
Multivariate Cryptography with Mappings of

Discrete Logarithms and Polynomials

Duggirala Meher Krishna ∗ and Duggirala Ravi †

Gayatri Vidya Parishad College of Engineering (Autonomous),
Madhurawada, VISAKHAPATNAM – 530 048, Andhra Pradesh, India.

Abstract

In this paper, algorithms for multivariate public key cryptography
and digital signature are described. Plain messages and encrypted mes-
sages are arrays, consisting of elements from a fixed finite ring or field.
The encryption and decryption algorithms are based on multivariate
mappings. The security of the private key depends on the difficulty of
solving a system of parametric simultaneous multivariate equations in-
volving polynomial or exponential mappings. The method is a general
purpose utility for most data encryption, digital certificate or digital
signature applications. For security protocols of the application layer
level in the OSI model, the methods described in this paper are useful.
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1 Introduction

1.1 Preliminary Discussion

The role of cryptographic algorithms is to provide information security [[9],
[28], [42], [44], [45] and [46]]. In general, proper data encryption and authen-
tication mechanisms with access control are preferred for a trusted secure
system [[44] and [45]]. The most popular public key cryptosystems are the
RSA [[41]], NTRU [[21], [22], [23] and [24]], ECC [[27], [37], [43] and [48]],
the algorithms based on diophantine equations [[33]] and discrete logarithms
[[15]], and those based on multivariate quadratic polynomials [[6] and [29]].
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The RSA, the NTRU and the ECC are assumed to be secure algorithms un-
less there are new breakthroughs in integer factoring (for RSA), or in lattice
reduction (for NTRU), or in elliptic curve discrete logarithm techniques (for
ECC) [[11] and [19]].

In this paper, algorithms for public key cryptography as well as digital
signature based on multivariate mappings are described, with plain and
encrypted message arrays consisting of elements from a fixed commutative
and finite ring or field. The keys can be built up starting from independently
chosen small degree polynomial or easy exponential mappings, resulting in
fast key generation and facilitating easy changes of keys as often as required.
The security depends on the difficulty of solving parametric simultaneous
multivariate equations involving polynomial or exponential mappings [[8],
[10], [16], [17], [35], [36], [12] and [14]] in the case of straightforward attacks,
and on the difficulty of finding the private keys in the case of key recovery
attacks. For security protocols of the application layer level in the OSI
model, the methods described in this paper are useful.

1.2 Notation

In the sequel, let Z be the set of integers, and let N be the set of positive
integers. For a positive integer n ≥ 2, let Z

n
be the ring of integers with

addition and multiplication mod n, and Z
∗
n
be the commutative group of

invertible elements in Z
n
, with respect to multiplication operation in Z

n
. The

representing elements in Z
n
are taken to be those from the set {0, . . . , n −

1} ⊆ Z. Let F be a finite field, consisting of pn elements for some positive
integer n and prime number p, and let F

∗ be the multiplicative group of
nonzero elements in F. Let G be a finite cyclic group of order n ≥ 2. Let E
be either F or Z

n
or G. If E = G, where G is equipped with only the group

operation, then G is isomorphic to Z
n
, where the group operation in G is

identified with the addition operation of Z
n
. The addition operation of Z is a

primary operation, and the multiplication operation, that can be treated as
a secondary operation [[34]] over the additive group Z, is defined uniquely
by the distribution laws, with 1 as the multiplicative identity, rendering
Z as the commutative ring. The same holds for Z

n
, with 1 acting as the

multiplicative identity. Let E[x1 , . . . , xm
], for m ∈ N, be the algebra of

multivariate polynomials inm formal variables x1 , . . . , xm with coefficients in
E. Now, if G = F

∗, for a finite field F, then the group operation in G coincides
with the multiplication operation in F and G[x1 , . . . , xm

] = F[x1 , . . . , xm
]. If

m = 1, then E[x1 , . . . , xm
] is denoted by E[x], with x = x1 . A variable with

its name expressed in bold face assumes values from a product space, which
is a product of finitely many copies of the same set, and each component
of the variable, expressed in the corresponding case without boldness and a
positive integer subscript, assumes values from the constituent component
space, succinctly as, for example, x = (x1 , . . . , xm) ∈ Em, for some m ∈ N.
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1.3 Polynomials over Z
n

Let n =
∏r

i=1 p
l
i
i , where r and l

i
are positive integers, and p

i
are distinct

prime numbers, for 1 ≤ i ≤ r. Let q
i
= p

−l
i

i n =
∏r

j = 1
j 6= i

p
l
j
j , and let m

i
∈ N

be such that m
i
q
i
≡ 1 mod p

l
i
i , for 1 ≤ i ≤ r. Then, Z

n
= ⊕r

i=1mi
q
i
Z

p

l
i
i

.

Now, a polynomial f(x) ∈ Z
n
[x] can be expressed as

∑r
i=1mi

q
i
f
i
(x),

for some unique polynomials f
i
(x) ∈ Z

p

l
i
i

[x], for 1 ≤ i ≤ r. For some

x ∈ Z and index i, where 1 ≤ i ≤ r, if p
i
| f(x), then gcd

(
f(x) mod p

l
i
i , p

i

)

= gcd
(
f
i
(x) , p

i

)
= p

i
6= 1. Thus, gcd(f(x), n) = 1, for every x ∈ Z

n
, if

and only if gcd(f
i
(x), p

i
) = 1, for every x ∈ Z

p

l
i
i

, for every index i, where

1 ≤ i ≤ r. Similarly, f is a surjective (hence bijective) mapping from Z
n

onto Z
n
, if and only if f

i
is a surjective (hence bijective) mapping from Z

p

l
i
i

onto Z
p

l
i
i

, or equivalently, f
i
(x) mod p

i
is a bijective mapping from Z

p
i
into

itself and, when l
i
≥ 2, f ′

i
(x) 6≡ 0 mod p

i
, for all x ∈ Z

p

l
i
i

, where f ′
i
is the

formal algebraic derivative of f
i
, for every index i, where 1 ≤ i ≤ r [[31]].

Now, if g(x) ∈ Z
n
[x], where g(x) =

∑r
i=1 mi

q
i
g
i
(x), for some g

i
(x) ∈ Z

p

l
i
i

[x],

for 1 ≤ i ≤ r, then f(x)g(x) =
∑r

i=1mi
q
i
f
i
(x)g

i
(x). Thus, (A) f(x) is a

unit in Z
n
[x], if and only if f

i
(x) is a unit, i.e., f

i
(x) mod p

i
∈ Z

∗
p
i
, for

every index i, where 1 ≤ i ≤ r, (B) f(x) is reducible in Z
n
[x], if and only

if f
i
(x) is reducible in Z

p

l
i
i

[x], for some index i, where 1 ≤ i ≤ r, and (C)

f(x) is irreducible in Z
n
[x], if and only if f

i
(x) is irreducible in Z

p

l
i
i

[x], or

equivalently, f
i
(x) mod p

i
is irreducible in Z

p
i
[x], for every index i, where

1 ≤ i ≤ r. Thus, for any positive integer k, Z
n
[x1 , . . . , xk

] can be expressed
as ⊕r

i=1mi
q
i
Z

p

l
i
i

[x1 , . . . , xk
].

1.4 Modular Exponentiation over Z
n

The modular exponentiation operation is extensively studied in connection
with the RSA cryptosystem [[9], [28], [41], [42], [44], [45] and [46]]. In this
section, the modular exponentiation is extended to the situation, wherein
the exponents are functions. The security of the RSA system depends on the
difficulty of factorization of a positive integer into its prime factors. However,
simplification of computations as well as porting of variables from base level
to exponentiation level by a homomorphism requires availability of prime
factors in advance for both encryption and decryption, while working with
multivariate mappings involving functions as exponents. In the sequel, let

ϕ be Euler phi or totient function [[9], [28], [42] and [46]]. Let n =
∏r

i=1 p
l
i
i ,
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where r ∈ N, l
i
∈ N\{1} and p

i
are distinct prime numbers, for 1 ≤ i ≤ r.

Let EXP
(
Z

n
; [x1 , . . . , xm

]
)
be the smallest set of expressions, closed with

respect to addition and multiplication, and containing expressions of the
form a(x1 , . . . , xm)

b(x1 , ..., xm ), where a(x1 , . . . , xm) ∈ Z
n
[x1 , . . . , xm

], and
either

1. as a formal expression, b(x1 , . . . , xm) does not depend on (x1 , . . . , xm)
and evaluates to any fixed positive integer, or

2. a(x1 , . . . , xm) evaluates to elements in Z
∗
n
, for all values of (x1 , . . . , xm)

in some domain of interest, which is a subset of Zm
n
, and b(x1 , . . . , xm)

is of the form c(h(x1), . . . , h(xm)), for some expression c(z1 , . . . , zm)
∈ EXP

(
Z

ϕ(n)
; [z1 , . . . , zm ]

)
and ring homomorphism h from Z

n
into

Z
ϕ(n)

.

The condition in (1) above implies that Z
n
[x

1
, . . . , x

m
] ⊆ EXP

(
Z

n
; [x

1
, . . . , x

m
]
)
.

Thus, the integers in Z and those in Z
n
, for various modulus positive integers

n ≥ 2, need to be distinguished clearly as separate elements. The expres-
sions in EXP

(
Z

n
; [x1 , . . . , xm

]
)
are turned into mappings, by identifying

appropriate domains of values and interpretation for variables and opera-
tions in the respective domains [[12], [14], [34] and [35]]. For x ∈ Z

m
n

and
s ∈ N\{1}, such that s | n, let x mod s =

(
x1 mod s, . . . , xm mod s

)
. Let

f(x) ∈ Z
n
[x1 , . . . , xm

] be such that f(x) evaluates to elements in Z
∗
n
, for x ∈

X, for some X ⊆ Z
m
n
, and let f

i
(x) ∈ Z

p

l
i
i

[x1 , . . . , xm
], for 1 ≤ i ≤ r, be such

that f(x) =
∑r

i=1mi
q
i
f
i
(x mod p

l
i
i ). Now, for x ∈ X and k ∈ Z, the follow-

ing holds:
(
f(x)

)k
=

(
f(x)

)k mod ϕ(n)
=

∑r
i=1mi

q
i

(
f
i
(x mod p

l
i
i )
)k mod ϕ(n)

=
∑r

i=1 mi
q
i

(
f
i
(x mod p

l
i
i )

)k mod ϕ(p
l
i
i )
. Let g(y) ∈ Z

ϕ(Z
n
)
[y1 , . . . , yn

] and

g
i
(z) ∈ Z

ϕ(p
l
i
i

)

[z1 , . . . , zn ] be such that the following holds: g
i

(
y mod ϕ(p

l
i
i )

)
=

g(y) mod ϕ
(
p
l
i
i

)
, for 1 ≤ i ≤ r. Thus, f g(y)(x) =

∑r
i=1 mi

q
i
f g(y)
i

(x) =
∑r

i=1mi
q
i
f
g
i
(y mod ϕ(p

l
i
i ))

i (x mod p
l
i
i ), for independent vectors x ∈ X and

y ∈ Z
n
ϕ(n)

. Now, ϕ(p
l
i
i ) = (p

i
− 1)p

l
i
−1

i , where l
i
≥ 2, for 1 ≤ i ≤ r. Let

w
i
= (p

i
− 1)−1 mod p

l
i
−1

i , and let h
i
: Z

p

l
i
i

→ Z
ϕ(p

l
i
i

)

be the map defined by

h
i
(x) = (p

i
− 1)(w

i
x mod p

l
i
−1

i ), for 1 ≤ i ≤ r. Then, h
i
is a ring homomor-

phism, for 1 ≤ i ≤ r. Now, let h
(∑r

i=1 mi
q
i
z
i

)
=

(
h1(z1), . . . , hr(zr )

)
, for

z
i
∈ Z

p

l
i
i

and 1 ≤ i ≤ r. Then, the map h is a ring homomorphism from the

ring ⊕r
i=1mi

q
i
Z

p

l
i
i

into the ring of direct product
∏r

i=1 Z
ϕ(p

l
i
i

)

. If the base

level and exponentiation level interpretation maps are I
base

and Iexponent,
respectively, then Iexponent can be chosen to be h ◦ I

base
, applied from right

to left in the written order, preserving the respective ring operations in the
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base level and exponentiation level subexpressions. If l
i
= 1, for some in-

dex i, where 1 ≤ i ≤ r, then exponentiation along ith component can be
carried by interpreting Z

p
i
to be a finite field, and porting values of base

level expressions to exponentiation level expressions by discrete logarithm
mapping, as discussed in section 1.5.

1.5 Modular Exponentiation over F

Let F be a finite field containing pn elements and n = pn − 1, for some
prime number p and positive integer n. Let EXP

(
F ; [x1 , . . . , xm

]
)
be the

smallest set of expressions, closed with respect to addition and multiplica-
tion, and containing expressions of the form a(x1 , . . . , xm)

b(x1 , ..., xm ), where
a(x1 , . . . , xm) ∈ F[x1 , . . . , xm

], and either

1. as a formal expression, b(x1 , . . . , xm) does not depend on (x1 , . . . , xm)
and evaluates to any fixed positive integer, or

2. a(x1 , . . . , xm) evaluates to elements in F
∗, for all values of (x1 , . . . , xm)

in some domain of interest, which is a subset of Gm, where G = F
∗, and

b(x1 , . . . , xm) is of the form c(h(x1), . . . , h(xm)), for some expression
c(z

1
, . . . , z

m
) ∈ EXP

(
Z

n
; [z

1
, . . . , z

m
]
)
and group isomorphism h from G

into Z
n
.

The condition in (1) above implies that F[x1 , . . . , xm
] ⊆ EXP

(
F ; [x1 , . . . , xm

]
)
.

For a primitive element a ∈ F
∗, let log

a
: F∗ → Z

n
be the discrete logarithm

function defined by log
a
(g) = x, exactly when ax = g, for g ∈ F

∗ and
x ∈ Z

n
. Thus, the group homomorphism h can be taken to be log

a
. If

the base level and exponentiation level interpretation maps are I
base

and
Iexponent , respectively, then Iexponent can be chosen to be log

a
◦ I

base
, applied

from right to left in the written order. For porting a subexpression involving
addition operation in F, such as, for example, f(x) ∈ F[x1 , . . . , xm

], where
f(x) 6= 0, for x ∈ Gm, where G = F

∗, occurring in a base level expression
to an exponentiation level, the base level subexpression is replaced by a
supplementary variable z, which is ported to first exponentiation level by the
discrete logarithm mapping. In the subsequent levels of exponentiation, the
interpretation is performed by applying ring homomorphisms, as discussed
in section 1.4.

