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Abstract. Surprisingly, most of existing provably secure FHE or SWHE schemes are lattice-based
constructions. It is legitimate to question whether there is a mysterious link between homomorphic
encryptions and lattices. This paper can be seen as a �rst (partial) negative answer to this question.
We propose a very simple private-key (partially) homomorphic encryption scheme whose security
relies on factorization. This encryption scheme deals with a secret multivariate rational function
ϕD de�ned over Zn, n being an RSA-modulus. An encryption of x is simply a vector c such that
ϕD(c) = x+noise. To get homomorphic properties, nonlinear operators are speci�cally developed. We
�rst prove IND-CPA security in the generic ring model assuming the hardness of factoring. We then
extend this model in order to integrate lattice-based cryptanalysis and we reduce the security of our
scheme (in this extended model) to an algebraic condition. This condition is extensively discussed for
several choices of parameters. Some of these choices lead to competitive performance with respect to
other existing homomorphic encryptions. While quantum computers are not only dreams anymore,
designing factorization-based cryptographic schemes might appear as irrelevant. But, it is important
to notice that, in our scheme, the factorization of n is not required to decrypt. The factoring
assumption simply ensures that solving nonlinear equations or �nding non-null polynomials with
many roots is di�cult. Consequently, the ideas behind our construction could be re-used in rings
satisfying these properties.

1 Introduction

The prospect of outsourcing an increasing amount of data storage and management to cloud
services raises many new privacy concerns for individuals and businesses alike. The privacy
concerns can be satisfactorily addressed if users encrypt the data they send to the cloud. If the
encryption scheme is homomorphic, the cloud can still perform meaningful computations on the
data, even though it is encrypted.

The theoretical problem of constructing a fully homomorphic encryption scheme (FHE) sup-
porting arbitrary functions f , was only recently solved by the breakthrough work of Gentry [5].
More recently, further fully homomorphic schemes were presented [15],[16],[4],[6] following Gen-
try's framework. The underlying tool behind all these schemes is the use of Euclidean lattices,
which have previously proved powerful for devising many cryptographic primitives. A central
aspect of Gentry's fully homomorphic scheme (and the subsequent schemes) is the ciphertext re-
freshing Recrypt operation. Even if many improvements have been made, this operation remains
very costly [11], [7].

In many real-world applications, in the medical, �nancial, and the advertising domains, which
require only that the encryption scheme is somewhat homomorphic. Somewhat homomorphic
encryption schemes (SWHE), which support a limited number of homomorphic operations, can
be much faster, and more compact than fully homomorphic encryption schemes. Even if several
quite e�cient lattice-based SWHE exist in the literature, signi�cant e�ciency improvements
should be done for most real-world applications. This paper aims at elaborating an e�cient
SWHE whose security relies on factorization.



Many cryptographic constructions are based on the famous problem LWE [13]. In particular,
this cryptographic problem is currently the most relevant to build FHE [8], [2]. Typically, the
secret key is a vector s ∈ Zκ

n and an encryption c of a value x ≪ n is a randomly chosen
vector satisfying1 s · c = x + noise. This scheme is born (partially) additively homomorphic
making it vulnerable against lattice-based attacks. We propose a slight modi�cation to remove
this homomorphic property. In our scheme, the secret key becomes a pair of vectors (s1, s2) and
c is a randomly chosen vector satisfying s1 ·c/s2 ·c = x+noise (mod n). Clearly, the vector sum
is not a homomorphic operator anymore. This is a sine qua non condition for overcoming lattice-
based attacks. Indeed, as a ciphertext c is a vector, it is always possible to write it as a linear
combination of other known ciphertexts. Thus, if the vector sum were a homomorphic operator,
the cryptosystem would not be secure at all. This simple remark su�ces to prove the weakness
of the homomorphic cryptosystems presented in [17], [10]. In order to use the vector sum as a
homomorphic operator, noise should be injected into the encryptions as done in all existing FHE
[5],[3],[15],[16],[4],[6] and lattice-based attacks can be mount to recover linear combinations with
small coe�cients. To resist against such attacks, the dimension of c should be chosen su�ciently
large which dramatically degrades performance.

To obtain homomorphic properties, nonlinear homomorphic operators Add and Mult should be
developed and published. Quadratic homomorphic operators can be naturally de�ned. However,
it should be ensured that these operators do not leak information about the secret key. We get
results in this sense under the factoring assumption where n is a product of large secret primes.
In particular, we prove the IND-CPA security of our scheme in the generic ring model [9], [1] for
any κ ≥ 2. In this model, the CPA attacker is assumed to only perform arithmetic operations
+,−,×, /. A security proof in the generic model indicates that the idea of basing the security
on factorization is not totally �awed. This leads us more or less to the situation of RSA where
it was recently shown that breaking the security of RSA in the generic ring model is as di�cult
as factoring [1]. A classical objection against security analysis in the generic ring model deals
with the Jacobi symbol Jn. For concreteness, it was shown in [9] that computing Jn is di�cult
in the generic ring model while it is not in general. However, this result is neither surprising nor
relevant because Jn is not a rational function2. Indeed, we can even show that ϕ(x) = Jn(x) with
probability smaller than 1/2 provided ϕ is a rational function and x uniform over Z∗

n. In our
scheme, the function ϕ de�ned by ϕ(c) = x+ noise is rational suggesting that a security analysis
in the generic ring model is meaningful.

However, the security analysis in the generic ring model is not su�cient because lattice-
based cryptanalysis exploiting the fact that x+ noise is small is not considered in this model. In
Section 5, we propose a general characterization of lattice-based attacks which naturally extends
the generic ring model. We reduce the non-existence of such attacks to an algebraic condition.
This condition is discussed in Section 5.3 for several choices of κ. We prove that this condition is
satis�ed for κ = Θ(λ) proving the non-existence of lattice-based attacks. Moreover, the simplest
and most natural lattice-based attack is shown ine�cient provided κ = Ω(log λ). By assuming
that this attack is also the most e�cient, choosing κ = Θ(log λ) could hopefully ensure the
non-existence of e�cient lattice-based attacks.

Notation.We use standard Landau notations. Throughout this paper, we let λ denote the security

parameter: all known attacks against the cryptographic scheme under scope should require 2Ω(λ)

bit operations to mount.

