ µ

2 , where e← χ



8 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

Dec (s, (a, b)): return b2 (b− 〈s,a〉)e

We usually refer to e as the noise of the ciphertext, and say that a ciphertext is

a valid encryption of µ if it decrypts to µ with overwhelming probability.

We now give some notions on the formulation of FHE over the torus and the

bootstrapping procedure. The following part is based on [CGGI16b].

TLWE. TLWE is a generalization of LWE and Ring-LWE [LPR10]. Let k ≥ 1

be an integer, N be a power of 2 and χ be an error distribution over RN [X].

A TLWE secret key s̄ ∈ BN [X]
k

is a vector of k polynomials over ZN [X] with

binary coefficients. Given a message encoded as a polynomial µ ∈ TN [X], a fresh

TLWE encryption of µ under the key s̄ is a sample (a, b) ∈ TN [X]
k × TN [X],

with a
$← TN [X]

k
and b = s̄ · a + µ+ e, where e← χ.

From a TLWE encryption c̄ of a polynomial µ ∈ TN [X] under a TLWE key s̄ we

can extract a LWE encryption c′ = Extract (c̄) of the constant term of µ under

an extracted key s′ = ExtractKey (s̄). For the details of the algorithms Extract
and ExtractKey, we refer the reader to [CGGI16b, Definition 4.1].

TGSW. TGSW is a generalized version of the GSW FHE scheme [GSW13].

The key concept here is that TGSW can be seen as the matrix equivalent of

TLWE, just like GSW can be seen as the matrix equivalent of LWE. More de-

tails can be found in [CGGI16b].

As in previous works, our average-case noise analysis relies on the following

heuristic. This assumption matches empirical results [DM15, CGGI16b]. Note

that the worst-case bounds do not require this heuristic.

Assumption 1 We assume that all the error coefficients of TLWE or TGSW

samples of the linear combinations we consider are independent and concen-

trated. In particular, we assume that they are sub-Gaussian where σ is the square-

root of their variance.

Overview of the bootstrapping procedure. The core idea for the efficiency

of the new bootstrapping procedure is the so-called external product �, that

performs the following mapping

� : TGSW× TLWE→ TLWE.

Roughly speaking, the external product of a TGSW encryption of a polynomial

µ1 ∈ TN [X] and a TLWE encryption of a polynomial µ2 ∈ TN [X] is a TLWE

encryption of (µ1 · µ2) ∈ TN [X].

Now the bootstrapping procedure of an n-LWE sample (here, n denotes the

dimension) consists of the 3 following functions:



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 9

BlindRotate: TGSWn × TLWE × n-LWE → TLWE

On input TGSW encryptions of (si)i∈[n], a (possibly noiseless) TLWE en-

cryption of

testVector and an n-LWE sample (a, b), computes a TLWE encryption of

Xφ· testVector, where φ = b− 〈s,a〉;

Extract: TLWE → N -LWE

On input a TLWE encryption of polynomial µ ∈ TN [X], computes an N -

LWE encryption of the constant term µ(0);

KeySwitch: n-LWEN × N -LWE → n-LWE

On input n-LWE encryptions of (s′i)i∈[N ], and an N -LWE sample (a, b) com-

putes an n-LWE encryption of b− 〈s′,a〉.

Then we can define a function Bootstrap (·, ·, ·) that takes as input a boot-

strapping key bk, a keyswitching key ksk, and a ciphertext and outputs a new

ciphertext. Roughly speaking,

Bootstrap = KeySwitch ◦ Extract ◦ BlindRotate.

We note that BlindRotate works on LWE samples with values in [2N ] instead

of T, thus the first step is to map T to [2N ] by multiplying and rounding.

When studying the noise distribution during this operation, and to measure

the impact of our changes on this procedure, we note that there are actually

two different relevant noises: the overhead noise which is added to the input

ciphertext before its virtual decryption and the output noise, which is the one

in the final output ciphertext.

2.3 Artificial neural networks

An artificial neural network is a computing system inspired by biological brains.

Here, we consider a neural network (NN) that is composed of a population of

artificial neurons arranged in layers. Each neuron of a dense layer accepts nI real-

valued inputs x = (x1, . . . , xnI
) and performs the following two computations:

1. It computes a real value y =
∑nI

i=1 wixi + β, which is a weighted sum of

the inputs with real values called weights: wi is the weight associated to the

input xi, and β, also real-valued, is referred to as the bias of the neuron.

2. It applies a non-linear function f , the activation function, and returns f(y).

The neuron’s output can be written as f (〈w,x〉) = f (
∑nI

i=0 wixi) if one ex-

tends the inputs and the neuron’s weights vector by setting w = (β,w1, . . . , wnI
)

and x = (1, x1, . . . , xnI
). The neurons of a neural network are organized in suc-

cessive layers, which are categorized according to their activation function. Neu-

rons of one layer are connected to the neurons of the next layer by paths that are



10 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

associated to weights. An input layer composed of the network’s inputs as well

as an output layer made of the network’s output values are also added to the

network. Internal layers are called hidden, since they are not directly accessible

from the external world.

NNs are usually composed of layers of various types: fully connected (every

neuron of the layer takes all incoming signals as inputs), convolutional (it applies

a convolution to its input), pooling, and so forth. Neural networks could in

principle be recurrent systems, as opposed to the purely feed-forward ones, where

each neuron is only evaluated once. The universal approximation theorem (see,

e.g., [Hor91, Cyb89]) states that a neural network with a single hidden layer that

contains a finite amount of neurons, can approximate any continuous function.

Despite this, the number of neurons in that layer can grow exponentially. Instead,

a deep neural network has several layers of non-linearities, which allow to extract

increasingly complex features of the input and can lead to a better ability to

generalize, especially in the case of more complex tasks.

The FHE–DiNN framework presented in this work is able to evaluate NNs of

arbitrary depth, comprising possibly many hidden layers.

2.4 The MNIST dataset

The MNIST database (Modified National Institute of Standards and Technology

database) is a dataset of images representing digits handwritten by more than

500 different writers, and is commonly used as a benchmark for machine learning

systems [LBBH98]. The MNIST database contains 60 000 training images and

10 000 testing images. The format of the images is 28× 28 and the value of each

pixel represents a level of gray. Moreover, each image is labeled with the digit it

depicts.

A typical neural network for the MNIST dataset has 28·28 = 784 input nodes

(one per pixel), an arbitrary number of hidden layers with an arbitrary number

of neurons per layer, and finally 10 output nodes (one per possible digit). The

output values can be interpreted as “scores” given by the NN: the classification

is then given by the digit that achieves the highest score.