2 Main Results

2.1 Parametric Injective Mappings

Let E be either F or Z
n
. Let G ⊆ E be the domain of interpretation for

the variables occurring in the mappings. For l ∈ {0} ∪ N and m ∈ N, a
parametric multivariate injective mapping η

(
z1 , . . . , zl ; (x1 , . . . , xm)

)
from

6



Gm into Em is a multivariate injective mapping, which is an expression from
either E[x

1
, . . . , x

m
, z

1
, . . . , z

l
] or EXP

(
E ; [x

1
, . . . , x

m
, z

1
, . . . , z

l
]
)
with inter-

pretation conventions as discussed in sections 1.4 and 1.5, as appropriate,
for (x1 , . . . , xm) ∈ Gm and (z1 , . . . , zl) ∈ Z ⊆ El, and its parametric inverse
η−1

(
z1 , . . . , zl ; (y1 , . . . , ym)

)
is such that, for every fixed (z1 , . . . , zl) ∈ Z,

the following holds: if η
(
z1 , . . . , zl ; (x1 , . . . , xm)

)
= (y1 , . . . , ym), then

(x1 , . . . , xm) = η−1
(
z1 , . . . , zl ; (y1 , . . . , ym)

)
, for every (x1 , . . . , xm) ∈ Gm

and (y1 , . . . , ym) ∈ Em. For example, let n be the set cardinality of G =
F
∗, a ∈ F

∗ be a fixed primitive element, which is made known in the
public key, and η

(
z1 , . . . , zl ; x

)
= f(z1 , . . . , zl)x

g(log
a
(z1 ), ..., loga (zl )), where

f(z
1
, . . . , z

l
) ∈ EXP

(
F ; [z

1
, . . . , z

l
]
)
and g(t

1
, . . . , t

l
) ∈ EXP

(
Z

n
; [t

1
, . . . , t

l
]
)

are such that f(z
1
, . . . , z

l
) 6= 0, for z

1
, . . . , z

l
∈ F

∗, and gcd
(
g(t

1
, . . . , t

l
), n) =

1, for t
1
, . . . , t

l
∈ Z

n
. Then, η

(
z
1
, . . . , z

l
; x

)
is a parametric bijective mapping

from F
∗ into F∗, with z1 , . . . , zl ∈ F

∗ as parameters, and the inverse mapping
of η is η−1

(
z1 , . . . , zl

; x
)
= [ [f(z1 , . . . , zl

)]−1x ][ [g(log
a
(z

1
), ..., log

a
(z

l
))]−1

mod n ].
For the multivariate surjective mappings for digital signature scheme dis-

cussed at the end of section 3, mappings f(z1 , . . . , zl
) ∈ EXP

(
F ; [z1 , . . . , zl

]
)

and g(t
1
, . . . , t

l
) ∈ EXP

(
Z

n
; [t

1
, . . . , t

l
]
)
can be chosen, such that both the

conditions f(z
1
, . . . , z

l
) 6= 0 and gcd

(
g(log

a
(z

1
), . . . , log

a
(z

l
)), n) = 1, simul-

taneously hold for (z
1
, . . . , z

l
) ∈ Z ⊆ Gl, where the required exact domain

Z 6= ∅ is a private key and known only to the signer.

2.1.1 Parametrization Methods

Let, for some positive integers k, l and m, g
i

(
z1 , . . . , zl

)
, 1 ≤ i ≤ k, be

a partition of unity of El, i.e.,
∑k

i=1 gi

(
z1 , . . . , zl

)
= 1 and g

i

(
z1 , . . . , zl

)
·

g
j

(
z1 , . . . , zl

)
= 0, i 6= j, 1 ≤ i, j ≤ k, for every

(
z1 , . . . , zl

)
∈ El. The par-

tition of unity required for the parametric mappings discussed of this section
need not necessarily be strict, and it is possible that, for some i, where 1 ≤
i ≤ k, g

i

(
z1 , . . . , zl

)
= 0, for every

(
z1 , . . . , zl

)
∈ El. Let ζ

i

(
z1 , . . . , zl ; x

)
,

1 ≤ i ≤ k, x = (x1 , . . . , xm), be parametric multivariate injective mappings
from Gm into Em, that may or may not depend on the parameters z1 , . . . , zl .
The vectors x and ζ

i

(
z1 , . . . , zl ; x

)
, 1 ≤ i ≤ k, are identified with the cor-

responding m× 1 column vectors, whose j-th row entry is the j-th element,
for 1 ≤ j ≤ m, for allowing them to become amenable to matrix operations.
Let φ

i

(
z1 , . . . , zl

)
be an m×m matrix, and χ

i

(
z1 , . . . , zl

)
be m×1 vectors,

both with multivariate expressions as entries, such that φ
i

(
z1 , . . . , zl

)
eval-

uates to an invertible matrix, for every
(
z1 , . . . , zl

)
∈ El and 1 ≤ i ≤ k.

Then, the expression η(z
1
, . . . , z

l
; x) =

∑k
i=1 gi

(z
1
, . . . , z

l
) · φ

i
(z

1
, . . . , z

l
) ·

[ζ
i
(z

1
, . . . , z

l
; x) + χ

i
(z

1
, . . . , z

l
)] is a parametric multivariate injective map-

ping, with its parametric inverse η−1(z
1
, . . . , z

l
; y) =

∑k
i=1 gi

(z
1
, . . . , z

l
) ·

ζ−1
i

(z
1
, . . . , z

l
; x

i
) , where x

i
=

[
[φ

i
(z

1
, . . . , z

l
)]−1 · y

]
− χ

i
(z

1
, . . . , z

l
), y =

(y
1
, . . . , y

m
), which is also identified with the corresponding m × 1 col-

umn vector, and [φi(z1 , . . . , zl
)]−1 is the matrix inverse of [φi(z1 , . . . , zl

)],

7



for 1 ≤ i ≤ k.
For the multivariate surjective mappings for digital signature scheme

discussed at the end of section 3, it is possible to choose ζ
i

(
z1 , . . . , zl ; x

)
to

be bijective, only for some indexes i, where 1 ≤ i ≤ k, letting it be arbitrary
for the remaining indexes. Since the domain information is a private key,
as discussed in the last paragraph of the preceding section, the updates
mentioned here must be so chosen that the effective domain will become
feasible, while maintaining it as a private key.

2.1.2 Partition of Unity of F

Let f(z) ∈ EXP
(
F ; [z]

)
, which is called a discriminating function, and let

K
f
be the codomain of f , i.e., K

f
= {f(x) : x ∈ F} = {a

i
: 1 ≤ i ≤ k}, for

some positive integer k. Let ℓi(x) =

[
∏k

j = 1
j 6= i

(
ai−aj

)
]−1

·
∏k

j = 1
j 6= i

(
f(x)−aj

)
,

1 ≤ i ≤ k. Then, ℓ
i
(x) = 1, for x ∈ E

i
= {z ∈ F : f(z) − a

i
= 0}, and

ℓ
i
(x) = 0, for x ∈ F\E

i
, 1 ≤ i ≤ k. Thus, {E

i
: 1 ≤ i ≤ k} is a partition

of F, and ℓ
i
(x) is the characteristic function of the equivalence class E

i
,

1 ≤ i ≤ k. Now, the set {g
i
(z1 , . . . , zl) = ℓ

i

(
h(z1 , . . . , zl)

)
: 1 ≤ i ≤ k},

where h(z1 , . . . , zl) ∈ EXP
(
F ; [z1 , . . . , zl ]

)
, is a partition of unity of Fl.

Examples. (A) Let the vector space dimension of F be n as an extension field

of Z
p
, and let f(z) =

∑n
i=1 ai

zp
i−1

, where a
i
∈ F, 1 ≤ i ≤ n, be a noninvertible

linear operator from F into F, with Z
p
as the field. For every linear operator T

from F into F with Z
p
as the field, there exist scalars c

i
∈ F, 1 ≤ i ≤ n, such that

Tz =
∑n

i=1 ciz
p
i−1

[[32]]. Now, each equivalence class is an affine vector subspace
of the form {y + x : f(x) = 0, x ∈ F}, for some y ∈ F. Thus, if r is the rank
of f as linear operator from F into F with Z

p
as the field, then the nullity of f is

n− r, each equivalence class has pn−r elements, and there are k = pr equivalence
classes. For the number of equivalence classes to be small, the rank r of f must be
small, such as r = 1 or r = 2. (B) Let f(z) = zr, where r is a large positive
integer dividing pn − 1. Now, the equivalence classes are {0} and the cosets of
the congruence relation x ∼ y if and only if (x−1y)r = 1, for x, y ∈ F\{0}. Since
K

f
= {0} ∪ {zr : z ∈ F\{0}}, there are k = 1 + (pn − 1)/r equivalence classes.

2.1.3 Partition of Unity of Z
pl

Let s ∈ N be a divisor of (p − 1) and k = 1 + (p−1)
s

. Now, pl−1 ≥ l, for

any l ∈ N and prime number p. Let h(x) = xsp
l−1

, for x ∈ Z
pl
. Then,

(
h(x)

)k−1
= 1, for x ∈ Z

⋆

pl
, and h(x) = 0, for x ∈ Z

pl
\Z⋆

pl
. Thus, the set

{xsp
l−1

: x ∈ Z
pl
} contains k distinct elements. Let x, y ∈ Z

pl
be such that

h(x) 6= h(y). If h(x) = 0 or h(y) = 0, then (h(y) − h(x)) ∈ Z
⋆

pl
. Now, let

x, y ∈ Z
⋆

pl
. If (x−1y)sp

l−1
= 1+bpt, for some b ∈ Z

⋆

pl
and t ∈ N, then, since 1+

8



bpt
∑k−1

i=1
(k−1)!

i!(k−i−1)!b
i−1p(i−1)t = (1 + bpt)k−1 =

(
(x−1y)sp

l−1)k−1
= 1 mod pl,

it follows that either t ≥ l or (k−1)+
∑k−1

i=2
(k−1)!

i!(k−i−1)!b
i−1p(i−1)t = 0 mod pl−t.

However, since k = 1 + p−1
s
, and therefore, 1 ≤ k − 1 ≤ p − 1, it follows

that (k − 1) +
∑k−1

i=2
(k−1)!

i!(k−i−1)!b
i−1p(i−1)t = k − 1 mod p. Thus, if x, y ∈ Z

⋆

pl

and h(x) 6= h(y), then (x−1y)sp
l−1

− 1 6= 0 mod p, and hence if x, y ∈ Z
pl

and h(x) 6= h(y), then (h(y) − h(x)) ∈ Z
⋆

pl
. If a

j
∈ Z

pl
, 1 ≤ j ≤ k, are such

that {xsp
l−1

: x ∈ Z
pl
} = {a

j
: 1 ≤ j ≤ k}, then (a

i
− a

j
) ∈ Z

⋆

pl
, for i 6= j,

1 ≤ i, j ≤ k, and the Lagrange interpolation polynomials g
j
(x) ∈ Z

p
[x] can

be obtained for the equivalence classes E
j
= {xsp

l−1
= a

j
: x ∈ Z

pl
}. Thus,

corresponding to every homomorphism of Z⋆
p
into Z

⋆
p
, a partition of unity of

Z
pl
can be obtained.

2.1.4 Multivariate Mappings that Evaluate to only Invertible El-
ements

Let f(z) ∈ F[z] be a polynomial which is not surjective as a mapping from
F into F. Then, there exists an element c ∈ F, such that f(z) − c 6=
0, for every z ∈ F. For a ∈ F\{0} and g(z1 , . . . , zl) ∈ F[z1 , . . . , zl ],
a
(
f(g(z1 , . . . , zl))− c

)
6= 0, for every (z1 , . . . , zl) ∈ F

l.

Examples. (A) Let f(z) be a product of irreducible polynomials in F[z] of de-
gree 2 or more each. Then, c can be chosen to be 0. (B) Let the vector space

dimension of F be n as an extension field of Z
p
, and let f(z) =

∑n
i=1 aiz

p
i−1

, where
a

i
∈ F, 1 ≤ i ≤ n, be a noninvertible linear operator from F into F, with Z

p
as the

field. Then, for any basis {α
1
, . . . , α

n
} for F, with Z

p
as the field, there exists an

index j, 1 ≤ j ≤ n, such that
∑n

i=1 ai
zp

i−1

− α
j
6= 0, for every z ∈ F, and c can be

taken to be αj . (C) Let r ≥ 2 be a positive integer divisor of pn − 1, and let

f(z) = zr. Then, there exists an element c ∈ F\{0}, such that c(p
n
−1)/r 6= 1. Now,

since c(p
n
−1)/r 6= 0 and c(p

n
−1)/r 6= 1, it follows that f(z)− c 6= 0, for every z ∈ F.

If f(z) ∈ F[z] is such that f(z) 6= 0, for every z ∈ F, then [f(z)]−1 =
∑k

i=1 a
−1
i

ℓ
i
(z), where {a

i
: 1 ≤ i ≤ k} = {f(z) : z ∈ F}, and ℓ

i
(z) =

[
∏k

j = 1
j 6= i

(
a
i
− a

j

)
]−1

·
∏k

j = 1
j 6= i

(
f(z)− a

j

)
, 1 ≤ i ≤ k.

Let n =
∏r

i=1 p
l
i
i , where r, l

i
∈ N and p

i
are distinct prime numbers,

for 1 ≤ i ≤ r, and f(z) ∈ Z
n
[z]. From section 1.3, it can be recalled

that, f(z) ∈ Z
∗
n
, for z ∈ Z

n
, if and only if for every i, where 1 ≤ i ≤ r,

f(z) mod p
i
∈ Z

∗
p
i
, for z ∈ Z

n
.