� δ ≥ 2 is a positive integer independent of λ.

1 s · c denoting the scalar product between s and c.
2 It comes from the fact that Jn(x) mod p (resp. Jn(x) mod q) is not a function of x mod p (resp. x mod q)



� The inner product of two vectors v and v′ is denoted by v · v′

� The set of all square 2κ − by − 2κ matrices over Zn is denoted by Z2κ×2κ
n . The ith row of

S ∈ Z2κ×2κ
n is denoted by si and Li denotes the linear function de�ned by Li(v) = si · v.

� A δ-RSA modulus n is a product of δ η-bit primes p1 · · · pδ where η is chosen su�ciently

large to ensure that the factorization of n requires Ω(2λ) bit operations provided p1, . . . , pδ
are randomly chosen.

� The set of the positive integer strictly smaller than ξ is denotes by Iξ = {0, . . . , ξ − 1}.

Remark 1. The number M(m, d) of m-variate monomials of degree d is equal to

(
d+m− 1

d

)
.

In particular, M(2κ, κ) > 3κ for any κ ≥ 2.

2 Preliminary de�nitions and results

Let δ ≥ 2 be a positive integer (independent of the security parameter) and let n = p1 · · · pδ
be a randomly chosen δ-RSA modulus. Given a r-variate function ϕ and a subset I ⊆ Zr

n, zϕ,I
denotes the probability over I that ϕ(x) = 0,

zϕ,I
def
=
|{x ∈ I|ϕ(x) = 0}|

|I|

zϕ,Zr
n
will be simply denoted by zϕ.

2.1 Roots of polynomials

The following result proved in [1] establishes that it is di�cult to output a polynomial ϕ such
that zϕ is non-negligible without knowing the factorization of n. The security of RSA in the
generic ring model can be quite straightforwardly derived from this result (see [1]).

Theorem 1. (Lemma 4 of [1]). Assuming factoring is hard, there is no p.p.t-algorithm A
which inputs n and which outputs3 a {+,−,×}-circuit computing a non-null polynomial ϕ ∈
Zn[X] such that zϕ is non-negligible.

Thanks to this lemma, showing that two polynomials4 are equal with non-negligible probability
becomes an algebraic problem: it su�ces to prove that they are identically equal. This lemma is
a very powerful tool which is the heart of the security proofs proposed in this paper. We extend
this result to the multivariate case.

Proposition 1. Assuming factoring is hard, there is no p.p.t algorithm A which inputs n and

which outputs3 a {+,−,×}-circuit computing a non-null polynomial ϕ ∈ Zn[X1, . . . , Xr] such
that zϕ is non-negligible.

Proof. See Appendix B.

�

The following proposition yields links between zϕ,I and zϕ for particular subsets I ⊆ Zr
n.

3 with non-negligible probability (the coin toss being the choice of n and the internal randomness of A)
4 built without knowing the factorization of n



Proposition 2. Let ϕ ∈ Zn[X1, . . . , Xr] and let I = Iξ1 ×· · ·× Iξr with ξj ≥ max(p1, . . . , pδ) for
any j = 1, . . . , r. If zϕ is negligible then zϕ,I is negligible.

Proof. See Appendix A
�

By considering the notation of the two previous propositions, if ϕ ← A(n) and zϕ,I is non-
negligible then ϕ is null5 assuming factoring is hard. This is the heart of our security proofs.

2.2 κ-symmetry

The following de�nition naturally extends the classical de�nition of symmetric polynomials.

De�nition 1. A polynomial ϕ ∈ Zn[X11, . . . , X1t, . . . , Xκ1 . . . , Xκt] is said to be κ-symmetric if

for any permutation σ of {1, . . . , κ},

ϕ(X11, . . . , X1t, . . . , Xκ1 . . . , Xκt) = ϕ(Xσ(1)1, . . . , Xσ(1)t, . . . , Xσ(κ)1, . . . , Xσ(κ)t)

This property is at the heart of our construction. Informally, all the values known by the CPA
attacker are evaluations of κ-symmetry polynomials while the decryption function6 does not
satisfy this property. Our security proofs are all based on this fact.

2.3 Rational functions

Throughout this paper, we will consider the class of rational functions useful in our security proof
in the generic ring model.

De�nition 2. A function ϕ : Zr
n → Zn is said to be rational if there exists a {+,−,×, /}-circuit

computing this function.

Throughout this paper, recovering a rational function means recovering a {+,−,×, /}-circuit
computing this function. The following result states that a rational function can be represented
by a {+,−,×, /}-circuit or equivalently by two {+,−,×}-circuits.

Lemma 1. Given C be a polynomial-size {+,−,×, /}-circuit, we denote by ϕC the (rational)

function computing by C. There exists a p.p.t. algorithm A such that A(C) outputs two polynomial-

size {+,−,×}-circuits C′, C′′ satisfying ϕC = ϕC′/ϕC′′ .

Proof. By induction on the gates of C (see [1]).
�

3 A somewhat homomorphic encryption (SWHE)

3.1 A private-key encryption

Let δ > 2 be a constant and let λ be a security parameter and let η denote the bit size of the
prime factors of δ-RSA moduli.

De�nition 3. The functions KeyGen, Encrypt, Decrypt are de�ned as follows:

5 with overwhelming probability
6 which is not a polynomial but a rational function.



� KeyGen(λ, δ). Let κ be a parameter indexed by λ. Let ξ be an arbitrary (η+1)-bit integer, let
n be a δ-RSA modulus chosen at random and let S be an invertible matrix of Z2κ×2κ

n chosen

at random. The ith row of S is denoted by si and Li denotes the linear function de�ned by

Li(v) = si · v. Output
K = {S} ; pp = {n, ξ}

� Encrypt(K, pp, x ∈ Iξ). Choose at random r1, r2, r
′
2, . . . , rκ, r

′
κ ∈ Z∗

n, k ∈ Iξ and output

c = S−1



r1x
r1
r2
r′2
· · ·
rκ
r′κ


where x = x+ kξ.