Over the years, the MNIST dataset has been a typical benchmark for classi-

fiers, and many approaches have been applied: linear classifiers, principal com-

ponent analysis, support vector machines, neural networks, convolutional neural

networks, etc. For a more complete review on these approaches, we refer the

reader to, e.g., [LBBH98]. Neural networks are known to perform well on this

dataset. For example, [LBBH98] proposes different architectures for neural net-

works and obtains more than 97% of correct classifications. More recent works

even surpassed 99% of accuracy [CMS12]. For a nice overview on the results ob-

tained on this dataset and on the techniques that were used, we refer the reader

to [LCB98].



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 11

3 Discretized Neural Networks (DiNN)

In this section we formally define DiNNs and we explain how they differ from a

traditional neural network and how to simply convert a NN into a DiNN.

3.1 Definition of a Discretized Neural Network

First of all, we recall that state-of-the-art fully homomorphic encryption schemes

cannot support operations over real messages. Traditional neural networks have

real-valued weights, and this incompatibility motivates investigating alternative

architectures.

Definition 3.1. A Discretized Neural Network (DiNN) is a feed-forward arti-

ficial neural network whose inputs are integer values in {−I, . . . , I} and whose

weights are integer values in {−W, . . . ,W}, for some I,W ∈ N. For every neuron

of the network, the activation function maps the inner product between the incom-

ing inputs vector and the corresponding weights to integer values in {−I, . . . , I}.

In particular, for this paper we chose {−1, 1} as the input space and sign (·)
as the activation function for the hidden layers:

sign (x) =

{
−1, x < 0,

+1, x ≥ 0.
(3.1)

These choices are inspired by the fact that we designed the model with the idea

of performing homomorphic evaluations over encrypted input. As a consequence,

we wanted the message space to be as small as possible, which, in turn, would

allow us to increase the efficiency of the overall evaluation.

We also note that using an activation function whose output is in the same

range as the network’s input allows us to maintain the same semantics across

different layers. In our case, what enters a neuron is always a weighted sum of

values in {−1, 1}. In order to make the evaluation of the network compatible

with FHE schemes, discretizing the input space is not sufficient: we also need to

have discrete values for the weights of the network1.

3.2 Simple conversion from a traditional neural network to a DiNN

In this subsection we show a very simple method to convert an already-trained

canonical neural network (i.e., with real weights) into a DiNN. This method is not

guaranteed to be the best way to obtain such a conversion; it indeed introduces

1 As all the computations are done over the torus (i.e., modulo 1), scaling a cipher-

text by any integer factor preserves the relations that make the decryption correct.

However, this does not hold for non-integer factors.



12 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

a visible loss in the classification accuracy and would probably be best used as a

first step in the conversion procedure. However, we remind the reader that this

work is aimed at the homomorphic evaluation of a network, thus we decided not

to put too much effort in the construction of a sophisticated cleartext model.

This procedure allows us to obtain a network which respects our constraints and

that can be evaluated over encrypted inputs, so it is sufficient for our purposes.

It turns out that the only thing that we need to do is discretizing the weights

and biases of the network. To this purpose, we define the function

processWeight (w, τ) = τ ·
⌊w
τ

⌉
(3.2)

where τ ∈ N is a parameter that controls the precision of the discretization.

In the following, we implicitly take all the weights as discretized after being

processed through the formula in Equation 3.2. After fixing a value τ , the net-

work obtained by applying processWeight (·, τ) to all the weights and biases is a

DiNN. The parameter τ has to be chosen carefully, since it defines the message

space that our encryption scheme must support. Thus, we want the bound on

〈w,x〉 to be small for all neurons, where w and x are the discretized weights

and the inputs associated to the neuron, respectively. In Figure 3.1, we show the

evaluation of a single neuron: we first compute 〈w,x〉, which we refer to as a

multisum, and then apply the sign function to the result.

x1

x2

...

...

w1

w2

y

Σ

Fig. 3.1: Evaluation of a single neuron. The output value is y = sign (〈w,x〉),
where wi are the discretized weights associated to the incoming wires and xi are

the corresponding input values.

4 Homomorphic evaluation of a DiNN

We now give a high level description of our procedure to homomorphically eval-

uate a DiNN, called FHE–DiNN. We basically need two ingredients: we need to

be able to compute the multisum between the encrypted inputs and the weights



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 13

and we need to homomorphically extract the sign of the result. In order to main-

tain the scalability of our scheme across the layers of a given DiNN, we perform

a bootstrapping operation for every neuron in hidden layers. This ensures that

the ciphertext encrypting the sign of the result after applying one layer of the

DiNN can be used for further computations without an initially fixed limit on

the number of layers that the network can contain. Hence we can choose param-

eters that are independent of the number of layers and evaluate arbitrarily deep

neural networks.

4.1 Evaluating the multisum

In our framework, the weights of the network are available in clear, so we can

evaluate the multisum just by using homomorphic additions. The only things

that need our attention are the message space of our encryption scheme, which

has to be large enough to accommodate for all possible values of the multisums,

and the noise level that might grow too much and lead to incorrect results.

Extending the message space. In order for our FHE scheme to be able to

correctly evaluate the multisum, we need all the possible values of the multisum

to be inside our message space. To this end, we extend our LWE encryption

scheme as follows. This idea was already used in previous works such as [PW08,

KTX08, ABDP15, ALS16].

Construction 1 (Extended LWE-based private-key encryption scheme)

Let B be a positive integer and let m ∈ [−B,B] be a message. Then we split the

torus into 2B + 1 slices, one for each possible message, and we encrypt and

decrypt as follows:

Setup (λ): for a security parameter λ, fix n = n (λ) , σ = σ (λ); return s
$← Tn

Enc (s,m): return (a, b), with a
$← Tn and b = 〈s,a〉+e+ m

2B+1 , where e← χσ
Dec (s, (a, b)): return b(b− 〈s,a〉) · (2B + 1)e

An input message is mapped to the center of its corresponding torus slice by

scaling it by 1/ (2B + 1) during encryption, and decoded by scaling it by 2B+ 1

during decryption.

Correctness of homomorphically evaluating the multisum. Note that

ciphertexts can be homomorphically added and scaled by a known integer con-

stant: for any two messages m1,m2 ∈ [−B,B], any secret key s, any c1 =

(a1, b1)← Enc (s,m1), c2 = (a2, b2)← Enc (s,m2), and constant w ∈ Z, we have

that

Dec (s, c1 + w · c2) = Dec (s, (a1 + w · a2, b1 + w · b2)) = m1 + w ·m2

as long as (1) m1 +w ·m2 ∈ [−B,B], and (2) the noise did not grow too much.

The first condition is easily met by choosing B ≥ ‖w‖1 for all weight vectors

w in the network (e.g., we can take the max).