It may observed that if a ∈ F
∗, n is the number of elements of F∗ and

l is a positive integer, then ag(t1 , ..., tl) ∈ F
∗, for every (t1 , . . . , tl) ∈ Z

l
n
and

any expression mapping g(t1 , . . . , tl) ∈ EXP
(
Z

n
; [t1 , . . . , tl ]

)
.
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2.1.5 Invertible Square Matrices with Multivariate Mapping En-
tries

For a positive integer m, a parametric m × m invertible square matrix is
equivalent to a product of a permutation matrix, followed by a lower tri-
angular matrix with nonzero diagonal entries, an upper triangular matrix
with nonzero diagonal entries and finally by another permutation matrix,
the four matrices being parametric and written from left to right in the prod-
uct. Parametric permutation matrices can be constructed from a partition
of unity. Let gs(z1 , . . . , zl), for 0 ≤ s ≤ m− 1, be a partition of unity of Fl,
which may not necessarily be strict. Let σ ∈ Zm × Zm → Zm be a mapping
such that for each fixed r ∈ Zm, σ(r, ·) is a bijective mapping (permuta-
tion of indexes) from Zm into itself as a mapping of the second argument,
and for each fixed s ∈ Zm, σ(·, s) is a bijective mapping (permutation of
indexes) from Zm into itself, as a mapping of the first argument. Then, the
matrix with entries g

σ(i−1, j−1)
(z1 , . . . , zl) in the i-th row and j-th column,

for 1 ≤ i, j ≤ m, is a parametric permutation matrix. For an example of an
index map σ as discussed, let f

i
and h be bijective mappings from Zm into

itself, for i ∈ {1, 2}, and σ(r, s) = h
(
(f1(r) + f2(s)) mod m

)
. It can be eas-

ily checked that the mapping σ is as required. Products and transposes of
parametric permutation matrices are also parametric permutation matrices.

Caution! This paragraph is concerning an important restriction for para-
metric surjective mappings onto Gm (and also for verification bijective map-
pings advertised in public key tables) in digital signature applications, when
G = F∗, for a finite field F, for exponential mappings. The parametric lower
and upper triangular matrices need to be chosen to be a parametric diagonal
matrix with nonzero diagonal entries, i.e., with entries that are multivariate
mappings evaluating to invertible elements, for every assignment of values
for the variables in their domains. The parametric permutation matrices
are still permitted, in any case. The reason for this caution is the difficulty
to deal with test-for-zero conditions. For overcoming this restriction, the
exponential mappings need to be extended to mappings that include 0 ∈ F

in their domains and co-domains, mapping 0 to itself, but the test-for-zero
conditions must be very carefully considered.

2.2 Univariate Bijective Mappings without Parameters

2.2.1 Single Variable Permutation Mappings without Hashing

Examples in F[x]. Bijective mappings in F[x], also called permutation
polynomials, are extensively studied as Dickson polynomials [[13]] in the
literature. A comprehensive survey on Dickson polynomials can be found
in [[1], [18], [31], [38] and [39]]. Some recent results are presented in [[2],
[3] and [4]]. If f(z) ∈ F[z] is a permutation polynomial, then, for every

10



a ∈ F\{0}, b ∈ F and nonnegative integer i, the polynomial af(zp
i
)− b is a

permutation polynomial. Some easy examples are described in the following.

Examples. (A) Let F be a finite dimensional extension field of Z
p
of vec-

tor space dimension n. Any polynomial f(z) =
∑n

i=1 aiz
p
i−1

, where ai ∈ F,

1 ≤ i ≤ n, that is an invertible linear operator from F onto F, with Z
p
as the

field, is a permutation polynomial. (B) Let r be a positive integer divisor of

n, and f(z) = z
p
r

− az, where a
(
∑n/r

i=1
p
(i−1)r )

6= 1. Then, for every z ∈ F\{0},

z
(pr−1)

− a 6= 0, since z
p
n
−1 = z

(pr−1)
∑n/r

i=1
p
(i−1)r

= 1, and therefore, the null space

of f(z), as a linear operator from F into F with Z
p
as the field, is {0}. Thus, f(z)

is a permutation polynomial. (C) Let r be a positive integer relatively prime to

(pn − 1). Then, the polynomial f(z) = zr is a permutation polynomial.

Examples in Z
pl
[x]. Let l ∈ N and p be a prime number. For any positive

integer n, Dickson polynomials that are permutation polynomials, having
nonvanishing derivatives over the finite field containing pn elements, are
found in [[1], [2], [3], [4], [18], [31], [38] and [39]]. For a small prime number p,
two methods for construction of permutation polynomials f(x) ∈ Z

p
[x], such

that f ′(x) 6≡ 0 mod p, are described below. As a set, Z
p
is taken to be the

set of integers i, where 0 ≤ i ≤ p− 1. For p = 2, since xi+1 ≡ xi ≡ x mod 2,
for every i ∈ N and x ∈ Z

2l
, the only permutation polynomial mappings

in Z
2l
[x] are of the form b0 +

∑k
i=1 bix

i, for some k ∈ N, b
i
∈ Z

2l
, for

0 ≤ i ≤ k, such that
∑k

i=1 bi ≡ 1 mod 2, and, when l ≥ 2, b1 ≡ 1 mod 2 and
∑k

i=2 ibi ≡ 0 mod 2, or equivalently, b1 ≡ 1 mod 2 and the number of indexes
j, with b2j+1 ≡ 1 and 2 ≤ 2j + 1 ≤ k, is an even integer, for the condition
f ′(x) ≡ 1 mod 2 to hold.

Now, let p ≥ 3 be a small prime number, such that the computations
below are not difficult for implementation. Let ℓ

i
(x) =

[∏
p−1
j = 0
j 6= i

(i − j)
]−1

·

∏
p−1
j = 0
j 6= i

(x − j) = −
∏

p−1
j = 0
j 6= i

(x − j), since Z
p
is the solution set for x in the

polynomial equation xp−1 − 1 = 0, and hence,
[∏

p−1
j = 0
j 6= i

(i − j)
]−1

= −1, for

i ∈ Z
p
. Now, ℓ′

i
(x) = −

∑
p−1
j = 0
j 6= i

∏
p−1

k = 0
k 6∈ {i, j}

(x − k), for i ∈ Z
p
, which implies

that ℓ′
i
(j) = −

∏
p−1

k = 0
k 6∈ {i, j}

(j − k) = (j − i)−1 , for j 6= i and j ∈ Z
p
, and

ℓ′
i
(i) = −

∑
p−1
j = 0
j 6= i

∏
p−1

k = 0
k 6∈ {i, j}

(i− k) =
∑

p−1
j = 0
j 6= i

(i− j)−1 = 0 , for i ∈ Z
p
, since

p ≥ 3. For a fixed permutation sequence {a
i
∈ Z

p
: 0 ≤ i ≤ p − 1} of

Z
p
, either of the two procedures described below constructs a permutation

polynomial f(x) ∈ Z
p
[x], such that f(i) = a

i
and f ′(i) 6≡ 0 mod p, for i ∈ Z

p
.

Method 1 Let
∑

p−1
i=0 a

i
ℓ
i
(x) = b0 +

∑
p−1
i=1 b

i
xi, for some b

i
∈ Z

p
, for

11



0 ≤ i ≤ p − 1, and let g(x) = c1 +
∑

p−1
i=2 c

i
xi−1, for some c

i
∈ Z

p
, for

1 ≤ i ≤ p− 1, be such that g(x) 6≡ 0 mod p, for every x ∈ Z
p
. Let ρ

i
= i−1c

i

and σ
i
= b

i
− ρ

i
, for 1 ≤ i ≤ p − 1. Let f(x) = b0 +

∑
p−1
i=1 (ρi

xi + σ
i
xip).

Then, f(x) ≡ b0 +
∑

p−1
i=1 b

i
xi mod p, for every x ∈ Z

p
, and f ′(x) ≡ ρ1 +

∑
p−1
i=2 iρ

i
xi−1 ≡ c1 +

∑
p−1
i=2 c

i
xi−1 mod p, for every x ∈ Z

p
, satisfying the

stated requirement. In this method, deg
(
f(x)

)
can be as high as (p − 1)p.

In the next method, deg
(
f(x)

)
is at most (2p − 2).

Method 2 Let b
i
, c

i
, σ ∈ Z

p
, for 0 ≤ i ≤ p − 1, be such that b0 = a0

and b
j
+ c

j
= a

j
, for 1 ≤ j ≤ p − 1, and let f(x) =

∑
p−1
i=0 (bi + xp−1c

i
−

σi)ℓ
i
(x) + σxp. It can be immediately verified that f(i) ≡ a

i
mod p, for

0 ≤ i ≤ p − 1, and f ′(x) =
∑

p−1
i=0 (bi + xp−1c

i
− σi)ℓ′

i
(x) + pσxp−1 + (p −

1)xp−2
∑

p−1
i=0 c

i
ℓ
i
(x), where p ≥ 3. Thus, the parameters c0 , σ, bj and c

j
,

for 1 ≤ j ≤ p − 1, need to be chosen such that f ′(x) 6≡ 0 mod p, for all
x ∈ Z

p
. Now, f(x) + σx =

∑
p−1
i=0 (bi + c

i
xp−1)ℓ

i
(x) + σxp, and f ′(x) +

σ =
∑

p−1
i=0 (bi + c

i
xp−1)ℓ′

i
(x) + pσxp−1 + (p − 1)xp−2

∑
p−1
i=0 c

i
ℓ
i
(x). Thus,

f ′(0) + σ ≡ −
∑

p−1
i=1 i−1b

i
mod p and f ′(j) + σ ≡

∑
p−1
i = 0
i 6= j

a
i
(j − i)−1 +

c0j
−1 − j−1c

j
mod p, for 1 ≤ j ≤ p− 1, which implies that every element in

the sequence of numbers (f ′(i)+ σ) mod p, for 0 ≤ i ≤ p− 1, is independent
of the choice of σ, and the condition that f ′(i) 6≡ 0 mod p, for 0 ≤ i ≤ p− 1,
is equivalent to that σ 6∈ {(f ′(i) + σ) mod p : 0 ≤ i ≤ p − 1}. For p ≥
3,

∑
p−1
i=0 i ≡

∑
p−1
i=0 1 ≡ 0 mod p, and since Z

p
is the splitting field of the

polynomial xp − x =
∏

p−1
i=0 (x − i), the elementary symmetric polynomials

sr(t1 , t2 , . . . , tn), which are homogeneous of degree r in n variables, for the
particular instances of parameters n = p and t

i
= i − 1, for 1 ≤ i ≤ p, as

defined in [[30]], are all congruent to 0 mod p, for 1 ≤ r ≤ p − 2. Thus,
∑

p−1
i=0 ir ≡

∑
p−1
i=0 1 ≡ 0 mod p, for r ∈ N, 1 ≤ r ≤ p − 2 and p ≥ 3, which

implies that for a nonzero polynomial g(x) ∈ Z
p
[x] of degree at most p− 2,

∑
p−1
i=0 g(i) ≡ 0 mod p. Now, p

∑
p−1
i=0 ip−1 ≡ 0 mod p, and, for l ∈ N, such that

p+1 ≤ l ≤ 2p− 2, l
∑

p−1
i=0 i

l−1 ≡ l
∑

p−1
i=0 il−1−(p−1) ≡ l

∑
p−1
i=0 il−p ≡ 0 mod p,

since 1 ≤ l − p ≤ p − 2. Thus, for a nonzero polynomial h(x) ∈ Z
p
[x]

of degree at most 2p − 2,
∑

p−1
i=0 h′(i) ≡ 0 mod p. The coefficients c

i
, for

0 ≤ i ≤ p − 1, must be so chosen that the additional requirement that
f(x)+σx is a polynomial of degree at most 2p−2 can also be fulfilled. Now,
let λ

i
∈ Z

p
, for 0 ≤ i ≤ p− 1, be chosen, such that the cardinality of the set

Λ = {λ
i
: 0 ≤ i ≤ p−1} is at most p−1 and

∑
p−1
i=0 λ

i
= 0. Then, c

j
−c0 are

found from the condition f ′(j)+σ =
∑

p−1
i = 0
i 6= j

a
i
(j− i)−1− j−1(c

j
−c0) = λ

j
,

for 1 ≤ j ≤ p−1, and hence, f ′(0)+σ = −
∑

p−1
i=1 i−1b

i
= λ0 , for all choices of

c0 . Now, let σ be chosen from Z
p
\Λ, where the latter set is nonempty, since

the cardinality of Λ is at most p− 1, by the choices of λ
i
, for 0 ≤ i ≤ p− 1.
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Finally, c0 is chosen, and b
j
and c

j
, for 1 ≤ j ≤ p − 1, are determined by

the aforementioned conditions.
For a small prime number p, positive integers l and r, such that l ≥ 2

and 1 ≤ r ≤ l, a bijective mapping f(x) ∈ Z
pl
[x] and y ∈ Z

pl
, the fol-

lowing procedure computes xr ∈ Z
pr
, such that fr(xr) ≡ y mod pr, as-

suming x1 ∈ Z
p
is known, such that f1(x1) ≡ y mod p, where fr(x) =

f(x) mod pr, applying the mod pr operation only to the coefficients. Let
2 ≤ r ≤ l, where l ≥ 2, s ∈ N be such that

⌈
r
2

⌉
≤ s ≤ r − 1 and

yr = y mod pr ∈ Z
pr
, and xs = f−1

s
(yr mod ps) ∈ Z

ps
has been computed.

Let x̂s ∈ Z
pr

be such that x̂s ≡ xs mod ps. Since fr(x̂s) ≡ yr mod ps, it
follows that fr(x̂s) = yr + psgr, s(x̂s , yr), for some mapping gr, s(x̂s , yr), and

therefore, fr

(
x̂s + [f ′

r
(x̂s)]

−1 · [yr − fr(x̂s)]
)
≡ fr(x̂s) + f ′

r
(x̂s) ·

[
f ′
r
(x̂s)

]−1
·

[
yr − fr(x̂s)

]
≡ fr(x̂s) +

[
yr − fr(x̂s)

]
≡ yr mod pr. Thus, f−1

r
(yr) =

x̂s +
[
f ′
r
(x̂s)

]−1
·
[
yr − fr(x̂s)

]
mod pr. If r = l, then the f−1(y) is just

computed for y ∈ Z
pl
, and the procedure can be stopped; otherwise, the

previous steps are repeated, replacing the current value of r by min{2r, l}.