� Decrypt(K, pp, c ∈ Z2κ
n ). Output x = L1(c)/L2(c) mod n mod ξ

In the rest of the paper, it will be assumed that pp = {n, ξ} is public. Correctness can be straight-
forwardly shown by noticing that L1(c) = r1x and L2(c) = r1. As claimed in the introduction,
c is a randomly chosen vector satisfying L1(c)/L2(c) = x. However, we have adopted a slightly
more complex de�nition in order to introduce material useful when de�ning the homomorphic
operators.

3.2 The multiplicative operator

Let S ← KeyGen(λ, δ).

Proposition 3. There exists a (unique) tuple of quadratic 4κ-variate polynomials (q1, . . . , q2κ)
such that for any u,v ∈ Z2κ

n the vector w = (q1(u,v), . . . , q2κ(u,v)) satis�es

Sw = (a1b1, . . . , a2κb2κ)

where a = Su, b = Sv.

Proof. (Sketch.) It su�ces to de�ne the polynomials qi byq1(u,v)...
q2κ(u,v)

 = S−1

L1(u)L1(v)...
L2κ(u)L2κ(v)


�

We consider the function MultGen which inputs S and outputs the expanded representation

of the polynomials q1, . . . , q2κ de�ned in Proposition 3. By using the fact that each quadratic
polynomial qi has O(κ2) monomial, it is not hard to show that the running time of MultGen is
O(κ4). The operator Mult← MultGen(S) consists of evaluating these polynomials, i.e. Mult(u,v) =
(q1(u,v), . . . , q2κ(u,v)), leading to a running time in O(κ3).

Proposition 4. Mult← MultGen(S) is a valid multiplicative homomorphic operator.

Proof. Straightforward (see Fig. 1).
�



Mult

S−1


r1x
r1
...
rκ
r′κ

 , S−1


t1y
t1
...
tκ
t′κ



 = S−1


r1t1xy
r1t1
...
rκtκ
r′κt

′
κ


Fig. 1. Description of the operator Mult← MultGen(S).

3.3 The additive operator

Let S ← KeyGen(λ, δ).

Proposition 5. There exists a (unique) tuple of quadratic 4κ-variate polynomials (q1, . . . , q2κ)
such that for any u,v ∈ Z2κ

n the vector w = (q1(u,v), . . . , q2κ(u,v)) satis�es

Sw = (a1b2 + a2b1, a2b2, . . . , a2κ−1b2κ + a2κb2κ−1, a2κb2κ)

where a = Su, b = Sv.

Proof. (Sketch.) It su�ces to de�ne the polynomials qi by

q1(u,v)...
q2κ(u,v)

 = S−1


L1(u)L2(v) + L2(u)L1(v)
L2(u)L2(v)
...
L2κ−1(u)L2κ(v) + L2κ(u)L2κ−1(v)
L2κ(u)L2κ(v)


�

We consider the function AddGen which inputs S and outputs the expanded representation

of the polynomials q1, . . . , q2κ de�ned in Proposition 5. By using the fact that each quadratic
polynomial qi has O(κ2) monomial, it is not hard to show that the running time of AddGen is
O(κ4). The operator Add← AddGen(S) consists of evaluating these polynomials, i.e. Add(u,v) =
(q1(u,v), . . . , q2κ(u,v)), leading to a running time in O(κ3).

Proposition 6. Add← AddGen(S) is a valid additive homomorphic operator.

Proof. Straightforward (see Fig. 2).

�

Add

S−1


r1x
r1
...
rκ
r′κ

 , S−1


t1y
t1
...
tκ
t′κ



 = S−1


r1t1(x+ y)
r1t1
...
rκt

′
κ + r′κtκ

r′κt
′
κ


Fig. 2. Description of the operator Add← AddGen(S).



3.4 Discussion

Clearly the operators Add and Mult are valid homomorphic operators provided δ ≥ 4. Note
that these operators are commutative. By publishing these homomorphic operators, we get
a somewhat homomorphic private-key encryption scheme. Arithmetic circuits of depth δ/2 ≈
log n/2 log ξ can be evaluated. For instance, if n is a 10-RSA Modulus, circuits of depth 5 can
be evaluated.

The classic way (see [14]) to transform a private-key cryptosystem into a public-key cryp-
tosystem consists of publicizing encryptions ci of known values xi and using the homomorphic
operators to encrypt x. Let Encrypt1 denote this new encryption function. Assuming the IND-CPA
security of the private-key cryptosystem, it su�ces that Encrypt1(pk, x) and Encrypt(K, pp, x) are
computationally indistinguishable to ensure the IND-CPA security of the public-key cryptosys-
tem.

4 Security Analysis

All the security results of this section are true for any κ ≥ 2. Thus, to simplify notation, we set
κ = 2 throughout this section. Let K = {S} ← KeyGen(λ, δ). To break semantic security, an
attacker is required to �nd a function φ satisfying

Advφ
def
= |Pr(φ ◦ Encrypt(K, pp, 1) = 1)− Pr(φ ◦ Encrypt(K, pp, 0) = 1)| is non-negligible.

Externalizing the generation of n. To clearly understand the role of the factoring assumption
in our security proof, it is important to notice that the factorization of n is not used by KeyGen.
Consequently, the generation of n could be externalized7 (for instance generated by an oracle). In
other words, n could be a public input of KeyGen. This means that all the polynomials considered
in this section are built without using the factorization of n implying that they are equal to 0
with negligible probability provided they are not null (according to Proposition 1).

Randomness θn. After n is publicized, the CPA attacker receives the public operators Add and
Mult and it has access to an encryption oracle. It chooses (xi)i=1,...,t ∈ Iξ and receives encryptions
(ci = S−1(rixi, ri, r

′
i, r

′′
i ))i=1,...,t of (xi)i=1,...,t from the encryption oracle. The randomness of its

knowledge comes from the internal randomness of KeyGen and the one of the encryption oracle.
This randomness is encapsulated in the tuple θn of elements belonging to Zn de�ned by

θn = (s1, s2, r1x1, r1 . . . , rtxt, rt, s3, s4, r
′
1, r

′′
1 . . . , r

′
t, r

′′
t )