14 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

Fixing the noise. Increasing the message space has an impact on the choice of

parameters. Evaluating the multisum with a given weight vector w means that,

if the standard deviation of the initial noise is σ, then the standard deviation of

the output noise can be as high as ‖w‖2 ·σ (see Lemma 2.1), which in turn means

that our initial standard deviation must be smaller than the one in [CGGI16b]

by a factor maxw ‖w‖2. Moreover, for correctness to hold, we need the noise to

remain smaller than half a slice of the torus. As we are splitting the torus into

2B + 1 slices rather than 2, we need to further decrease the noise by a factor

B. Special attention must be paid to security: taking a smaller noise might in

fact compromise the security of the scheme. In order to mitigate this problem,

we can increase the dimension of the LWE problem n, but this in turn induces

more noise overhead in the bootstrapping procedure due to rounding errors.

4.2 Homomorphic computation of the sign function

We take advantage of the flexibility of the bootstrapping technique introduced

by Chillotti et al. [CGGI16b] in order to perform the sign extraction and the

bootstrapping at the same time. Concretely, in the call to BlindRotate, we change

the value of testVector to

−1

2B + 1

N−1∑
i=0

Xi.

Then, if the value of the phase b−〈s,a〉 is between 1 and N (positive), the output

will be an encryption of 1, otherwise if it is between N + 1 and 2N (negative),

the output will be an encryption of −1.

In order to give more intuition, we present an illustration of the bootstrapping

technique in Figure 4.1. The first step of the bootstrapping basically consists in

mapping the torus T to an object that we will refer to as the wheel. This wheel is

split into 2N “ticks” that are associated to the possible values that are encrypted

in the bootstrapped ciphertext. The bootstrapping procedure then consists in

choosing a value for each tick, rotating the wheel by b − 〈s,a〉 ticks counter-

clockwise, and picking the value of the rightmost tick. We note that the values

on the wheel are encoded in the testVector variable, which contains values for

the ticks on the top part of the wheel. The bottom values are then fixed by the

anticyclic property of TN [X] (the value at tick N + i is minus the value at tick

i).

From now on, we say that a bootstrapping is correct if, given a valid encryp-

tion of a message µ, its output is a valid encryption of sign (µ) with overwhelming

probability.

4.3 Scale-invariance

If the parameters are set correctly then, by using the two operations described

above, we can homomorphically evaluate neural networks of any depth. In partic-

ular, the choice of parameters is independent of the depth of the neural network.



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 15

-4

-3
-2

-1

0

1

2
3

4

+1

−1

Fig. 4.1: On the left, we show the first step of the bootstrapping, which consists

in mapping the torus (the continuous circle) to the wheel (the 2N ticks on it)

by rounding to the closest tick. Each slice corresponds to one of the possible

results of the multisum operation. On the right we show the final result of the

bootstrapping: each tick of the top part of the wheel is mapped to its sign which

is +1 and each tick of the bottom part to −1. This can roughly be seen as

embedding the wheel back to the torus.

This result cannot be achieved with previous techniques relying on somewhat

homomorphic evaluations of the network. In fact, they have to choose param-

eters that accommodate for the whole computation, whereas our method only

requires the parameters to accommodate for the evaluation of a single neuron.

The rest of the computation follows by induction. More precisely, our choice of

parameters only depends on bounds on the norms (‖·‖1 and ‖·‖2) of the input

weights of a neuron. In the following, we denote these bounds by M1 and M2,

respectively.

We say that the homomorphic evaluation of the neural network is correct if

the decryptions of its output scores are equal to the scores given by its evaluation

in the clear with overwhelming probability. Then, the scale-invariance is formally

defined by the following theorem:

Theorem 4.1 (Scale-invariance of our homomorphic evaluation). For

any DiNN of any depth, any correctly generated bootstrapping key bk and keyswitch-

ing key ksk, and any ciphertext c, let σ be a Gaussian parameter such that the

noise of Bootstrap (bk, ksk, c) is sub-Gaussian with parameter σ. Then, if the

bootstrapping is correct on input ciphertexts with sub-Gaussian noise of param-

eter σ
M2

and message space larger than 2M1 + 1, the result of the homomorphic

evaluation of the DiNN is correct.

Proof. The proof is a simple induction on the structure of the neural network.

First, the correctness of the evaluation of the first layer is implied by the choice

of parameters for the encryption2.

2 If it is not, we can bootstrap all input ciphertexts in order to ensure this holds.



16 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

If the evaluation is correct for all neurons of the `-th layer, then the correct-

ness for all neurons of the (`+1)-th layer follows from the two observations made

in the previous subsections:

– The result of the homomorphic evaluation of the multisum is a valid encryp-

tion of the multisum;

– The result of the bootstrapping is a valid encryption of the sign of the mul-

tisum.

The first fact is implied by the choice of the message space, since the multi-

sum value is contained in [−M1,M1]. The second one comes directly from the

correctness of the bootstrapping, because the homomorphic computation of the

multisum on ciphertexts with sub-Gaussian noise of parameter σ yields a cipher-

text with sub-Gaussian noise of parameter at most σM2 (cf. Lemma 2.1).

Then, the correctness of the encryption scheme ensures that the final cipher-

texts are valid encryptions of the scores. ut

5 Refinements of TFHE

In this section, we present several improvements that helped us achieving better

efficiency for the actual FHE–DiNN implementation. These various techniques

can without any doubt be applied in other FHE-based applications.

5.1 Reducing bandwidth usage

One of the drawbacks of our evaluation process is that encrypting individual

values for each input neuron yields a very large ciphertext, which is inconve-

nient from a user perspective, as a high bandwidth requirement is the direct

consequence. In order to mitigate this issue, we “pack” multiple values into one

ciphertext. We use the standard technique of encrypting a polynomial (using the

TLWE scheme instead of LWE) whose coefficients correspond to the different

values we want to encrypt:

ct = TLWE.Encrypt

(∑
i

xiX
i

)
,

where the xi’s represent the values of the input neurons to be encrypted3. This

packing technique is what made Ring-LWE an attractive variant to the standard

LWE problem, as was already presented in [LPR10], and is widely used in FHE

applications to amortize the cost of operations [HS14, HS15].

3 If the number of input neurons is bigger than the maximal degree of the polynomials

N , we can pack the ciphertext by groups of N , compute partial multisums with our

technique, and aggregate them afterwards



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 17

Then, we observe that for each neuron in the first hidden layer, we can

compute the multisum with coefficients wi by scaling the input TLWE ciphertext

by a factor ∑
i

wiX
−i.

Indeed, it is easy to verify that the constant term of
(∑

i xiX
i
)
·
(∑

i wiX
−i)

is
∑
i wixi, and we can obtain an LWE encryption of this value by invoking

Extract.