Examples in EXP
(
F ; [z]

)
. Let F be a finite field of pn elements, for some

prime number p and n ∈ N, such that pn ≥ 3, and let n = pn − 1. Let
s, t ∈ N be such that gcd(s, t) = 1, st = n and 2 ≤ s, t ≤ n − 1, and let
Ht = {xt = 1 : x ∈ F

∗}. Let f(x) ∈ Z[x] be such that f(x) mod t yields a
polynomial mapping from Zt onto itself. It may be recalled that, as a set, Zt

is assumed to consist of integers i, where 0 ≤ i ≤ t− 1. Let a be a primitive
element in F

∗. Now, for x ∈ Ht , since xt = 1, applying log
a
operation

on both sides, t log
a
x = 0 mod n, which implies that log

a
x is an integer

multiple of s, for every x ∈ Ht , and, since the cyclic subgroup generated by
as is Ht , it follows that loga

is a bijective mapping of Ht onto s · Z
n
. Now,

f(log
a
(x)) mod n, for x ∈ Ht , is an injective mapping, when restricted to

Ht , which can be modified appropriately, by changing its constant term, if
necessary, to obtain a polynomial g, which results in a bijective mapping
from s · Z

n
into itself, with respect to mod n operation. Then, the mapping

η(x) = ag(loga x), for x ∈ F
∗, is such that its restriction to Ht is a bijective

mapping from Ht onto itself.

2.2.2 Hybrid Single Variable Permutation Mappings with Hash-
ing

Method 1 Let ℓ
i
(x) ∈ F[x], 1 ≤ i ≤ k, where k ∈ N, k ≥ 2, be indicator

functions of a partition {S
i
: 1 ≤ i ≤ k} of F. Let σ be a permutation

on {1, . . . , k}, such that the set cardinalities of S
i
and S

σ(i)
are equal, for

1 ≤ i ≤ k. Let g
i
be a mapping from F into F, such that g

i

(
S

i

)
= S

σ(i)
, for

1 ≤ i ≤ k. Thus, g
i
is one-to-one when restricted to S

i
, for 1 ≤ i ≤ k. Let

η(x) ∈ F[x] be a permutation polynomial, and χ(x) =
∑k

i=1 ℓi(x)η(gi
(x)).
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Then, χ(F) =
⋃k

i=1 η
(
g
i
(S

i
)
)
=

⋃k
i=1 η

(
S

σ(i)

)
, and since {S

σ(i)
: 1 ≤ i ≤ k}

is a partition of F, χ(x) is a surjective (hence bijective) polynomial from F

onto F. For inverting χ(x) = y, for fixed y ∈ F, let ξ = η−1(y). Now, there
exists exactly one index i, where 1 ≤ i ≤ k, such that ξ ∈ S

σ(i)
= g

i

(
S

i

)
,

and therefore, the unique element x ∈ S
i
, such that x = g−1

i
(ξ), satisfies

χ(x) = y. If f
i
, for 1 ≤ i ≤ k, are mappings from F into F, such that

f
i
(g

i
(x)) = x, for x ∈ S

i
, then χ−1(y) =

∑k
i=1 ℓσ(i)

(
η−1(y)

)
f
i

(
η−1(y)

)
, for

y ∈ F. The case of bijective mappings in EXP
(
F ; [x]

)
can be similarly

discussed. In the following examples, the corresponding examples in section
2.1.2 are revisited.

Examples. (A) Let T (x) =
∑n

i=1 aix
p
i−1

, ai ∈ F, 1 ≤ i ≤ n, be of rank t, where
t is a small positive integer, such as t ∈ {1, 2}, as described in the first example
in section 2.1.2 and let V = {x ∈ F : T (x) = 0}. Then, there exist k = pt repre-
sentative elements bi ∈ F, 1 ≤ i ≤ k, such that {T (bi) : 1 ≤ i ≤ k} = T (F), and

S
i
= V + b

i
= {x + b

i
: x ∈ V }, 1 ≤ i ≤ k. Let f

i
(x) = c

i, 0
+

∑n
i=1 ci, jx

p
j−1

,
where c

i, j
, x ∈ F, 0 ≤ j ≤ n, be such that V ⊆ f

i
(V ), for 1 ≤ i ≤ k. Thus, in

the notation of the above discussion, the permutation polynomial fi(x)− bi + b
σ(i)

can be chosen to be g
i
(x), for x ∈ F and 1 ≤ i ≤ k. (B) Let f(z) = zt, where

t is a large positive integer dividing pn − 1, as described in the second example

of section 2.1.2. Let a
1
= 0 and a

i
∈ F

∗, for 2 ≤ i ≤ k, where k = 1 + (pn−1)
t ,

be such that {f(ai) : 1 ≤ i ≤ k} is the codomain of f . Let σ be a permuta-
tion on {1, . . . , k}, such that σ(1) = 1, and let H

t
= {y ∈ F : yt = 1}. Then,

S
i
= a

i
H

t
= {a

i
v : v ∈ H

t
}, for 1 ≤ i ≤ k. Let h

i
(x), x ∈ H

t
, be a bijective map-

ping discussed in the previous section, for 2 ≤ i ≤ k. Thus, representing elements
c
i
∈ F

∗ can be found easily, such that the mapping g
i
(x) = c

i
h

i
(a−1

i
x) satisfies

g
i

(
S

i

)
= S

σ(i)
, for x ∈ S

i
and 2 ≤ i ≤ k.

Method 2 Let G be F
∗ or F. Let k, ρ ∈ N, such that 2 ≤ k ≤ ρ. Let f

i
be

bijective mappings from G into itself, for 1 ≤ i ≤ ρ, and h be a mapping from
G into itself, such that h

(
f
i
(x)

)
= h

(
f
j
(x)

)
, for x ∈ G and 1 ≤ i, j ≤ ρ. Let

σ be a permutation on {1, . . . , ρ}, and {S
i
: 1 ≤ i ≤ k} be a partition of

F, and let ℓ
i
(x), x ∈ F, be the indicator function of S

i
, for 1 ≤ i ≤ k. Let η

be a bijective mapping from G into G, and ζ(x) =
∑k

i=1 ℓi
(
h(x)

)
η
(
f
σ(i)

(x)
)
,

for x ∈ G. Let x, y ∈ G be such that ζ(x) = ζ(y), and let i, j ∈ {1, . . . , k}
be such that ℓ

i
(h(x)) = 1 and ℓ

j
(h(y)) = 1. Then, η

(
f
σ(i)

(x)
)
= η

(
f
σ(j)

(y)
)
,

and since η is bijective, it follows that f
σ(i)

(x) = f
σ(j)

(y). Now, since

h
(
f
i
(x)

)
= h

(
f
j
(x)

)
, for x ∈ G and 1 ≤ i, j ≤ ρ, and σ is a permutation

on the set {1, . . . , ρ}, it follows that h(x) = h(y), σ(i) = σ(j) and i = j,
and therefore, x = y. Thus, ζ−1(y) =

∑k
i=1 ℓi

(
h(η−1(y))

)
f−1
σ(i)

(
η−1(y)

)
, for

y ∈ G.

Examples. (A) Let (i) f be a bijective mapping from G into itself, such that the
cyclic group generated by it, as a subgroup of bijective mappings from G into G,
with composition as the group operation, is of small order ρ ≥ 2, (ii) g : Gρ → F is
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a symmetric function, which can be an expression in EXP
(
F ; [z

1
, . . . , z

ρ
]
)
, sym-

metric in all the ρ variables, (iii) f
0
(x) = x and f

i
(x) = f

(
f
i−1

(x)
)
, for 1 ≤ i ≤ ρ,

and (iv) h(x) = g
(
x, f

1
(x), . . . , f

ρ−1
(x)

)
, for x ∈ G. Then, f

ρ
(x) = x and, since

h
(
f(x)

)
= h(x), for x ∈ G, it follows that h

(
fi(x)

)
= h

(
fj (x)

)
, for x ∈ G and

1 ≤ i, j ≤ ρ. If G = F
∗, then it is interesting to choose f(x) = aφ(loga

x), for
x ∈ F

∗ and some primitive element a ∈ F
∗. However, it is important to choose

f such that ρ is a small positive integer. (B) Let G = F
∗ and s, t, v ∈ N be

such that gcd(s, t) = 1, st = n, 2 ≤ s, t ≤ n − 1, sv = 1 mod t and s large. Let
φ : Z

n
→ Z

n
be a polynomial mapping such that svφ(y) is a bijective mapping

from svZ
n
into itself and the order of the cyclic group generated by svφ(y) as a

subgroup of the group of bijective mappings from svZ
n
into itself is a small pos-

itive integer ρ. Now, let π(x) = asvφ(loga
x), for x ∈ F

∗, where a is a primitive
element in F

∗. Then, π
(
F
∗
)
= π

(
H

t

)
= H

t
, where H

t
= {x ∈ F

∗ : xt = 1}. Let
π

1
= π and π

i+1
= π

i
(π), for i ∈ N. Then, π

ρ+1
(x) = π

1
(x), for x ∈ H

t
. Let f

i

be bijective mappings from F
∗ into itself, such that the restriction of fi to Ht is

π
i
, for 1 ≤ i ≤ ρ, and g be the symmetric mapping as in the previous example and

h(x) = g
(
π

1
(x), . . . , π

ρ
(x)

)
. It can be easily checked that h

(
f
i
(x)

)
= h

(
f
j
(x)

)
, for

x ∈ G and 1 ≤ i, j ≤ ρ.

2.3 Multivariate Injective Mappings without Parameters

2.3.1 Multivariate Injective Mappings from Gm into Em

In this subsection, an iterative algorithm to construct a multivariate bijective
mapping from Gm into Em, for m ∈ N, is described. The algorithm utilises
parametric univariate bijective mappings discussed in the previous sections.
In later subsections, some variations involving hashing are described.

1. Let f
i
: G → G and g

i
: E → E, for 1 ≤ i ≤ m, be bijective mappings.

2. Let h
i
(z1 , . . . , zm−1 ; x) be parametric injective mappings from G into

E, for 1 ≤ i ≤ m, x ∈ G and z1 , . . . , zm−1 ∈ E being parameters,
constructed, for example, as described in section 2.1.1.

3. Let ζ
i
(x) = h

i

(
ζ
i+1(x), . . . , ζm(x), x1 , . . . , xi−1 ; f

i
(x

i
)
)
and η

i
(x) =

g
i

(
ζ
i
(x)

)
, for x = (x1 , . . . , xm) ∈ Gm and 1 ≤ i ≤ m. Let η(x) =

(η1(x), . . . , ηm(x)).

For finding x = (x1 , . . . , xm) ∈ Gm, such that η(x) = y, for any fixed y =
(y1 , . . . , ym) ∈ Em, let ǫ

i
= g−1

i
(y

i
) and δ

i
= h−1

i
(ǫ

i+1
, . . . , ǫ

m
, x

1
, . . . , x

i−1
; ǫ

i
),

for 1 ≤ i ≤ m. Then, x
i
= f−1

i
(δ

i
), for 1 ≤ i ≤ m. Now, for E = F and

G = F
∗, if g

i
and h

i
, for 1 ≤ i ≤ m, are bijective mappings and parametric

bijective mappings, respectively, from F
∗ into F

∗, then the above procedure
can be applied to obtain multivariate bijective mappings from Gm into Gm.
These mappings are required in appealing for a security that is immune to
threats resulting from Gröbner basis analysis. It can be observed that one
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level of exponentiation suffices for the purpose.

A one-to-one mapping from Gm into En, where m and n are positive
integers, with m ≤ n, and G is a subset of a finite field F, is obtained as
follows: for a carefully chosen bijective mapping P (y) from Gn into En and
hashing keys f

i
(x), for x = (x1 , . . . , xm) ∈ Gm and 1 ≤ i ≤ n − m, the

argument vector (f1(x), . . . , fn−m
(x), x1 , . . . , xm) is substituted for y ∈ Gn

in P (y). Thus, Q(x) = P (f1(x), . . . , fn−m
(x), x1 , . . . , xm) is a generic

multivariate one-to-one mapping from Gm into Gn.

2.3.2 Hybrid Multivariate Injective Mappings with Hashing

For Method 1 of the previous subsection, in the first example, in place
of T (x), x ∈ F, T

(
α(x)

)
, x ∈ F

m, and in the second example, in place
of f(z), z ∈ F, f

(
β(x)

)
, x ∈ F

m, are chosen, where α : F
m → F is a non

constant affine mapping in the first example, and β(x) = c
∏m

i=1 x
s
i

i , for some
nonnegative integers s

i
, which, when positive, are relatively prime to pn−1,

and, when zero, for the corresponding subscript index i, the variable x
i
does

not occur in the product, for 1 ≤ i ≤ m, such that β(x) is nonconstant, in the
second example. Similarly, Method 2 hashing of the previous subsection can
also be extended to multivariate mappings, replacing x with x, and choosing
Φ(y) = (φ1(y), . . . , φm(y)

)
to be a bijective mapping from Z

m
n

into itself in
place of φ(y). It can be observed that g can also be chosen to depend only on
a few scalar components from each vector, while maintaining symmetry in all
its vector parameters, with each vector consisting of m scalars components.
In the first example of Method 2 hashing of the previous section, if h(x) is a
symmetric mapping in its m components, then f(x) can be chosen to be a
permutation of components of x, independent of order ρ of the cyclic group
generated by f , with respect to composition operation.

3 Public Key Cryptography and Digital Signature

Let the number of elements in the plain message (or plain signature message)
be µ, and the number of elements in the encrypted message (or encrypted
signature message) be ν, where µ, ν ∈ N and µ ≤ ν. Let E be F or Z

n
,

and G ⊆ E be the set from which plain message elements are sampled. If
the number of plain and encrypted (or plain and signed) messages are the
same, then a multivariate bijective mapping P : Gµ → Gµ is chosen and
advertised in the public key lookup table T, while P−1 is saved in the back
substitution table B. Let

(
ξ1 , . . . , ξµ

)
∈ Gµ be plain message. For public key

cryptography, the encrypted message is
(
ǫ1 , . . . , ǫµ

)
= P

(
ξ1 , . . . , ξµ

)
, and

the decryption is P−1
(
ǫ1 , . . . , ǫµ

)
. For digital signature, the signed message

is
(
ǫ1 , . . . , ǫµ

)
= P−1

(
ξ1 , . . . , ξµ

)
, and recovered message is P

(
ǫ1 , . . . , ǫµ

)
.
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In the remaining part of the section, it is assumed that 1 ≤ µ ≤ ν − 1.
Let κ be the number of padding message elements in the hashing keys. It
is assumed that the key generator ensures that a prospective owner of the
pertinent keys is provided with an abundance of options for generating multi-
variate one-to-one mappings, whose inverse mappings are known only to the
owner. Let x = (x1 , . . . , xµ) ∈ Gµ be the plain message, y = (y1 , . . . , yν ) ∈
Eν be the encrypted or signed message, and ω = (ω1 , . . . , ωκ) ∈ Gκ be a
padding message. For public key encryption, an injective mapping P from
Gν into Eν is chosen, while for digital signature, a surjective mapping P from
Gν onto Gµ (in addition to two more surjective mappings) is chosen. Thus,
for public key cryptography mapping, invertible parametric matrices in the
most general form can be utilised, while for digital signature multivariate
surjective or bijective mappings, only parametric permutation and diagonal
matrices are employed.