Knowledge of the CPA attacker. We �rst assume that ∆ = detS is revealed to the CPA
attacker. By doing this, it can be assumed that (∆ ·ci)i=1,...,t, ∆ ·Add and ∆ ·Mult are revealed to
the CPA attacker instead of (ci)i=1,...,t, Add and Mult. It follows that the CPA attacker receives
a tuple αn ∈ Zm

n where each component is the evaluation over θn of a polynomial8 αi , i.e.
αn = (α1(θn), . . . , αm(θn)). All our security analysis is based on the fact that the polynomials αi

are κ-symmetric9 (see De�nition 1). Throughout this section, we consider the function α̂ de�ned
by α̂(θn,z) = (α1(θn), . . . , αm(θn), z) for any z ∈ Z4

n. By construction, we have

(αn, c) = α̂(θn, c)
7 ensuring that its factorization was forgotten just after its generation
8 αi can be seen as a {+,−,×}-circuit C (independent of n) with |θn| inputs.
9 it means that αi(s1, s2, r1x1, r1 . . . , rtxt, rt, s3, s4, r

′
1, r

′′
1 . . . , r′t, r

′′
t ) = αi(s3, s4, r

′
1, r

′′
1 . . . , r′t, r

′′
t , s1, s2, r1x1, r1 . . . , rtxt, rt).

It should be noticed that detS is a κ-symmetric polynomial de�ned over θn.



4.1 Generic Ring Model

A Generic Ring Algorithm (GRA) (see [1]) de�ned over a ring R (here R = Zn) is an algorithm
where only arithmetic operations +,−,×, / and equality tests are allowed. In the special case
R = Zn, equality tests are not needed. This is implicitly shown in [1] as a straightforward
consequence of Proposition 1. Indeed, this proposition ensures that two rational functions10 are
either equal with negligible probability or equal with overwhelming probability. It follows that a
GRA is simply a {+,−,×, /}-circuit computing a rational function φ. We say that our scheme
is IND-CPA secure in the classical generic model if there does not exist any p.p.t algorithm A
such that A(n) outputs a {+,−,×, /}-circuit of a rational function φ satisfying

|Pr(φ ◦ α̂(θn,Encrypt(K, pp, 1)) = 1)− Pr(φ ◦ α̂(θn,Encrypt(K, pp, 0)) = 1)| (1)

is non-negligible.

Lemma 2. SWHE is IND-CPA secure in the classical generic ring model assuming the hardness

of factoring.

Proof. (Sketch.) Assume φ◦α̂(θ,Encrypt(K, pp, 1)) = 1 with non-negligible probability. According
to Proposition 2, φ◦ α̂(z, z2)−1 = 0 with non-negligible probability provided z, z2 uniform over

Z|θ|
n ×Z4

n. Thus, according to Proposition 1, φ◦ α̂−1 is null implying that φ does not satisfy (1).

�

However, this result is not surprising because the decryption function is not rational11. We
propose to extend this model by enhancing the power of the attacker: informally, we let it use
the function mod ξ. By doing this, the CPA attacker only needs to recover the evaluation p(x)
of a polynomial p in order to recover x or at least to break IND-CPA security in this model.
Indeed, if the degree of p and its coe�cients are small enough12 then p(x) mod n mod ξ = p(x)
mod ξ. This extension is encapsulated in the next de�nition.

De�nition 4. (Generic IND-CPA security). Our scheme is generically IND-CPA secure

if there does not exist any p.p.t algorithm A such that A(n) outputs13 a {+,−,×, /}-circuit
computing a rational function φ, x ∈ Iξ and a non-constant polynomial p satisfying

φ ◦ α̂(θn, c)[= φ(αn, c)] = p(x) (2)

with non-negligible probability over θn, c← Encrypt(K, pp, x).

4.2 Hardness of factoring ⇒ generic IND-CPA security

In this section, we prove the generic IND-CPA security of our scheme. The proof exploits intrinsic
symmetry properties of our construction. Informally, only functions (indexed by S) which are
stable by permuting the two �rst rows of S with the two last ones can be generically recovered.
In particular, the decryption function L1/L2 cannot be generically recovered.

Theorem 2. SWHE is generically IND-CPA secure assuming the hardness of factoring.

10 built in polynomial-time under the factoring assumption.
11 as explained for Jn in the introduction, there does not exist a rational function equal to the decryption function

with non-negligible probability.
12 Ideally p(x) = x.
13 with non-negligible probability, the coin toss being the internal randomness of A and the choice of n



Proof. For the sake of simplicity, we assume that the CPA attacker does not use the encryption

oracle implying that θn = (s1, s2, s3, s4)
s≡ Z16

n . The extension to the general case is quite
straightforward considering Proposition 2. Moreover, without loss of generality, we only consider
the case κ = 2 and p(x) = x.

Throughout this proof, we consider the polynomials Ij de�ned by Ij(X1, . . . , X20) = Xj . Let
W = [wij ] = S−1. The degree-3 polynomial computing detS · wij is (abusively) denoted by wij ,
i.e. wij(S) = detS · wij .

Let ε1, . . . , ε4, µ1, . . . , µ4 and ν1, . . . , ν4 be de�ned by

εℓ(Y1 . . . , Y16, X1, . . . , X4) =
4∑

j=1

wℓj(Y1 . . . , Y16)Xj

ν1(Y1 . . . , Y16, R1, R2, R3, R4) = R1R2

ν2≤ℓ≤4(Y1 . . . , Y16, R1, R2, R3, R4) = Rℓ

µ1(Y1 . . . , Y16,K,R1, R2, R3) = x+Kξ

µ2≤ℓ≤4(Y1 . . . , Y16,K,R1, R2, R3) = Rℓ−1

We consider the polynomial tuples ε = (I1, . . . , I16, ε1, . . . , ε4), µ = (I1, . . . , I16, µ1, . . . , µ4) and
ν = (I1, . . . , I16, ν1, . . . , ν4). By construction, ε◦ν ◦µ(θn, k, r, r′, r′′) = (θn, c = detS×S−1(r(x+
kξ), r, r′, r′′)). It is important to note that c is an encryption of x drawn according to the under-
lying probability distribution of Encrypt(K, pp, x).
Let us assume that φ = ϕ′/ϕ, p, x← A(n) satis�es14 (2). It follows that

ϕ
′ ◦ α̂ ◦ ε ◦ ν ◦ µ(θn, k, r, r′, r′′) = (x+ kξ) · ϕ ◦ α̂ ◦ ε ◦ ν ◦ µ(θn, k, r, r′, r′′)

with non-negligible probability over the choice of θn, (k, r, r
′, r′′)