Remark 1. We note that this computation is actually equivalent to doing the

multisum directly on LWE ciphertexts, so the resulting noise growth of this

approach is exactly the same as before. We end up saving bandwidth usage (by

a factor up to N , the degree of the polynomials) basically for free. Furthermore,

as the weights of the neural network never change, we can precompute and store

the FFT representation of the polynomials
∑
wiX

−i, thus saving time during

the online classification.

In a nutshell, we reduce the size of the ciphertexts for N elements from N

LWE ciphertexts to 1 TLWE ciphertext. In terms of numbers of elements in T,

the cost dropped from N(n+ 1) to N(k + 1).

We remark that the resulting ciphertext is an LWE ciphertext in dimension

N , and not the original n, thus requiring key-switching to become a legitimate

ciphertext. However, this is not a problem thanks to the trick presented in the

following subsection.

5.2 Moving KeySwitch around

The main goal of key-switching here is to reduce the LWE dimension. The ben-

efits in memory usage and efficiency of this reduction are extremely important,

since the size of the bootstrapping key, the final noise level, and the number of

external products (the most costly operation) all depend linearly on this param-

eter. However, we noticed that reducing this dimension in the beginning of the

bootstrapping procedure instead of the end gave much better results, hence the

new bootstrapping function:

Bootstrap = Extract ◦ BlindRotate ◦ KeySwitch.

The intuition is that, with this technique, the noise produced by KeySwitch
will not be multiplied by ‖w‖2 when performing the computation of the mul-

tisum, but will only be added at the end. Basically, we moved the noise of the

output ciphertext produced by KeySwitch to an overhead noise.

Doing this, we reverse the usage of the two underlying LWE schemes: every-

thing is now done on high dimensional N -LWE, whereas the low dimensional

n-LWE scheme is only used during the bootstrapping operation. Since the noise

in the key-switching key is not used for any computation anymore, we can allow



18 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

it to be bigger, thus reducing the dimension we need for the same security to

hold and, in turn, gaining in time per bootstrapping.

The only downside is that working with higher dimensional N -LWE samples

means slightly more memory usage for the server, bigger output ciphertext4,

and slightly slower addition of ciphertexts. However, as this operation is instan-

taneous when compared to other operations such as bootstrapping, this is not

an issue.

5.3 Dynamically changing the message space

In section 4, we showed how to evaluate the whole neural network by induction,

using a message space of 2B + 1 slices, where B is a bound on the values of the

multisums across the whole evaluation. However, in order to be able to reduce

the probability of errors along the way, we are able to use different message

spaces for each layer of the DiNN, and adapt the number of slots to the values

given by the local computations, depending on the values of the weights w. In

order to do so, we change the value of testVector to

−1

2B` + 1

N−1∑
i=0

Xi,

where B` is now indexed by the current layer `, and is a bound on the values

of the multisums for the next layer ` + 1. The point of this manoeuvre is that

if the number of slots is smaller, the slices are bigger, and the noise would have

to be bigger in order to change the plaintext message. This trick might seem

superfluous, because it decreases a probability that is already negligible. However

sometimes, in practical scenarios, the correctness of the scheme is relaxed, and

this trick allows us to obtain results closer to the expected values without costing

any extra computation or storage.

5.4 Alternative BlindRotate implementations

Following the technique of [ZYL+17], we try to gain efficiency in the bootstrap-

ping by reducing the number of external products that we have to compute. In

order to do so, they slightly unfold the loop computing X〈s,a〉 in the BlindRotate
algorithm. They group the terms of the sum two by two, using the following

formula for each of the new terms:

Xas+a′s′ = ss′Xa+a′ + s(1− s′)Xa + (1− s)s′Xa′ + (1− s)(1− s′).

In order to compute this new function, they change the bootstrapping key to

contain encryptions of the values ss′, s(1 − s′), (1 − s)s′, and (1 − s)(1 − s′),

4 This can be circumvented by applying one last round of KeySwitch at the end of the

protocol, if needed.



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 19

Algorithm 1 Alternative BlindRotate algorithm.

Input: an n-LWE ciphertext (a, b) with coefficients in Z2N , a (possibly noise-

less) TLWE encryption C of testVector, the bootstrapping key bk such that for

all i in [n/2], bk3i, bk3i+1, and bk3i+2 are respectively TGSW encryptions of

s2is2i+1, s2i(1− s2i+1), and s2i+1(1− s2i)
Output: a TLWE encryption of Xb−〈s,a〉 · testVector

1: ACC ← Xb ·C
2: for i = 1 . . . n/2 do

3: ACC ← ((Xa2i+a2i+1 −1)bk3i + (Xa2i −1)bk3i+1 + (Xa2i+1 −1)bk3i+2)�ACC
4: end for

5: return ACC

thus expanding the size of the bootstrapping key by a factor 2. Using this idea,

they cut the number of iterations of the loop by half, thus computing only

half the amount of external products, which is the most costly operation of

the bootstrapping. However, by doing so, they introduce the computation of 4

scalings of TGSW ciphertexts (which are matrices) by constant polynomials, and

3 TGSW additions, when TFHE’s BlindRotate only needed 1 scaling of a TLWE

ciphertext, and 1 TLWE addition. Another benefit is that the homomorphic

computation of 〈s,a〉 induces rounding errors on only n/2 terms instead of n.

The noise of the output ciphertext is also different. On the bright side, the

technique of [ZYL+17] reduces the noise induced by the precision errors during

the gadget decomposition by a factor 2. On the other hand, it increases the noise

coming from the bootstrapping key by a factor 2.

In this work, we suggest to use another formula in order to compute each

term of the slightly unfolded sum. Observing that ss′ + s(1 − s′) + (1 − s)s′ +
(1− s)(1− s′) = 1, we can save 1 element in the bootstrapping key:

Xas+a′s′ = ss′(Xa+a′ − 1) + s(1− s′)(Xa − 1) + (1− s)s′(Xa′ − 1) + 1.

The resulting BlindRotate algorithm is described in Algorithm 1. Having a 1 in

the decomposition is a valuable advantage, because it means that we can move

it out of the external product and instead add the previous value of the accu-

mulator to the result. Thus, efficiency-wise, we halved the number of external

products at the cost of only 3 scalings of TGSW ciphertexts by constant polyno-

mials, 2 TGSW additions, and 1 TLWE addition. We note that while multiplying

naively by a monomial might be faster than multiplying by a degree 2 polyno-

mial, the implementation pre-computes and stores the FFT representation of

the bootstrapping keys in order to speed up polynomial multiplication. Thus,

multiplying by a polynomial of any degree has the same cost. The size of the

bootstrapping key is now 3/2 times larger than the size of the one in TFHE,

which is a compromise between the two previous methods. As in [ZYL+17], the

noise induced by precision errors and roundings is halved compared to TFHE.