For public key cryptography, let λ = ν − µ, and let P be an injective
mapping from Gν into Eν . Let y ∈ Gν be the argument vector of the bijec-
tive mapping P . Then, the vector

(
f1(x, ω), . . . , f

λ
(x, ω), x1 , . . . , xµ

)
, for

some hidden keys f1(x, ω), . . . , f
λ
(x, ω), is substituted for y of the public

key encryption mapping. Let F (x, ω) =
(
f1(x, ω), . . . , f

λ
(x, ω)

)
, and it is

assumed that F (x, ω) ∈ Gλ, for x ∈ Gµ and ω ∈ Gκ. The information re-
quired to compute P−1(ε), for ε ∈ Eν , and the hidden hashing keys F (x, ω),
for x ∈ Gµ and ω ∈ Gκ, is saved in a private key back-substitution table B,
while the mapping P

(
F (x, ω), x

)
is saved in the public key lookup table T.

If the sender and receiver agree on ω, and the encrypted message received is
ε ∈ Gν , then, with (z, x) = P−1(ε), the receiver can ascertain data integrity
by testing whether F (x, ω) = z. It is possible to utilise ω as a session key
in handshake protocols for repeated key negotiations.

For digital signature, let κ λ, K, L, µ and ν be positive integers, such that
K ≤ κ, L ≤ λ and ν ≥ L+µ. Let P , Q andR be multivariate surjective map-
ping from Gν onto GL+µ, from Gκ onto GK and from Gλ onto GL, respectively.
The right inverse mappings of the stated multivariate surjective mappings
are known only to the signer. Let F (x, ω) =

(
f1(x, ω), . . . , f

L
(x, ω)

)
. The

components of the mapping P , corresponding to the plain message, are ad-
vertised in a public key signature verification table V, and the information
for computing a right inverse of P — and, in general, all the information
required by the signing algorithm — is saved in a private key signature table
S, for signing plain message. Now, for a plain message x ∈ Gµ and a padding
message ω ∈ Gκ, the signed message ε is obtained by applying a right in-
verse mapping of P on the instance (z′, x) ∈ GL+µ, where z′ = F (x, ω). The
parameter z ∈ Gλ is so chosen by the signer that F (x, ω) = R(z), by com-
puting a right inverse of the multivariate surjective mapping R. For a plain
message x ∈ Gµ, the padding message ω ∈ Gκ is obtained by computing a
right inverse, which is known only to the signer, of the multivariate surjec-
tive mapping Q from Gκ onto GK , such that Q(ω) = ω′, where ω′ ∈ GK is
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agreed upon by the singer with a trusted authentication verifier TAV, for this
particular signature transaction, as a first step in the signature generation
procedure. The plain message can be found by computing the components
of the mapping P , that are advertised in the public key signature verification
table V, for a signed message ε ∈ Gν . For claiming the authenticity of the
signature, the receiver of the signature needs to produce also z, which must
be transmitted to the receiver by the signer. In addition to the signature
verification table V, containing plain message components of the mapping
P , another table A, called the signature authentication table, containing the
full mapping P and additional functions H(z, x, ω), with several compo-
nents, i.e., with values in Eτ , for some positive integer τ , is employed for
signature authentication verification purpose, for which the signer meeds
to provide (z, δ, ω), where δ ∈ Eτ is such that δ = H

(
z, x, ω

)
, at the

signer end, and the signature authentication is verified by testing whether
H(z, x, ω) = δ and R(z) = F (x, ω), by the verification authority, such
that the vector (z, x, ω) satisfies additional conditions, such as Q(ω) = ω′,
where ω′ has been consented by the TAV for this signature.

The signature authentication table A is registered with a trusted authen-
tication verifier (TAV), which is a public authority responsible for signature
authentication verification purpose. The authentication information shared
by the signer with TAV contains the multivariate mappings P (ε), F (x, ω),
Q(ω) and R(z), where P , Q and R are surjective mappings from Gν onto
GL+µ, from Gκ onto GK and from Gλ onto GL, respectively. The information
required to compute any right inverse mappings of P , Q and R is known
only to the owner of the signature keys, i.e., the signer. The verification
protocol at TAV side checks whether Q(ω) and x meet certain obligations,
and whether R(z) = F (x, ω), without knowing right inverse mappings of
Q and R. Now, for a particular plain message x to be signed, the signer
obtains an extra padding message ω′ ∈ GK , with the consent of TAV, con-
forming to the predefined agreement for a valid padding message with TAV,
and computes right inverse of Q with ω′ as the argument, to get the actual
padding message ω ∈ Gκ. Finally, with x and ω having been chosen or
computed, the signer generates z ∈ Gλ by computing a right inverse of R
with F (x, ω) as the argument, and the signature itself by computing the
inverse of the key mapping P , which is a multivariate surjective mapping
from Gν into GL+µ.

It is possible to include H(z, x, ω) in the signature verification public
key table V, in order to facilitate the receiver with a data integrity check,
before approaching the TAV. This choice depends on the group of possi-
ble receivers and signers besides TAV. If the intended group of possible
receivers is very large, such as external world, then it is convenient to re-
serve H(z, x, ω) to be present only in the signature authentication table A.
In any case, the components of the map P corresponding to F (x, ω) may
be exclusively present only in the signature authentication table A, since
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disclosing this information to the public may lead to its speculation based
on various observed values.

In the proposed model of digital signature scheme, the signer approaches
the TAV, with a request for generating a signed message for a specific pur-
pose. The TAV issues consent for a particular extra padding message ω′,
for a period of validity along with a transaction number. The extra padding
message ω′ may contain a small gist of transaction details, encrypted by the
key of TAV. Thus, the signer must request TAV, for the issuance of the extra
padding message ω′, by submitting a form containing a gist of transaction
or signature details and its intended purpose. The TAV then generates an
extra padding message ω′, transaction number and period of validity, and
issues them to the signer. The signer is required to transmit the transaction
number and period of validity to the intended receiver of the signature, who
will have to produce these particulars to TAV for claiming the authenticity
of the signed message. It may additionally be required that the claimants
of the authenticity of a signed message will be required to furnish their sig-
natures to TAV, with TAV and possibly also the sender bearing the role of
the receiver, for a proof of the claim.

Multivariate surjective mappings can be realised as parametric map-
pings, which are bijective for some choice of parameter component values,
and may be arbitrary mappings for some other choice of parameter values.
The choice of parameters is known to the signer. For example, for the multi-
variate surjective mapping Q from Gκ onto GK , κ−K components of ω are
taken in the argument vector of the partition of unity functions of section
2.1, with l = κ−K and m = K, in the notation followed there. When com-
bined with the partitioning methods of section 2.1.1, for some partitions,
with index i, the mappings ζ

i

(
z1 , . . . , zl ; x

)
are chosen to be bijective, and

for the remaining, the mappings are arbitrary.

4 Complexity Analysis of Computing Left Inverse

Mappings of Multivariate Injective Mappings and

of Computing Right Inverse Mappings of Mul-

tivariate Surjective Mappings

Model theory of fields and polynomial algebras is extensively studied in
mathematical logic [12, 14, 20, 35, 36]. Let F be a field, and let ARITH-EXP(F)
be the set of arithmetic expressions without quantifiers, obtained by collect-
ing the expressions involving any number of finitely many variables, con-
structed using parentheses and the binary or unary arithmetic operators of
addition +, subtraction −, multiplication ·, possibly division /, exponenti-
ation k, where k is a positive integer, and binary valued relational operator
= (and possibly other relational operators such as <, >, ≤ and ≥). The
relational operators allow construction of assertions that evaluate to any-
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one of the special symbolic constants false and true, represented by 0
and 1, respectively. In the sequel, the variables assume values from F, the
arithmetic expressions evaluate to values in F, as defined by the arithmetic
operations in F, and the assertions evaluate to values in {0, 1}. A variable
taking values in {0, 1} is a boolean variable. The arithmetic expressions in
ARITH-EXP(Z2) are boolean expressions. For any field F, a boolean variable
x can be obtained from the equation x2−x = 0. For boolean variables x and
y, ¬x can be represented by 1−x, x∧y by x ·y, x∨y by 1−(1−x) ·(1−y),
x⊕y by (x−y)2, x → y by 1−x ·(1−y), and x ↔ y by 1−(x−y)2, where ¬
denotes the logical “negation”, ∧ the logical “and”, ∨ the logical “or”, ⊕ the
logical “exclusive or”, → the logical “implies”, and ↔ the logical “implies
and is implied by”. The inequality operator, denoted by 6=, is a secondary
binary operator defined as the logical negation of the equality operator. Let
ARITH-EXP

Q
(F) be the set of arithmetic expressions in which some (none,

some or all) variables are constrained by “existential” ∃ or “universal” ∀
quantifiers. A variable constrained by a quantifier is called a bound variable.
A variable that is not bound is called a free variable. An arithmetic expres-
sion in which all the variables are free is a quantifier free arithmetic expres-
sion, i.e., an expression in ARITH-EXP(F). A quantified arithmetic expres-
sion is in prenex normal form, if all the quantifiers occur before the otherwise
quantifier free arithmetic expression, i.e, a quantified arithmetic expression
of the form ∀y

1
. . . ∀y

k
1
∃x

1
. . . ∀y

k
i−1

+1
. . . ∀y

k
i
∃x

i
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃x

m

∀y
km+1

. . . ∀y
n

f(x
1
, . . . , x

m
, y

1
, . . . , y

n
), where m and n are positive inte-

gers, and k
i
, for 1 ≤ i ≤ m, are nonnegative integers such that k

i
≤ k

i+1 ,
for 1 ≤ i ≤ m − 1, and km ≤ n. The variables y

j
, 1 ≤ j ≤ n, are

independent variables, as they are bound to universal quantifiers. The
variable x

i
depends on the variables y

j
, 1 ≤ j ≤ k

i
, 1 ≤ i ≤ m, and

is a dependent bound variable. A tuple
(
a1 , . . . , ai

, b1 , . . . , bk
i

)
∈ F

i+k
i ,

1 ≤ i ≤ m, is feasible to a quantified arithmetic expression in prenex nor-
mal form with no free variables as described before, if either i = m and
f(a1 , . . . , am , b1 , . . . , bkm , y

km+1
, . . . , yn) evaluates to 1, for y

km+1
, . . . , yn

∈ F, or 1 ≤ i ≤ m−1 and each tuple (a
1
, . . . , a

i
, x

i+1
, b

1
, . . . , b

k
i
, y

k
i
+1
, . . . , y

k
i+1

),

for y
k
i
+1
, . . . , y

k
i+1

∈ F, and for some x
i+1 ∈ F, that may depend on

a1 , . . . , ai
, b1 , . . . , bk

i
, y

k
i
+1
, . . . , y

k
i+1

∈ F is feasible. If for every b1 , . . . , bk1
∈

F, there exists a1 ∈ F, such that the tuple
(
a1 , b1 , . . . , bk1

)
is feasible,

then the given instance of binary valued quantified arithmetic expression
is satisfiable. The evaluation problem for quantified boolean expressions
in prenex normal form with no free variables in ARITH-EXP

Q
(F) is to find

whether the given input instance is satisfiable. Let ARITH-EXP
Q−SAT

(F) ⊆
ARITH-EXP

Q
(F) be the set of satisfiable binary valued quantified arith-

metic expressions (i.e., quantified arithmetic assertions) in prenex normal
form with no free variables that evaluate to true. Let B

Q
and B

Q−SAT
be

ARITH-EXP
Q
(Z2) and ARITH-EXP

Q−SAT
(Z2), respectively. By the previous
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discussion, every boolean expression in B
Q
, analogously in B

Q−SAT
, can be

represented by some arithmetic expression in ARITH-EXP
Q
(F), analogously

in ARITH-EXP
Q−SAT

(F), with equality binary relation, for any field F. The
evaluation problem for quantified boolean expressions in prenex normal form
with no free variables in BQ is PSPACE-complete, where PSPACE is the set
of formal languages acceptable in polynomial space [25].

4.1 Constraint Satisfaction Problem

Let ∀y1 . . . ∀y
k
1
∃x1 . . . ∀y

k
i−1

+1
. . . ∀y

k
i
∃xi . . . ∀y

k
m−1

+1
. . . ∀y

km
∃xm

∀y
km+1

. . . ∀y
n
f(x

1
, . . . , x

m
, y

1
, . . . , y

n
) be an instance in ARITH-EXP

Q−SAT
(F),

where m and n are positive integers, and k
i
, for 1 ≤ i ≤ m, are nonneg-

ative integers such that k
i
≤ k

i+1 , for 1 ≤ i ≤ m − 1, and km ≤ n. A
tuple (a1 , . . . , ar , b1 , . . . , bkr ) ∈ F

r+kr , 1 ≤ r ≤ m, is functionally feasible
by quantifier free arithmetic expressions to the given constraint satisfaction
problem, if there exist quantifier free arithmetic expressions g1(y1 , . . . , yk1

)

and g
i
(x1 , . . . , xi−1 , y1 , . . . , yk

i
), 2 ≤ i ≤ m, in ARITH-EXP

(
F
)
, such that

the following holds: ∀y1 . . . ∀yn f(x1 , . . . , xm, y1 , . . . , yn) = true, where
x1 = g1(y1 , . . . , yk

1
), xi = gi(x1 , . . . , xi−1 , y1 , . . . , yk

i
), 2 ≤ i ≤ m, g1(b1 , . . . , bk

1
) =

a
1
and g

i
(a

1
, . . . , a

i−1
, b

1
, . . . , b

k
i
) = a

i
, 2 ≤ i ≤ r. It can be observed that for

a finite field F, a feasible tuple is also functionally feasible by quantifier
free arithmetic expressions. A solution to the constraint satisfaction prob-
lem is to find quantifier free arithmetic expressions, if and when they exist,
g1(y1 , . . . , yk1

) for x1 and g
i
(x1 , . . . , xi−1 , y1 , . . . , yk

i
) for x

i
, 2 ≤ i ≤ m,

such that for all y1 . . . yn ∈ F, f(x1 , . . . , xm , y1 , . . . , yn) = 1, where
x

1
= g

1
(y

1
, . . . , y

k
1
) and x

i
= g

i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), for 2 ≤ i ≤ m. The

constraint satisfaction problem is feasible, if it has a solution in quantifier
free arithmetic expressions.