$← Iξ × Z∗3
n . Thus, according to

Proposition 2,

ϕ
′ ◦ α̂ ◦ ε ◦ ν ◦ µ(θn, z) = (x+ z1ξ) · ϕ ◦ α̂ ◦ ε ◦ ν ◦ µ(θn, z)

with non-negligible probability over the choice of θn, z = (z1, . . . , z4)
$← Z4

n. It follows that

ϕ
′ ◦ α̂ ◦ ε ◦ ν(θn, z) = z1 · ϕ ◦ α̂ ◦ ε ◦ ν(θn, z)

with non-negligible over the choice of θn, z
$← Z4

n. Consequently, (I17/I18) · ϕ
′ ◦ α̂ ◦ ε(θn, z) =

ϕ ◦ α̂ ◦ ε(θn, z) implying that

I17 · ϕ
′ ◦ α̂ ◦ ε(θn, z) = I18 · ϕ ◦ α̂ ◦ ε(θn, z)

with non-negligible probability over the choice of θn, z
$← Z4

n. Thus according to Proposition 1,

I17 · ϕ
′ ◦ α̂ ◦ ε = I18 · ϕ ◦ α̂ ◦ ε

contradicting the fact that ϕ
′ ◦ α̂ ◦ ε and ϕ ◦ α̂ ◦ ε are both 2-symmetric, i.e. α̂ ◦ ε(z1, . . . , z20) =

α̂ ◦ ε(z9, . . . , z16, z1, . . . , z8, z19, z20, z17, z18).
�

14 with non-negligible probability over θn, c← Encrypt(K, pp, x)



5 Lattice-based cryptanalysis

Throughout this section, we adopt the notation of the previous section. In particular, αn denotes
the knowledge of the CPA attacker and θn denotes the internal randomness coming from KeyGen
and the encryption oracle used to produce αn. In the previous section, we prove the generic
IND-CPA security of our encryption scheme under the factoring assumption for any κ ≥ 2. This
indicates that the idea of basing the security on factorization is not totally �awed. However,
this is not su�cient because lattice-based cryptanalysis is excluded from this analysis: indeed
lattice-based algorithms work outside Zn and they compute functions which may be not rational.

Throughout this section, we will consider the polynomial ΦR = L2 · · · L2κ. This polynomial
is indexed by S (and thus θn) and it can be seen as a degree-κ homogeneous polynomial ϕR
de�ned over θn, c, i.e.

ϕR(θn, c) = ΦR(c) =
∏

ℓ=1,...,κ

s2ℓ · c =
∏

ℓ=1,...,κ

(
2κ∑
i=1

s2ℓ,i · ci

)

5.1 A basic example

Let x ∈ Iξ, let c← Encrypt(K, pp, x) and let ΦX be the polynomial de�ned by ΦX = ΦR · L1/L2.
By construction,

ΦX(c)/ΦR(c) = x

ΦX (also ΦR) is a homogeneous degree-κ polynomial, i.e.

ΦX(c) =
∑

e1+···+e2κ=κ

ae1,...,e2κc
e1
1 · · · c

e2κ
2κ

According to Theorem 2, the CPA attacker cannot generically recover both ΦR and ΦX . Never-
theless, let us assume that it can generically derive ΦR from its knowledge αn. It follows that∑

e1+···+e2κ=κ

ae1,...,e2κ ·
ce11 · · · c

e2κ
2κ

ΦR(c)
= x≪ n (3)

By exploiting the fact that x is small relatively to n and by considering su�ciently many en-
cryptions, the monomial coe�cients ae1,...,e2κ of ΦX could be classically recovered by using a
lattice basis reduction algorithm, e.g. LLL or BKZ. However, this attack requires �rst to recover
ΦR. In the next section, we propose a characterization of lattice-based attacks and we show that
recovering ΦR or a multiple of ΦR is a necessary condition to mount a lattice-based attack. This
condition will be discussed in section 5.3.

5.2 Characterization of lattice-based attacks

In this section, we propose a general characterization of lattice-based attacks which naturally
extends the generic ring model.

Given x ∈ Iξ, let us imagine that the CPA attacker is able to recover functions φ1, . . . , φt

such that there are coe�cients a1, . . . , at ∈ Zn and a function ε satisfying

a1 · φ1(c) + · · ·+ at · φt(c) = ε(c)

where c ← Encrypt(K, pp, x) and ε(c) ≪ n. By sampling su�ciently many encryptions c, the
coe�cients a1, . . . , at and thus ε can be recovered by solving an approximate-SVP. This is a



relevant attack if the knowledge of ε can be used to break IND-CPA security. This attack can
be identi�ed to the tuple (φ1, . . . , φt). This is formally encapsulated in the following de�nition
where the quantities φ1(c), . . . , φt(c) are generically derived and where ε(c) = p(x), p being a
polynomial.

De�nition 5. (Lattice-based attacks). A lattice-based attack is an e�cient algorithm A such

that A(n) outputs15 a tuple of rational functions (φ1, . . . , φt), x ∈ Iξ and a non-constant polyno-

mial p such that there exist16 functions a1, . . . , at satisfying

a1(θn) · φ1 ◦ α̂(θn, c) + . . .+ at(θn) · φt ◦ α̂(θn, c) = p(x) (4)

with non-negligible probability the choice of θn, c← Encrypt(K, pp, x).

If there exists a lattice-based attack A then the CPA attacker can obviously use it to recover
rational functions φ1, . . . , φt satisfying (4) then it can hope to recover a1(θn), . . . , at(θn) and thus
to break IND-CPA security by using lattice basis reduction algorithms exploiting the fact that
x≪ n.

Theorem 3. Let A be a lattice-based attack and let assume that (ϕ′1/ϕ1, . . . , ϕ
′
t/ϕt), x, p← A(n)

satis�es (4). Assuming the hardness of factoring, there exists17 i ∈ {1, . . . , t} such that gcd(ϕi ◦
α̂, ϕR) = ϕR.

Proof. Let Ij ∈ Zn[X1, . . . , X4] be de�ned by Ij(X1, . . . , X4) = Xj . Without loss of generality,
we only consider the case κ = 2. For the sake of simplicity, we assume that the CPA attacker

does not use the encryption oracle implying that θn = (s1, s2, s3, s4)
s≡ Z16

n . The extension to the
general case is quite straightforward considering Proposition 2.