On the other hand, now we increase the noise coming from the bootstrapping



20 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

TFHE ZYLZD17 FHE–DiNN

Efficiency

External products n n/2 n/2

Scaled TGSW add. 0 4 3

Scaled TLWE add. 1 0 1

Noise overhead δ δ/2 δ/2

Out noise

(average)

roundings n(1 + kN)ε2 n
2

(1 + kN)ε2 n
2

(1 + kN)ε2

from BK n(k + 1)`Nβ2σ2
bk 2n(k + 1)`Nβ2σ2

bk 3n(k + 1)`Nβ2σ2
bk

Out noise

(worst)

roundings n(1 + kN)ε n
2

(1 + kN)ε n
2

(1 + kN)ε

from BK n(k + 1)`NβAbk 2n(k + 1)`NβAbk 3n(k + 1)`NβAbk

Storage TGSW in the BK n 2n 3n/2

Table 2: Comparison of the three alternative BlindRotate algorithms. n denotes

the LWE dimension after keyswitching; δ refers to the noise introduced by round-

ing the LWE samples into [2N ] before we can BlindRotate; N is the degree of

the polynomials in the TLWE scheme; k is the dimension of the TLWE cipher-

texts; ε is the precision (1/2β)`/2 of the gadget matrix (tensor product between

the identity Idk+1 and the powers of 1/2β arranged as `-dimensional vector

(1/2β, . . . , (1/2β)`) ); σbk is the standard deviation of the noise of the TGSW

encryptions in the bootstrapping key, and Abk is a bound on this noise. These

values were derived using the theorems for noise analysis in [CGGI17]

key by a factor 3 instead. However, we note that it is possible to reduce this

noise without impacting efficiency by reducing the noise in the bootstrapping

key, trading off security (depending on what the bottleneck for security of the

scheme is, this could come for free), whereas in order to reduce the noise in-

duced by the precision errors, efficiency will be impacted. We recapitulate these

numbers on Table 2.

We note that this idea could be generalized to unfoldings consisting of more

than two terms, yielding more possible trade-offs, but we did not explore further

because of the dissuasive exponential growth in the number of operands in the

general formula.

6 Experimental results and conclusions

We implemented the proposed approach to test its accuracy and efficiency. This

section is divided into two main parts: the first one describes the training of

the neural network over data in the clear and the second one details the results

obtained when evaluating the network over encrypted inputs.



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 21

6.1 Pre-processing the MNIST database

In order to respect the constraint of having inputs in {−1, 1}, we binarized all

the images with a threshold value equal to 128: any pixel whose value is smaller

than the threshold is mapped to −1; the others are mapped to +1. This actually

reduces the amount of information available, as each 8-bit grayscale value is

clamped to a single bit, and one could wonder if this could impact the accuracy

of the classification. Although this is possible, a quick visual inspection of the

result shows that the digits depicted in the images are still clearly recognizable.

6.2 Building a DiNN from data in the clear

In order to train the neural network, we first chose its topology, i.e., the number

of hidden layers and neurons per hidden layer. We experimented with several

values, always keeping in mind that a smaller number of neurons per layer is

preferable: having more neurons means that the value of the multisum will be

potentially higher, thus requiring a larger message space in the homomorphic

evaluation, which in turn forces to choose bigger parameters for the scheme.

After some tries, we decided to show the feasibility of our approach through the

homomorphic evaluation of two neural networks. Both have 784 neurons in the

input layer (one per pixel), a single hidden layer, and an output layer composed

of 10 neurons (one per class). The difference between the two models is the size

of the hidden layer: the first network has 30 neurons, while the second has 100.

In order to build a DiNN, we use the simple approach described in subsec-

tion 3.2: we (1) train a traditional neural network (i.e., with real weights and

biases), and then we (2) discretize all the values by applying the function in

Equation 3.2. For step (1) we take advantage of the library keras [C+15] with

Tensorflow[AAB+15], which offers a simple and highly customizable framework

for defining, training and evaluating even complex models of neural networks.

Through a farly simple Python script and in little time, we are able to define

and train our models as desired. Given its similarity with (a scaled and shifted

version of) the sign function, as an activation function we used the version of

hard sigmoid defined in Tensorflow. The reason behind this choice is that we know

we will substitute this activation function with the true sign (x). Thus, using a

function which is already similar to it helps reducing the errors introduced by

this switch.

Once we obtain the trained model, we proceed to choose a value τ ∈ N and

discretize the weights and the biases of the network, as per Equation 3.2, thus

finally obtaining a DiNN that we can later evaluate over encrypted inputs. The

choice of τ is an important part of the process: on one hand, picking a very

small value will give little resolution to the network5, potentially degrading the

5 This means that the number of values that the weights will be able to take will be

fairly limited.



22 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

accuracy largely; on the other hand, picking a very large value will minimize the

loss in accuracy but increase the message space that we will need to support

for homomorphic evaluation, thus forcing us to choose larger parameters and

making the overall evaluation less efficient. Also, note that it is possible to choose

different values of the parameter τ for different layers of the network. Although

there might be better choices, we did not invest too much efforts in optimizing

the cleartext model and simply chose the value τ = 10 for both layers of each

model. Finally, we switched all the activation functions from hard sigmoid (·)
to sign (·). In order to assess the results of the training and how the accuracy

varies because of these changes, in Table 3 we report the accuracies obtained on

the MNIST test set. Note that these values are referred to the evaluation over

cleartext inputs.

Original NN DiNN + hard sigmoid DiNN + sign
30 neurons 94.76 % 93.76 % (−1 %) 93.55 % (−1.21 %)

100 neurons 96.75 % 96.62 % (−0.13 %) 96.43 % (−0.32 %)

Table 3: Accuracy obtained when evaluating the models in the clear on the

MNIST test set. The first value refers to the evaluation of the model as output

by the training; the second refers to the model where all the values for weights

and biases have been discretized; the third refers to the same model, but with

sign (·) as the activation function for all the neurons in the hidden layer.

6.3 Classifying encrypted inputs

Implementing the homomorphic evaluation of the neural network over encrypted

input was more than a mere coding exercise, but allowed us to discover several

interesting properties of our DiNNs.

The starting point was the TFHE library by Chillotti et al. , which is freely

available on GitHub [CGGI16a] and which was used to efficiently perform the

bootstrapping operation. The library takes advantage of FFT processors for

fast polynomial multiplication and, although not parallelized, achieves excellent

timing results. We extended the code to apply this fast bootstrapping procedure

to our use case.