Theorem 1 The constraint satisfaction problem for binary valued instances
in prenex normal form with no free variables in ARITH-EXP

Q−SAT
(F) is

PSPACE-hard.

Proof. Let

∀y
1
. . . ∀y

k
1
∃x

1
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃x

m
∀y

km+1
. . . ∀y

n
f(x

1
, . . . , x

m
, y

1
, . . . , y

n
)

where m and n are positive integers and k
i
, 1 ≤ i ≤ m, are integers such

that 0 ≤ k
i
≤ k

i+1 ≤ n, 1 ≤ i ≤ m− 1, be a given instance of binary valued
quantified boolean expression with no free variables in BQ for the evaluation
problem. Let

∃w
1

∀y
1
. . . ∀y

k
1
∃x

1
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃x

m
∀y

km+1
. . . ∀y

n

∃t1 . . . ∃t
k
1
∀v1 . . . ∃t

k
m−1

+1
. . . ∃t

km
∀vm ∃t

km+1
. . . ∃tn

[ w
1
∧ f(x

1
, . . . , x

m
, y

1
, . . . , y

n
) ] ∨ [ (¬w

1
) ∧ (¬f(v

1
, . . . , v

m
, t

1
, . . . , t

n
)) ]
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be an instance to the constraint satisfaction problem with no free variables,
which can be easily shown to be in B

Q−SAT
, since feasibility coincides with

functional feasibility by arithmetic expressions for Z2 . The input binary val-
ued quantified boolean expression evaluates to 1 if and only if w1 is 1 in any
solution to the constructed instance of the constraint satisfaction problem.
Now, as discussed at the beginning of the section, the field Z2 , together with
all its arithmetic and logical operations, can be emulated by the arithmetic
operations and equality operator with any field F. Thus, the constraint sat-
isfaction problem for ARITH-EXP

Q−SAT
(F), which includes equivalent binary

valued quantified arithmetic expressions for those in B
Q−SAT

, is PSPACE-
hard. �

4.2 Quantifier Elimination Problem

Let P(F) be a set of parametric subsets of F, parametrized by variables as-
suming values in F, such that the binary valued characteristic functions of
the sets are assertions in ARITH-EXP(F). For an instance in ARITH-EXPQ(F),
the quantifier elimination problem for a given instance is to compute, for
x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
∈ F, sets G

i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
) in P(F), 1 ≤ i ≤

m, such that
{
x

i
∈ F : (x

1
, . . . , x

i
, y

1
, . . . , y

k
i
) is feasible to the given instance

}

= G
i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
) , 1 ≤ i ≤ m. If F is the field of real numbers,

with the set of binary relations {=, <, ≤, >, ≥} and the set of constants
{0, 1}, then the emptiness testing of parametric subsets of Fn, for an arbi-
trary positive integer n, where the characteristic functions of the parametric
subsets are binary valued quantified arithmetic expressions, is decidable (or
computable), and quantifier elimination is possible, i.e., equivalent quan-
tifier free arithmetic assertions can be computed for the quantified arith-
metic assertions as characteristic functions for the parametric subsets of Fn

[12, 14, 35, 47]. Thus, ARITH-EXP
Q
(F) admits quantifier elimination, and

the sets of feasibility tuples for instances in ARITH-EXP
Q
(F) have charac-

teristic functions in ARITH-EXP(F), that can be computed by an algorithm.
Set solutions can be enumerated by backtracking method [26]. By the same
proof of Theorem 1, the quantifier elimination problem can be shown to be
PSPACE-hard.

Theorem 2 The constraint satisfaction problem for binary valued instances
in prenex normal form with no free variables in ARITH-EXP

Q−SAT
(F), that

have unique solutions, is PSPACE-hard.

Proof. Let

∀y1 . . . ∀y
k
1
∃x1 . . . ∀y

k
m−1

+1
. . . ∀y

km
∃xm ∀y

km+1
. . . ∀yn f(x1 , . . . , xm , y1 , . . . , yn)

be an instance in B
Q
for the quantifier elimination problem in prenex normal

form with no free variables. Let Xi(x1 , . . . , xi , y1 , . . . , yk
i
) be the characteris-

tic function of the set G
i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), for x

1
, . . . , x

i
, y

1
, . . . , y

k
i
∈
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Z
2
, 1 ≤ i ≤ m. LetX

i, b
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
) =X

i
(x

1
, . . . , x

i−1
, b, y

1
, . . . , y

k
i
),

for x
1
, . . . , x

i−1
, y

1
, . . . , y

k
i
∈ Z

2
, b ∈ Z

2
, 1 ≤ i ≤ m. In the remaining part of

the proof, the sets Gi(x1 , . . . , xi−1 , y1 , . . . , yk
i
) are represented by the pair of

boolean functions X
i, b

(x
1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), for x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
∈

Z
2
, b ∈ Z

2
, 1 ≤ i ≤ m. Let the following instance to the constraint satisfaction

problem be considered:

∀y1 . . . ∀y
k
1

∃v1, 0 ∃v1, 1 ∀x1 . . . ∀y
k
i−1

+1
. . . ∀y

k
i

∃vi, 0 ∃vi, 1 ∀xi ∀yk
i
+1

. . . ∀y
k
i+1

. . . ∀y
k
m−1

+1
. . . ∀y

km
∃v

m, 0
∃v

m, 1
∀x

m
∀y

km+1
. . . ∀y

n

m−1∧

i=1

{ [
(x

i
= 0) →

[
v
i, 0

↔ (v
i+1, 0

∨ v
i+1, 1

)
] ]

∧

[
(xi = 1) →

[
vi, 1 ↔ (vi+1, 0 ∨ vi+1, 1)

] ] } ∧

{ [
(x

m
= 0) →

[
v
m, 0

↔ f(x
1
, . . . , x

m
, y

1
, . . . , y

n
)

] ]
∧

[
(x

m
= 1) →

[
v
m, 1

↔ f(x
1
, . . . , x

m
, y

1
, . . . , y

n
)

] ] }
(1)

The boolean functions X
m, b

(x1 , . . . , xm−1 , y1 , . . . , ykm
), that encode the in-

dicator function of the set G
m
(x

1
, . . . , x

m−1
, y

1
, . . . , y

km
), are the solutions to

the boolean variables v
m, b

, b ∈ Z2 , respectively, for x1
, . . . , x

m−1
, y

1
, . . . , y

km
∈

Z
2
, for the following instance of constraint satisfaction problem:

∀y
1
. . . ∀y

k
1
∀x

1
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃v

m, 0
∃v

m, 1
∀x

m
∀y

km+1
. . . ∀y

n

{ [
(xm = 0) →

[
vm, 0 ↔ f(x1 , . . . , xm , y1 , . . . , yn)

] ]
∧

[
(xm = 1) →

[
vm, 1 ↔ f(x1 , . . . , xm , y1 , . . . , yn)

] ] }

After obtaining the boolean functions X
i+1, b

(x
1
, . . . , x

i
, y

1
, . . . , y

k
i+1

), b ∈ Z
2
,

of Gi+1(x1 , . . . , xi , y1 , . . . , yk
i+1

), the boolean functionsX
i, b

(x1 , . . . , xi−1 , y1 , . . . , yk
i
),

b ∈ Z
2
, of G

i
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
), for x

1
, . . . , x

i
, y

1
, . . . , y

k
i+1

∈ F, are the

solutions to the boolean variables v
i, b
, 1 ≤ i ≤ m − 1, b ∈ Z2 , respectively,

for the following instance of constraint satisfaction problem:

∀y
1
. . . ∀y

k1
∀x

1
. . . ∀y

k
i−1

+1
. . . ∀y

k
i

∃v
i, 0

∃v
i, 1

∀x
i
∀y

k
i
+1

. . . ∀y
k
i+1

{ [
(x

i
= 0) →

[
v
i, 0

↔
(
X

i+1, 0
(x

1
, . . . , x

i
, y

1
, . . . , y

k
i+1

) ∨ X
i+1, 1

(x
1
, . . . , x

i
, y

1
, . . . , y

k
i+1

)
) ] ]

∧
[

(x
i
= 1) →

[
v
i, 1

↔
(
X

i+1, 0
(x

1
, . . . , x

i
, y

1
, . . . , y

k
i+1

) ∨ X
i+1, 1

(x
1
, . . . , x

i
, y

1
, . . . , y

k
i+1

)
) ] ] }

In summary, the boolean functionsX
i, b

(x1 , . . . , xi−1 , y1 , . . . , yk
i
), that encode

the indicator function of the set Gi(x1 , . . . , xi−1 , y1 , . . . , yk
i
), are the solutions

to the boolean variables v
i, b
, b ∈ Z2 , respectively, for x1

, . . . , x
i−1

, y
1
, . . . , y

k
i
∈

Z
2
and 1 ≤ i ≤ m, in the proposed instance of constraint satisfaction prob-

lem. The actual solutions for v
i, b

can also depend on v
j, c

, for b, c ∈ Z2 , 1 ≤
j ≤ i− 1 and 2 ≤ i ≤ m, in the proposed instance of the constraint satisfac-
tion problem. Nonetheless, the boolean formulasX

i, b
(x

1
, . . . , x

i−1
, y

1
, . . . , y

k
i
)
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are assumed to be the main solutions for v
i,,b

, for b ∈ Z2 and 1 ≤ i ≤ m, as
these are the solutions of the instance for the quantifier elimination problem,
which is reduced to the instance of the constraint satisfaction problem. �

In the proof of Theorem 2, for avoiding the possibility of dependence of
a solution for v

i, 1 on v
i, 0 , the formulas in the above are encoded treating

the variables in pairs, representing v
i, b
, b ∈ Z2 , by a single variable v

i
=

(v
i, 0 , vi, 1), performing the required computations in Z

2
2
, for 1 ≤ i ≤ m.

Thus, the encoding contains only a single dependent variable v
i
, 1 ≤ i ≤ m,

and either component of it depends only on the variables constrained by
quantifiers occurring before the lone existential quantifier. The components
v
i, x

i
are replaced by a projection T (x

i
, v

i
), which can further be chosen to

be linear in v
i
for each fixed x

i
, for 1 ≤ i ≤ m, to avoid duplication. There is

a unique solution separately for each component T (x
i
, v

i
) of the dependent

variable v
i
, for 1 ≤ i ≤ m. Now, as discussed in the beginning of the

section, the field Z2 , together with all its arithmetic and logical operations,
can be emulated by the arithmetic operations and equality operator with
any field F. The characteristic functions of set solutions to the quantifier
elimination problem for binary valued instances in prenex normal form with
no free variables in ARITH-EXP

Q
(F), which includes B

Q
, are unique. Thus,

the constraint satisfaction problem for instances in ARITH-EXP
Q−SAT

(F), that
admit unique solutions, is PSPACE-hard, since the stated set of instances also
contains those instances encoding the characteristic functions for quantifier
elimination problem for instances in B

Q
.

4.3 Simultaneous Multivariate Polynomial Equations over F

Let l, m, m ∈ N andf
i

(
x1 , . . . , xm , y1 , . . . , yn

)
∈ ARITH-EXP(F), for 1 ≤

i ≤ l, be arithmetic expressions. A system of (multivariate) polynomial
equations is the following:

f
i

(
x1 , . . . , xm , y1 , . . . , yn

)
= 0 , 1 ≤ i ≤ l , (2)

where y
j
, 1 ≤ j ≤ n, are independent variables and x

i
, 1 ≤ i ≤ m, are

dependent variables, assuming values from F, both specified as part of an
instance. A tuple

(
a1 , . . . , ai

, b1 , . . . , bn
)
is feasible to (2), if either (1)

i = m and (2) holds with xr = ar , for 1 ≤ r ≤ m, and y
j
= b

j
, for

1 ≤ j ≤ n, or (2) 1 ≤ i ≤ m − 1, and
(
a1 , . . . , ai

, a
i+1 , b1 , . . . , bn

)
is

feasible for some a
i+1 depending on

(
a1 , . . . , ai

, . . . , b1 , . . . , bn
)
. Let P

(
F
)

be the collection of admissible subsets of F, whose indicator functions are
in ARITH-EXP

(
F
)
. A complete solution to (2) are parametric maximal sets

Gi

(
a1 , . . . , ai−1 , y1 , . . . , yn

)
∈ P

(
F
)
, such that Gi

(
a1 , . . . , ai−1 , y1 , . . . , yn

)
=

{
a

i
∈ F :

(
a

1
, . . . , a

i−1
, a

i
, y

1
, . . . , y

n

)
is feasible

}
, for 1 ≤ i ≤ m.

In the above system, the ordering of the variables x1 , . . . , xm appears
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specified. However, this ordering can be made innocuous by additional con-
straints as follows:

w2
i, j

= w
i, j

, 1 ≤ i, j ≤ m

m∑

j=1

w
i, j

= 1 and
m∑

j=1

m∏

k = 1
k 6= j

(1 − w
i, k

) = 1 , 1 ≤ i ≤ m

m∑

i=1

w
i, j

= 1 and

m∑

i=1

m∏

k = 1
k 6= i

(1 − w
k, j

) = 1 , 1 ≤ j ≤ m








w
1, 1

w
1, 2

. . . w
1, m

w2, 1 w2, 2 . . . w2, m

...
...