Let ϕ = ϕ1 · · ·ϕt. We �rst prove that gcd(ϕ ◦ α̂, ϕR) = ϕR. Let c = S−1(rx, r, r′, r′′) ←
Encrypt(K, pp, x) and let y = (x, r, r′, r′′). Let θ∗n be such that (4) is satis�ed with non-negligible
probability over the choice of c. Let ϕ∗i , ϕ

′∗
i , ε

∗ and ν∗ be the polynomial functions de�ned by
ϕ∗i (c) = ϕi ◦ α̂(θ∗n, c), ϕ

′∗
i (c) = ϕ′i ◦ α̂(θ∗n, c), ν∗(y) = (rx, r, r′, r′′) and ε∗ ◦ ν∗(y) = c and let ψ∗

be the polynomial de�ned by

ψ∗ = a1(θ
∗
n) · ϕ

′∗
i

∏
i=1,...,t;i ̸=1

ϕ∗i + . . .+ at(θ
∗
n) · ϕ

′∗
t

∏
i=1,...,t;i̸=t

ϕ∗i

Equation (4) implies that

p(x) · ϕ∗(c)− ψ∗(c) = 0

with non-negligible probability over the choice of c← Encrypt(K, pp, x). It follows that p(x) ·ϕ∗ ◦
ε∗ ◦ ε∗−1(c) − ψ∗ ◦ ε∗ ◦ ε∗−1(c) = 0 with non-negligible probability. Consequently, according to
Proposition 2,

p(z1) · ϕ∗ ◦ ε∗ ◦ ν∗(z)− ψ∗ ◦ ε∗ ◦ ν∗(z) = 0

with non-negligible probability provided z
$← Z4

n. Thus, p(I1/I2) · ϕ∗ ◦ ε∗(z) = ψ∗ ◦ ε∗(z) with
non-negligible probability. It implies that there exists a polynomial p′ de�ned by p′(x, y) =

ydeg pp(x/y). It follows that the equality p′(I1, I2) · ϕ∗ ◦ ε∗(z) = Ideg p2 · ψ∗ ◦ ε∗(z) holds with

15 with non-negligible, the toss coin being the internal randomness of A and the choice of n
16 Theorem 2 ensures that a1(θn), . . . , at(θn) cannot be generically derived from αn.
17 with overwhelming probability



non-negligible probability. According to Proposition 1, p′(I1, I2) ·ϕ∗ ◦ε∗ = Ideg p2 ·ψ∗ ◦ε∗ implying
that

ϕ∗ ◦ ε∗(z1, 0, z3, z4) = 0 (5)

Throughout this proof, we consider the polynomials Ij de�ned by Ij(X1, . . . , X20) = Xj . We
consider the degree-4 polynomialD computing the determinant of S, i.e. satisfyingD(S) = detS,
and the polynomial ∆ de�ned by

∆(Y1, . . . , Y16, C1, . . . , C4) = D(Y1, . . . , Y16)

By construction ∆(θn, c) = detS. Let W = [wij ] = S−1. The degree-3 polynomial computing
detS · wij is (abusively) denoted by wij , i.e. wij(S) = detS · wij .

Let δ1, . . . , δ4, ε1, . . . , ε4 be de�ned by

δℓ(Y1, . . . , Y16, C1, . . . , C4) =

4∑
j=1

Y4(ℓ−1)+jCj

εℓ(Y1, . . . , Y16, C1, . . . , C4) =

4∑
j=1

wℓj(Y1, . . . , Y16)Cj

We consider the polynomial tuples δ = (I1, . . . , I16, δ1, . . . , δ4) and ε = (I1, . . . , I16, ε1, . . . , ε4).
By construction,

ε ◦ δ def
= (ε1(δ), . . . , ε20(δ)) = (I1, . . . , I16,∆ · I17, . . .∆ · I20)

According to (5),
ϕ ◦ α̂ ◦ ε(θn, z1, 0, z3, z4) = 0

with non-negligible probability over the choice of θn, z1, z3, z4. Thus, according to Proposition 1,
ϕ ◦ α̂ ◦ ε can be factored by I18. As α̂ ◦ ε is 2-symmetric, ϕ ◦ α̂ ◦ ε is 2-symmetric. It follows that
ϕ ◦ α̂ ◦ ε can be factored by I18I20 implying that ϕ ◦ α̂ ◦ ε ◦ δ and thus ψ = ϕ ◦ α̂ can be factored
by ϕR (noticing that (I18I20) ◦ δ = ϕR).

To conclude, it su�ces to notice that for any i ∈ {1, . . . , t}, we have either gcd(ϕi ◦ α̂, ϕR) = 1
or gcd(ϕi ◦ α̂, ϕR) = ϕR (it comes from the fact that ϕi ◦ α̂ ◦ ε is 2-symmetric).

�

Corollary 1. There does not exist18 any polynomial-size {+,−,×}-circuit computing a polyno-

mial ϕ satisfying gcd(ϕ ◦ α̂, ϕR) = ϕR ⇒ There does not exist any lattice-based attack assuming

the hardness of factoring,

This corollary provides a su�cient algebraic condition ensuring the existence of lattice-based
attacks. This condition is discussed in the next section.

5.3 Analysis

We discuss Theorem 3 and Corollary 1 for several choices of κ.

• κ = Θ(λ). As mentioned at the beginning of this section, each value known by the CPA
attacker is an evaluation over θn of a κ-symmetric polynomial. We enhance the power of the

18 with overwhelming probability over the choice of n.



CPA attacker by allowing it to recover evaluations αi(θn) of arbitrarily chosen κ-symmetric
polynomials (αi)i=1,...,t. Each monomial coe�cient of ΦR is a κ-symmetric polynomial de�ned
over S. However, its expanded representation is exponential-size provided κ = Θ(λ). The question
arising here consists of wondering whether ΦR can be e�ciently and generically written using
only (αi(θn))i=1,...,t. We provide a negative answer to this question.

Proposition 7. Assuming the hardness of factoring, there does not exist any lattice-based attack

provided κ = Θ(λ).

