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Abstract

Since May (Crypto’02) revealed the vulnerability of the small CRT-exponent RSA using
Coppersmith’s lattice-based method, several papers have studied the problem and two major
improvements have been made. (1) Bleichenbacher and May (PKC’06) proposed an attack for
small dq when the prime factor p is significantly smaller than the other prime factor q; the
attack works for p < N0.468. (2) Jochemsz and May (Crypto’07) proposed an attack for small
dp and dq when the prime factors p and q are balanced; the attack works for dp, dq < N0.073.
Even a decade has passed since their proposals, the above two attacks are still considered as the
state-of-the-art, and no improvements have been made thus far. A novel technique seems to be
required for further improvements since it seems that the attacks have been studied with all the
applicable techniques for Coppersmith’s methods proposed by Durfee-Nguyen (Asiacrypt’00),
Jochemsz-May (Asiacrypt’06), and Herrmann-May (Asiacrypt’09, PKC’10). In this paper, we
propose two improved attacks on the small CRT-exponent RSA: a small dq attack for p < N0.5

(an improvement of Bleichenbacher-May’s) and a small dp and dq attack for dp, dq < N0.122

(an improvement of Jochemsz-May’s). The latter result is also an improvement of our result
in the proceeding version (Eurocrypt ’17); dp, dq < N0.091. We use Coppersmith’s lattice-
based method to solve modular equations and obtain the improvements from a novel lattice
construction by exploiting useful algebraic structures of the CRT-RSA key generation equation.
We explicitly show proofs of our attacks and verify the validities by computer experiments. In
addition to the two main attacks, we also propose small dq attacks on several variants of RSA.
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1 Introduction

1.1 Background

Let N = pq be a public RSA modulus whose prime factors p and q are usually the same bit-
size. A public exponent e and a secret exponent d satisfy ed = 1 mod (p − 1)(q − 1). For
encryption/verifying (resp. decryption/signing), the heavy modular exponentiation of e (resp.
d) modulo N has to be computed. To achieve fast computation, a simple solution is to use a
small public or secret exponent. However, Wiener [Wie90] showed that a public RSA modulus is
factorized in polynomial time when the secret exponent is too small such that d < N0.25. Boneh and
Durfee [BD00] revisited the problem with Coppersmith’s lattice-based method [Cop96b, How97]
and improved the bound to d < N0.284. Furthermore, in the same work, the bound was improved to
d < N0.292 by exploiting sublattice structures from the previous one although the proof is involved.

To simultaneously thwart the small secret exponent attack and achieve fast decryption/signing,
the Chinese Remainder Theorem (CRT) is often used as described by Quisquater and Cou-
vreur [QC82]. Instead of the original secret exponent d, there are CRT-exponents dp and dq that
satisfy

edp = 1 mod (p− 1) and edq = 1 mod (q − 1).

The PKCS#1 standard [PKC] has specified that an RSA secret key should be (p, q, d, dp, dq, q
−1
p ),

where dp and dq are the CRT-exponents.
Then a natural question to ask is whether there exist analogous attacks of the Boneh-

Durfee [BD00] to the small CRT-exponents. The first affirmative answer was given by May
(Crypto’02) [May02]. May analyzed the unbalanced RSA whose prime factor p is significantly
smaller than the other prime factor q, and proposed an attack for a small dq with an arbitrary
large dp. The paper contains two attacks, where the former attack works for p < N0.382. The latter
attack works only for smaller p, however, is better than the former attack for p < N0.23 in the sense
that a larger dq can be recovered. Since May’s attack works only in the unbalanced setting, it is
an interesting open question if the attacks can be improved to cover the balanced RSA.

Subsequently, several improved attacks on the small CRT-exponent RSA have been proposed.
Bleichenbacher and May (PKC’06) [BM06] revisited May’s work [May02] in the same attack scenario
and proposed an improved attack. The attack works for a larger p such that p < N0.468, and recovers
a larger dq than May’s attack for any size of p. However, Bleichenbacher-May’s improved attack
could not still cover balanced prime factors. To attack the balanced RSA, Bleichenbacher and May
analyzed other attack scenarios, where both dp and dq are small in the same work. They proposed
an attack which works when e is significantly smaller than N . Although the same situation was
already studied by Galbraith et al. [GHM05], Sun and Wu [SW05], their attacks only work for a
smaller e. Finally, Jochemsz and May (Crypto’07) [JM07] proposed the first attack that works for
a full size e when dp, dq < N0.073.

In the past decade, no improved attacks of Bleichenbacher-May [BM06] and Jochemsz-
May [JM07] have been proposed. Hence, following these attacks seems to be the best way
to study the security of the CRT-RSA. Indeed, until recently, several papers followed the at-
tacks and reported the vulnerabilities of the CRT-RSA, e.g., an attack on Takagi’s RSA [SIK11],
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an attack on the RSA with multiple exponent pairs [PHL+15], and partial key exposure at-
tacks [BM03, LZL14, SM09, TK15, TK16b].

1.2 Technical Hardness

Coppersmith introduced two lattice-based methods; to solve a modular equation [Cop96b] and
an integer equation [Cop96a]. May’s attack and Bleichenbacher-May’s attack used the former
method whereas Jochemsz-May’s attack used the latter method. Both methods first construct a
lattice and then solve equations with a small root in polynomial time using the LLL lattice reduc-
tion [LLL82]. In this research area, constructing better attacks is equivalent to designing better
lattices that reflect the more useful algebraic structure of the equation. For the purpose, several
useful strategies and techniques for lattice constructions have been introduced thus far. Currently
best known small CRT-exponent attacks [BM06, JM07, May02] are based on the state-of-the-art
lattice constructions; the Durfee-Nguyen technique (Asiacrypt’00) [DN00] and the Jochemsz-May
strategy (Asiacrypt’06) [JM06]. Since the Durfee-Nguyen technique is useful to handle the rela-
tion N = pq and the Jochemsz-May construction yields good lattices for arbitrary polynomials,
these approaches [BM06, May02] seem appropriate to study the attack. Moreover, to the best of
our knowledge, there remained no useful strategies to analyze the attack scenarios at that time.
After the proposals of [BM06, JM07, May02], a new technique called unravelled linearization was
introduced by Herrmann and May (Asiacrypt’09) [HM09]. The technique has been used to study
various attack scenarios on RSA, e.g., [BVZ12, Her11, HM10, HHX14a, Kun12, KSI14, PHLW16,
PHL+17, TK14b, TK14c, TK16a, TK16c, TK16d, TK17a, TK17b], and drastically developed the
research area. For example, Herrmann and May [HM10] showed an elementary proof of Boneh-
Durfee’s stronger attack [BD00] for d < N0.292 by exploiting the sublattice structures. However,
unfortunately, unravelled linearization could not improve small CRT-exponent attacks. Although
Herrmann and May (PKC’10) [HM10] tried to exploit sublattice structures, they could not obtain
better asymptotic bounds. Therefore, to obtain better bounds, a novel technique seems to be
developed.

1.3 Our Results

In this paper, we develop a novel lattice construction technique for Coppersmith’s modular method,
where the technique enables us to exploit more useful algebraic structures of the CRT-RSA key
generation equation. A basic application of the technique is an improved small dq attack for
unbalanced prime factors (Section 3). As opposed to the previous results by May [May02] and
Bleichenbacher-May [BM06], our attack is the first result to reach a meaningful bound, i.e., p <
N0.5. Hence, we solve one of the major open problems for the security of the small CRT-exponent
RSA. Moreover, our attack can recover a larger dq than [BM06, May02] for any size of p. In
addition, our attack requires less lattice dimensions than Bleichenbacher-May’s attack [BM06] since
our technique exploits sublattice structures from [BM06]’s lattice, where the approach is similar
to Boneh-Durfee [BD00]. Indeed, our experiments show that Bleichenbacher-May’s attack works
better than their theoretical analyses. Hence, our careful analysis successfully fills the gap between
theoretical and experimental behaviors.
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We claim that our technique is not limited to the small dq attack. The technique is also
applicable to a small dp and dq attack (Section 4) that improves Jochemsz-May’s attack [JM07].
As we mentioned, small dq attacks [BM06, May02] and small dp and dq attacks [JM07] were studied
with different approaches in previous works; the former attack used Coppersmith’s modular method
whereas the latter attack used Coppersmith’s integer method. However, our powerful technique
enables us to improve these attacks in the same manner. Our attack works for dp, dq < N0.122 with
a full size e where the exponent of N is about 40% larger than Jochemsz-May’s attack. Notice that
our proposed attack in this paper is much better than that in our proceeding version [TLP17] that
works when dp, dq < N0.091.

Recently, numerous papers [EKU15, HHX+14b, LZL13, LZPL15, PHHX15, PHL+15, PHL16,
Sar14, Sar16, SIK11, TK14b, TK16a, TK16c] have been studying the security of RSA variants.
Hence, we show several extensions for our small dq attack on the RSA variants (Section 5), i.e.,
the Multi-Prime RSA, Takagi’s RSA, and the RSA with multiple exponent pairs. Our attacks
significantly improve previous attacks on these variants [PHL+15, SIK11].

1.4 Key Technique

We show an overview of our technique. The CRT-RSA key generation for dq is written as

edq = 1 + k(q − 1) (1)

with some integer k. By multiplying the equation by p, we obtain

edqp = p+ k(N − p) = N + (k − 1)(N − p). (2)

Recall in May’s and Bleichenbacher-May’s attack scenario [BM06, May02], the prime p is signif-
icantly smaller than the other prime q. They solved the latter equation (2) modulo e to recover
unknown (k − 1, p). Since the prime p is significantly smaller than the other prime q, to construct
better attacks, solving the equation (2) is more promising approach than solving the equation (1)
to recover (k, q). Hence, only the equation (2) was used in previous attacks. However, it means
that the constructions of previous attacks significantly rely on the fact that p is much smaller than
q. As a result, these attacks do not work when p is close to N0.5.

What we focus on is a fact that the equations (1) and (2) are essentially the same; there
are two representations for the same CRT-RSA key generation. As opposed to previous works,
our improved lattice constructions utilize the algebraic structure of both equations (1) and (2)
simultaneously, not only the equation (2). The two representations are compatible in the sense
that the combination enables us to exploit more useful algebraic structures. More specifically, we
use the equations (1) and (2), where the proportion can be adaptively determined by the sizes of
p and q. Then, to solve the modulo e equation as previous works, our framework always yields the
better lattices than previous approaches. Our attacks are better than Bleichenbacher-May’s attack
for any size of p.

At a glance, our lattice construction technique is specialized to the improvement of
Bleichenbacher-May’s attack. As we pointed out, May’s attack and Bleichenbacher-May’s attack
used Coppersmith’s method to solve a modular equation [Cop96b, How97] whereas Jochemsz-May’s
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attack used the method to solve an integer equation [Cop96a, Cor04]. The modular equation for
the former attack and the integer equation for the latter attack have completely different algebraic
structures. However, surprisingly, our powerful technique enables us to construct better lattices
and improves Jochemsz-May’s attack, too. It suggests that our proposed technique is quite useful
to study the security of CRT-RSA over a wide range.

2 Preliminaries

Consider a modular equation h(x1, . . . , xr) = 0 (mod W ), where all the absolute values of the target
solutions (x̃1, . . . , x̃r) are bounded above by X1, . . . , Xr. When

∏r
j=1Xj is reasonably smaller than

W , Coppersmith’s method can find all the solutions in polynomial time. In this section, we recall a
simplified reformulation of the method proposed by Howgrave-Graham [How97] and its basis tools,
i.e., Howgrave-Graham’s lemma and the LLL algorithm.

Let ∥h(x1, . . . , xr)∥ denote a norm of a polynomial which represents the Euclidean norm of the
coefficient vector. The following Howgrave-Graham’s lemma reduces the modular equations into
integer equations.

Lemma 1 (Howgrave-Graham’s Lemma [How97]). Let h̃(x1, . . . , xr) ∈ Z[x1, . . . , xr] be a polyno-
mial with at most n monomials. Let m,W,X1, . . . , Xr be positive integers. Suppose that:

1. h̃(x̃1, . . . , x̃r) = 0 (mod Wm), where |x̃1| < X1, . . . , |x̃r| < Xr,

2. ∥h̃(x1X1, . . . , xrXr)∥ < Wm/
√
n.

Then h̃(x̃1, . . . , x̃r) = 0 holds over the integers.

To solve r-variate modular equations h(x1, . . . , xr) = 0 (mod W ), it suffices to find r new
polynomials h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr) whose root is the same as the original one, i.e.,
(x1, . . . , xr) = (x̃1, . . . , x̃r), and whose norms are small enough to satisfy Howgrave-Graham’s
lemma.

To find such small norm polynomials from the original modular polynomial h(x1, . . . , xr), lat-
tices and the LLL algorithm are used. An n-dimensional lattice is an additive discrete subgroup
of Zn. In other words, a lattice represents all integer linear combinations of its basis vectors.
All vectors are row representation throughout the paper. Let b1, . . . , bm be n-dimensional lin-
early independent vectors in Zn. A lattice spanned by these vectors as a basis is defined as
L(b1, . . . , bm) := {

∑m
j=1 cjbj : cj ∈ Z for all j = 1, 2, . . . , n}. We also use a matrix representation

for the basis. We define a basis matrix B as m× n matrix which has the basis vectors b1, . . . , bm
in each row. A lattice spanned by a basis matrix B is denoted as L(B). We call a lattice full-rank
if and only if n = m. A determinant of a lattice det(L(B)) is defined as the m-dimensional volume
of the fundamental parallelepiped; P(B) := {cB : c ∈ Rm, 0 ≤ cj < 1, for all j = 1, 2, . . . ,m}.
The determinant can be computed as det(L(B)) =

√
det(BBT ) in general and that of a full-rank

lattice can be computed as det(L(B)) = | det(B)|. In this paper, we only use a full-rank lattice.
More specifically, we only use a lattice with a triangular basis matrix. Hence, the determinant of
the lattice can be computed easily as the absolute value of a product of all diagonals.
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Lattice has been used in various ways in cryptographic research. See [Cop97, Cop01, May03,
May10, NS01] for more information. In cryptanalysis, finding non-zero short lattice vectors is
usually an essential operation. In this paper, we recall the LLL algorithm [LLL82] that outputs
short lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [LLL82, May03]). Given linearly independent vectors b1, . . . , bn in
Zn, the LLL algorithm finds new basis vectors b̃1, . . . , b̃n for a lattice L(b1, . . . , bn) that satisfy

∥b̃j∥ ≤ 2n(n−1)/4(n−j+1) det(L(B)))1/(n−j+1) for 1 ≤ j ≤ n,

in time polynomial in n and the maximum input length of b1, . . . , bn.

Again, we explain how to solve the modular equation h(x1, . . . , xr) = 0 (mod W ). At first, we
construct n polynomials h1(x1, . . . , xr), . . . , hn(x1, . . . , xr) that have the root (x̃1, . . . , x̃r) modulo
Wm with some positive integer m. Then we construct n basis vectors b1, . . . , bn and equivalently
its matrix representation B. Each elements of a vector bj for j = 1, 2, . . . , n consist of coefficients of
hj(x1X1, . . . , xrXr). Since all vectors in a lattice L(B) are integer linear combinations of the basis
vectors, all polynomials whose coefficients are derived from lattice vectors have the root (x̃1, . . . , x̃r)
modulo Wm. We apply the LLL algorithm to a lattice basis B and obtain r LLL-reduced vectors
b̃1, . . . , b̃r. Then new polynomials h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr) which are derived from the
above r LLL-reduced vectors satisfy Howgrave-Graham’s lemma provided that det(L(B)))1/n <
Wm. Here, we omit small terms. When we obtain r polynomials h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr),
the root (x̃1, . . . , x̃r) can easily be recovered by computing resultant or Gröbner bases for the
polynomials.

We should note that the method needs heuristic argument for multivariate problems. The
polynomials h̃1(x1, . . . , xr), . . . , h̃n(x1, . . . , xr) derived from LLL output vectors have no assurance
of algebraic independency. In this paper, we assume that the polynomials are algebraic independent
as previous works [BM06, JM07, May02] since there exist few negative reports. Moreover, we justify
the validity of our attacks by computer experiments.

3 Small dq Attack

In this section, we propose an attack for small dq where p is significantly smaller than q. The attack
improves Bleichnbacher-May’s attack [BM06].

3.1 An Overview of the Lattice Construction

At first, we explain our strategy for lattice constructions. Since our lattice construction is highly
technical, we show toy examples that compare previous lattices [BM06, May02] and ours. We hope
that these examples help readers to understand our technique easily.

Recall the CRT-RSA key generation;

edq = 1 + k(q − 1)
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with some integer k. If we can solve the following modular equation:

fq(xq, yq) = 1 + xq(yq − 1) = 0 (mod e)

whose root is (xq, yq) = (k, q), a public modulus N can be factorized. However, since the prime
factor q is significantly larger than the other prime factor p, i.e., p = Nβ and q = N1−β for β ≤ 1/2,
May [May02] multiplied the above equation by p and obtain the following equation:

edqp = p+ k(N − p) = N + (k − 1)(N − p).

Hence, if the following modular equation can be solved, the public modulus N can be factorized:

fp(xp, yp) = N + xp(N − yp) = 0 (mod e)

whose root is (xp, yp) = (k − 1, p). Let e = Nα and dq = N δ. Then the absolute values of the
root (xp, xq, yp, yq) is bounded above by Xp := Nα+β+δ−1, Xq := Nα+β+δ−1, Yp := Nβ, Yq := N1−β,
respectively within constant factors. Later we also use a notation X := Xp = Xq. In this setting,
the other CRT-exponent dp can be arbitrary large such that dp ≈ Nβ.

3.1.1 May’s Matrix

May [May02] solved the modular equation fp(xp, yp) = 0 under the standard lattice construction
which can be captured by Jochemsz-May’s strategy [JM07]. For example, although we omit the
detail, he constructed the basis matrix as the following:

e
0 eXp

N NXp −XpYp
0 0 0 eYp
0 0 NXpYp NYp −XpY

2
p

0 0 0 0 0 eY 2
p

0 0 0 0 NXpY
2
p NY 2

p −XpY
3
p


,

where the rows consist of coefficients of seven polynomials:

e, exp, fp(xp, yp), eyp, ypfp(xp, yp), ey
2
p, y

2
pfp(xp, yp).

All the polynomials share the common root as fp(xp, yp) modulo e. In addition to the base polynomi-
als, i.e., e, exp, fp(xp, yp), he added extra yp-shifts, i.e., eyp, ypfp(xp, yp), ey

2
p, y

2
pfp(xp, yp). Applying

the LLL reduction to the above matrix, polynomials derived from the LLL output vectors satisfy
Howgrave-Graham’s lemma when

X4
pY

9
p e

4 < e7 ⇔ 4(α+ β + δ − 1) + 9β < 3α

⇔ δ < 1− α+ 13β

4
.

The core idea of the approach is solving the equation (2) not (1) since p is significantly smaller
than q. Hence, if p becomes close to q such that β ≥ 0.382, May’s attack does not work.
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3.1.2 Bleichenbacher-May Matrix

To improve May’s attack [May02] based on the above matrix, Bleichenbacher and May [BM06]
made use of the relation ypyq = N as Durfee and Nguyen [DN00]. Although the exact solution
of yp is unknown, the relation enables us to reduce powers of Yp in the diagonals by multiplying
powers of yq to all the polynomials. By optimizing the powers of yq, Bleichenbacher-May’s matrix
always offers better results than May’s matrix.

To explain our improvement later, we modify Bleichenbacher-May’s matrix, where the modified
matrix offer the same bound as the original Bleichenbacher-May matrix. The modification helps
readers to understand the spirit of our improvement. Previous May’s matrix used only extra yp-
shifts, however, modified Bleichenbacher-May’s matrix used both yp-shifts and yq-shifts. Hence, we
omit ey2p, y

2
pfp(xp, yp) from the above matrix and add eyq, N

−1 · yqfp(xp, yp) in turn where the new
polynomials share the common root as fp(xp, yp) modulo e:

e
0 eXp

N NXp −XpYp
0 0 0 eYp
0 0 NXpYp NYp −XpY

2
p

0 0 0 0 0 eYq
0 −Xp 0 0 0 Yq XpYq


.

The rows consist of coefficients of seven polynomials:

e, exp, fp(xp, yp), eyp, ypfp(xp, yp), eyq, N
−1 · yqfp(xp, yp) .

Although the precise definition of the polynomial selection is slightly different from the one in the
original paper, they are essentially the same in the sense that the above matrix yields the same
bound as the original Bleichenbacher-May attack. Applying the LLL reduction to the above matrix,
polynomials derived from the LLL output vectors satisfy Howgrave-Graham’s lemma when

X4
pY

4
p Y

2
q e

4 < e7 ⇔ 4(α+ β + δ − 1) + 4β + 2(1− β) < 3α

⇔ δ <
1

2
− α+ 6β

4
.

Compared with May’s matrix, the matrix reduces the powers of Yp by multiplying the powers of Yq.
It means that Bleichenbacher-May’s approach tries to control the appearance of Yp and Yq. Then
the attack works for larger p than May’s attack up to p < N0.468. By optimizing the selection of
yp-shifts and yq-shifts, Bleichenbacher-May’s attack is always better than May’s attack.

3.1.3 Our Matrix

To improve the Bleichenbacher-May attack, what we focus on is the representation of the polyno-
mial. More concretely, previous works used the only one representation, i.e., fp(xp, yp), however,
there is the other representation, i.e., fq(xq, yq), for the same polynomial. Indeed, a useful algebraic
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property can be exploited from the polynomial fq(xq, yq) by making use of the fact that xq = xp+1.
For the above Bleichenbacher-May matrix to be triangular, the polynomial eyq is necessary. Since
eYq is larger than the modulus e, the polynomial does not contribute to maximize the solvable root
bound as explained in [May10, TK14a]. However, we make use of fq(xq, yq) and show that the
matrix becomes triangular without eyq as follows:

e
0 eXp

N NXp −XpYp
0 0 0 eYp
0 0 NXpYp NYp −XpY

2
p

0 −Xp 0 0 0 XqYq

 .

The rows consist of coefficients of six polynomials:

e, exp, fp(xp, yp), eyp, ypfp(xp, yp), fq(xq, yq) .

Although the above Bleichenbacher-May matrix used N−1 · yqfp(xp, yp) in the bottom row, we use
fq(xq, yq) in turn. Notice that fq(xq, yq) = N−1 · yqfp(xp, yp) and we use the same polynomial
as the Bleichenbacher-May, however, the algebraic structure of fq(xq, yq) , i.e., the relation xq =
xp+1, enables the matrix to be triangular without eyq. The operation means that Bleichenbacher-
May’s matrix contains better sublattices. The representation fq(xq, yq), which was not used by
Bleichenbacher and May, enables us to exploit the sublattices. Indeed, by construction, our matrix
always outperforms the above Bleichenbacher-May matrix with less lattice dimensions. Applying
the LLL reduction to our above matrix, polynomials derived from the LLL output vectors satisfy
Howgrave-Graham’s lemma when

X3
pXqY

4
p Yqe

3 < e6 ⇔ 4(α+ β + δ − 1) + 4β + (1− β) < 3α

⇔ δ <
3

4
− α+ 7β

4
.

Since β ≤ 1/2, the bound is always better than the above Bleichenbacher-May example.

3.1.4 May’s modulo q Attack

We should notice that our lattice construction technique does not always offer the best attack.
More concretely, as we discussed above, our lattice offers better results than all the existing lattices
to solve fp(xp, yp) = 0 and fq(xq, yq) = 0. However, there is the other formulations to attack CRT-
RSA, i.e., May’s modulo q approach [May02]. From the CRT-RSA key generation edq = 1+k(q−1),
May solved a modular equation;

x+ ey = 0 (mod q)

whose root is (k − 1, dq). Since the modulo e and the modulo q approach is different, we should
check whether which method is the better. Although our modulo e attacks are the better in most
cases, we will show in Section 5.2 that the modulo p approach outperforms modulo e approach for
small dp attack with a modulus N = prq.
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Figure 1: Comparison between our attack (Theorem 1) and the Bleichenbacher-May for α = 1.

3.2 Attack for Large e

Although the above discussion handled only toy examples, our approach improves an asymptotic
condition of the small CRT-exponent attack. In this section, we propose an improved attack that
works when α > β/(1− β). The attack is the first result to cover the desired bound, i.e., β < 1/2
with a full size e.

Theorem 1. Let N = pq be an RSA modulus, where p = Nβ and q = N1−β for β ≤ 1/2. Let
e = Nα and dq < N δ be a public/CRT exponent respectively such that edq = 1 (mod (q−1)). Given
public elements N and e, if N is sufficiently large and

δ <
(1− β)(3 + 2β)− 2

√
β(1− β)(αβ + 3α+ β)

3 + β
and α >

β

1− β
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.

As opposed to previous results, when α = 1, the attack works to β < 1/2. Figure 1 compares our
result and the Bleichenbacher-May for α = 1. Our attack covers larger δ than the Bleichenbacher-
May attack for all β.

Proof of Theorem 1. To solve the modular equation fq(xq, yq) = 0 and equivalently fp(xp, yp) = 0,
we use the following shift-polynomials:

g[i,j](xp, yp) := xjpf
i
p(xp, yp)e

m−i,

g′[i,j](xp, yp) := yjpf
i
p(xp, yp)e

m−i,

g′′[i,j](xp, xq, yp, yq) := f i−j
p (xp, yp)f

j
q (xq, yq)e

m−i,

with some positive integer m. For non-negative integers i and j, all the shift-polynomials share the
same root as fp(xp, yp) and fq(xq, yq) modulo em. May [May02] used the same shift-polynomials as

11



g[i,j](xp, yp) and g′[i,j](xp, yp). The (modified) Bleichenbacher-May attack used an additional shift-

polynomial which used only fp(xp, yp). However, as we showed an example in the previous section,
we use the both representations fp(xp, yp) and fq(xq, yq), simultaneously. Then we can construct
triangular basis matrices that generalize the toy example as follows.

Lemma 2. Let all the polynomials be defined as above. Let τp and τq be constants such that τp ≥ 0
and 0 ≤ τq ≤ 1. Define sets of indices

Ix := {i = 0, 1, . . . ,m; j = 0, 1, . . . ,m− i},
Iy,p := {i = 0, 1, . . . ,m; j = 1, 2, . . . , ⌈τpm⌉},
Iy,q := {i = 1, 2, . . . ,m; j = 1, 2, . . . , ⌈τqi⌉}.

Let B be a matrix whose rows consist of coefficients of g[i,j](xpXp, ypYp), g′[i,j](xpXp, ypYp), and

g′′[i,j](xpXp, xqXq, ypYp, yqYq) with indices in Ix, Iy,p, and Iy,q, respectively. If the shift-polynomials
are ordered as

g[i,j] ≺ g′[i,j], g
′′
[i,j],

g[i,j] ≺ g[i′,j′], g
′
[i,j] ≺ g′[i′,j′], g

′′
[i,j] ≺ g′′[i′,j′] for i < i′,

g[i,j] ≺ g[i,j′], g
′
[i,j] ≺ g′[i,j′], g

′′
[i,j] ≺ g′′[i,j′] for j < j′,

and N−1 (mod em) is multiplied appropriately, then the matrix becomes triangular with diagonals

• Xi+j
p Y i

p e
m−i for g[i,j](xpXp, ypYp),

• Xi
pY

i+j
p em−i for g′[i,j](xpXp, ypYp),

• Xi
qY

j
q em−i for g′′[i,j](xpYp, xqXq, ypYp, yqYq).

Here, we do not prove the lemma. In Section 3.4, we prove a more general form of the statement,
i.e., Lemma 3.

We compute the resulting condition of Theorem 1. The dimension n and the determinant of
the lattice det(B) = XsXY

sYp
p Y

sYq
q ese can be computed as:

n =
∑

(i,j)∈Ix

1 +
∑

(i,j)∈Iy,p

1 +
∑

(i,j)∈Iy,q

1 =
1 + 2τp + τq

2
m2 + o(m2),

sX =
∑

(i,j)∈Ix

(i+ j) +
∑

(i,j)∈Iy,p

i+
∑

(i,j)∈Iy,q

i =
2 + 3τp + 2τq

6
m3 + o(m3),

sYp =
∑

(i,j)∈Ix

i+
∑

(i,j)∈Iy,p

(i+ j) =
1 + 3τp + 3τ2p

6
m3 + o(m3),

sYq =
∑

(i,j)∈Iy,q

j =
τ2q
6
m3 + o(m3),
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se =
∑

(i,j)∈Ix

(m− i) +
∑

(i,j)∈Iy,p

(m− i) +
∑

(i,j)∈Iy,q

(m− i) =
2 + 3τp + τq

6
m3 + o(m3).

Applying the LLL reduction, the polynomials obtained from the output vectors satisfy Howgrave-
Graham’s lemma if XsXY

sYp
p Y

sYq
q ese < enm, i.e.,

(α+ β + δ − 1)
2 + 3τp + 2τq

6
+ β

1 + 3τp + 3τ2p
6

+ (1− β)
τ2q
6

+ α

(
2 + 3τp + τq

6
− 1 + 2τp + τq

2

)
< 0

by omitting low order terms of m. To minimize the left hand side of the inequality, we substitute
the parameters

τp =
1− 2β − δ

2β
and τq =

1− β − δ

1− β
,

then the condition becomes

δ <
(1− β)(3 + 2β)− 2

√
β(1− β)(αβ + 3α+ β)

3 + β

as required. To satisfy the restriction τp ≥ 0, α > β/(1− β) should hold. The other parameter τq
always satisfies 0 ≤ τq ≤ 1.

3.3 Attack for Small e

The attack of Theorem 1 works only for α > β/(1−β). The constraint comes from the fact that the
parameter τp used in the proof should be non-negative. To capture the other case, i.e., α ≤ β/(1−β),
under the same algorithm construction, we set the parameters τp = 0 and τq = (1− β− δ)/(1− β),
then the attack works for δ < 2(1− β)−

√
(1 + α)(1− β).

However, by modifying the lattice construction, a better result can be obtained as follows.

Theorem 2. Let N = pq be an RSA modulus, where p < Nβ and q ≥ N1−β for β ≤ 1/2. Let
e = Nα and dq < N δ be a public/CRT exponent respectively such that edq = 1 (mod (q−1)). Given
public elements N and e, if N is sufficiently large and

δ < 1− β −
√

αβ(1− β) for β(1− β) ≤ α ≤ β

1− β
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.

As we claimed, the bound of Theorem 2 is better than δ < 2(1−β)−
√
(1 + α)(1− β) that can

be obtained from the same algorithm construction as Theorem 1. We show the proof of Theorem
2. The proof is more technical than that of Theorem 1, however, the spirit is almost the same. In
the subsequent sections, lattices that are similar to that of Theorem 2 will be used.

Proof of Theorem 2. To solve the modular equation fq(xq, yq) = 0 and equivalently fp(xp, yp) = 0,
we use the following shift-polynomials:

g[i,j],λ(xp, xq, yp, yq) := xjpf
⌈λi⌉
p (xp, yp)f

⌊(1−λ)i⌋
q (xq, yq)e

m−i,
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g′[i,j],λ(xp, xq, yp, yq) := yjqf
⌈λi⌉
p (xp, yp)f

⌊(1−λ)i⌋
q (xq, yq)e

m−i,

with some positive integer m and a parameter 0 < λ ≤ 1. For non-negative integers i and j, all
the shift-polynomials share the common root as fp(xp, yp) and fq(xq, yq) modulo em. Here, notice
that ⌈λi⌉+ ⌊(1− λ)i⌋ = i for all i. The shift-polynomials g′[i,j](xp, yp) and g′′[i,j](xp, yp) used in the

proof of Theorem 1 is the special case of g[i,j],λ(xp, xq, yp, yq) and g′[i,j],λ(xp, xq, yp, yq) for λ = 1. As

the attack of Theorem 1, we use both representations fp(xp, yp) and fq(xq, yq) simultaneously for
all shift-polynomials. Using these shift-polynomials, we can construct triangular basis matrices as
follows.

Lemma 3. Let all the polynomials be defined as above. Let τ be a constant such that 1−λ < τ ≤ 1.
Let m be a positive integer. Define sets of indices as

Ix := {i = 0, 1, . . . ,m; j = 0, 1, . . . ,m− i},
Iyq := {i = 1, 2, . . . ,m; j = 1, 2, . . . , ⌈τi⌉ − ⌊(1− λ)i⌋}.

Let B be a matrix whose rows consist of coefficients of g[i,j],λ(xpXp, xqXq, ypYp, yqYq) and
g′[i,j],λ(xpXp, xqXq, ypYp, yqYq) with indices in Ix and Iy,q respectively. If the shift-polynomials are
ordered as

g[i,j],λ ≺ g′[i,j],λ,

g[i,j],λ ≺ g[i′,j′],λ, g
′
[i,j],λ ≺ g′[i′,j′],λ for i < i′,

g[i,j],λ ≺ g[i,j′],λ, g
′
[i,j],λ ≺ g′[i,j′],λ for j < j′,

and N−1 (mod em) is multiplied appropriately, then the matrix becomes triangular with diagonals

• Xi+j
p Y

⌈λi⌉
p em−i for g[i,j],λ(xpXp, xqXq, ypYp, yqYq) with i such that i = 0 or ⌈λi⌉−⌈λ(i−1)⌉ =

1,

• Xi+j
q Y

⌊(1−λ)i⌋
q em−i for g[i,j],λ(xpXp, xqXq, ypYp, yqYq) with i such that i ̸= 0 and ⌈λi⌉− ⌈λ(i−

1)⌉ = 0,

• Xi
qY

⌊(1−λ)i⌋+j
q em−i for g′[i,j],λ(xpXp, xqXq, ypYp, yqYq).

A proof of the lemma is the most technical part of this paper. We prove it in Section 3.4.
We compute the resulting condition of Theorem 2. The dimension n and the determinant of

the lattice det(B) = XsXY
sYp
p Y

sYq
q ese can be computed as:

n =
∑

(i,j)∈Ix

1 +
∑

(i,j)∈Iyq

1 =
λ+ τ

2
m2 + o(m2),

sX =
∑

(i,j)∈Ix

(i+ j) +
∑

(i,j)∈Iyq

i =
λ+ τ

3
m3 + o(m3),
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Figure 2: Comparison between our attack (Theorem 3) and the attack of Lu et al. (Theorem
4) [LZPL15].

sYp =
∑

(i,j)∈Ix

⌈λi⌉ = λ2

6
m3 + o(m3),

sYq =
∑

(i,j)∈Ix

⌊(1− λ)i⌋+
∑

(i,j)∈Iyq

(⌊(1− λ)i⌋+ j) =
τ2

6
m3 + o(m3),

se =
∑

(i,j)∈Ix

(m− i) +
∑

(i,j)∈Iyq

(m− i) =
1 + λ+ τ

6
m3 + o(m3).

Applying the LLL reduction, the polynomials obtained from the output vectors satisfy Howgrave-
Graham’s lemma if XsXY

sYp
p Y

sYq
q ese < enm, i.e.,

(α+ β + δ − 1)
λ+ τ

3
+ β

λ2

6
+ (1− β)

τ2

6
+ α

(
1 + λ+ τ

6
− λ+ τ

2

)
< 0

by omitting low order terms of m. To minimize the left hand side of the inequality, we set the
parameters

λ =
1− β − δ

β
and τ =

1− β − δ

1− β
,

then the condition becomes

δ < 1− β −
√

αβ(1− β)

as required. To satisfy the restrictions 0 < λ ≤ 1 and 1 − λ < τ ≤ 1, β(1 − β) ≤ α ≤ β/(1 − β)
should hold.

As opposed to the attack of Theorem 1, that of Theorem 2 is applicable to a balanced RSA,
i.e., β = 1/2, for α ≤ 1. For a balanced RSA, we substitute β = 1/2 and the attack becomes as
follows.
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Table 1: Example of a matrix for m = 3 and λ = τ = 1/2.
1 xp x2

p x3
p xpyp x2

pyp x3
pyp x2

qyq x3
qyq x3

py
2
p xqyq x3

qy
2
q

e3 e3

xpe
3 Xpe

3

x2
pe

3 X2
pe

3

x3
pe

3 X3
pe

3

fpe
2 Ne2 NXpe

2 −XpYpe
2

xpfpe
2 NXpe

2 NX2
pe

2 −X2
pYpe

2

x2
pfpe

2 NX2
pe

2 NX3
pe

2 −X3
pYpe

2

fpfqe −2Xpe −2X2
pe N−1X2

pYpe X2
qYqe

xpfpfqe −2X2
pe −2X3

pe N−1X3
pYpe −X2

qYqe X3
qYqe

f2
pfq −3N2Xp −6N2X2

p −3N2X3
p 3NX2

pYp 3NX3
pYp N2X3

qYq −X3
pY

2
p

yqfpe
2 −Xpe

2 XqYqe
2

yqf
2
pfq 3X2

p 3X3
p −3N−1X3

pYp 3X2
qYq −3X3

qYq X3
qY

2
q

Theorem 3. Let N = pq be an RSA modulus, where the prime factors p and q are the same bit-size.
Let e = Nα and dq < N δ be a public/CRT exponent respectively such that edq = 1 (mod (q − 1)).
Given public elements N and e, if N is sufficiently large and

δ <
1−

√
α

2
for α ≥ 1

4
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.

By construction, the attack always outperforms that under Bleichenbacher-May’s lattice con-
struction. We also compare our attack with that of Lu et al. [May02] (Theorem 9 of [LZPL15])
that follows May’s modulo q approach.

Theorem 4 ([LZPL15]). Let N = pq be an RSA modulus, where the prime factors p and q are the
same bit-size. Let e = Nα and dq < N δ be a public/CRT exponent respectively such that edq = 1
(mod (q − 1)). Given public elements N and e, if

δ <
3− 4α

8
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.

Figure 2 compares our attack (Theorem 3) and that of Lu et al. (Theorem 4). Our attack is
better for all 1/4 < α < 1.

3.4 Proof of Lemma 3

In this section, we show a proof of Lemma 3 that is the most technical part of this paper. Before
the detailed proof, we explain the spirit of our triangular matrix. The polynomials that we use
contains four variables xp, xq, yp, yq. Furthermore, there are two algebraic relations: xq = xp + 1
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Table 2: Example of a matrix for m = 3 and λ = τ = 2/3.
1 xp x2

p x3
p xpyp x2

pyp x3
pyp x2

py
2
p x3

py
2
p x3

qyq xqyq x2
qyq x2

qy
2
q x3

qy
2
q

e3 e3

xpe
3 Xpe

3

x2
pe

3 X2
pe

3

x3
pe

3 X3
pe

3

fpe
2 Ne2 NXpe

2 −XpYpe
2

xpfpe
2 NXpe

2 NX2
pe

2 −X2
pYpe

2

x2
pfpe

2 NX2
pe

2 NX3
pe

2 −X3
pYpe

2

f2
p e N2e2N2Xpe N

2X2
pe −2NXpYpe−2NX2

pYpe X2
pY

2
p e

xpf
2
p e N2Xpe 2N

2X2
peN

2X3
pe −2NX2

pYpe−2NX3
pYpe X3

pY
2
p e

f2
pfq −3Xp −6X2

p −3X3
p 3N−1X2

pYp 3N−1X3
pYp −N−2X3

pY
2
p X3

qYq

yqfpe
2 −Xpe

2 XqYqe
2

yqf
2
p e −2Xpe −2X2

pe N−1X2
pYpe X2

qYqe
y2
qf

2
p e X2

pe 2XqYqe−2X2
qYqeX

2
qY

2
q e

yqf
2
pfq 3X2

p 3X3
p −N−1X3

pYp −3X3
qYq 3X2

qYq X3
qY

2
q

and ypyq = N . By using the latter relation, i.e., ypyq = N , we transform all monomials as they
do not have both yp and yq, simultaneously, where the same operation was also done in previous
works [BM06, DN00]. Moreover, we use an additional trick. By using the former relation, i.e.,
xq = xp + 1, we transform all monomials as they do not have both xp and xq, simultaneously.
More concretely, the variable xp appears only in monomials, where powers of yp are non-negative
whereas the variable xq appears only in monomials, where powers of yq are positive. The simple
operation is the key technique of this paper. To visualize the operation, we show some examples
of our triangular matrix in Tables 1 and 2. We hope that the examples help reader to understand
our technique easily.

Then we show the proof of Lemma 3.

Proof of Lemma 3. Since all the polynomials

g[i,j],λ(xp, xq, yp, yq) = xjpf
⌈λi⌉
p (xp, yp)f

⌊(1−λ)i⌋
q (xq, yq)e

m−i

for i = 0 have only one monomial xjpem, these polynomials generate triangular basis matrices with
diagonals Xj

pem. Then the remaining proof is inductive; we show that the basis matrix is still
triangular with other polynomials.

At first, we assume that polynomials g[i′,j′],λ(xp, xq, yp, yq) such that g[i′,j′],λ(xp, xq, yp, yq) ≺
g[i,j],λ(xp, xq, yp, yq) generate a triangular matrix as stated in Lemma 3. Then, we show that a matrix

is still triangular with a new polynomial g[i,j],λ(xp, xq, yp, yq) whose diagonal is Xi+j
p Y

⌈λi⌉
p em−i or

Xi+j
q Y

⌊(1−λ)i⌋
q em−i. By definition,

g[i,j],λ(xp, xq, yp, yq) = xjpf
⌈λi⌉
p (xp, yp)f

⌊(1−λ)i⌋
q (xq, yq)e

m−i

= xjp(N +Nxp − xpyp)
⌈λi⌉(1− xq + xqyq)

⌊(1−λ)i⌋em−i.

From the relation xq = xp + 1 and equivalently xp = xq − 1, the polynomial becomes

= xjp(Nxq − xpyp)
⌈λi⌉(xp + xqyq)

⌊(1−λ)i⌋em−i.
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By expanding (Nxq − xpyp)
⌈λi⌉ and (xp + xqyq)

⌊(1−λ)i⌋, the polynomial becomes

= xjp

 ⌈λi⌉∑
ip=0

(
⌈λi⌉
ip

)
(−xpyp)

ip · (Nxq)
⌈λi⌉−ip

⌊(1−λ)i⌋∑
iq=0

(
⌊(1− λ)i⌋

iq

)
(xqyq)

iq · x⌊(1−λ)i⌋−iq
p

 em−i

=

⌈λi⌉∑
ip=0

⌊(1−λ)i⌋∑
iq=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉−ipx

⌊(1−λ)i⌋+ip−iq+j
p x

⌈λi⌉−ip+iq
q y

iq
q y

ip
p em−i.

From the relation ypyq = N , we modify all the monomial so that yp and yq do not appear in each
monomial, simultaneously. Then, the polynomial becomes

=

⌊(1−λ)i⌋∑
iq=0

⌈λi⌉∑
ip=iq

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉−ip+iqx

⌊(1−λ)i⌋+ip−iq+j
p x

⌈λi⌉−ip+iq
q y

ip−iq
p em−i

+

⌊(1−λ)i⌋−1∑
ip=0

⌊(1−λ)i⌋∑
iq=ip+1

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉x

⌊(1−λ)i⌋+ip−iq+j
p x

⌈λi⌉−ip+iq
q y

iq−ip
q em−i.

Notice that there are no monomials that have yp and yq, simultaneously. The exponents of yp in
the first summation are non-negative whereas the exponents of yq in the second summation are
positive. Hence, as we discussed above, we replace all xq in the first summation by xp + 1 and
replace all xp in the second summation by xq − 1. Then, the polynomial becomes

=

⌊(1−λ)i⌋∑
iq=0

⌈λi⌉∑
ip=iq

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉−ip+iqx

⌊(1−λ)i⌋+ip−iq+j
p (xp + 1)⌈λi⌉−ip+iqy

ip−iq
p em−i

+

⌊(1−λ)i⌋−1∑
ip=0

⌊(1−λ)i⌋∑
iq=ip+1

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉(xq − 1)⌊(1−λ)i⌋+ip−iq+jx

⌈λi⌉−ip+iq
q y

iq−ip
q em−i

=

⌊(1−λ)i⌋∑
iq=0

⌈λi⌉∑
ip=iq

⌈λi⌉−ip+iq∑
kp=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)(
⌈λi⌉ − ip + iq

kp

)
N ⌈λi⌉−ip+iqx

i+j−kp
p y

ip−iq
p em−i

+

⌊(1−λ)i⌋−1∑
ip=0

⌊(1−λ)i⌋∑
iq=ip+1

⌊(1−λ)i⌋+ip−iq+j∑
kq=0

(−1)ip+kq

(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)(
⌊(1− λ)i⌋+ ip − iq + j

kq

)
·

N ⌈λi⌉x
i+j−kq
q y

iq−ip
q em−i.

The polynomial has monomials for variables

• x
ipx
p y

ipy
p for ipy = 0, 1, . . . , ⌈λi⌉,

• x
iqx
q y

iqy
q for iqy = 1, 2, . . . , ⌊(1− λ)i⌋,

for some ipx and iqx, respectively. When ⌈λi⌉−⌈λ(i−1)⌉ = 1, all polynomials g[i′,j′],λ(xp, xq, yp, yq)
that have diagonals for the following variables satisfy g[i′,j′],λ(xp, xq, yp, yq) ≺ g[i,j],λ(xp, xq, yp, yq):
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• x
ipx
p y

ipy
p for ipy = 0, 1, . . . , ⌈λi⌉ − 1,

• x
iqx
q y

iqy
q for iqy = 1, 2, . . . , ⌊(1− λ)i⌋.

Since the remaining monomial in g[i,j],λ(xp, xq, yp, yq) is only one element for a variable xi+j
p y

⌈λi⌉
p .

Hence, as stated in Lemma 3, the diagonal for g[i,j],λ(xp, xq, yp, yq) such that ⌈λi⌉ − ⌈λ(i− 1)⌉ = 1

is Xi+j
p Y

⌈λi⌉
p em−i. As the same way, we can prove that the diagonal for g[i,j],λ(xp, xq, yp, yq) such

that i ̸= 0 and ⌈λi⌉ − ⌈λ(i− 1)⌉ ̸= 1 is Xi+j
q Y

⌊(1−λ)i⌋
q em−i.

Next, we assume that polynomials g[i′,j′],λ(xp, xq, yp, yq) and g′[i′,j′],λ(xp, xq, yp, yq) such that

g′[i′,j′],λ(xp, xq, yp, yq) ≺ g′[i,j],λ(xp, xq, yp, yq) generate a triangular matrix as stated in Lemma 3.

Then, we show that a matrix is still triangular with a new polynomial g′[i,j],λ(xp, xq, yp, yq) whose

diagonal is Xi
qY

⌊(1−λ)i⌋+j
q em−i. By definition,

g′[i,j],λ(xp, xq, yp, yq) = yjqf
⌈λi⌉
p (xp, yp)f

⌊(1−λ)i⌋
q (xq, yq)e

m−i

= yjq(N +Nxp − xpyp)
⌈λi⌉(1− xq + xqyq)

⌊(1−λ)i⌋em−i.

From the relation xq = xp + 1 and equivalently xp = xq − 1, the polynomial becomes

= yjq(Nxq − xpyp)
⌈λi⌉(xp + xqyq)

⌊(1−λ)i⌋em−i.

By expanding (Nxq − xpyp)
⌈λi⌉ and (xp + xqyq)

⌊(1−λ)i⌋,

= yjq

 ⌈λi⌉∑
ip=0

(
⌈λi⌉
ip

)
(−xpyp)

ip · (Nxq)
⌈λi⌉−ip

⌊(1−λ)i⌋∑
iq=0

(
⌊(1− λ)i⌋

iq

)
(xqyq)

iq · x⌊(1−λ)i⌋−iq
p

 em−i

=

⌈λi⌉∑
ip=0

⌊(1−λ)i⌋∑
iq=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉−ipx

⌊(1−λ)i⌋+ip−iq
p x

⌈λi⌉−ip+iq
q y

iq+j
q y

ip
p em−i.

From the relation ypyq = N , we modify all the monomial so that yp and yq do not appear in each
monomial, simultaneously. Then, the polynomial becomes

=

⌈λi⌉∑
ip=j

min{ip−j,⌊(1−λ)i⌋}∑
ip=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉−ip+iq+jx

⌊(1−λ)i⌋+ip−iq
p x

⌈λi⌉−ip+iq
q y

ip−iq−j
p em−i

+

⌊(1−λ)i⌋∑
iq=0

min{iq+j−1,⌈λi⌉}∑
ip=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉x

⌊(1−λ)i⌋+ip−iq
p x

⌈λi⌉−ip+iq
q y

iq−ip+j
q em−i.

Notice that there are no monomials that have yp and yq, simultaneously. The exponents of yp in
the first summation are non-negative whereas the exponents of yq in the second summation are
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positive. Hence, as we discussed above, we replace all xq in the first summation by xp + 1 and
replace all xp in the second summation by xq − 1. Then, the polynomial becomes

=

⌈λi⌉∑
ip=j

min{ip−j,⌊(1−λ)i⌋}∑
ip=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉−ip+iq+jx

⌊(1−λ)i⌋+ip−iq
p (xp + 1)⌈λi⌉−ip+iqy

ip−iq−j
p em−i

+

⌊(1−λ)i⌋∑
iq=0

min{iq+j−1,⌈λi⌉}∑
ip=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉(xq − 1)⌊(1−λ)i⌋+ip−iqx

⌈λi⌉−ip+iq
q y

iq−ip+j
q em−i

=

⌈λi⌉∑
ip=j

min{ip−j,⌊(1−λ)i⌋}∑
ip=0

⌈λi⌉−(ip−iq)∑
kp=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)(
⌈λi⌉ − (ip − iq)

kp

)
N ⌈λi⌉−ip+iq+jx

i−kp
p y

ip−iq−j
p em−i

+

⌊(1−λ)i⌋∑
iq=0

min{iq+j−1,⌈λi⌉}∑
ip=0

⌊(1−λ)i⌋−(iq−ip)∑
kq=0

(−1)ip+kq

(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N ⌈λi⌉

(
⌊(1− λ)i⌋ − (iq − ip)

kq

)
·

N ⌈λi⌉x
i−kq
q y

iq−ip+j
q em−i.

The polynomial has monomials for variables

• x
ipx
p y

ipy
p for ipy = 0, 1, . . . , ⌈λi⌉ − j,

• x
iqx
q y

iqy
q for iqy = 1, 2, . . . , ⌊(1− λ)i⌋+ j,

for some ipx and iqx, respectively. Notice that g[i′,j′],λ(xp, xq, yp, yq) ≺ g′[i,j],λ(xp, xq, yp, yq)

hold for all (i′, j′), and all x
ipx
p y

ipy
p are diagonals of g[i′,j′],λ(xp, xq, yp, yq). All polynomials

g′[i′,j′],λ(xp, xq, yp, yq) that have diagonals for the following variables satisfy g′[i′,j′],λ(xp, xq, yp, yq) ≺
g′[i,j],λ(xp, xq, yp, yq):

• x
iqx
q y

iqy
q for iqy = 1, 2, . . . , ⌊(1− λ)i⌋ − 1.

Since the remaining monomial in g[i,j],λ(xp, xq, yp, yq) is only one element for a variable xiqy
⌊(1−λ)i⌋+j
q .

Hence, as stated in Lemma 3, the diagonal for g′[i,j],λ(xp, xq, yp, yq) is X
i
qY

⌊(1−λ)i⌋+j
q em−i.

Table 3: For 1000-bit RSA moduli, asymptotic and experimental comparisons of small dq attacks

Bitsize of q
Bleichenbacher-May [BM06] Our work

Asymptotic Expt. dim. L3 time Asymptotic Expt. dim. L3 time

305 0.210 0.160 63 53 min 0.230 0.170 56 15 min

355 0.140 0.100 63 44 min 0.164 0.100 58 16 min

405 0.075 0.050 63 35 min 0.103 0.055 66 57 min

440 0.033 0.010 63 35 min 0.064 0.012 66 60 min
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Figure 3: The comparison of the achievable bound depending on the lattice dimension. The left
and the right figure is for β = 0.35 and β = 0.40 respectively.

Table 4: Asymptotic bounds and lattice dimension for small δ with fixed lattice dimensions.

β = 0.45

δ 0.010 0.020 0.030 0.040 0.052

dim. 109 154 340 1055 Asymptotic

β = 0.48

δ 0.002 0.005 0.010 0.015 0.020

dim. 486 686 1491 5443 Asymptotic

At the end of this section, we briefly show how to deduce Lemma 2 from Lemma 3. The
collection of shift-polynomials g[i,j](xp, yp) and g′′[i,j](xp, xq, yp, yq) in Lemma 2 are essentially the

same as g[i,j],λ(xp, xq, yp, yq) and g′[i,j],λ(xp, xq, yp, yq) in Lemma 3 for λ = 1. Hence, by setting the

parameters (λ, τ) in Lemma 3 as (1, τq), Lemma 3 show that g[i,j](xp, yp) and g′′[i,j](xp, xq, yp, yq)
in Lemma 2 generate a triangular matrix. To complete the proof of Lemma 2, we also use May’s
result [May02] that showed that polynomials g[i,j](xp, yp) and g′[i,j](xp, yp) generate a triangular

matrix. As a result, g[i,j](xp, yp), g′[i,j](xp, yp), and g′′[i,j](xp, xq, yp, yq) in Lemma 2 generates a
triangular matrix.

3.5 Experimental results

We have implemented the experiment program in Magma 2.10 computer algebra system [BCP97]
on a PC with Intel(R) Core(TM) Duo CPU(3.30GHz, 4.0GB RAM Windows 7). Table 3 lists some
theoretical and experimental results on factoring two 1000-bit RSA moduli with varying bit-size of
q. In all experiments, we successfully find the factorization of these RSA moduli.

In [BM06], the experimental results are much better than their theoretical analysis. For exam-
ple, for 440-bit factor q, with a lattice dimension of 63, in theory the attack should not work (we
can recover the small private key dp up to a size of N−0.083), however, in practice, we succeed for dp
with bit-size a 0.010-fraction of N . Since our lattice construction captures the underlying sublattice
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structure of [BM06]’s desired lattice, we can do better than [BM06]: with a lattice dimension of
66, experimentally we can reconstruct dp with a size of N0.012.

Note that our result of Theorem 1 is an asymptotic improvement. In Table 4, we present numer-
ical values of δ for different values of β and lattice dimension. Moreover, compared with [BM06],
our method requires smaller lattice dimensions. For β = 0.35 and β = 0.40, Figure 3 shows a
comparison of these two approaches in the terms of the bit-size of small secret exponent dp that
can be attacked.

4 Small dp and dq Attack

In this section, we propose an attack when both dp and dq are small. The attack improves Jochemsz-
May’s attack [JM07] by utilizing our lattice construction technique. Furthermore, the attack that
we propose in this section is better than that in our proceeding version [TLP17].

4.1 Our Attack

Recall the CRT-RSA key generation;

edq = 1 + kq(q − 1) and edp = 1 + kp(p− 1)

with some integers kq and kp. Hence, if we can solve the following simultaneous modular equations,
RSA modulus N can be factorized:

fq,1(xq,1, yq) = 1 + xq,1(yq − 1) = 0 mod e,

fp,2(xp,2, yp) = 1 + xp,2(yp − 1) = 0 mod e,

where the root is (xq,1, xp,2, yq, yp) = (kq, kp, q, p).
In addition, by multiplying p and q to the key generation equations respectively, the following

representations can be obtained:

edqp = p+ kq(N − p) = N + (kq − 1)(N − p),

edpq = q + kp(N − q) = N + (kp − 1)(N − q).

Then, we can also use the following modular equations:

fp,1(xp,1, yp) = N + xp,1(N − yp) = 0 mod e,

fq,2(xq,2, yq) = N + xq,2(N − yq) = 0 mod e,

where the root is (xp,1, xq,2, yp, yq) = (kq − 1, kp − 1, p, q).
To summarize the above discussion, we want to solve the following simultaneous modular equa-

tions:

fp,1(xp,1, yp) = N + xp,1(N − yp) = 0 mod e,

fq,1(xq,1, yq) = 1 + xq,1(yq − 1) = 0 mod e,
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fp,2(xp,2, yp) = 1 + xp,2(yp − 1) = 0 mod e,

fq,2(xq,2, yq) = N + xq,2(N − yq) = 0 mod e,

where the root is (xp,1, xq,1, xp,2, xq,2, yp, yq) = (kq − 1, kq, kp, kp − 1, p, q). Let e = Nα, dp < N δ,
and dq < N δ for a balanced RSA, i.e, q < p < 2q. The absolute values of xp,1, xq,1, xp,2, xq,2 are
bounded above by X = Nα+δ−1/2 within constant factors whereas the absolute values of yp and yq
are bounded above by Y = N1/2 within constant factors.

Unfortunately, an approach to solve the above four equations simultaneously does not offer
an improvement. The approach gives us only the same bound as Theorem 3. Hence, we use an
additional algebraic relation. From the CRT-RSA key generation,

edq = 1 + kq(q − 1) and edp = 1 + kp(p− 1),

⇔ kq − 1 = kqq (mod e) and kp − 1 = kpp (mod e).

By multiplying these two equations, we obtain

(kq − 1)(kp − 1) = kqkpN (mod e).

Then the following new equation can be obtained:

h(xp,1, xq,1, xp,2, xq,2) = (N − 1)xp,1xp,2 + xp,1 +Nxp,2 = 0 (mod e)

= (N − 1)xq,1xq,2 +Nxq,1 + xq,2 = 0 (mod e).

The polynomial also has two representations as the previous polynomials. Notice that the same
equation as h(xp,1, xq,1, xp,2, xq,2) was already used by Galbraith et al. [GHM05]. We make use of
these equations and obtain the following result.

Theorem 5. Let N = pq be an RSA modulus, where p and q are the same bit-size. Let e = Nα and
dp, dq < N δ be a public/CRT exponent respectively such that edq = 1 (mod (q − 1)) and edp = 1
(mod (p− 1)). Given public elements N and e, if N is sufficiently large and

δ <
1

2
−
√

α

7
for α ≥ 7

16
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.

For the full size e, the attack works for δ < 1/2 − 1/
√
7 = 0.122 · · · which is better than

Jochemsz-May’s bound [JM07], i.e., δ < 0.073. Our attack is better than all existing attacks.
Furthermore, the result proposed in this paper is much better than our proceeding version [TLP17],
i.e., δ < 1/2 − 1/

√
6 = 0.091 · · · . We obtain the improvement by exploiting sublattice structures

from the lattice in [TLP17]. Therefore, our proposed attack in this paper is practically faster than
our previous attack [TLP17].

Proof of Theorem 5. To solve the above modular equations, we use the following shift-polynomials:

g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq) := xj1p,1x
j2
p,2y

⌊(i1+i2)/2⌋
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)·
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hu(xp,1, xp,2, xq,1, xq,2)e
m−(i1+i2+u),

g′[i1,i2,j1],p(xp,1, xq,1, xp,2, xq,2, yp, yq) := y⌊(i1+i2)/2⌋−j1
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)e

m−(i1+i2),

g′[i1,i2,j2],q(xp,1, xq,1, xp,2, xq,2, yp, yq) := y⌊(i1+i2)/2⌋+j2
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)e

m−(i1+i2),

with some positive integer m. For non-negative integers i1, i2, j1, i2, and u, all the shift-
polynomials share the common root as fp,1(xp,1, yp), fp,2(xp,2, yp), fq,1(xq,1, yq), fq,2(xq,2, yq), and
h(xp,1, xq,1, xp,2, xq,2) modulo em. Then we can construct triangular basis matrices as follows.

Lemma 4. Let all the polynomials be defined as above. Let τ be a constant such that 1/2 ≤ τ ≤ 1.
Define sets of indices as

Ix =



i1 = 0, 1, . . . , ⌊m2 ⌋; i2 = 0, 1, . . . , ⌊m2 ⌋; j1 = 0; j2 = 0;

u = 0, 1, . . . ,min{⌊m2 ⌋ − i1, ⌊m2 ⌋ − i2}, and

i1 = 0, 1, . . . , ⌊m2 ⌋ − 1; i2 = 1, 2, . . . , ⌊m2 ⌋; j1 = 1; j2 = 0;

u = 0, 1, . . . ,min{⌊m2 ⌋ − i1 − 1, ⌊m2 ⌋ − i2}, and

i1 = 0, 1, . . . , ⌊m2 ⌋; i2 = 0; j1 = 1, 2, . . . , ⌊m2 ⌋ − i1; j2 = 0;

u = 0, 1, . . . , ⌊m2 ⌋ − i1 − j1, and

i1 = 0; i2 = 0, 1, . . . , ⌊m2 ⌋; j1 = 0; j2 = 1, 2, . . . , ⌊m2 ⌋ − i2;

u = 0, 1, . . . , ⌊m2 ⌋ − i2 − j2,



,

Iy,p =
{

i1 = 0, 1, . . . , ⌊m2 ⌋; i2 = 0, 1, . . . , ⌊m2 ⌋; j1 = 1, 2, . . . , ⌊τ(i1 + i2)⌋ − ⌈(i1 + i2)/2⌉,
}
,

Iy,q =
{

i1 = 0, 1, . . . , ⌊m2 ⌋; i2 = 0, 1, . . . , ⌊m2 ⌋; j2 = 1, 2, . . . , ⌊τ(i1 + i2)⌋ − ⌊(i1 + i2)/2⌋,
}
,

Let B be a matrix whose rows consist of coefficients of
g[i1,i2,j1,j2,u](xp,1Xp,1, xq,1Xq,1, xp,2Xp,2, xq,2Xq,2, ypYp, yqYq),
g′[i1,i2,j1],p(xp,1Xp,1, xq,1Xq,1, xp,2Xp,2, xq,2Xq,2, ypYp, yqYq), and

g′[i1,i2,j2],q(xp,1Xp,1, xq,1Xq,1, xp,2Xp,2, xq,2Xq,2, ypYp, yqYq) with indices in Ix, Iy,p, and Iy,q,
respectively. If the shift-polynomials are ordered as

g[i1,i2,j1,j2,u] ≺ g′[i1,i2,j1],p, g
′
[i1,i2,j2],q

,

g[i′1,i′2,j′1,j′2,u′] ≺ g[i1,i2,j1,j2,u] for i′1 + i′2 < i1 + i2,

g[i′1,i′2,j′1,j′2,u′] ≺ g[i1,i2,j1,j2,u] for i′1 + i′2 = i1 + i2, u
′ < u,

g[i′1,i′2,j′1,0,u] ≺ g[i1,i2,j1,0,u] for i′1 + i′2 = i1 + i2, j
′
1 < j1,

g[i′1,i′2,0,j′2,u] ≺ g[i1,i2,0,j2,u] for i′1 + i′2 = i1 + i2, j
′
2 < j2,

g′[i′1,i′2,j′1]
, g′[i′1,i′2,j′2],q

≺ g′[i1,i2,j1],p, g
′
[i1,i2,j2],q

for i′1 + i′2 < i1 + i2,

g′[i′1,i′2,j′1]
≺ g′[i1,i2,j1],p for i′1 + i′2 = i1 + i2, j

′
1 < j1,

g′[i′1,i′2,j′2],q
≺ g′[i1,i2,j2],q for i′1 + i′2 = i1 + i2, j

′
2 < j2,
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and N−1 (mod em) is multiplied appropriately, then the matrix becomes triangular with diagonals

• Xi1+j1+u
p,1 Xi2+j2+u

p,2 Y
⌈(i1+i2)/2⌉
p em−(i1+i2+u) for g[i1,i2,j1,j2,u] if i1 + i2 is odd,

• Xi1+j1+u
q,1 Xi2+j2+u

q,2 Y
⌊(i1+i2)/2⌋
q em−(i1+i2+u) for g[i1,i2,j1,j2,u] if i1 + i2 is even,

• Xi1
p,1X

i2
p,2Y

⌈(i1+i2)/2⌉+j1
p em−(i1+i2) for g′[i1,i2,j1],p,

• Xi1
q,1X

i2
q,2Y

⌊(i1+i2)/2⌋+j2
q em−(i1+i2) for g′[i1,i2,j2],q.

The proof will appear in Section 4.2.
We compute the resulting condition of Theorem 5. The dimension n and the determinant of

the lattice det(B) = XsXY sY ese can be computed as:

n =
∑

(i1,i2,j1,j2,u)∈Ix

1 +
∑

(i1,i2,j1)∈Iy,p

1 +
∑

(i1,i2,j2)∈Iy,q

1 =
τ

4
m3 + o(m3),

sX =
∑

(i1,i2,j1,j2,u)∈Ix

(i1 + i2 + j1 + j2 + 2u) +
∑

(i1,i2,j1)∈Iy,p

(i1 + i2) +
∑

(i1,i2,j2)∈Iy,q

(i1 + i2) =
7τ

48
m4 + o(m4),

sY =
∑

(i1,i2,j1,j2,u)∈Ix
s.t. i1+i2 is odd

⌈ i1 + i2
2

⌉+
∑

(i1,i2,j1,j2,u)∈Ix
s.t. i1+i2 is even

⌊ i1 + i2
2

⌋

+
∑

(i1,i2,j1)∈Iy,p

(⌈ i1 + i2
2

⌉+ j1) +
∑

(i1,i2,j2)∈Iy,q

(⌊ i1 + i2
2

⌋+ j2)

=
7τ2

96
m4 + o(m4),

se =
∑

(i1,i2,j1,j2,u)∈Ix

(m− (i1 + i2 + u)) +
∑

(i1,i2,j1)∈Iy,p

(m− (i1 + i2)) +
∑

(i1,i2,j2)∈Iy,q

(m− (i1 + i2))

=
1 + 5τ

48
m4 + o(m4).

Applying the LLL reduction, the polynomials obtained from the output vectors satisfy Howgrave-
Graham’s lemma if XsXY sY ese < enm, i.e.,

(α+ δ − 1

2
) · 7τ

48
+

1

2
· 7τ

2

96
+ α · 1 + 5τ

48
< α · τ

4
.

by omitting low order terms of m. To minimize the left hand side of the inequality, we set the
parameters τ = 1− 2δ, then the condition becomes

δ <
1

2
−
√

α

7

as required. To satisfy the restriction τ ≥ 1/2, δ ≤ 1/4 and equivalently α ≥ 7/16 should hold.
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4.2 Proof of Lemma 4

In this subsection, we show a proof of Lemma 4. Similarly as the proof of Lemma 3, we first
explain the spirit of our triangular matrix. The polynomials that we use contains six variables
xp,1, xq,1, xp,2, xq,2, yp, yq, and there are three algebraic relations: xq,1 = xp,1 + 1, xp,2 = xq,2 + 1
and ypyq = N . By using the last relation, i.e., ypyq = N , we transform all monomials as they
do not have both yp and yq, simultaneously, where the same operation was also done in Section
3.4. By using the former two relations, i.e., xq,1 = xp,1 + 1 and xp,2 = xq,2 + 1, we transform all
monomials as they do not have both xp,1, xq,1, simultaneously, and both xp,2, xq,2, simultaneously.
More concretely, the variable xp,1 and xp,2 appear only in monomials, where exponents of yp are
positive whereas the variable xq,1 and xq,2 appear only in monomials, where exponents of yq are
non-negative. The operation is a direct extension of that in Section 3.

Then we show the proof of Lemma 4.

Proof of Lemma 4. When (i2, j2, u) = (0, 0, 0),

g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq)

:= xj1p,1x
j2
p,2y

⌊(i1+i2)/2⌋
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)h

u(xp,1, xp,2, xq,1, xq,2)e
m−(i1+i2+u)

= xj1p,1y
⌊i1/2⌋
q f i1

p,1(xp,1, yp)e
m−i1

= N ⌊i1/2⌋xj1p,1f
⌈i1/2⌉
p,1 (xp,1, yp)f

⌊i1/2⌋
q,1 (xq,1, yq)e

m−i1 .

Notice that the polynomials are similar to g[i,j],λ(xp, xq, yp, yq) for λ = 1/2 in Lemma 3. Then, the
polynomials generate triangular basis matrices as claimed in Lemma 4. Similarly, the polynomials
g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq) for (i1, j1, u) = (0, 0, 0) generate triangular basis matrices.
Since the proof is completely the same as that of Lemma 3, we omit it here. Then, the remaining
proof is inductive; we show that the basis matrix is still triangular with other polynomials.

At first, we assume that polynomials g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) such that
g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) ≺ g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq) generate a tri-
angular matrix as stated in Lemma 4. Then, we show that a matrix is still tri-
angular with a new polynomial g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq) whose diagonal is

xi1+j1+u
p,1 xi2+j2+u

p,2 y
⌈(i1+i2)/2⌉
p em−(i1+i2+u). By definition,

g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq)

= xj1p,1x
j2
p,2y

⌊(i1+i2)/2⌋
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)h

u(xp,1, xp,2, xq,1, xq,2)e
m−(i1+i2+u)

= xj1p,1x
j2
p,2y

⌊(i1+i2)/2⌋
q (N + xp,1(N − yp))

i1 (1 + xp,2(yp − 1))i2 hu(xp,1, xp,2, xq,1, xq,2)e
m−(i1+i2+u).

From the relation xq,1 = xp,1 + 1, xp,2 = xq,2 + 1 and equivalently xp,1 = xq,1 − 1, xq,2 = xp,2 − 1,
the polynomial becomes

= xj1p,1x
j2
p,2y

⌊(i1+i2)/2⌋
q (Nxq,1 − xp,1yp)

i1 (−xq,2 + xp,2yp)
i2 hu(xp,1, xp,2, xq,1, xq,2)e

m−(i1+i2+u).

By expanding (Nxq,1 − xp,1yp)
i1 and (−xq,2 + xp,2yp)

i2 , the polynomial becomes

= xj1p,1x
j2
p,2y

⌊(i1+i2)/2⌋
q hu(xp,1, xp,2, xq,1, xq,2)e

m−(i1+i2+u)·

26



 i1∑
ip,1=0

(
i1
ip,1

)
(−xp,1yp)

ip,1 (Nxq,1)
i1−ip,1

 i2∑
ip,2=0

(
i2
ip,2

)
(xp,2yp)

ip,2 (−xq,2)
i2−ip,2


= xj1p,1x

j2
p,2y

⌊(i1+i2)/2⌋
q hu(xp,1, xp,2, xq,1, xq,2)e

m−(i1+i2+u)· i1∑
ip,1=0

i2∑
ip,2=0

(
i1
ip,1

)(
i2
ip,2

)
(−1)ip,1+i2−ip,2N i1−ip,1x

ip,1
p,1 x

ip,2
p,2 x

i1−ip,1
q,1 x

i2−ip,2
q,2 y

ip,1+ip,2
p


= y⌊(i1+i2)/2⌋

q hu(xp,1, xp,2, xq,1, xq,2)e
m−(i1+i2+u)·i1+i2∑

ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1x

ip,1+j1
p,1 x

ip−ip,1+j2
p,2 x

i1−ip,1
q,1 x

i2−ip+ip,1
q,2 y

ip
p

 .

From the relation ypyq = N , we modify all the monomial so that yp and yq do not appear in each
monomial, simultaneously. Then, the polynomial becomes

= hu(xp,1, xp,2, xq,1, xq,2)e
m−(i1+i2+u)· i1+i2∑

ip=⌊(i1+i2)/2⌋+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1+⌊(i1+i2)/2⌋·

x
ip,1+j1
p,1 x

ip−ip,1+j2
p,2 x

i1−ip,1
q,1 x

i2−ip+ip,1
q,2 y

ip−⌊(i1+i2)/2⌋
p

)
+ hu(xp,1, xp,2, xq,1, xq,2)e

m−(i1+i2+u)·⌊(i1+i2)/2⌋∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1+ip ·

x
ip,1+j1
p,1 x

ip−ip,1+j2
p,2 x

i1−ip,1
q,1 x

i2−ip+ip,1
q,2 y

⌊(i1+i2)/2⌋−ip
q

)
.

Notice that there are no monomials that have yp and yq simultaneously. The exponents of yp
in the first summation are positive, whereas the exponents of yq in the second summation are
non-negative.

By expanding

hu(xp,1, xp,2, xq,1, xq,2) = (Nxp,2xq,1 − xp,1xq,2)
u

=
u∑

ℓ=0

(
u

ℓ

)
(Nxp,2xq,1)

ℓ(−xp,1xq,2)
u−ℓ,

the polynomial becomes

=

i1+i2∑
ip=⌊(i1+i2)/2⌋+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

u∑
ℓ=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
u

ℓ

)
(−1)2ip,1+i2−ip+u−ℓN i1−ip,1+⌊(i1+i2)/2⌋+ℓ·
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x
ip,1+j1+u−ℓ
p,1 x

ip−ip,1+j2+ℓ
p,2 x

i1−ip,1+ℓ
q,1 x

i2−ip+ip,1+u−ℓ
q,2 y

ip−⌊(i1+i2)/2⌋
p em−(i1+i2+u)

+

⌊(i1+i2)/2⌋∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

u∑
ℓ=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
u

ℓ

)
(−1)2ip,1+i2−ip+u−ℓN i1−ip,1+ip+ℓ·

x
ip,1+j1+u−ℓ
p,1 x

ip−ip,1+j2+ℓ
p,2 x

i1−ip,1+ℓ
q,1 x

i2−ip+ip,1+u−ℓ
q,2 y

⌊(i1+i2)/2⌋−ip
q em−(i1+i2+u).

Next, as we discussed above, we replace all xq,1, xq,2 in the first summation by xp,1+1, xp,2− 1,
respectively, and replace all xp,1, xp,2 in the second summation by xq,1 − 1, xq,2 + 1, respectively.
Then, the polynomial becomes

=

i1+i2∑
ip=⌊(i1+i2)/2⌋+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

u∑
ℓ=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
u

ℓ

)
(−1)2ip,1+i2−ip+u−ℓN i1−ip,1+⌊(i1+i2)/2⌋+ℓ·

x
ip,1+j1+u−ℓ
p,1 x

ip−ip,1+j2+ℓ
p,2 (xp,1 + 1)i1−ip,1+ℓ(xp,2 − 1)i2−ip+ip,1+u−ℓy

ip−⌊(i1+i2)/2⌋
p em−(i1+i2+u)

+

⌊(i1+i2)/2⌋∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

u∑
ℓ=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
u

ℓ

)
(−1)2ip,1+i2−ip+u−ℓN i1−ip,1+ip+ℓ·

(xq,1 − 1)ip,1+j1+u−ℓ(xq,2 + 1)ip−ip,1+j2+ℓx
i1−ip,1+ℓ
q,1 x

i2−ip+ip,1+u−ℓ
q,2 y

⌊(i1+i2)/2⌋−ip
q em−(i1+i2+u)

=

i1+i2∑
ip=⌊(i1+i2)/2⌋+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

u∑
ℓ=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
u

ℓ

)
(−1)2ip,1+i2−ip+u−ℓN i1−ip,1+⌊(i1+i2)/2⌋+ℓ·

x
ip,1+j1+u−ℓ
p,1 x

ip−ip,1+j2+ℓ
p,2 y

ip−⌊(i1+i2)/2⌋
p em−(i1+i2+u)·i1−ip,1+ℓ∑

kp,1=0

(
i1 − ip,1 + ℓ

kp,1

)
x
i1−ip,1+ℓ−kp,1
p,1

i2−ip+ip,1+u−ℓ∑
kp,2=0

(
i2 − ip + ip,1 + u− ℓ

kp,2

)
(−1)kp,2x

i2−ip+ip,1+u−ℓ−kp,2
p,2


+

⌊(i1+i2)/2⌋∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

u∑
ℓ=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
u

ℓ

)
(−1)2ip,1+i2−ip+u−ℓN i1−ip,1+ip+ℓ·

x
i1−ip,1+ℓ
q,1 x

i2−ip+ip,1+u−ℓ
q,2 y

⌊(i1+i2)/2⌋−ip
q em−(i1+i2+u)·ip,1+j1+u−ℓ∑

kq,1=0

(
ip,1 + j1 + u− ℓ

kq,1

)
(−1)kq,1x

ip,1+j1+u−ℓ−kq,1
q,1

ip−ip,1+j2+ℓ∑
kq,2=0

(
ip + j2 + ℓ− ip,1

kq,2

)
x
ip+j2+ℓ−ip,1−kq,2
q,2


=

i1+i2∑
ip=⌊(i1+i2)/2⌋+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

u∑
ℓ=0

i1−ip,1+ℓ∑
kp,1=0

i2−ip+ip,1+u−ℓ∑
kp,2=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
u

ℓ

)
·

(
i1 − ip,1 + ℓ

kp,1

)(
i2 − ip + ip,1 + u− ℓ

kp,2

)
(−1)2ip,1+i2−ip+u−ℓ+kp,2N i1−ip,1+⌊(i1+i2)/2⌋+ℓ·

x
i1+j1+u−kp,1
p,1 x

i2+j2+u−kp,2
p,2 y

ip−⌊(i1+i2)/2⌋
p em−(i1+i2+u)
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+

⌊(i1+i2)/2⌋∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

u∑
ℓ=0

ip,1+j1+u−ℓ∑
kq,1=0

ip−ip,1+j2+ℓ∑
kq,2=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
u

ℓ

)
·

(
ip,1 + j1 + u− ℓ

kq,1

)(
ip + j2 + ℓ− ip,1

kq,2

)
(−1)2ip,1+i2−ip+u−ℓ+kq,1N i1−ip,1+ip+ℓ·

x
i1+j1+u−kq,1
q,1 x

i2+j2+u−kq,2
q,2 y

⌊(i1+i2)/2⌋−ip
q em−(i1+i2+u).

The polynomial has monomials for variables

• x
ipx,1
p,1 x

ipx,2
p,2 y

ipy
p for ipy = 1, 2, . . . , ⌈(i1 + i2)/2⌉,

• x
iqx,1
q,1 x

iqx,1
q,1 y

iqy
q for iqy = 0, 1, . . . , ⌊(i1 + i2)/2⌋.

When (i1 + i2) is odd, all polynomials g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) that have
diagonals for the following variables satisfies g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) ≺
g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq):

• x
ipx,1
p,1 x

ipx,2
p,2 y

ipy
p for ipy = 1, 2, . . . , ⌈(i1 + i2)/2⌉ − 1,

• x
iqx,1
q,1 x

iqx,1
q,1 y

iqy
q for iqy = 0, 1, . . . , ⌊(i1 + i2)/2⌋.

Hence, we focus on the monomials in g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq) for variables

• x
ipx,1
p,1 x

ipx,2
p,2 y

⌈(i1+i2)/2⌉
p for ipx,1 = i1 + j1, i1 + j1 + 1, . . . , i1 + j1 + u; ipx,2 = i2 + j2, i2 + j2 +

1, . . . , i2 + j2 + u.

All polynomials g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) that have the above diagonals for

variables except xi1+j1+u
p,1 xi2+j2+u

p,2 y
⌈(i1+i2)/2⌉
p satisfy g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) ≺

g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq). Hence, as stated in Lemma 4, the poly-
nomial g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq) for odd (i1 + i2) has a diagonal

Xi1+j1+u
p,1 Xi2+j2+u

p,2 Y
⌈(i1+i2)/2⌉
p em−(i1+i2+u). Similarly, we can prove the statement when (i1 + i2) is

even. Hence, polynomials g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) generate triangular basis matrices
as stated in Lemma 4.

Next, we assume that polynomials g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) and
g′[i′1,i′2,j′1],p

(xp,1, xq,1, xp,2, xq,2, yp, yq) such that g′[i′1,i′2,j′1],p
(xp,1, xq,1, xp,2, xq,2, yp, yq) ≺

g′[i1,i2,j1],p(xp,1, xq,1, xp,2, xq,2, yp, yq) generate a triangular matrices as stated in Lemma 4. Then, we

show that a matrix is still triangular with a new polynomial g′[i1,i2,j1],p(xp,1, xq,1, xp,2, xq,2, yp, yq)

whose diagonal is xi1p,1x
i2
p,2y

⌈(i1+i2)/2⌉+j1
p em−(i1+i2). By definition,

g′[i1,i2,j1],p(xp,1, xq,1, xp,2, xq,2, yp, yq)

= y⌊(i1+i2)/2⌋−j1
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)e

m−(i1+i2)

= y⌊(i1+i2)/2⌋−j1
q (N + xp,1(N − yp))

i1 (1 + xp,2(yp − 1))i2 em−(i1+i2).
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From the relation xp,1 = xq,1 − 1 and xp,2 = xq,2 + 1, the polynomial becomes

= y⌊(i1+i2)/2⌋−j1
q (Nxq,1 − xp,1yp)

i1 (−xq,2 + xp,2yp)
i2 em−(i1+i2).

By expanding (Nxq,1 − xp,1yp)
i1 and (−xq,2 + xp,2yp)

i2 , the polynomial becomes

= y⌊(i1+i2)/2⌋−j1
q

 i1∑
ip,1=0

(
i1
ip,1

)
(−xp,1yp)

ip,1 (Nxq,1)
i1−ip,1

 i2∑
ip,2=0

(
i2
ip,2

)
(xp,2yp)

ip,2 (−xq,2)
i2−ip,2

 em−(i1+i2)

= y⌊(i1+i2)/2⌋−j1
q

 i1∑
ip,1=0

i2∑
ip,2=0

(
i1
ip,1

)(
i2
ip,2

)
(−1)ip,1+i2−ip,2N i1−ip,1x

ip,1
p,1 x

ip,2
p,2 x

i1−ip,1
q,1 x

i2−ip,2
q,2 y

ip,1+ip,2
p

 em−(i1+i2)

= y⌊(i1+i2)/2⌋−j1
q em−(i1+i2)·i1+i2∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1x

ip,1
p,1 x

ip−ip,1
p,2 x

i1−ip,1
q,1 x

i2−ip+ip,1
q,2 y

ip
p

 .

From the relation ypyq = N , we modify all the monomial so that yp and yq do not appear in each
monomial, simultaneously. Then, the polynomial becomes

=

 i1+i2∑
ip=⌊(i1+i2)/2⌋−j1+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1+⌊(i1+i2)/2⌋·

x
ip,1
p,1 x

ip−ip,1
p,2 x

i1−ip,1
q,1 x

i2−ip+ip,1
q,2 y

ip−⌊(i1+i2)/2⌋+j1
p

)
em−(i1+i2)

+

⌊(i1+i2)/2⌋−j1∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1+ip ·

x
ip,1
p,1 x

ip−ip,1
p,2 x

i1−ip,1
q,1 x

i2−ip+ip,1
q,2 y

⌊(i1+i2)/2⌋−ip−j1
q

)
em−(i1+i2).

Notice that there are no monomials that have yp and yq, simultaneously. The exponents of yp
in the first summation are positive, whereas the exponents of yq in the second summation are
non-negative.

Next, as we discussed above, we replace all xq,1, xq,2 in the first summation by xp,1+1, xp,2− 1,
respectively, and replace all xp,1, xp,2 in the second summation by xq,1 − 1, xq,2 + 1, respectively.
Then, the polynomial becomes

=

i1+i2∑
ip=⌊(i1+i2)/2⌋−j1+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1+⌊(i1+i2)/2⌋·

x
ip,1
p,1 x

ip−ip,1
p,2 (xp,1 + 1)i1−ip,1(xp,2 − 1)i2−ip+ip,1y

ip−⌊(i1+i2)/2⌋+j1
p em−(i1+i2)

+

⌊(i1+i2)/2⌋−j1∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1+ip ·
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(xq,1 − 1)ip,1(xq,2 + 1)ip−ip,1x
i1−ip,1
q,1 x

i2−ip+ip,1
q,2 y

⌊(i1+i2)/2⌋−ip−j1
q em−(i1+i2)

=

i1+i2∑
ip=⌊(i1+i2)/2⌋−j1+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1+⌊(i1+i2)/2⌋x

ip,1
p,1 x

ip−ip,1
p,2 em−(i1+i2)·

y
ip−⌊(i1+i2)/2⌋+j1
p

i1−ip,1∑
kp,1=0

(
i1 − ip,1
kp,1

)
x
i1−ip,1−kp,1
p,1

i2−ip+ip,1∑
kp,2=0

(
i2 − ip + ip,1

kp,2

)
(−1)kp,2x

i2−ip+ip,1−kp,2
p,2


+

⌊(i1+i2)/2⌋−j1∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

(
i2

ip − ip,1

)(
i1
ip,1

)
(−1)2ip,1+i2−ipN i1−ip,1+ipx

i1−ip,1
q,1 x

i2−ip+ip,1
q,2 ·

y
⌊(i1+i2)/2⌋−j1−ip
q em−(i1+i2)

 ip,1∑
kq,1=0

(
ip,1
kq,1

)
(−1)kq,1x

ip,1−kq,1
q,1

ip−ip,1∑
kq,2=0

(
ip − ip,1
kq,2

)
x
ip−ip,1−kq,2
q,2


=

i1+i2∑
ip=⌊(i1+i2)/2⌋−j1+1

min{i1,ip}∑
ip,1=max{0,ip−i2}

i1−ip,1∑
kp,1=0

i2−ip+ip,1∑
kp,2=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
i1 − ip,1
kp,1

)(
i2 − ip + ip,1

kp,2

)
·

(−1)2ip,1+i2−ip+kp,2N i1−ip,1+⌊(i1+i2)/2⌋x
i1−kp,1
p,1 x

i2−kp,2
p,2 y

ip−⌊(i1+i2)/2⌋+j1
p em−(i1+i2)

+

⌊(i1+i2)/2⌋−j1∑
ip=0

min{i1,ip}∑
ip,1=max{0,ip−i2}

ip,1∑
kq,1=0

ip−ip,1∑
kq,2=0

(
i2

ip − ip,1

)(
i1
ip,1

)(
ip,1
kq,1

)(
ip − ip,1
kq,2

)
·

(−1)2ip,1+i2−ip+kq,1N i1−ip,1+ipx
i1−kq,1
q,1 x

i2−kq,2
q,2 y

⌊(i1+i2)/2⌋−j1−ip
q em−(i1+i2).

The polynomial has monomials for variables

• x
ipx,1
p,1 x

ipx,2
p,2 y

ipy
p for ipy = 1, 2, . . . , ⌈(i1+i2)/2⌉+j1; ipx,1+ipx,2 = ipy+⌊(i1+i2)/2⌋−j1, . . . , i1+i2,

• x
iqx,1
q,1 x

iqx,2
q,2 y

iqy
q for iqy = 0, 1, . . . , ⌊(i1+i2)/2⌋−j1; iqx,1+iqx,2 = iqy−⌊(i1+i2)/2⌋+j1, . . . , i1+i2.

Since all these variables except xi1p,1x
i2
p,2y

⌈(i1+i2)/2⌉+j1
p appear in diagonals of

g[i′1,i′2,j′1,j′2,u′](xp,1, xq,1, xp,2, xq,2, yp, yq) or g′[i′1,i′2,j′1],p
(xp,1, xq,1, xp,2, xq,2, yp, yq) such that

g′[i1,i2,j1],p(xp,1, xq,1, xp,2, xq,2, yp, yq) ≺ g′[i′1,i′2,j′1],p
(xp,1, xq,1, xp,2, xq,2, yp, yq), as stated in

Lemma 4, the diagonal of g′[i1,i2,j1],p(xp,1, xq,1, xp,2, xq,2, yp, yq) in the triangular basis matrix

is Xi1
p,1X

i2
p,2Y

⌈(i1+i2)/2⌉+j1
p em−(i1+i2). Similarly, we can prove that the polynomials gen-

erate triangular basis matrices and the diagonal of g′[i1,i2,j2],q(xp,1, xq,1, xp,2, xq,2, yp, yq) is

Xi1
q,1X

i2
q,2Y

⌈(i1+i2)/2⌉+j2
q em−(i1+i2).

4.3 Experimental results

We compare the practical behaviors between our previous attack in [TLP17] and an improved
attack proposed in this version. Note that the improved lattice construction captures a sublattice
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Table 5: Experimental results of small CRT-exponents attack

N
Herrmann-May’s
result [HM10]

Ours in [TLP17] Ours

dp, dq dim. dp, dq dim. LLL time (in sec.) dp, dq dim. LLL time (in sec.)

1000 bits 11 bits 30 33 bits 95 25 33 bits 31 1
1000 bits 22 bits 93 50 bits 252 5194 50 bits 84 230
1000 bits 29 bits 154 – – – 62 bits 179 34577

2000 bits 21 bits 30 66 bits 95 81 66 bits 31 2
2000 bits 35 bits 60 100 bits 252 13393 100 bits 84 741
2000 bits 47 bits 105 – – – 129 bits 177 123646

5000 bits 48 bits 30 176 bits 95 573 176 bits 31 12
5000 bits 89 bits 60 261 bits 252 71249 261 bits 84 4920
5000 bits 113 bits 93 – – – 316 bits 177 559007

10000 bits 96 bits 30 351 bits 95 2460 351 bits 31 69
10000 bits 179 bits 60 530 bits 252 306604 530 bits 84 23559

of our previous one [TLP17], hence the experimental results do not change for m = 4, 6. However
since the new sets adopt lattices with much smaller dimension, we greatly reduce the running time
of LLL algorithm.

Moreover, for m = 8 we can reduce the dimension from about 500 of [TLP17] to 180 which is ac-
ceptable for practical implementation, it means that we can further improve the experimental results
of our previous attack. We implemented the experiment programs of both previous attack [TLP17]
and our improved one by Sage 7.4 and L2 reduction algorithm from Nguyen and Stehlé [NS09].
The calculations were performed on Intel Xeon E5-2637 processor running at 3.5GHz. By means of
a comparison among the work of Herrmann-May’s result [HM10], our previous attack [TLP17], and
the improved one, we list the experimental results with varying bitsize of RSA moduli under small
CRT-exponents in Table 5. In all experiments, we successfully find the factorization of these RSA
moduli. As it is shown, the experimental results of small CRT-exponents attack can be further
improved.

5 Attacks on the Variants

In this section, we study small CRT-exponent attacks on the RSA variants, i.e., the Multi-Prime
RSA, Takagi’s RSA, and the RSA with multiple exponent pairs. We extend our attack of Theorem
2 to the variants.

5.1 Multi-Prime RSA

In this section, we extends the small CRT-exponent attack for the Multi-Prime RSA as follows.

Theorem 6. Let N =
∏r

i=1 pi be an RSA modulus, where r ≥ 2 and all the prime factors p1, . . . , pr
are the same bit-size. Let e = Nα and dpi < N δi be a public/CRT exponent respectively such that
edpi = 1 (mod (pi − 1)) for all i = 1, . . . , r. Given public elements N and e, if N is sufficiently
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large and

min
i∈{1,...,r}

δi <
1−

√
(r − 1)α

r
for α >

r − 1

r2
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Multi-Prime RSA in the sense that Theorem 6
becomes the same as Theorem 3 for r = 2.

Proof of Theorem 6 Recall the CRT-RSA key generation;

edpi = 1 + kpi(pi − 1)

with some integer kpi . By multiplying an integer N/pi,

edpiN/pi = N/pi + kpi(N −N/pi) = (kpi − 1)(N −N/pi) +N.

Then we solve the following modular equations;

fN/pi(xN/pi , yN/pi) := N + xN/pi(N − yN/pi) = 0 (mod e),

fpi(xpi , ypi) := 1 + xpi(ypi − 1) = 0 (mod e),

whose root is (xN/pi , xpi , yN/pi , ypi) = (kpi − 1, kpi , N/pi, pi). The absolute values of the root are

bounded above by X := Nα+δ−1/r for xN/pi and xpi , YN/pi := N (r−1)/r, Ypi := N1/r for yN/pi , ypi
respectively. We construct the same matrix as the proof of Theorem 2 and the modular equation
can be solved when(

α+ δ − 1

r

)
λ+ τ

3
+

r − 1

r
· λ

2

6
+

1

r
· τ

2

6
+ α

(
1 + λ+ τ

6
− λ+ τ

2

)
< 0.

We set the parameters λ = 1−rδ
r−1 , τ = 1− rδ and the condition becomes δi <

1−
√

(r−1)α

r as required.

To satisfy the restrictions of parameters, α > r−1
r2

should hold.
We also extend May’s modulo pi attack [May02] for the Multi-Prime RSA as follows.

Theorem 7 (Adapted from [LZPL15]). Let N =
∏r

i=1 pi be an RSA modulus, where r ≥ 2 and
all the prime factors p1, . . . , pr are the same bit-size. Let e = Nα and dpi < N δi be a public/CRT
exponent respectively such that edpi = 1 (mod (pi − 1)) for all i = 1, . . . , r. Given public elements
N and e, if

min
i∈{1,...,r}

δi <
r + 1− r2α

2r2
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Multi-Prime RSA in the sense that Theorem 7
becomes the same as Theorem 4 for r = 2. We omit the proof since it is almost the same as Theorem
9 of [LZPL15]. The bound of Theorem 6 is always better than or equal to that of Theorem 7. Figure
4 compares the attack condition between Theorem 6 and 7 for r = 3 and 4.

33



 

𝛼 

𝛿 

Theorem 7 
Theorem 6 

 

𝛼 

𝛿 

Theorem 7 
Theorem 6 

Figure 4: Comparisons between our attacks of Theorem 6 and 7. The left and the right figure is
for r = 3 and 4, respectively.

5.2 Takagi’s RSA

In this section, we extends the small CRT-exponent attack for Takagi’s RSA as follows.

Theorem 8. Let N = prq be an RSA modulus, where r ≥ 1 and the prime factors p and q are
the same bit-size. Let e = Nα and dp < N δp , dq < N δq be a public/CRT exponent respectively such
that edp = 1 (mod (p − 1)) and edq = 1 (mod (q − 1)). Given public elements N and e, if N is
sufficiently large and

min{δp, δq} <
1−

√
rα

r + 1
for α >

r

(r + 1)2
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.

We can successfully extend an attack for Takagi’s RSA in the sense that Theorem 8 becomes the
same as Theorem 3 for r = 1. Although Shinohara et al. [SIK11] extended Bleichenbacher-May’s
attack, our attack is always better.

Proof of Theorem 8 Recall the CRT-RSA key generation;

edp = 1 + kp(p− 1) and edq = 1 + kq(q − 1)

with some integer kp and dq. By multiplying N/p = pr−1q and N/q = pr respectively,

edpp
r−1q = pr−1q + kp(N − pr−1q) = (kp − 1)(N − pr−1q) +N and

edqp
r = pr + kq(N − pr) = (kq − 1)(N − pr) +N.

Then we solve the following modular equations for small dp;

fpr−1q(xpr−1q, ypr−1q) := N + xpr−1q(N − ypr−1q) = 0 (mod e),
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Figure 5: Comparisons between our attacks of Theorem 8 and 9. The left and the right figure is
for r = 2 and 3, respectively.

fp(xp, yp) := 1 + xp(yp − 1) = 0 (mod e),

whose root is (xpr−1q, xp, ypr−1q, yp) = (kp−1, kp, p
r−1q, p), and the following modular equations for

small dq;

fpr(xpr , ypr) := N + xpr(N − ypr) = 0 (mod e),

fq(xq, yq) := 1 + xq(yq − 1) = 0 (mod e),

whose root is (xpr , xq, ypr , yq) = (kq−1, kq, p
r, q). The absolute values of the root are bounded above

by X := Nα+δ−1/(r+1) for xpr−1q, xp, xpr , and xq, Yr := N r/(r+1) for ypr−1q and ypr , Y1 := N1/(r+1)

for yp and yq respectively. For both small dp and dq attacks, we construct the same matrix as the
proof of Theorem 2 and the modular equation can be solved when(

α+ δ − 1

r + 1

)
λ+ τ

3
+

r

r + 1
· λ

2

6
+

1

r + 1
· τ

2

6
+ α

(
1 + λ+ τ

6
− λ+ τ

2

)
< 0.

We set the parameters λ = 1−(r+1)δ
r , τ = 1 − (r + 1)δ and the condition becomes δ < 1−

√
rα

(r+1) as

required. To satisfy the restrictions of parameters, α > r
(r+1)2

should hold.

We also extend May’s modulo a prime factor attack [May02] for Takagi’s RSA as follows.

Theorem 9 (Adapted from [May02]). Let N = prq be an RSA modulus, where r ≥ 1 and the
prime factors p and q are the same bit-size. Let e = Nα and dp < N δp , dq < N δq be a public/CRT
exponent respectively such that edp = 1 (mod (p − 1)) and edq = 1 (mod (q − 1)). Given public
elements N and e, if

δp <
2r + 1− (r + 1)2α

2(r + 1)2
or δq <

r + 2− (r + 1)2α

2(r + 1)2
,

then N can be factorized in polynomial time by assuming that polynomials which are derived from
LLL reduced bases are algebraically independent.
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We can successfully extend an attack for the Takagi’s RSA in the sense that Theorem 9 becomes
the same as Theorem 4 for r = 1. We omit the proof since it is almost the same as Theorem 9
of [LZPL15]. The bound for δq of Theorem 8 is always better than or equal to that of Theorem
9, however, the bound for δp of Theorem 9 is better than or equal to that of Theorem 8. Figure 5
compares the attack condition for small dp between Theorem 8 and 9 for r = 2 and 3.

5.3 RSA with Multiple Exponent Pairs

In this section, we extends the small CRT-exponent attack for the RSA with multiple exponent
pairs as follows.

Theorem 10. Let N = pq be an RSA modulus, where the prime factors p and q are the same
bit-size. Let eℓ = Nα and dq,ℓ < N δ for ℓ = 1, . . . , r be a public/CRT exponent respectively such
that eℓdq,ℓ = 1 (mod (q−1)). Given public elements N and e1, . . . , er, if N is sufficiently large and

δ <
1

2
−
√

α

3r + 1
,

then N can be factorized in time polynomial in input length and exponential in r by assuming that
polynomials which are derived from LLL reduced bases are algebraically independent.

We can successfully extend the attack for RSA with multiple exponent pairs in the sense that
Theorem 10 becomes the same as Theorem 3 for r = 1. We do not think May’s modulo q approach
is an appropriate way for the attack scenario, hence, we do not extend it. Peng et al. proposed the
attack (Theorem 2 of [PHL+15]) which extended Bleichenbacher-May’s [BM06] and works when
δ < (9r − 14)/(24r + 8) for an α = 1. Theorem 10 is always better than the attack of Peng et
al. Indeed, even if there are infinitely many exponent pairs r, the attack of Peng et al. works for
δ < 3/8 whereas our attack works for the same bound of δ with only 21 exponent pairs. Figure 6
compares recoverable sizes of dq between our attack and that of Peng et al. [PHL+15].

Proof of Theorem 10 Recall the CRT-RSA key generation for dq,ℓ;

eℓdq,ℓ = 1 + kℓ(q − 1)

with some integer kℓ. By multiplying an integer p,

eℓdq,ℓp = p+ kℓ(N − p) = (kℓ − 1)(N − p) +N.

Then we solve the following modular equations;

fp,ℓ(xp,ℓ, yp,ℓ) := N + xp,ℓ(N − yp) = 0 (mod eℓ),

fq,ℓ(xq,ℓ, yq,ℓ) := 1 + xq,ℓ(yq − 1) = 0 (mod eℓ),

whose root is (xp,ℓ, xq,ℓ, yp, yq) = (kℓ − 1, kℓ, p, q). The absolute values of the root are bounded
above by X := Nα+δ−1/2 for xp,ℓ and xq,ℓ, Y := N1/2 for yp, yq respectively within constant factors.
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Figure 6: Comparison between our attack (Theorem 10) and the attack of Peng et al. [PHL+15]

To solve the modular equations, we use the following shift-polynomials

g[i,j](xp,ℓ, xq,ℓ, yp, yq) := xjp,ℓf
⌈i/2⌉
p,ℓ (xp,ℓ, yp)f

⌊i/2⌋
q,ℓ (xq,ℓ, yq)e

m−i
ℓ ,

g′[i,j](xp,ℓ, xq,ℓ, yp, yq) := f
⌈i/2⌉+j
p,ℓ (xp,ℓ, yp)f

⌊i/2⌋−j
q,ℓ (xq,ℓ, yq)e

m−i
ℓ ,

g′′[i,j](xp,ℓ, xq,ℓ, yp, yq) := f
⌈i/2⌉−j
p,ℓ (xp,ℓ, yp)f

⌊i/2⌋+j
q,ℓ (xq,ℓ, yq)e

m−i
ℓ ,

with some positive odd integer m. All the shit-polynomials share the common root modulo em.
Let τ be a constant such that 0 < τ ≤ 1. We use the shift-polynomials

g[i,j](xp,ℓ, xq,ℓ, yp, yq) for i = 0, 1, . . . ,m; j = min

{
0,

⌈(
1

2τ
− 1

)
i

⌉}
, . . . ,m− i,

g′[i,j](xp,ℓ, xq,ℓ, yp, yq) for i = 1, 3, . . . ,m; j = 1, 2, . . . , ⌈τi⌉ − ⌈i/2⌉,

g′′[i,j](xp,ℓ, xq,ℓ, yp, yq) for i = 0, 2, . . . ,m− 1; j = 1, 2, . . . , ⌈τi⌉ − ⌊i/2⌋,

and construct a triangular basis matrix with diagonals

• XiX
p,ℓY

iY
p em−min{iX ,2iY −1} for iX = 1, 2, . . . ,m; iY = 0, 1, . . . , τ iX + o(iX),

• XiX
q,ℓY

iY
q em−min{iX ,2iY } for iX = 0, 1, . . . ,m; iY = 0, 1, . . . , τ iX + o(iX).

As Boneh and Durfee’s attack was extended to multiple exponent pairs setting [TK14b], we use
Minkowski sum based lattice method [Aon13] and combine r lattices for dq,ℓ with ℓ = 1, 2, . . . , r.
Then the dimension n and the determinant of the combined lattice XsXY sY ese can be computed
as follows:

n =

m∑
iX1

=0

· · ·
m∑

iXr=0

⌈τ(iX1
+···+iXr )⌉∑
iY =1

1 +

m∑
iX1

=0

· · ·
m∑

iXr=0

⌈τ(iX1
+···+iXr )⌉∑
iY =0

1 = rτmr+1 + o(mr+1),
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sX = 2
r∑

ℓ=1

m∑
iX1

=0

· · ·
m∑

iXr=0

⌈τ(iX1
+···+iXr )⌉∑
iY =0

iXℓ
=

r(3r + 1)τ

6
mr+2 + o(mr+2),

sY = 2

m∑
iX1

=0

· · ·
m∑

iXk
=0

⌈τ(iX1
+···+iXr )⌉∑
iY =0

iY =
r(3r + 1)τ2

12
mr+2 + o(mr+2),

se =
r∑

ℓ=1

m∑
iX1

=0

· · ·
m∑

iXr=0

⌈τ(iX1
+···+iXr )⌉∑
iY =1

(m−min{iXℓ
, 2iY − 1})

+
r∑

ℓ=1

m∑
iX1

=0

· · ·
m∑

iXr=0

⌈τ(iX1
+···+iXr )⌉∑
iY =0

(m−min{iXℓ
, 2iY }) =

(3r − 1)τ + 1

6
mk+2 + o(mk+2).

Applying the LLL reduction, the polynomials obtained from the output vectors satisfy Howgrave-
Graham’s lemma if XsXY sY ese < enm, i.e.,(

α+ δ − 1

2

)
r(3r + 1)τ

6
+

1

2
· r(3r + 1)τ2

12
+ α · r

(
(3r − 1)τ + 1

6
− rτ

)
< 0

by omitting low order terms of m. To minimize the left hand side of the inequality, we set the
parameters τ = 1− 2δ, then the condition becomes

δ <
1

2
−
√

α

3r + 1

as required.

6 Concluding Remarks and Open Problem

In this paper, we studied a lattice-based cryptanalysis of the small CRT-exponent RSA. We devel-
oped a new lattice construction technique that is specialized to the CRT-RSA key generation and
proposed several improved attacks. When a prime factor p is significantly smaller than the other
prime factor q with a small dq, we solved an open problem which was claimed in [BM06, May02];
we proposed an attack which works for p < N0.5. When both dp and dq are small, we proposed
an attack which works for dp, dq < N0.122 with a full size e. We also proposed attacks on the RSA
variants, i.e., the Multi-Prime RSA, Takagi’s RSA, and RSA with multiple exponent pairs.

In Section 4, we obtain the improvement by exploiting sublattice structures from [TLP17]. Al-
though the experimental results based on the sublattice provide better matching between achievable
sizes of dp, dq and the theoretically predicted bound than the previous lattice in [TLP17], there still
exists a gap. In other words, it seems that there is still room for improvements of the bound N0.122

by this approach. Specifically, for the 31-dimensional lattices (resp. 84-dimensional lattices), the
theoretically predicted bound δ should be 0.00 (resp. 0.03), however, we successfully find integer
equations when δ ≤ 0.03 (resp. δ ≤ 0.05). We think that the reason for this gap derives from that to
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make the matrix triangular, we can not only remove the unhelpful polynomials. The open problem
is how to further improve this bound to fill the gap between achievable bound in experiments and
the theoretically predicted bound. We hope our novel lattice construction can be fully analyzed
and lead to a better results.
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