...
...

w
m, 1

w
m, 2

. . . w
m, m















x
1

x2

...
x

m







−








x
m+1

xm+2

...
x

2m








=








0
0
...
0








, and

fi

(
xm+1 , . . . , x2m , y1 , . . . , yn

)
= 0 , 1 ≤ i ≤ l

where y
j
, 1 ≤ j ≤ n, are independent variables, and all the remaining

variables are dependent variables. The ordering is concealed by allowing the
system to choose an appropriate ordering of the variables x

m+1 , . . . , x2m ,
while allowing x1 , . . . , xm to appear in the specified order. In the above set
of constraints, for each row of the matrix

[
w

i, j

]

1≤i, j≤m
, for the constraints

on i, 1 ≤ i ≤ m, and for each column of the matrix
[
w

i, j

]

1≤i, j≤m
, for the

constraints on j, 1 ≤ j ≤ m, the first constraint requires at least one entry
of 1, and the second constraint requires (m−1) entries of 0, in the respective
row or column, and the matrix

[
w

i, j

]

1≤i, j≤m
is a permutation matrix.

Theorem 3 The quantifier elimination problem for instances in ARITH-EXP
Q
(Z2)

is polynomial time subroutine equivalent to the problem of solving systems
of multivariate polynomial equations, for the field Z2 .

Proof. Let

∀y
1
. . . ∀y

k
1
∃x

1
. . . ∀y

k
m−1

+1
. . . ∀y

km
∃x

m
∀y

km+1
. . . ∀y

n
f(x

1
, . . . , x

m
, y

1
, . . . , y

n
)

be an instance in B
Q
in prenex normal form with no free variables, for some

positive integers m and n, and nonnegative integers k
i
, such that k

i−1 ≤ k
i
≤

n, for 1 ≤ i ≤ n, where k0 = 0. Let χ
m−i+1, a(x1 , . . . , xm−i

, y1 , . . . , yk
m−i+1

) ∈

ARITH-EXP(Z2) be the solution for v
m−i+1, a, for a ∈ Z2 and 1 ≤ i ≤ m, such
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that the following holds:

vm,a ↔ ∀y
km+1

. . . ∀yn f(x1 , . . . , xm−1 , a, y1 , . . . , yn) , and

v
m−i+1, a

↔ ∀y
k
m−i+1

+1
. . . ∀y

k
m−i+2

[

χm−i+2, 0(x1 , . . . , xm−i , a, y1 , . . . , yk
m−i+2

) ∨

χ
m−i+2, 1

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+2

)
]

for a ∈ Z2 and 2 ≤ i ≤ m







(3)

The above equations can also be expressed as follows:

¬v
m, a

↔ ∃u
km+1

. . . ∃u
n

¬f(x
1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, u

km+1
, . . . , u

n
) , and

¬v
m−i+1, a

↔ ∃u
k
m−i+1

+1
. . . ∃u

k
m−i+2

[

¬χ
m−i+2, 0

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+1

, u
k
m−i+1

+1
, . . . , u

k
m−i+2

) ∧

¬χ
m−i+2, 1

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+1

, u
k
m−i+1

+1
, . . . , u

k
m−i+2

)
]

for a ∈ Z2 and 2 ≤ i ≤ m

Let G
m, a, j, b

(x1 , . . . , xm−1 , y1 , . . . , ykm
, u

km+1
, . . . , u

j−1), for the ground
case xm = a and u

j
= b, for a, b ∈ Z2 and km + 1 ≤ j ≤ n, be indica-

tor functions of complete solutions in the following system of simultaneous
multivariate equations:

f(x
1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, u

km+1
, . . . , u

n
) = 0

Then, the indicator function, χm, a(x1 , . . . , xm−1 , y1 , . . . , ykm
), which is the

solution for vm, a , for a ∈ Z2 , is given by

¬
[
G

m,a, km+1, 0
(x

1
, . . . , x

m−1
, y

1
, . . . , y

km
) ∨ G

m, a, km+1, 1
(x

1
, . . . , x

m−1
, y

1
, . . . , y

km
)
]

Now, for 1 ≤ i ≤ m−1, after obtaining χ
m−i+1, a(x1 , . . . , xm−i

, y1 , . . . , yk
m−i+1

),

letG
m−i, a, j, b

(x1 , . . . , xm−i−1 , y1 , . . . , yk
m−i

, u
k
m−i

+1
, . . . , u

j−1), for the ground

case x
m−i

= a and u
j
= b, for a, b ∈ Z2 and k

m−i
+ 1 ≤ j ≤ k

m−i+1 , be indi-
cator functions of complete solutions in the following system of simultaneous
multivariate equations:

χ
m−i+1, 0

(x
1
, . . . , x

m−i
, y

1
, . . . , y

k
m−i

, u
k
m−i

+1
, . . . , u

k
m−i+1

) = 0 , and

χ
m−i+1, 1

(x
1
, . . . , x

m−i
, y

1
, . . . , y

k
m−i

, u
k
m−i

+1
, . . . , u

k
m−i+1

) = 0

where x
m−i

is set to the ground value a .

Then, the indicator function, χ
m−i, a

(x1 , . . . , xm−i−1 , y1 , . . . , yk
m−i

), which

is the solution for v
m−i, a

, for the ground instance x
m−i

= a and a ∈ Z2 , is
given by

[
¬G

m−i, a, k
m−i

+1, 0
(x

1
, . . . , x

m−i−1
, y

1
, . . . , y

k
m−i

)
]

∧
[
¬G

m−i, a, k
m−i

+1, 1
(x

1
, . . . , x

m−i−1
, y

1
, . . . , y

k
m−i

)
]

for 1 ≤ i ≤ m − 1. Thus, finding complete solutions for systems of simul-
taneous multivariate equations over Z2 is PSPACE-hard, as it is logically
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equivalent to the quantifier elimination problem. �

For a positive integer k and bit sequences (u1 , . . . , uk
), (t1 , . . . , tk) ∈ Z

k
2

let “�” be the “successor or equal to” relation with respect to the dictionary
ordering of finite binary sequences, such that the comparison of correspond-
ing bits is performed starting from least subscript index and up towards
higher subscript indexes, as follows:

(u1 , . . . , uk
) � (t1 , . . . , tk) exactly when the following holds :

(
(u1 = 1) ∧ (t1 = 0)

)
∨

k∨

i=2

(
i−1∧

j=1

(uj = tj ) ∧ (ui = 1) ∧ (ti = 0)
)

∨
k∧

j=1

(uj = tj )

Now, the prenex normal form equivalent formula for (3) is the following:

∀y
1
. . . ∀y

km
∃v

m,a
∃u

km+1, a
. . . ∃u

n, a
∀z

km+1
. . . ∀z

n

[

︸︷︷︸

0

(

︸︷︷︸

1

[ v
m,a

∧
n∧

j=km+1

(u
j, a

= 0) ] ∧

[ G
m
(x

1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, z

km+1
, . . . , z

n
) ]

)

︸︷︷︸

1
∨ (

︸︷︷︸

2

[ ¬v
m, a

] ∧ [ ¬G
m
(x

1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, u

km+1, a
, . . . , u

n, a
) ] ∧

[
(n = k

m
) ∨ [ (z

km+1
, . . . , z

n
) � (u

km+1, a
, . . . , u

n, a
) ] ∨

[ G
m
(x

1
, . . . , x

m−1
, a, y

1
, . . . , y

km
, z

km+1
, . . . , z

n
) ]

] )

︸︷︷︸

2

]

︸︷︷︸

0

(4)

where

G
m
(x

1
, . . . , x

m−1
, x

m
, y

1
, . . . , y

km
, y

km+1
, . . . , y

n
) =

f(x1 , . . . , xm−1 , xm , y1 , . . . , ykm
, y

km+1
, . . . , yn)

The solutions for the dependent variables bound by the existential quantifiers
are unique. Let χ

m−i+2, a(x1 , . . . , xm−i+1 , y1 , . . . , yk
m−i+1

, y
k
m−i+1+1

, . . . , y
k
m−i+2

)

be the solution for the variable v
m−i+2, a , for 2 ≤ i ≤ m and a ∈ Z2 , and let

G
m−i+1

(x
1
, . . . , x

m−i
, x

m−i+1
, y

1
, . . . , y

k
m−i+1

, y
k
m−i+1

+1
, . . . , y

k
m−i+2

) =
(

χ
m−i+2, 0

(x
1
, . . . , x

m−i+1
, y

1
, . . . , y

k
m−i+1

, y
k
m−i+1

+1
, . . . , y

k
m−i+2

) ∨

χ
m−i+2, 1

(x
1
, . . . , x

m−i+1
, y

1
, . . . , y

k
m−i+1

, y
k
m−i+1

+1
, . . . , y

k
m−i+2

)
)
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and

∀y
1
. . . ∀y

k
m−i+1

∃v
m−i+1, a

∃u
k
m−i+1

+1, a
. . . ∃u

k
m−i+2

, a
∀z

k
m−i+1

+1
. . . ∀z

k
m−i+2

[

︸︷︷︸

0

(

︸︷︷︸

1

[ v
m−i+1, a

∧

k
m−i+2∧

j=k
m−i+1

+1

(u
j, a

= 0) ] ∧

[ G
m−i+1

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+1

, z
k
m−i+1

+1
, . . . , z

k
m−i+2

) ]
)

︸︷︷︸

1
∨ (

︸︷︷︸

2

[ ¬v
m−i+1, a

] ∧

[ ¬G
m−i+1

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+1

, u
k
m−i+1

+1, a
, . . . , u

k
m−i+2

, a
) ] ∧

[
(km−i+2 = km−i+1) ∨ [ (z

k
m−i+1

+1
, . . . , z

k
m−i+2

) � (u
k
m−i+1

+1, a
, . . . , u

k
m−i+2

, a
) ]

∨ [ G
m−i+1

(x
1
, . . . , x

m−i
, a, y

1
, . . . , y

k
m−i+1

, z
k
m−i+1

+1
, . . . , z

k
m−i+2

) ]
]

)

︸︷︷︸

2

]

︸︷︷︸

0

(5)

for 2 ≤ i ≤ m and a ∈ Z2 . Again, the solutions for the dependent vari-
ables bound by the existential quantifiers are unique. This discussion is
summarized in the following:

Corollary 3.1 The constraint satisfaction problem for instances of the form

∀y
1
. . . ∀y

k
∃x

1
. . . ∃x

m
∀y

k+1
. . . ∀y

n
f(x

1
, . . . , x

m
, y

1
, . . . , y

n
)

that are in ARITH-EXP
Q−SAT

(Z2), where k, m and n are positive integers,
such that 1 ≤ k ≤ n and x

i
, for 1 ≤ i ≤ m, admit unique solutions, is

PSPACE-hard.

Proof. Follows from the discussion preceding the statement. �

4.4 Parametric Multivariate Polynomial Mappings and their

Nonparametric Inverses

In this subsection, let F be a finite field. For integers l ≥ 0, m ≥ 1 and
n ≥ 1, a parametric multivariate polynomial mapping, with z1 , . . . , zl as
parameters, is η(z; x) =

(
η1(z; x), . . . , ηn(z; x)

)
, where z = (z1 , . . . , zl),

x = (x1 , . . . , xm), and η
i
(z; x) ∈ F[z1 , . . . , zl , x1 , . . . , xm

], for 1 ≤ i ≤ n.
A parametric left inverse η(-L)(z; y), y = (y1 , . . . , yn), of a parametric mul-
tivariate polynomial mapping η(z; x) on X ⊆ F

l × F
m is as follows: for

every z ∈ F
l, x ∈ F

m and y ∈ F
n, such that (z1 , . . . , zl , x1 , . . . , xm)

∈ X, if η(z; x) = y, then η(-L)(z; y) = x. A parametric right inverse
η(-R)(z; y) on Y ⊆ F

l × F
n of a parametric multivariate polynomial map-

ping η(z; x) is as follows: for every z ∈ F
l, x ∈ F

m and y ∈ F
n, such

that (z1 , . . . , zl , y1 , . . . , yn) ∈ Y , if η(-R)(z; y) = x, then η(z; x) = y.
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For z ∈ F
l, let S(-L)

η
(z; x), x ∈ F

m, and S(-R)

η
(z; y), y ∈ F

n, be as fol-

lows: S(-L)

η
(z; x) =

{
(z1 , . . . , zl , y1 , . . . , yn) ∈ F

l × F
n : η(z; x) = y

}
, and

S(-R)

η
(z; y) =

{
(z1 , . . . , zl , x1 , . . . , xm) ∈ F

l × F
m : η(z; x) = y

}
. Now,

the following statements hold: (1) for z ∈ F
l and x ∈ F

m, the set
S(-L)

η
(z; x) contains exactly one element; (2) for z ∈ F

l and y ∈ F
n, the

set S(-R)

η
(z; y) may be empty or nonempty; (3) a parametric left inverse

η(-L)(z; y) can be defined on the set
⋃

(z1 , ..., zl , x1 , ..., xm )∈X S(-L)

η
(z; x) if and

only if S(-L)

η
(z; x) ∩ S(-L)

η
(z; x′) = ∅, for (z

1
, . . . , z

l
, x

1
, . . . , x

m
) ∈ X and

(z
1
, . . . , z

l
, x′

1
, . . . , x′

m
) ∈ X, whenever x 6= x′; and (4) a parametric right

inverse η(-R)(z; y) can be defined on the set Y if and only if S(-R)

η
(z; y) 6= ∅,

for every (z1 , . . . , zl , y1 , . . . , yn) ∈ Y . If a parametric left inverse (similarly,
a parametric right inverse) of a parametric multivariate polynomial mapping
does not depend on the parameters, then it is nonparametric. Let

T (-L)
η

(x) =
⋃

(z
1
, ..., z

l
, x

1
, ..., xm)∈X

{
y ∈ F

n : η(z; x) = y
}

for fixed x = (x1 , . . . , xm) ∈ F
m , and

T (-R)

η
(y) =

⋂

(z
1
, ..., z

l
, y

1
, ..., yn )∈Y

{
x ∈ F

m : η(z; x) = y
}

for fixed y = (y
1
, . . . , y

n
) ∈ F

n

Then, on the set
⋃

(z1 , ..., zl , x1 , ..., xm )∈X S(-L)

η
(z; x), a nonparametric left in-

verse η(-L)(y) can be defined if and only if T (-L)

η
(x) ∩ T (-L)

η
(x′) = ∅, for

x, x′ ∈ F
m, x 6= x′, and on the set Y , a nonparametric right inverse η(-R)(y)

can be defined if and only if T (-R)

η
(y) 6= ∅, for (z1 , . . . , zl , y1 , . . . , yn) ∈ Y

and y ∈ F
n. A parametric inverse is simultaneously a parametric left inverse

and a parametric right inverse. If a parametric inverse does not depend on
the parameters, then it is nonparametric.