Parameters. We now present our setting of the parameters, following the no-

tation of [CGGI16b], to which we refer the reader for extra details. In Table 4

we highlight the main security parameters regarding our ciphertexts, together



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 23

with an estimate of the security level that this setting achieves. Other addi-

tional parameters, related to the various operations we need to perform, are the

following:

Ciphertext Dimension α Estimated security

input 1024 2−30 > 150 bits

keyswitching key 450 2−17 > 80 bits

bootstrapping key 1024 2−36 > 100 bits

Table 4: The security parameters we use for the different kinds of ciphertexts.

The estimated security has been extracted from the plot in [CGGI16b] and later

verified with the estimator from Albrecht et al. [APS15].

– Degree of the polynomials in the ring: N = 1024;

– Dimension of the TLWE problem: k = 1;

– Basis for the decomposition of TGSW ciphertexts: Bg = 1024;

– Length of the decomposition of TGSW ciphertexts: ` = 3;

– Basis for the decomposition during key switching: 8;

– Length of the decomposition during key switching: t = 5;

With this choice of parameters, we achieve a minimum security level of 80

bits and a single bootstrapping operation takes roughly 15 ms on a single core

of an Intel Core i7-4720HQ CPU @ 2.60GHz. Also, we note that by exploiting

the packing technique presented in subsection 5.1, we save a factor 172 in the

size of the input ciphertext: instead of having 784 · (450 + 1) torus elements

(corresponding to a 450-LWE ciphertext for each of the 784 pixels in an image),

we now have only 2 · 1024 torus elements (corresponding to the two polynomials

that form a TLWE sample).

Finally, we calculated the maximum value of the norms of the weight vectors

associated to each neuron, both for the first and the second layer. These values,

which can be computed at setup time (since the weights are available in the

clear), define the theoretical bounds on the message space that our scheme should

be able to support. In practice, we evaluated the actual values of the multisums

on the training set, and took a message space slightly larger 6 than what we

computed. We note that with this method, it is possible that some input could

make the multisum go out of bounds, but this was not observed when evaluating

the network on the test set. Moreover, this allows us to take a considerably

smaller message space in some cases, and thus reduce the probability of errors.

6 As we do not achieve perfect correctness with our parameters, the message can be

shifted. This fact has to be taken into account when choosing the number of slots.



24 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

In Table 5 we report the theoretical message space we would need to support

and the message space we actually used for our implementation.

In order to pinpoint our noise parameters, we also calculated the maximum

L2-norms of the weight vectors in each layer: for the network with 30 hidden

neurons, we have maxw ‖w‖2 ≈ 119 for the first layer and ≈ 85 for the second

layer; for the network with 100 hidden neurons, we have maxw ‖w‖2 ≈ 69 for

the first layer and ≈ 60 for the second layer.

FHE–DiNN30 FHE–DiNN100

maxw ‖w‖1 theor. exp. maxw ‖w‖1 theor. exp.

1st layer 2338 4676 2500 1372 2744 1800

2nd layer 399 798 800 488 976 1000

Table 5: Message space: theoretically required values and how we set them in

our experiments with FHE–DiNN.

Evaluation. Our homomorphic evaluation follows the outline presented in

Figure 6.1 in order to classify an encrypted image,

1. Encrypt the image as a TLWE ciphertext;
2. Multiply the TLWE ciphertext by the polynomial which encodes the weights

associated to the hidden layer. This operation takes advantage of FFT for

speeding up the calculations;
3. From each of the so-computed ciphertexts, extract a 1024-LWE ciphertext,

which encrypts the constant term of the result;
4. Perform a key switching in order to move from a 1024-LWE ciphertext to a

450-LWE one;
5. Bootstrap to decrease the noise level. By setting the testVector, this oper-

ation also applies the sign function and changes the message space of our

encryption scheme for free.
6. Perform the multisum of the resulting ciphertext and the weights leading to

the output layer, through the technique showed in subsection 4.1 7

7. Return the 10 ciphertexts corresponding to the 10 scores assigned by the

neural network. These ciphertext can be decrypted and the argmax can be

computed to obtain the classification given by the network.

In Table 6 we present the complete results of our experiments, both when

using the original BlindRotate algorithm from [CGGI16b] (denoted by or) and

7 Note that we do not apply any activation function to the output neurons: we are

only interested in being able to retrieve the scores and sorting them to recover the

classification given by the network.



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 25

1 TLWE 30 TLWE

30 N -LWE

30 n-LWE

30 N -LWE

10 N -LWE10 scores7

Enc(
∑

i piX
i) ·

∑
i wiX

−i

Extract

Key Switching

Sign Bootstrapping

weighted sums
Decargmax

User Server

Fig. 6.1: Refined homomorphic evaluation of a 784:30:10 neural network with

activation function sign. The whole image (784 pixels) is packed into 1 TLWE

ciphertext to minimize bandwidth usage. After evaluation, the user recovers 10

ciphertexts corresponding to the scores assigned by the network to each digit.

when using the modified algorithm presented in subsection 5.4 (denoted by un,

unfolded).

The homomorphic evaluation of the network on the entire test set was com-

pared to its classification in the clear and we observed the following facts:

Observation 1 The accuracy achieved when classifying encrypted images is

close to that obtained when classifying images in the clear.

In the case of the network with 30 hidden neurons, we obtain a classification

accuracy of 93.55% in the clear (cf. Table 3) and of 93.71% homomorphically.

In the case of the network with 100 hidden neurons, we have 96.43% accuracy

in the clear and 96.35% on encrypted inputs. These gaps are explained by the

following observations.

Observation 2 During the evaluation, some signs are flipped during the boot-

strapping but this does not significantly harm the accuracy of the network.

We use aggressive internal parameters (e.g., N and, in general, all the parameters

that control the precision) for the homomorphic evaluation, knowing that this

could sometimes lead the bootstrapping procedure to return an incorrect result

when extracting the sign of a message. In fact, we conjectured that the neural

network would be resilient to perturbations and experimental results proved

that this is indeed the case: when running our experiment over the full test

set, we noticed that the number of wrong bootstrappings is 3383 (respectively,

9088) but this did not change the outcome of the classification in more than 196

(respectively, 105) cases (cf. Table 6).



26 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

Accur. Disag. Wrong BS Disag. (wrong BS) Time

30 or 93.71% 273 (105–121) 3383/300000 196/273 0.515 s

30 un 93.46% 270 (119–110) 2912/300000 164/270 0.491 s

100 or 96.26% 127 (61–44) 9088/1000000 105/127 1.679 s

100 un 96.35% 150 (66–58) 7452/1000000 99/150 1.64 s

Table 6: Results of homomorphic evaluation of two DiNNs on the full test set.