Proof. See Appendix D for details.

According to Corollary 1, it su�ces to prove that there does not exist any e�cient polynomial-
size {+,−,×}-circuit computing a polynomial ϕ satisfying gcd(ϕ ◦ α̂, ϕR) = ϕR . The proof
essentially comes from the fundamental theorem of symmetric polynomials.

�

This result is fundamental in the sense that it formally proves the non-existence of lattice-based
attacks for some choices of κ.

• κ ≥ t log3 λ. In this case, we do not have any formal result excluding the possibility to
generically recover ΦR. However, the attack described in Section 5.1 is not e�cient. Indeed, ΦX

has a number of monomials larger than λt (see Remark 1) implying that the dimension of the
lattice considered in this attack is also larger than λt, e.g. ΦX has more than 2× 107 monomials
for κ ≥ 10. As the approximation obtained in polynomial-time with the best known lattice basis
reduction algorithm is exponential, it su�ces to adjust t in order that this approximation is
not good enough. This choice of κ would be relevant by assuming that this attack is the most
e�cient. We are convinced that this assumption is true legitimating this choice of κ.

6 E�ciency

Our scheme can evaluate arithmetic circuit of depth smaller than δ/2. A ciphertext is a 2κ-vector
in Zn, implying that the ratio of ciphertext size to plaintext size is approximatively equal to 4κδ.
By assuming that the size of a δ-RSA modulus is O(δ), the running time of Encrypt/ Decrypt/ Add/
Mult is O(δ2κ), O(δ2κ), O(δ2κ3), O(δ2κ3). The security analysis proposed in the previous section
is not su�cient to determine κ. The performance of our scheme is very competitive with respect
to classic schemes with κ = Θ(log λ) but poor with κ = Θ(λ). For instance, if we choose κ = 10
(a choice potentially relevant according to the previous section), applying the homomorphic
operators requires around 2000 modular multiplications. Our security analysis should be re�ned
to optimize the choice of κ.

7 Future Work

Our security proof is not complete and the main challenge is to completely reduce the security
of our scheme to the factorization.

Another interesting question consists of wondering whether this SWHE can be boostrapped
in order to obtain an FHE scheme. We did not think about this and we do not have any idea
about the way to achieve it.

The randomization of the homomorphic operator presented in Appendix C gives hope for
another motivating perspective. The factoring assumption defeats the whole �post-quantum�
purpose of multivariate cryptography [12]. In our opinion, this assumption could be removed by



introducing randomness into homomorphic operators in order to maintain the truth of the formal
results proved under the factoring assumption.

It is important to notice that the factorization of n is not used by the decryption function
of our scheme. The factoring assumption simply ensures that solving nonlinear equations or
�nding non-null polynomials with many roots is di�cult. Consequently, the ideas behind our
construction can be straightforwardly re-used in rings satisfying these properties.
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A Proof of Proposition 2

Lemma 3. Let p be an arbitrary positive integer, let F ⊂ Irp , let ξ1, . . . , ξr be r arbitrary integers

larger than p, let I = Iξ1 × . . . × Iξr and let G = {x ∈ I|x mod p ∈ F}. If |F |/pr is negligible

then |G|/|I| is negligible.

Proof. (Sketch.) Given 0 < ρ < 1, let us consider the set ∆ρ of subsets F ⊂ Irp such that
|F |/pr ≤ ρ. Given a = (a1, . . . , ar) and b = (b1, . . . , br) such that 0 ≤ ai ≤ bi < p, |{x ∈ I|x
mod p = a}| ≥ |{x ∈ I|x mod p = b}|. It follows that it su�ces to consider the subsets F ∈ ∆ρ

de�ned by F = Ia1 × · · · × Iar for some integers a1, . . . , ar belonging to Ip. For such subsets,
|F |/pr = b1 · · · br ≤ ρ where bi = ai/p.
Moreover, one can easily show that

|G|/|I| ≤
r∏

i=1

|{x ∈ Iξi |x mod pi ≤ ai}|/|Iξi | ≤
r∏

i=1

2bi
1 + bi

Under the constraint b1 · · · br ≤ ρ, one can show by induction that
∏r

i=1
2bi
1+bi

≤
(

2ρ1/r

1+ρ1/r

)r
. A

simple function analysis proves that
(

2ρ1/r

1+ρ1/r

)r
is an increasing function asymptotically equal to

ρ1/2 proving that |G|/|I| < ρ1/2. It follows that |G|/|I| is negligible provided |F |/pr is negligible.
�

As ϕ is a polynomial, there exists δ polynomials (ϕi)i=1,...,δ : Zr
pi → Zpi such that ϕ(x)

mod pi = ϕi(xmod pi). Let G = {x ∈ I|ϕ(x) = 0}, Fi = {x ∈ Zr
pi |ϕi(x) = 0} and Gi = {x ∈ I|x

mod pi ∈ Fi}. By de�nition zϕ,I non-negligible means that |G|/|I| is non-negligible. As G =
G1 ∩ · · · ∩Gδ, |Gi|/|I| is non-negligible. This directly implies that αi = |Fi|/pri is non-negligible
according to Lemma 3. By de�nition, ϕ(x) = 0 if and only if (x mod pi ∈ Fi)i=1,...,δ. As the
events {x ∈ Zr

n|x mod pi ∈ Fi}i=1,...,δ are independent, we have zϕ = α1 · · ·αδ. Thus, this
quantity is not negligible (δ is a constant which is independent of λ).

�

B Proof of Proposition 1

This result can be shown by induction over r. By Lemma 1, the result is true for r = 1. Let us
assume the result true for any r < t and let us show it for r = t. We can identify Zn[X1, . . . , Xt] to
R[Xt] with R = Zn[X1, . . . , Xt−1]. Let ϕ be a non-null polynomial ϕ ∈ Zn[X1, . . . , Xt] output by a
p.p.t. algorithm A, i.e. ϕ← A(n). ϕ can be identi�ed by a non-null polynomial ϕ′ ∈ R[X1]. Thus,
by �xing X2, . . . , Xt to randomly chosen values x2, . . . , xt ∈ Zn , the polynomial ϕx2,...,xt de�ned
by ϕx2,...,xt(x1) = ϕ(x1, . . . , xt) is not (identically) null with overwhelming probability over the
choice of n, x2, . . . , xt according to the induction hypothesis. Moreover, provided ϕx2,...,xt is not
null, ϕx2,...,xt(x1) = 0 with negligible probability other choice of n, x1 according to the induction
hypothesis. This proves ϕ(x1, . . . , xt) = 0 with negligible over the choice of n, x1, . . . , xt.