Theorem 4 The computational problems of (1) finding nonparametric left
inverses as quantifier free arithmetic expressions of parametric multivariate
polynomial mappings, and (2) nonparametric right inverses as quantifier free
arithmetic expressions of parametric multivariate polynomial mappings, with
specified conditions on the domains of validity, for the instances for which
the stated inverses exist, are both PSPACE-hard.

Proof. Let ∀t
1
. . . ∀t

k
∃w

1
. . . ∃w

m
∀t

k+1
. . . ∀t

n
f(w

1
, . . . , w

m
, t

1
, . . . , t

n
)

∈ B
Q−SAT , for some positive integers k, m and n, such that k ≤ n, be an

instance for the constraint satisfaction problem, admitting unique solutions
for each of the dependent variables w

i
separately as quantifier free boolean

expressions g
i
(t1 , . . . , tk) ∈ ARITH-EXP(Z2), for 1 ≤ i ≤ m.

Part (1) The proof is given by subroutine reduction taking one variable
at a time, starting from m down to 1. For w

i
, t

j
∈ Z2 , 1 ≤ i ≤ m and
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1 ≤ j ≤ n, let

φ
m
(w

1
, . . . , w

m
, t

1
, . . . , t

n
) = f(w

1
, . . . w

m
, t

1
, . . . , t

n
) , and

h
m
(w

1
, . . . , w

m−1
, t

1
, . . . , t

n
) = f(w

1
, . . . w

m−1
, 0, t

1
, . . . , t

n
) ⊕

f(w
1
, . . . w

m−1
, 1, t

1
, . . . , t

n
)

Let ζ
(m)

(z; x), z = (z1 , . . . , zn−k
) and x = (x1 , . . . , xm+k

), be a parametric

multivariate polynomial mapping from Z
m+k
2

into Z
m+k+1
2

, with parameters
z1 , . . . , zl , where l = n− k, as follows:

ζ
(m, j)

(z; x) =







xj , for 1 ≤ j ≤ m− 1 ,
x

j+1
, for m ≤ j ≤ m+ k − 1 ,

h
m
(x

1
, . . . , x

m−1
, x

m+1
, . . . , x

m+k
, z

1
, . . . , z

l
) , for j = m+ k ,

(
ζ
(m, m+k)

(z; x) ∧ φ
m
(x

1
, . . . , x

m
, x

m+1
, . . . , x

m+k
, z

1
, . . . , z

l
)
)

∨
( (

¬ ζ
(m, m+k)

(z; x)
)

∧ x
j−k−1

)
, for j = m+ k + 1 ,

The variables occurring in the above, in comparison with the given instance
of constraint satisfaction problem, are as follows: x

j
= w

j
, for 1 ≤ j ≤

m, t
j
= x

m+j
, for 1 ≤ j ≤ k, and t

j
= z

j−k
, for k + 1 ≤ j ≤ n. Let

x, x′ ∈ Z
m+k
2

and z ∈ Z
n−k
2

be such that ζ
(m)

(z; x) = ζ
(m)

(z; x′). If x 6=
x′, then it can only be the case that xm 6= x′

m
. Since ζ

(m,m+k)
(z; x) =

ζ
(m,m+k)

(z; x′), it follows that hm(x1 , . . . , xm−1 , xm+1 , . . . , xm+k
, z1 , . . . , zl)

= hm(x
′
1
, . . . , x′

m−1
, x′

m+1
, . . . , x′

m+k
, z1 , . . . , zl), and since ζ

(m,m+k+1)
(z; x)

= ζ
(m,m+k+1)

(z; x′), it follows that xm = x′
m
. Now, a nonparametric left

inverse of ζ
(m)

is sought, which is valid on a maximal domain Xm ⊆ Z
m+n
2

,
subject to the following conditions :

1. if (x1 , . . . , xm+k
, z1 , . . . , zl) ∈ Xm , then (x1 , . . . , xm+k

, z′
1
, . . . , z′

l
) ∈

Xm , for every (z′
1
, . . . , z′

l
) ∈ Z

l
2
;

2. for each fixed (xm+1 , . . . , xm+k
) ∈ Z

k
2
, there exists (x1 , . . . , xm) ∈ Z

m
2
,

such that (x1 , . . . , xm+k
, z1 , . . . , zl) ∈ Xm , for every (z1 , . . . , zl) ∈ Z

l
2
,

where l = n− k; and

3. a nonparametric left inverse of ζ
(m)

can be defined on ζ
(m)

(Xm).

The left inverse formula is as follows: let ζ
(m)

(z; x) = y, for some fixed

y = (y1 , . . . , ym+k+1
) ∈ Z

m+k+1
2

; then x
j
= y

j
, for 1 ≤ j ≤ m − 1, x

j+1
= y

j
,

for m ≤ j ≤ m+k−1, x
m
= (y

m+k
∧ρ

m
(y))∨((¬y

m+k
)∧y

m+k+1
), for some function

ρ
m

from Z
m+k+1
2

into Z
2
. The domain X

m
of validity of the left inverse satisfies

the following inclusion:

X
m

⊇ { (x
1
, . . . , x

m+k
, z

1
, . . . , z

n−k
) ∈ Z

m+n
2

:

xj = gj (xm+1 , . . . , xm+k
) , for 1 ≤ j ≤ m }

and the function ρ
m

satisfies the following:

ρ
m

(
g
1
(y

m
, . . . , y

m+k−1
), . . . , g

m−1
(y

m
, . . . , y

m+k−1
), y

m
, . . . , y

m+k−1
, 1, 0

)
=

¬g
m
(y

m
, . . . , y

m+k−1
) , and

ρm

(
g1(ym , . . . , y

m+k−1
), . . . , gm−1(ym , . . . , y

m+k−1
), ym , . . . , y

m+k−1
, 1, 1

)
=

g
m
(y

m
, . . . , y

m+k−1
)
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Specification of the conditions on the domain of validity is part of the left inverse
function computational problem, as required by the proof.

Now, after obtaining left inverses of ζ
(i+1)

, . . . , ζ
(m)

, together with the hidden
functions ρ

i+1
, . . . , ρ

m
, for some index i, where 1 ≤ i ≤ m−1, the above procedure

is repeated with the following

φ
i
(w

1
, . . . , w

i
, t

1
, . . . , t

n
) = φ

i+1

(
w

1
, . . . w

i
, ρ

i+1
(w

1
, . . . w

i
, t

1
, . . . , t

k
, 1, 1) ,

t
1
, . . . , t

k
, t

k+1
, . . . , t

n

)
, and

h
i
(w

1
, . . . , w

i−1
, t

1
, . . . , t

n
) = φ

i
(w

1
, . . . w

i−1
, 0, t

1
, . . . , t

n
) ⊕

φ
i
(w

1
, . . . w

i−1
, 1, t

1
, . . . , t

n
)

Thus, in the following instance of the constraint satisfaction problem :

∀t
1
. . . ∀t

k
∃w

1
. . . ∃w

i
∀t

k+1
. . . ∀t

n
φ

i
(w

1
, . . . , w

i
, t

1
, . . . , t

n
)

the function gj (y1 , . . . , yk
) is the unique solution for the variable wj , for 1 ≤ j ≤ i.

Let ζ
(i)
(z; x), z = (z

1
, . . . , z

n−k
) and x = (x

1
, . . . , x

i+k
), be a parametric mul-

tivariate polynomial mapping from Z
i+k
2

into Z
i+k+1
2

, with parameters z
1
, . . . , z

l
,

where l = n− k, as follows:

ζ
(i, j)

(z; x) =







xj , for 1 ≤ j ≤ i− 1 ,
x

j+1
, for i ≤ j ≤ i+ k − 1 ,

h
i
(x

1
, . . . , x

i−1
, x

i+1
, . . . , x

i+k
, z

1
, . . . , z

l
) , for j = i+ k ,

(
ζ
(i,i+k)

(z; x) ∧ φ
i
(x

1
, . . . , x

i
, x

i+1
, . . . , x

i+k
, z

1
, . . . , z

l
)
)

∨
( (

¬ ζ
(i, i+k)

(z; x)
)

∧ x
j−k−1

)
, for j = i+ k + 1 ,

It may be observed that

ρ
1

(
y
1
, . . . , y

k
, 1, 0

)
= ¬g

1
(y

1
, . . . , y

k
) , and

ρ
1

(
y
1
, . . . , y

k
, 1, 1

)
= g

1
(y

1
, . . . , y

k
)

Thus, computing nonparametric left inverses of parametric multivariate polynomial
mappings is PSPACE-hard.

Part (2) Let η(z; x), z = (z
1
, . . . , z

n−k
) and x = (x

1
, . . . , x

m+k
), be a para-

metric multivariate polynomial mapping from Z
m+k
2

into Z
k+1
2

, with parameters
z
1
, . . . , z

n−k
as follows: η

i
(z; x) = x

m+i
, for 1 ≤ i ≤ k, and η

k+1
(z; x) =

f(x
1
, . . . , x

m+k
, z

1
, . . . , z

n−k
). Now, if η(z; x) = y, where y = (y

1
, . . . , y

k
, 1)

∈ Z
k
2
× {1}, with y

k+1
= 1, then xi = yi , for 1 ≤ i ≤ k, x

k+i
= gi(y1 , . . . , yk

), for
1 ≤ i ≤ m, by the uniqueness of the solution for the given instance of constraint
satisfaction problem, and hence, computing nonparametric right inverses of para-
metric multivariate polynomial mappings is PSPACE-hard. �

The construction of parametric injective mappings described in Theorem 4
shows how a general one-to-one mapping from Gm into Gn, where m and n are
positive integers, with m ≤ n, and G is a nonempty subset of a finite field F, can
be obtained: for a carefully chosen bijective mapping P (y) from Gn into itself and
hashing keys f

i
(x), for x = (x

1
, . . . , x

m
) ∈ Gm and 1 ≤ i ≤ n−m, the argument

vector (f
1
(x), . . . , f

n−m
(x), x

1
, . . . , x

m
) is substituted for y ∈ Gn in P (y). Thus,

Q(x) = P (f
1
(x), . . . , f

n−m
(x), x

1
, . . . , x

m
) is a generic multivariate one-to-one

mapping from Gm into Gn.
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5 Security Analysis

The classical analysis of multivariate simultaneous equations can be applied only
to polynomial equations [[12], [14], [34], [35], [36] and [47]], and the Gröbner basis
analysis [[8], [16] and [17]] is employed as the main practical tool. A general purpose
method for solving multivariate mappings involving functions as exponents is not
known as yet. For a security that is immune to threats from Gröbner basis analysis,
parametric injective mappings from Gµ into Eν , with κ parameters, for G = F

∗,
E = F and µ, ν, κ ∈ N, where 1 ≤ µ ≤ ν and F is a finite field, with component
mappings taken as expressions from EXP

(
F ; [x

1
, . . . , x

µ
, ω

1
, . . . , ω

κ
]
)
, restricting

values of x
i
and ω

j
to F

∗, for 1 ≤ i ≤ µ and 1 ≤ j ≤ κ, with at least one level of
exponentiation as described in section 1.5, are required. It is also assumed that the
key generator ensures that a prospective owner of the pertinent keys is provided
with an abundance of options for generating multivariate one-to-one mappings,
whose inverse mappings are known only to the owner.

In public key cryptography, the size of the set {F (x, ω) : ω ∈ F
κ} must be

large, such as perhaps exponential in νc, for some fixed c > 0, for each x ∈ F
µ,

while maintaining F (x, ω) as a secret to the public, for IND-CCA and IND-CPA
security, whichever is relevant. Under the assumption of no mistrust, the padding
message ω can be negotiated for mutual agreement by sender and receiver, for
ascertaining data integrity, in public key cryptography.

For digital signature, the main security issue is the anonymity of the secret
keys F (x, ω) =

(
f
1
(x, ω), . . . , f

L
(x, ω)

)
, which are registered with a trusted au-

thentication verifier (TAV). The size of the set {ω ∈ Gκ : H(z, x, ω) = δ}, where
z ∈ Gλ, x ∈ Gµ and δ ∈ Eτ , must be large, such as perhaps exponential in νc,
for some fixed c > 0, whenever the set in the discussion is nonempty, and the ra-
tio of the number of elements in {(ω, z) ∈ Gκ+λ : H(z, x, ω) = δ} to that in
{(ω, z) ∈ Gκ+λ : H(z, x, ω) = δ} ∩ {(ω, z) ∈ Gκ+λ : R(z) = F (x, ω)} must be
large, if H(z, x, ω) occur in the public key signature verification table V, whenever
the stated sets are nonempty, such as perhaps exponential in νc, for some fixed
c > 0 and any fixed δ ∈ Eτ , admissible plain message x ∈ Gµ and admissible
padding message ω ∈ Gκ. The admissibility of the padding message ω ∈ Gκ is
that R(ω) = ω

′, where ω
′ ∈ GK is the extra padding message agreed upon by

the signer with TAV, for the particular reserved transaction, as a first step in the
process of generating the signature. The hidden or secret keys F (x, ω) must not be
made known to the public, but, in the digital signature scheme, are shared with the
TAV, besides the signer, in order to ensure existential unforgeability. For claiming
the authenticity of a signature, the claimant needs to produce ǫ, δ, x, z and ω, for
passing the tests of TAV, without knowing the information in the signature authen-
tication verification table A, which is registered with TAV. The signer must assert
with TAV, by means of ω′ and other protocol agreements, regarding authorization
of a signature. Thus, the signer is protected by the prudence and unbiasedness of
TAV.

6 Conclusion and Summary

In this paper, a new public key data encryption method is proposed, where the
plain and encrypted messages are arrays. The method can also be used for digital
certificate or digital signature applications. For security protocols of the application
layer level in the OSI model, the methods described in this paper are useful. In
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the regular protocols like TLS and IPSec [[44] and [45]], the traditional methods,
requiring only small space for the keys and algorithms, are employed. The key
generation algorithm is particularly simple, easy and fast, facilitating changes of
keys as frequently as required, and fast algorithms for polynomial multiplication
and modular arithmetic [[7] and [40]], whenever appropriate, can be adapted in the
encryption and decryption algorithms.
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