The second column gives the number of disagreements (images classified dif-

ferently) between the evaluation in the clear and the homomorphic one; the

numbers in parentheses give the disagreements in favor of the cleartext evalua-

tion and those in favor of the homomorphic evaluation, respectively. The third

column gives the number of wrong bootstrapping, i.e., when the sign is flipped.

The fourth value gives the number of disagreements in which at least one boot-

strapping was wrong. Finally, the last column gives the time required to classify

a single image .

Observation 3 The classification of an encrypted image might disagree with

the classification of the same image in the clear but this does not significantly

worsen the overall accuracy.

This is a property that we expected during the implementation phase and our

intuition to explain this fact is the following: the network is assigning 10 scores

to each image, one per digit, and when two scores are close (i.e., the network is

hesitating between two classes), it can happen that the classification in the clear

is correct and the one over the encrypted image is wrong. But the opposite can

also be true, thus leading to classifying correctly an encrypted sample that was

misclassified in the clear. We experimentally verified that disagreements between

the evaluations do not automatically imply that the homomorphic classification

is worse than the one in the clear: out of 273 (respectively, 127) disagreements,

the classification in the clear was correct 105 (respectively, 61) times, against

121 (respectively, 44) times in favor of the homomorphic one8 (cf. Table 6).

Observation 4 Using the modified version of the BlindRotate algorithm pre-

sented in subsection 5.4 decreases the number of wrong bootstrappings.

Before stating some open problems, we conclude with the following note: us-

ing a bigger neural network generally leads to a better classification accuracy, at

the cost of performing more calculations and, above all, more bootstrapping op-

erations. However, the evaluation time will always grow linearly with the number

of neurons. Although it is true that evaluating a bigger network is computation-

ally more expensive, we stress that the bootstrapping operations are independent

8 In the remaining cases, the classifications were different but they were both wrong.



Fast Homomorphic Evaluation of Deep Discretized Neural Networks 27

of each other and can thus be performed in parallel. Ideally, parallelizing the ex-

ecution across a number of cores equal to the number of neurons in a layer (30

or 100 in our work) would result in that the evaluation of the layer would take

roughly the time of a bootstrapping (i.e., around 15 ms).

Future directions and open problems. This work opens a number of possi-

bilities and, thus, raises several interesting open problems. The first one is about

the construction of our DiNNs. In this work, we did not pay too much attention

to this step and, as a consequence, we considerably worsened the accuracy when

moving from a canonical neural network to a DiNN. In order to improve the clas-

sification given by these discretized networks, it would be interesting to train a

DiNN, rather than simply discretizing an already-trained model. Using discrete

values and the sign function for the activation makes some calculations (e.g.,

some derivatives) impossible. Techniques to overcome these limitations have al-

ready been proposed in the literature (e.g., [CB16]) and they can be applied

to our DiNNs as well. Also, another potentially interesting approach would be

mixing these two ways of constructing a DiNN, for example by first discretizing

a given model and then training the resulting network to refine it. Another nat-

ural question is whether we can batch several bootstrappings together, in order

to improve the overall efficiency of the evaluation. Moreover, the speed of the

evaluation would benefit from taking advantage of multi-core processing units,

like GPUs.

Most interestingly, our FHE–DiNN framework is flexible and can be adapted

to more generic cognitive architectures: we leave this as an interesting open prob-

lem. In particular, excellent results have been obtained by using Convolutional

Neural Networks (see e.g., [LBBH98]), and we believe that trying to apply FHE–
DiNN to these models would be an interesting line of research. Achieving this

goal would require extending the current capabilities of FHE. For example, we

would need to be able to homomorphically evaluate the max function, which is

required to construct the widely-used max pooling layers. To the best of our

knowledge, a technique for an efficient homomorphic evaluation of the max func-

tion is currently not known. Finally, the methodology presented in this work is

by no means limited to image recognition, but can be applied to other machine

learning problems as well.

Acknowledgments. Florian Bourse was supported by the European Research

Council under the European Community’s Seventh Framework Programme

(FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud), and by the French

ANR Project ANR-16-CE39-0014 PERSOCLOUD. Part of this work was done

while the author was employed by CNRS and visiting CryptoExperts.

Michele Minelli and Matthias Minihold were supported by European Union’s

Horizon 2020 research and innovation programme under grant agreement No

H2020-MSCA-ITN-2014-643161 ECRYPT-NET. This work was done while the



28 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

authors were visiting CryptoExperts. The authors would like to thank CRYPTO’s

anonymous reviewers for providing useful suggestions and helping improve the

paper.

References

AAB+15. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-

lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-

tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale ma-

chine learning on heterogeneous systems, 2015. Software available from

tensorflow.org.

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional

encryption schemes for inner products. In PKC 2015, LNCS 9020, pages

733–751. Springer, Heidelberg, March / April 2015.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryp-

tion for inner products, from standard assumptions. In CRYPTO 2016,

Part III, LNCS 9816, pages 333–362. Springer, Heidelberg, August 2016.

AP13. J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilin-

ear time. In CRYPTO 2013, Part I, LNCS 8042, pages 1–20. Springer,

Heidelberg, August 2013.

AP14. J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial

error. In CRYPTO 2014, Part I, LNCS 8616, pages 297–314. Springer,

Heidelberg, August 2014.

APS15. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of

learning with errors. Cryptology ePrint Archive, Report 2015/046, 2015.

http://eprint.iacr.org/2015/046.

AS00. R. Agrawal and R. Srikant. Privacy-preserving data mining. SIGMOD

Rec., 29(2):439–450, May 2000.

BGV12. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homo-

morphic encryption without bootstrapping. In ITCS 2012, pages 309–325.

ACM, January 2012.

BLMZ17. F. Benhamouda, T. Lepoint, C. Mathieu, and H. Zhou. Optimization of

bootstrapping in circuits. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 2423–

2433, Philadelphia, PA, USA, 2017. Society for Industrial and Applied

Mathematics.

BPTG15. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classifi-

cation over encrypted data. In NDSS 2015. The Internet Society, February

2015.

BV11a. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryp-

tion from (standard) LWE. In 52nd FOCS, pages 97–106. IEEE Computer

Society Press, October 2011.

http://eprint.iacr.org/2015/046


Fast Homomorphic Evaluation of Deep Discretized Neural Networks 29

BV11b. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from

ring-LWE and security for key dependent messages. In CRYPTO 2011,

LNCS 6841, pages 505–524. Springer, Heidelberg, August 2011.

BV14. Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as

PKE. In ITCS 2014, pages 1–12. ACM, January 2014.

C+15. F. Chollet et al. Keras. https://github.com/keras-team/keras, 2015.

CB16. M. Courbariaux and Y. Bengio. Binarynet: Training deep neural net-

works with weights and activations constrained to +1 or -1. CoRR,

abs/1602.02830, 2016.

CdWM+17. H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff. Privacy-

preserving classification on deep neural network. IACR Cryptology ePrint

Archive, 2017:35, 2017.

CGGI16a. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE:

Fast Fully Homomorphic Encryption Library over the Torus. https:

//github.com/tfhe/tfhe, 2016.

CGGI16b. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully ho-

momorphic encryption: Bootstrapping in less than 0.1 seconds. In ASI-

ACRYPT 2016, Part I, LNCS 10031, pages 3–33. Springer, Heidelberg,

December 2016.

CGGI17. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed

homomorphic operations and efficient circuit bootstrapping for TFHE. In

ASIACRYPT 2017, Part I, LNCS, pages 377–408. Springer, Heidelberg,

December 2017.

CMS12. D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column Deep Neural

Networks for Image Classification. ArXiv e-prints, February 2012.

Cyb89. G. Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems, 2(4):303–314, Dec 1989.

DGBL+16. N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and

J. Wernsing. Cryptonets: Applying neural networks to encrypted data

with high throughput and accuracy. Technical report, February 2016.

DM15. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic en-

cryption in less than a second. In EUROCRYPT 2015, Part I, LNCS

9056, pages 617–640. Springer, Heidelberg, April 2015.

Dwo06. C. Dwork. Differential privacy (invited paper). In ICALP 2006, Part II,

LNCS 4052, pages 1–12. Springer, Heidelberg, July 2006.

Gen09. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009. crypto.stanford.edu/craig.

GHS12. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the

AES circuit. In CRYPTO 2012, LNCS 7417, pages 850–867. Springer,

Heidelberg, August 2012.

GSW13. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learn-

ing with errors: Conceptually-simpler, asymptotically-faster, attribute-

based. In CRYPTO 2013, Part I, LNCS 8042, pages 75–92. Springer,

Heidelberg, August 2013.

Hor91. K. Hornik. Approximation capabilities of multilayer feedforward net-

works. Neural Netw., 4(2):251–257, March 1991.

HS14. S. Halevi and V. Shoup. Algorithms in HElib. In CRYPTO 2014, Part I,

LNCS 8616, pages 554–571. Springer, Heidelberg, August 2014.

https://github.com/keras-team/keras
https://github.com/tfhe/tfhe
https://github.com/tfhe/tfhe
crypto.stanford.edu/craig


30 F. Bourse, M. Minelli, M. Minihold, and P. Paillier

HS15. S. Halevi and V. Shoup. Bootstrapping for HElib. In EUROCRYPT 2015,

Part I, LNCS 9056, pages 641–670. Springer, Heidelberg, April 2015.
HZRS15. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. CoRR, abs/1512.03385, 2015.
KTX08. A. Kawachi, K. Tanaka, and K. Xagawa. Concurrently secure identi-

fication schemes based on the worst-case hardness of lattice problems.

In ASIACRYPT 2008, LNCS 5350, pages 372–389. Springer, Heidelberg,

December 2008.
LBBH98. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, November 1998.
LCB98. Y. LeCun, C. Cortes, and C. Burges. The mnist database of handwritten

digits. http://yann.lecun.com/exdb/mnist/, 1998.
LP13. T. Lepoint and P. Paillier. On the minimal number of bootstrappings

in homomorphic circuits. In FC 2013 Workshops, LNCS, pages 189–200.

Springer, Heidelberg, April 2013.
LPR10. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning

with errors over rings. In EUROCRYPT 2010, LNCS 6110, pages 1–23.

Springer, Heidelberg, May 2010.
MRSV17. E. Makri, D. Rotaru, N. P. Smart, and F. Vercauteren. Pics: Private image

classification with svm. Cryptology ePrint Archive, Report 2017/1190,

2017. https://eprint.iacr.org/2017/1190.
MZ17. P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-

preserving machine learning. In 2017 IEEE Symposium on Security and

Privacy, pages 19–38. IEEE Computer Society Press, May 2017.
PV16. M. Paindavoine and B. Vialla. Minimizing the number of bootstrappings

in fully homomorphic encryption. In SAC 2015, LNCS 9566, pages 25–43.

Springer, Heidelberg, August 2016.
PW08. C. Peikert and B. Waters. Lossy trapdoor functions and their applications.

In 40th ACM STOC, pages 187–196. ACM Press, May 2008.
Reg05. O. Regev. On lattices, learning with errors, random linear codes, and

cryptography. In 37th ACM STOC, pages 84–93. ACM Press, May 2005.
SS10. D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In ASI-

ACRYPT 2010, LNCS 6477, pages 377–394. Springer, Heidelberg, Decem-

ber 2010.
SV10. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with

relatively small key and ciphertext sizes. In PKC 2010, LNCS 6056, pages

420–443. Springer, Heidelberg, May 2010.
vDGHV10. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully ho-

momorphic encryption over the integers. In EUROCRYPT 2010, LNCS

6110, pages 24–43. Springer, Heidelberg, May 2010.
ZK16. S. Zagoruyko and N. Komodakis. Wide residual networks. CoRR,

abs/1605.07146, 2016.
ZYC16. Q. Zhang, L. T. Yang, and Z. Chen. Privacy preserving deep computation

model on cloud for big data feature learning. IEEE Transactions on

Computers, 65(5):1351–1362, 2016.
ZYL+17. T. ZHOU, X. YANG, L. LIU, W. ZHANG, and Y. DING. Faster boot-

strapping with multiple addends. Cryptology ePrint Archive, Report

2017/735, 2017. http://eprint.iacr.org/2017/735.

http://yann.lecun.com/exdb/mnist/
https://eprint.iacr.org/2017/1190
http://eprint.iacr.org/2017/735

	Fast Homomorphic Evaluation of Deep Discretized Neural Networks
	Introduction
	Preliminaries
	Notation
	Fully homomorphic encryption over the torus
	Artificial neural networks
	The MNIST dataset

	Discretized Neural Networks (DiNN)
	Definition of a Discretized Neural Network
	Simple conversion from a traditional neural network to a DiNN

	Homomorphic evaluation of a DiNN
	Evaluating the multisum
	Homomorphic computation of the sign function
	Scale-invariance

	Refinements of TFHE
	Reducing bandwidth usage
	Moving KeySwitch around
	Dynamically changing the message space
	Alternative BlindRotate implementations

	Experimental results and conclusions
	Pre-processing the MNIST database
	Building a DiNN from data in the clear
	Classifying encrypted inputs