�

C Randomizing the homomorphic operators

Let τ be an even integer. The key idea of this section is to add τ rows to S which are not useful for

encryptions. For concreteness, S is a randomly chosen matrix of Z(4+τ)×(4+τ)
n and an encryption

c of x is
c = S−1 (rx, r, r′, r′′, 0, . . . , 0)



Moreover, the construction of the homomorphic operators can be naturally extended. Let E be
the set19 of the linear combinations over the vectors s5, . . . , s4+τ . By construction, for any u ∈ E,
u·c = 0. Let R be the set of quadratic polynomials r de�ned by r(c, c′) = u·c×v′ ·c′+v ·c×u′ ·c′
where u,u′ ∈ E and v,v′ ∈ Z4+τ

n are arbitrary vectors. By construction, for any r ∈ R and any
public encryptions c, c′,

r(c, c′) = 0

Each homomorphic operator is a tuple (q1, . . . , q4+τ ) of 4 + τ polynomials. Let (r1, . . . , r4+τ ) be
randomly chosen in R. By construction, for any encryptions c, c′ it is ensured that

(qi + ri)(c, c
′) = qi(c, c

′)

Thus, the operator (q1+r1, . . . , q4+τ +r4+τ ) can be seen as a randomized operator (q1, . . . , q4+τ ).

D Proof of Proposition 7

To simplify notation, we only show that ϕ ◦ α̂ ̸= ϕR. Without loss of generality, we assume that
θn = (s1, . . . , s2κ) and that the polynomials αi are homogeneous. Moreover, as deg ϕR = κ, one
can assume that degαi ≤ κ. Consider the two sets I1, I2 de�ned by

� I1 = {i ∈ {1, . . . , t}|degαi < κ},
� I2 = {i ∈ {1, . . . , t}|degαi = κ}

Lemma 4. There do not exist any polynomial q ∈ Zn[X1, . . . , Xt] and (κ-)symmetric polynomi-

als α1, . . . , αt ∈ Zn[X1, . . . , Xκ] satisfying degαi < κ and q(α1, . . . , αt) = X1 · · ·Xκ.

Proof. Let α1, . . . , αt ∈ Zn[X1, . . . , Xκ] be arbitrary symmetric polynomials s.t. degαi < κ.
Let us consider the κ symmetric polynomials σk =

∑
1≤i1<...<ik<κXi1 · · ·Xik and an arbitrary

symmetric polynomial ϕ ∈ Zn[X1, . . . , Xκ]. The fundamental theorem of symmetric polynomials
says that there exists a unique polynomial φ satisfying ϕ = φ(σ1, . . . , σκ). Thus, as degαi < κ,
α1, . . . , αt can be written as polynomials φi de�ned over σ1, . . . , σκ−1 but σκ cannot. Thus, there
is no polynomial q ∈ Zn[X1, . . . , Xt] s.t. q(α1, . . . , αt) = σκ = X1 · · ·Xκ.

�

Let Vκ
def
= {0, 1}κ × {0}κ. For a given v ∈ Z2κ

n , the polynomial ϕR|v is de�ned by,

ϕR|v=(v1,...,v2κ)(S) =
∏

ℓ=1,...,κ

(
2κ∑
i=1

vis2ℓ,i

)

Lemma 5. Let v1, . . . ,vr ∈ Vκ and a1, . . . , ar ∈ Zn\{0}. The polynomial a1ϕR|v1
+ . . .+arϕR|vr

cannot be written as a polynomial p((αi)i∈I1).

Proof. (Sketch.) By Lemma 4, one can straightforwardly show that ϕR|(1,0,...,0) (ϕR|(1,0,...,0)(S) =
s2,1s4,1 · · · s2κ,1) cannot be written as a polynomial p((αi)i∈I1). We denote by α̂1, . . . , α̂t the
polynomials α1, . . . , αt where the variables s2ℓ,i are substituted by τis2ℓ,1 (τi ∈ Zn) for any
1 ≤ i ≤ κ and φi denotes the polynomial ϕR|vi

by doing the same substitution. It is impor-
tant to notice that α̂1, . . . , α̂t are κ-symmetric de�ned over s2,1, s4,1, · · · , s2κ,1. We show that∑r

i=1 aiφi(s2,1, s4,1, · · · , s2κ,1) = q(τ1, . . . , τκ)s2,1s4,1 · · · s2κ,1 where q is a degree-κ non-null poly-
nomial. Thus, according to the famous lemma of Schwartz and Lippel, q(τ1, . . . , τκ) = 0 with
negligible probability over the choice of τ1, . . . , τκ. Thus, if p((αi)i∈I1) = a1ϕR|v1

+ . . .+ arϕR|vr

then p((α̂i)i∈I1) ∼ s2,1 · · · s2κ,1 which was previously shown impossible.
�

19 E can be recovered by the attacker.



Corollary 2. The family of polynomials
(
ϕR|v

)
v∈Vκ

is linearly independent.

The result is a direct consequence of this lemma. Let ϕv be the polynomial de�ned by
ϕv(α1, . . . , αt) = ϕ(α1, . . . , αt,v). We can write ϕv(α1, . . . , αt) = ϕ′v(αi∈I1) + ϕ′′v(αi∈I2) where
deg ϕ′′v = 1.

Let us assume that ϕ ◦ α̂ = ϕR implying that for each v ∈ Vκ, ϕR|v = ϕv(α1, . . . , αt).
As t is polynomial but not |Vκ| , there exist v1, . . . ,vr ∈ Vκ and a1, . . . , ar ∈ Zn \ {0} such
that a1ϕ

′′
v1
(αi∈I2) + . . . + arϕ

′′
vr
(αi∈I2) = 0. It follows that a1ϕ

′
v1
(αi∈I1) + · · · + arϕ

′
vr
(αi∈I1) =

a1ϕR|v1
+ . . .+ arϕR|vr

contradicting Lemma 5.
�


