
MILP-Aided Bit-Based Division Property for
Primitives with Non-Bit-Permutation Linear

Layers

Ling Sun1,2, Wei Wang1,3,4, Meiqin Wang?1,3

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan, 250100, China

2 School of Computer Science and Technology, Shandong University,
Qingdao 266237, China

3 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, China

4 Qilu University of Technology(Shandong Academy of Sciences),
Jinan 250353, China

lingsun@mail.sdu.edu.cn; weiwangsdu@sdu.edu.cn; mqwang@sdu.edu.cn

Abstract. Division property is a general integral property introduced
by Todo at EUROCRYPT 2015. Recently, at ASIACRYPT 2016, Xiang
et al. applied the Mixed Integer Linear Programming (MILP) method to
search bit-based division property and handled the complexity which re-
stricted the application of bit-based division property proposed by Todo
and Morii at FSE 2016. However, their MILP-aided search was only ap-
plied to some lightweight block ciphers whose linear layers were limited
to bit-permutations, and the feasibility of MILP-aided bit-based division
property for ciphers with non-bit-permutation linear layers was an open
problem. This paper comes out with the affirmative answer.

First, we transform the complicated linear layers to their primitive repre-
sentations, which only involves Copy and XOR operations. Then, the orig-
inal Copy and XOR models are respectively generalised to deal with more
output branches and input elements, and these generalised models are
adapted to depict the primitive representations. Accordingly, the MILP-
aided bit-based division property can be applied to much more primitives
with complicated linear layers. As an illustration, we first evaluate the
bit-based division properties of some word-oriented block ciphers includ-
ing Midori64, LED, Joltik-BC, and AES. For Midori64, we obtain a
7-round integral distinguisher, which achieves one more round than the
previous results. At the same time, the data requirements of some exist-
ing distinguishers are also reduced. We decrease the number of required
chosen plaintexts of 4-round and 5-round integral distinguishers for LED
and Joltik-BC by half. As to AES, our searching experiments show that
integral distinguishers, which are based on the bit-based division prop-
erty, covering more than four rounds probably do not exist. Then, the
bit-based division properties of some bit-oriented block ciphers, such as

? Corresponding Author

Serpent and Noekeon, are considered. The data complexities of their dis-
tinguishers for short rounds are improved. Besides, we evaluate the bit-
based division properties of the internal permutations involved in some
hash functions, e.g., SPONGENT and PHOTON. An 18-round zero-sum
distinguisher for SPONGENT-88 is proposed, which achieves four more
rounds than the previous ones. We also provide 20-round and 21-round
zero-sum distinguishers for SPONGENT-128 and SPONGENT-160, re-
spectively. For most PHOTON permutations Pt with 4-bit cell, the data
requirements for the 4-round distinguishers are reduced by half. Also,
the length of P256’s distinguisher is extended by one round. Further-
more, for P288 using 8-bit S-boxes, we improve the data complexities of
their integral distinguishers significantly.
Keywords: Integral distinguisher, Bit-based division property, MILP,
Midori, LED, Joltik-BC, AES, Serpent, Noekeon, SPONGENT, PHO-
TON

1 Introduction

The integral cryptanalysis was first introduced as a dedicate attack for the word-
oriented block cipher SQUARE by Daemen et al. [8] at FSE 1997. Theoretically,
the integral attack can be applied to bit-oriented block ciphers. However, till
FSE 2008, Z’aba et al. [32] firstly gave a specific tool to find integral distinguish-
ers for bit-oriented block ciphers and the bit-pattern based integral attack was
successfully demonstrated on reduced-round variants of the block ciphers like
Noekeon [9], PRESENT [5], and Serpent [3].

At EUROCRYPT 2015, Todo [26] generalised the integral property to divi-
sion property, which can precisely depict the implicit features between traditional
ALL and BALANCE properties. By applying the division property, the integral
distinguisher can be constructed even if block ciphers have non-bijective func-
tions, bit-oriented structures, and low-degree functions. However, he only made
use of the algebraic degree of the S-box to trace its division property propagation
so that longer distinguisher may be detected for a specific cipher. At CRYPTO
2015, Todo [25] showed that division property could be more useful if the S-box
was supposed to be a public function. He detected a 6-round integral distin-
guisher for MISTY1 [18] by utilising the vulnerable property of S7 and achieved
the first attack against full MISTY1.

At FSE 2016, Todo and Morii [28] proposed the bit-based division property
and explored the 14-round integral distinguisher for SIMON32 [2]. They pointed
out that the time and memory complexities for the bit-based division property
were roughly 2n for an n-bit block cipher. On the one hand, the considerable
time and memory complexities restricted the application of bit-based division
property. On the other hand, whether the bit-based division property could be
adapted to analyse other bit-oriented block ciphers was unknown.

Many further pieces of research focusing on these intriguing issues have oc-
curred in succession. At CRYPTO 2016, by introducing the notion of parity
sets, Boura and Canteaut [6] presented a new approach to deal with division

2

property. For PRESENT, they provided some low-data integral distinguishers.
By replacing the Substitution rule, which managed the propagation of S-box,
with a more subtle propagation table, Sun and Wang [22] worked out the table-
aided bit-based division property, and successfully applied it to some bit-oriented
primitives such as RECTANGLE [33] and SPONGENT-88 [4]. Thus, the bit-
based division property can be compatible with ciphers other than SIMON. At
ASIACRYPT 2016, Xiang et al. [30] applied Mixed Integer Linear Programming
(MILP) method to search integral distinguisher based on division property5, and
found some longer integral distinguishers for SIMON family, Simeck family [31],
PRESENT, RECTANGLE, LBlock [29], and TWINE [24]. Their work handled
the problem about the complexity and showed that bit-based division property
could be efficiently applied to some ciphers whose block sizes are more significant
than 32. However, the linear layers for all these analytical ciphers are restricted
to only simple bit-permutations. Thus, the feasibility of MILP method to analyse
ciphers with linear layers besides bit-permutations was not settled [30].

Table 1: Comparison of Our Main Results for Some Block Ciphers with Previous
Results.

Cipher
log2(#texts)

Reference
r= 4 r= 5 r= 6 r= 7

Midori64
4 12 45 61 Section 4.1

28 52 60 - [26]‡

Serpent†
23 83 113 124 Section 4.2

28 84 113 124 [26]

Noekeon
27 83 113 124 Section 4.2

28 84 113 124 [26]

log2(#texts): The exponent of the number of required chosen
plaintexts.
†

Since Serpent uses different S-boxes, which have distinct properties,
in different rounds, the starting round may influence the resulting
distinguisher. Here, we refer to the case where the initial round is
the first round.
‡

The corresponding distinguishers are derived with the method in-
troduced in the literature.

Our Contributions. In this paper, we settle the open problem and improve some
integral distinguishers for various primitives by MILP-aided bit-based division
property. The contributions of this paper are summarised as follows.

5 We name it MILP-aided bit-based division property in this paper.

3

1. Construct new searching models for complicated linear layers not
limited to bit-permutations. First, we transform the complicated linear
layers to the primitive representations. Then, the original Copy and XOR

models are respectively generalised to deal with more output branches and
input elements, and these generalised models are adapted to depict the prim-
itive representations. In this way, we can model all kinds of linear layers only
if we have their primitive representations, and we will find that getting the
primitive representation of a linear layer is an easy task. Thus, the MILP-
aided bit-based division property can be applied to much more primitives
with relatively complicated linear layers.

2. Apply MILP-aided bit-based division property to word-oriented
block ciphers, including Midori64 [1], LED [14], Joltik-BC [16], and
AES [10]. For Midori64, obtain a 7-round integral distinguisher, which
gains one more round than the previous analysis. Moreover, the data com-
plexity is reduced significantly for r-round distinguisher where r 6 6. As to
LED and Joltik-BC, the data requirements for 4-round and 5-round dis-
tinguishers are decreased by half. As to AES, our searching experiments
show that integral distinguishers, which are based on the bit-based division
property, covering more than four rounds probably do not exist.

3. Consider the bit-based division properties of some bit-oriented
block ciphers, such as Serpent [3] and Noekeon [9]. Due to their rel-
atively complicated linear layers and large block sizes, it is challenging to
perform integral cryptanalysis. At FSE 2008, Z’aba et al. [32] proposed 3.5-
round integral distinguishers for Noekeon and Serpent. Todo [26] improved
it by traditional division property. Applying the new method, we also re-
duce the data complexities of some short-round distinguishers for these two
ciphers.

4. Evaluate the bit-based division properties of the internal permu-
tations involved in some hash functions, e.g., SPONGENT [4] and
PHOTON [13]. The published results all focused on SPONGENT-88, that
is, the 14-round zero-sum distinguishers proposed by Dong et al. [11], Fan
et al. [12], and Sun and Wang [22], respectively. The best one we obtained
is an 18-round zero-sum distinguisher with complexity 287, which gains four
more rounds than the previous ones. Moreover, we provide 20-round and 21-
round zero-sum distinguishers for SPONGENT-128 and SPONGENT-160,
respectively. For PHOTON permutations with 4-bit cell, the data complex-
ities for the 4-round distinguishers are reduced by half. Besides, we obtain
a 9-round distinguisher for P256, which gains one more round than the pre-
vious ones. Furthermore, for P288 using 8-bit S-boxes, the data complexities
of the distinguishers are dramatically improved.

The comparisons of the main results with previous results for some block
ciphers and internal permutations of hash functions are shown in Table 1 and
Table 2, respectively.

Outline of the Paper. The rest of this paper is organised as follows. In Sec-
tion 2, we briefly review some notations and definitions such as division prop-

4

Table 2: Comparison of Main Results for Some Internal Permutations of Hash
Functions with Previous Results.

Cipher Round log2(#texts) Reference

SPONGENT-88

18 87

Section 4.3
17 85

16 84

15 80

14 84 [11]

14 80 [12,22]

SPONGENT-128 20 126 Section 4.3

SPONGENT-160 21 159 Section 4.3

P288 in PHOTON

3 8 Section 4.3

3 253 [7]‡

4 48 Section 4.3

4 283 [7]‡

log2(#texts): The exponent of the number of required chosen
plaintexts.
‡

The corresponding distinguishers are derived with the method in-
troduced in the literature.

erty, bit-based division property, table-aided bit-based division property, and
MILP-aided bit-based division property. Section 3 illustrates how to apply
MILP-aided bit-based division property to ciphers with more complicated lin-
ear layers. Section 4 gives some applications of MILP-aided bit-based division
property. We conclude the paper in Section 5. Some auxiliary materials are
supplied in Supplementary Materials following the paper.

2 Preliminary

2.1 Notations

In this subsection, we present the notations used throughout this paper. In order
to simplify the representation, a bit-string will be written in hexadecimal format
and is always written in the italic verbatim font. We follow the notations defined
in [26] and [25].

For an n-bit string a ∈ Fn2 , the i-th element is expressed as a[i], where the bit
positions are labeled in big-endian, and the Hamming weight wt(a) is calculated

by wt(a) =
n−1∑
i=0

a[i].

For any set K, |K| denotes the number of elements in K. Let ∅ be an empty
set.

5

For any a = (a0, a1, . . . , am−1) ∈ F`02 × F
`1
2 × · · · × F

`m−1

2 , the vectorial
Hamming weight of a is defined as Wt(a) = (wt(a0), wt(a1), . . . , wt(am−1)) ∈
Zm. For any k ∈ Zm and k′ ∈ Zm, we define k � k′ if ki ≥ k′i for all i. Otherwise,
k � k′. K← k means that K turns into K

⋃
{k}.

Definition 1 (Bit Product Function [26]). Assume u ∈ Fn2 and x ∈ Fn2 .
The Bit Product Function πu is defined as

πu(x) =

n−1∏
i=0

x[i]u[i].

For u = (u0, u1, . . . , um−1) ∈ F`02 ×F
`1
2 ×· · ·×F

`m−1

2 , let x = (x0, x1, . . . , xm−1) ∈
F`02 × F

`1
2 × · · · × F

`m−1

2 be the input, the Bit Product Function πu is defined as

πu(x) =

m−1∏
i=0

πui
(xi).

The bit product function also appears in the Algebraic Normal Form (ANF)
of a Boolean function. The ANF of a Boolean function f : Fn2 → F2 is represented
as

f(x) =
⊕
u∈Fn

2

afu

(
n∏

i=1

x[i]u[i]

)
=
⊕
u∈Fn

2

afuπu(x),

where afu ∈ F2 is a constant value depending on f and u.

2.2 Division Property and Bit-Based Division Property

Traditional integral distinguisher is usually constructed by evaluating the prop-
agation of integral property such as ALL and BALANCE properties. Division
property, which was first proposed in [26], is a generalisation of integral prop-
erty. It can precisely depict the implicit properties between ALL and BALANCE
properties, which makes division property an efficient tool to construct integral
distinguisher. Bit-based division property [28] handles a particular case of di-
vision property, where the space under consideration is restricted to the direct
product of a series of binary fields. Unlike traditional division property, bit-
based division property traced the division property at the bit-level and showed
its power by finding longer integral distinguisher for SIMON32. In this subsec-
tion, we will briefly review division property and bit-based division property and
list some propagation rules of bit-based division property.

Definition 2 (Division Property [26]). Let X be a multi-set whose elements

take values from F`02 × F
`1
2 × · · · × F

`m−1

2 . When the multi-set X has the division

property D`0,`1,...,`m−1

K , where K denotes a set of m-dimensional vectors whose
i-th element takes a value between 0 and `i, it fulfills the following conditions:⊕

x∈X
πu(x) =

{
unknown if there is k ∈ K s.t. Wt(u) � k,
0 otherwise.

6

Remark 1. If there are k ∈ K and k′ ∈ K satisfying k � k′ in the division

property D`0,`1,...,`m−1

K , k can be removed from K because it is redundant.

Remark 2. Note that `0, `1, . . ., `m−1 are restricted to 1 when we consider bit-
based division property.

Propagation Rules of Bit-Based Division Property Todo [26] proved
some propagation rules for conventional division property and these rules were
summarised into five rules in [25], which were Substitution, Copy, XOR, Split,
and Concatenation, respectively. Among the five rules, only Copy and XOR are
necessary for bit-based division property. The two necessary rules are restated
in a bit-based look in the following.

x

y0 y1

(a) Copy.

x0 x1

y

(b) XOR.

x0 x1

y

(c) AND.

Fig. 1: Illustrations of Basic Operations.

Rule 1 (Copy) Let F be a Copy function, where the input x takes a value of
F2 and the output is calculated as (y0, y1) = (x, x) (See Figure 1(a)). Let X
and Y be the input multi-set and output multi-set, respectively. Assuming that the
multi-set X has the division property D1

{k}, the division property of the multi-set

Y is D1×1
K′ . There are only two possible cases for the propagation:{

K′ = {(0, 0)}, if k = 0
K′ = {(0, 1), (1, 0)}, if k = 1

.

Rule 2 (XOR) Let F be a function composed of XOR operation, where the input
(x0, x1) takes a value of F2 × F2 and the output is calculated as y = x0 ⊕
x1 (See Figure 1(b)). Let X and Y be the input multi-set and output multi-
set, respectively. Assuming that the multi-set X has division property D1×1

{k} , the

division property of the multi-set Y is D1
K′ . There are only three possible cases

for the propagation: K
′ = {(0)}, if k = (0, 0)

K′ = {(1)}, if k = (0, 1) or (1, 0)
K′ = ∅, if k = (1, 1)

.

7

For some bit-oriented block ciphers such as SIMON, AND is another non-
linear operation. The propagation for AND is given in [28], and we summarise it
as follows.

Rule 3 (AND) Let F be a function composed of AND operation, where the input
(x0, x1) takes a value of F2 × F2 and the output is calculated as y = x0 ∧ x1
(See Figure 1(c)). Let X and Y be the input multi-set and output multi-set,
respectively. Assuming that the multi-set X has division property D1×1

{k} , the di-

vision property of the multi-set Y is D1
K′ . There are only two possible cases for

the propagation: {
K′ = {(0)}, if k = (0, 0)
K′ = {(1)}, otherwise

.

Propagating the Bit-Based Division Property of S-box By integrating the ANF
of the S-box, Sun and Wang [22] provided an idea to propagate the bit-based
division property of S-box6.

Let x = (x0, x1, . . . , xb−1) and y = (y0, y1, . . . , yb−1) be the input and output
of a b-bit S-box. Suppose that the input multi-set X follows the division property

D1b

{k}, which implies that
⊕

x∈X πj(x) is unknown for any j ∈ Fb2 with j � k.

To determine the division property D1b

K of the output multi-set Y, the ANF
of yi (0 6 i 6 b− 1) should be taken into consideration. For any b-bit string k′,
to judge whether the parity of πk′(y) is always even or not, we should check the
ANF of πk′(y). Assume that

πk′(y) =

b−1∏
i=0

πk′i(yi) =
⊕
u∈Fb

2

auπu(x),

where au ∈ F2 is a constant value depending on πk′(y) and u. If there exists
j ∈ Fb2 satisfying j � k such that aj = 1, then the parity of πk′(y) is unknown
since the value of

⊕
x∈X πj(x) is unknown. Otherwise, the parity of πk′(y) is

always even. After inserting all the vectors k′ such that πk′(y) becomes unknown
into K, note that some of the vectors in K are redundant. Then we get the final
K after removing the redundant vectors in K.

For any k ∈ Fb2, we can deduce its corresponding K according to the above
procedure. In this way, a propagation table for S-box can be constructed. The
propagation table has two columns; the first column is filled with k while the
second column is filled with K corresponding to k. Then, the propagation of bit-
based division property of S-box becomes a simple table look-up. This method
is named as table-aided bit-based division property in [22].

6 At CRYPTO 2016, Boura and Canteaut [6] proposed a method to propagate bit-
based division property through S-box by computing the propagation of the parity
set. The underlying idea is the same as the one provided in [22]. Please refer to [6]
for more information.

8

2.3 MILP-Aided Bit-Based Division Property

Although bit-based division property is proved to be a powerful tool to find in-
tegral distinguishers, the time and memory complexities of utilising this method
are roughly 2n for an n-bit block cipher. Due to this restriction, searching in-
tegral distinguishers for some primitives whose sizes are more significant than
32 bits is almost impossible. At ASIACRYPT 2016, Xiang et al. [30] proposed
the method of describing the bit-based division property with the MILP model.
With the help of some openly available MILP optimisers such as Gurobi7, the
complexities of employing bit-based division property can dramatically decrease,
and the workload of designers and cryptanalysts is significantly reduced. In this
subsection, we will give a brief review of MILP-aided bit-based division property.

The main idea of MILP-aided bit-based division property is modelling those
propagation rules of bit-based division property with a series of linear inequali-
ties8.

Modelling Copy, AND, XOR, and S-box Corresponding to Rule 1 to Rule 3,
the following models are proposed to describe three basic bit-wise operations
with linear inequalities.

Model 1 (Copy [30]) Denote (a)
Copy−−−→ (b0, b1) a division trail of Copy func-

tion, the following inequalities are sufficient to describe the division propagation
of Copy. {

a− b0 − b1 = 0
a, b0, b1 are binaries

Model 2 (AND [30]) Denote (a0, a1)
AND−−→ (b) a division trail of AND function, the

following linear inequalities are sufficient to describe the division propagation of
AND. 

b− a0 > 0
b− a1 > 0
b− a0 − a1 6 0
a0, a1, b are binaries

Model 3 (XOR [30]) Denote (a0, a1)
XOR−−→ (b) a division trail through XOR func-

tion, the following inequalities can describe the division trail through XOR func-
tion. {

a0 + a1 − b = 0
a0, a1, b are binaries

7 http://www.gurobi.com/
8 We do not distinguish linear equality and linear inequality in this paper, since MILP

model can include linear inequality as well as linear equality.

9

http://www.gurobi.com/

Modelling S-box To deduce the linear inequality system of S-box, we firstly use
table-aided bit-based division property to generate the propagation table of the
S-box.9 After that, by invoking the inequality generator() function in the
Sage10 software, a set of linear inequalities will be returned. Sometimes, the
number of linear inequalities in the set is very large such that adding all these
inequalities into the MILP model will make the problem computational infea-
sible. Thus, Sun et al. [23] proposed an algorithm called Greedy Algorithm
(Algorithm 1 in [30]) to reduce this set. Since the Greedy Algorithm is not
deterministic, the linear inequality systems of various S-boxes provided in this
paper are not unique.

Up to now, for block ciphers based on the three operations and (or) S-box, we
can construct a set of linear inequalities characterising one round division prop-
erty propagation. Iterating this process r times, we can get a linear inequality
system L describing r rounds division property propagation. All feasible solu-
tions of L correspond to all r-round division trails, which are defined below.

Definition 3 (Division Trail [30]). Let fr denote the round function of an
iterated block cipher. Assume that the input multi-set of the block cipher has
initial division property D1n

{k}, and denote the division property after i-round

propagation through fr by D1n

Ki
. Thus we have the following chain of division

property propagations:

{k} , K0
fr−→ K1

fr−→ K2
fr−→ · · · .

Moreover, for any vector k∗i ∈ Ki (i > 1), there must exist a vector k∗i−1 ∈
Ki−1 such that k∗i−1 can propagate to k∗i by division property propagation rules.
Furthermore, for (k0,k1, . . . ,kr) ∈ K0×K1× · · · ×Kr, if ki−1 can propagate to
ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

Initial Division Property and Stopping Rule Denote (a00, a
0
1, . . . , a

0
n−1)→

· · · → (ar0, a
r
1, . . . , a

r
n−1) an r-round division trail, L is a linear inequality sys-

tem defined on variables aji (i = 0, 1, · · · , n − 1, j = 0, 1, · · · , r) and some
auxiliary variables. Let D1n

{k} denote the initial input division property with

k = (k0, k1, . . . , kn−1), we need to add a0i = ki (i = 0, 1, . . . , n − 1) into L, and
all feasible solutions of L are division trails which start from vector k.

By applying the definition of division property, the existence of any vector
with Hamming weight larger than two indicates that all bits of the state satisfy
the zero-sum property. The existence of a unit vector tells that the bit located
at the position of the unique non-zero element does not follow the zero-sum

9 Another method to generate the propagation table of the S-box was introduced
in [30]. Both of these two methods consider the ANF of the S-box. Although the
starting points of them are different, the resulting propagations are precisely the
same.

10 http://www.sagemath.org/

10

http://www.sagemath.org/

property. Thus, the objective function is set as

Obj : Min{ar0 + ar1 + · · ·+ arn−1}.

Let D1n

Ki
denote the output division property after i rounds of encryption and

the input division property is denoted by D1n

K0
. If Kr+1 contains all the n unit

vectors for the first time, the division property propagation should stop, and an
r-round distinguisher can be derived from D1n

Kr
.

Note that we only recall some key points here. For more details, please refer
to [6, 22,25,26,28,30].

3 MILP-Aided Bit-Based Division Property for
Primitives with Non-Bit-Permutation Linear Layers

Even though MILP-aided bit-based division property illustrated by Xiang et al.
handles the huge complexities of bit-based division property, the primitives with
non-bit-permutation linear layers are not considered. The feasibility of MILP
method applying to ciphers with more complicated linear layers was left as an
open problem. To settle this problem, the critical point is to transform the
complex linear layer to an equivalent representation with only Copy and XOR

operations and to generalise the original Copy and XOR models to handle it.
The invocations of the generalised models introduce some intermediate vari-
ables, which are reorganised according to the equivalent representation, and the
linear inequality system for the division property propagation of linear layer is
obtained. Finally, MILP-aided bit-based division property becomes more pow-
erful and can be applied to more primitives with relatively complicated linear
layers.

3.1 Generalising Copy and XOR Models

Note that we have many different ways to define a linear transformation. How-
ever, we always can represent the linear transformation as a matrix over F2. We
call this kind of representation the primitive representation as in [21], and al-
ways denote MPR∗ the primitive representation of a linear transformation. How
to obtain the primitive representation of a linear transformation can be found
in Supplementary Material A.

Claim. No matter how complicated the linear layer is, it can always be split into
Copy and XOR operations according to the primitive representation.

Example 1 (An Intuitive Example). Suppose that the primitive representation
of a toy linear layer is

MPRtoy =

1 1 1
0 1 1
1 1 0

 .

11

Let yT = MPRtoy ·xT , where xT represents the transpose of x = (x0, x1, x2), i.e.,y0 = x0 ⊕ x1 ⊕ x2
y1 = x1 ⊕ x2
y2 = x0 ⊕ x1

.

From Figure 2, it is obvious that, for x1, the number of output branches of
Copy operation is 3 and the number of input elements of XOR operation for y0
is 3, which are larger than the requirements of Model 1 and 3 in Section 2.3.
These models need to be generalised in order to work for more complicated linear
layers.

x0 x1 x2

y0 y1 y2

Fig. 2: An Illustration of the Toy Example.

Model 4 (Generalised Copy) Denote (a)
Copy−−−→ (b0, b1, . . . , bm) a division

trail of Copy function, the following inequalities are sufficient to describe the
division propagation of Copy.{

a− b0 − b1 − · · · − bm = 0
a, b0, b1, . . . , bm are binaries

Model 5 (Generalised XOR) Denote (a0, a1, . . . , am)
XOR−−→ (b) a division trail

through XOR function, the following inequalities can describe the division trail
through XOR function. {

a0 + a1 + · · ·+ am − b = 0
a0, a1, . . . , am, b are binaries

With Model 4 and Model 5, we can depict the division property propaga-
tion of any linear layer by introducing some intermediate variables according to
the primitive representation of the linear layer.

12

3.2 Modelling the Primitive Representation of A Linear Layer

Let MPR be an n×n matrix, which is a primitive representation of a (or a part
of) linear layer, and denote

MPR =


m0,0 m0,1 · · · m0,n−1
m1,0 m1,1 · · · m1,n−1

...
...

. . .
...

mn−1,0 mn−1,1 · · · mn−1,n−1

 ,

where mi,j ∈ {0, 1}. We suppose that the Hamming weight of the i-th column of

MPR is ci, and the Hamming weight of the j-th row is rj . Let cM =
∑n−1

i=0 ci =∑n−1
j=0 rj be the number of non-zero elements in MPR.
Inspired from the former toy example, we know that the i-th input bit of

MPR need to be copied ci times. Thus, ci intermediate variables need to be
introduced to represent the division properties of these copies. To propagate the
division properties for all input bits, cM intermediate variables t0 ∼ tcM−1 are
required in total.

Suppose that the input multi-set of MPR satisfies division property D1n

{x},

where x = (x0, x1, . . . , xn−1), and the output multi-set follows D1n

{y}, where

y = (y0, y1, . . . , yn−1). We may allocate the first c0 intermediate variables to
x0, and allocate the next c1 variables to x1, and so forth. Then, by utilizing
Model 4, we can list the linear inequalities to describe the Copy operations for
all input bits as follows.

x0 − t0 − t1 − · · · − tc0−1 = 0
x1 − tc0 − tc0+1 − · · · − tc0+c1−1 = 0
· · · · · ·
xn−1 − tcM−cn−1 − tcM−cn−1+1 − · · · − tcM−1 = 0
x0, x1, . . . , xn−1, t0, t1, . . . , tcM−1 are binaries

(1)

To propagate the XOR operations, those intermediate variables should be allo-
cated according to the arrangement of non-zero elements in MPR. For example,
since t0 ∼ tc0−1 are assigned to depict the division properties of the output
copies for the first input bit, they are put in those positions of the first col-

umn’s non-zero elements in order. Let I(i) = {I(i)0 , I
(i)
1 , . . . , I

(i)
ri−1} be the index

set of the i-th row, whose elements are the indexes of intermediate variables in
the i-th row. According to Model 5, the linear inequalities to describe the XOR

operations for all output bits are obtained, that is,

t
I
(0)
0

+ t
I
(0)
1

+ · · ·+ t
I
(0)
r0−1
− y0 = 0

t
I
(1)
0

+ t
I
(1)
1

+ · · ·+ t
I
(1)
r1−1
− y1 = 0

· · · · · ·
t
I
(n−1)
0

+ t
I
(n−1)
1

+ · · ·+ t
I
(n−1)
rn−1−1

− yn−1 = 0

y0, y1, . . . , yn−1, t0, t1, . . . , tcM−1 are binaries

. (2)

13

Combining (1) and (2), we construct the linear inequality system used to trace
the division property propagation of the linear operation MPR.

3.3 Application to the MixColumns of LED

In order to illustrate the above model, we take the MixColumns operation of
LED [14] as an example. MixColumns is a part of linear operations for LED’s
round function, and it works like the MixColumn operation for AES [20]. It
multiplies each column of the internal state by the same 4 × 4 MDS matrix
MLED over the field F42, where

MLED =


4 1 2 2

8 6 5 6

b e a 9

2 2 f b

 .

And the underlying polynomial for the field multiplication is x4 + x + 1. We
transform MLED into its primitive representation as follows.

MPRLED =



0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0
1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1
0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0
1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0
1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1
0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1
0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0
0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1
1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0
1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0
1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1
0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0
1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1
1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1



. (3)

Note that there are four columns in the internal state of LED, and MLED

operates on each column independently. Thus, we just list the linear inequalities
for one column in the following.

Suppose that the input multi-set of MPRLED has division property D116

{x}, where

x = (x0, x1, . . . , x15), and the output multi-set follows division property D116

{y},

where y = (y0, y1, . . . , y15). There are 124 non-zero elements in MPRLED. So that
124 intermediate variables (t0 ∼ t123) are introduced and are arranged according

14

to the positions of ‘1’s in MPRLED in the following way.



0 0 t16 0 t28 0 0 0 0 t68 0 0 0 t103 0 0
t0 0 0 t22 0 t35 0 0 0 0 t77 0 0 0 t110 0
t1 t9 0 0 0 0 t43 0 t58 0 0 t86 t95 0 0 t116
0 t10 0 0 0 0 0 t51 t59 0 0 0 t96 0 0 0

t2 0 0 t23 0 t36 t44 0 t60 0 t78 0 0 t104 t111 0
t3 t11 0 0 t29 0 t45 t52 t61 t69 0 t87 t97 0 t112 t117
0 t12 t17 0 0 t37 0 t53 t62 t70 t79 0 0 t105 0 t118
0 0 t18 0 t30 t38 0 0 0 t71 0 t88 t98 t106 0 0

0 t13 0 t24 t31 t39 t46 t54 t63 t72 0 t89 0 0 0 t119
t4 0 t19 0 0 t40 t47 t55 t64 t73 t80 0 t99 0 0 0
t5 t14 0 t25 0 0 t48 t56 t65 t74 t81 t90 0 t107 0 0
t6 0 t20 t26 t32 t41 t49 0 t66 0 t82 0 0 0 t113 t120
0 t15 0 0 0 t42 0 0 0 t75 t83 t91 0 t108 0 t121
0 0 t21 0 0 0 t50 0 0 0 t84 t92 t100 0 t114 0
t7 0 0 t27 t33 0 0 t57 0 0 0 t93 t101 t109 0 t122
t8 0 0 0 t34 0 0 0 t67 t76 t85 t94 t102 0 t115 t123



. (4)

On the one hand, the variables located in the same column are exactly the vari-
ables used to describe the Copy operation for the corresponding input bit. Thus,
the linear inequality system (5) is sufficient to describe the Copy operations.
On the other hand, the variables located in the same row are involved in the
XOR operation of the corresponding output bit. So, the propagations of the XOR

operations turn into linear inequality system (6). Thereby, we just need to com-
bine linear inequality systems (5) and (6) as a whole linear inequality system,
and can trace the propagation of division property for MPRLED.



x0 − t0 − t1 − t2 − t3 − t4 − t5 − t6 − t7 − t8 = 0
x1 − t9 − t10 − t11 − t12 − t13 − t14 − t15 = 0
x2 − t16 − t17 − t18 − t19 − t20 − t21 = 0
x3 − t22 − t23 − t24 − t25 − t26 − t27 = 0
x4 − t28 − t29 − t30 − t31 − t32 − t33 − t34 = 0
x5 − t35 − t36 − t37 − t38 − t39 − t40 − t41 − t42 = 0
x6 − t43 − t44 − t45 − t46 − t47 − t48 − t49 − t50 = 0
x7 − t51 − t52 − t53 − t54 − t55 − t56 − t57 = 0
x8 − t58 − t59 − t60 − t61 − t62 − t63 − t64 − t65 − t66 − t67 = 0
x9 − t68 − t69 − t70 − t71 − t72 − t73 − t74 − t75 − t76 = 0
x10 − t77 − t78 − t79 − t80 − t81 − t82 − t83 − t84 − t85 = 0
x11 − t86 − t87 − t88 − t89 − t90 − t91 − t92 − t93 − t94 = 0
x12 − t95 − t96 − t97 − t98 − t99 − t100 − t101 − t102 = 0
x13 − t103 − t104 − t105 − t106 − t107 − t108 − t109 = 0
x14 − t110 − t111 − t112 − t113 − t114 − t115 = 0
x15 − t116 − t117 − t118 − t119 − t120 − t121 − t122 − t123 = 0
x0, x1, . . . , x15, t0, t1, . . . , t123 are binaries

(5)

15

3.4 Sketch of MILP-Aided Bit-Based Division Property for
Primitives with Complicated Linear Layers

In the remaining of this section, we give an overview of applying the MILP-aided
bit-based division property to primitives with complicated linear layers. All the
analyses of primitives provided in Section 4 follow the procedures given below.

1. Generating Linear Inequality System for S-box
(a) We deduce the propagation table of the S-box.
(b) All elements in the propagation table are put into inequality generator()

to generate the linear inequalities used to describe the S-box.
(c) Greedy Algorithm is invoked to simplify the above linear inequality

system.
2. Generating Linear Inequality System for Linear Layer

(a) The linear layer is transformed into the primitive representation.
(b) The intermediate variables are introduced and arranged according to the

non-zero elements in the primitive representation of the linear layer, and
the linear inequality system is obtained.

3. Constructing Linear Inequality System for r Rounds Division Prop-
erty Propagation
(a) The linear inequality system used to propagate r rounds division prop-

erty is constructed by combining the above two linear inequality systems
following the structure of the specific cipher.

4. Searching Integral Distinguishers with Different Initial Division
Properties
(a) To obtain various distinguishers, we can change the initial division prop-

erty of the MILP model.



t16 + t28 + t68 + t103 − y0 = 0
t0 + t22 + t35 + t77 + t110 − y1 = 0
t1 + t9 + t43 + t58 + t86 + t95 + t116 − y2 = 0
t10 + t51 + t59 + t96 − y3 = 0
t2 + t23 + t36 + t44 + t60 + t78 + t104 + t111 − y4 = 0
t3 + t11 + t29 + t45 + t52 + t61 + t69 + t87 + t97 + t112 + t117 − y5 = 0
t12 + t17 + t37 + t53 + t62 + t70 + t79 + t105 + t118 − y6 = 0
t18 + t30 + t38 + t71 + t88 + t98 + t106 − y7 = 0
t13 + t24 + t31 + t39 + t46 + t54 + t63 + t72 + t89 + t119 − y8 = 0
t4 + t19 + t40 + t47 + t55 + t64 + t73 + t80 + t99 − y9 = 0
t5 + t14 + t25 + t48 + t56 + t65 + t74 + t81 + t90 + t107 − y10 = 0
t6 + t20 + t26 + t32 + t41 + t49 + t66 + t82 + t113 + t120 − y11 = 0
t15 + t42 + t75 + t83 + t91 + t108 + t121 − y12 = 0
t21 + t50 + t84 + t92 + t100 + t114 − y13 = 0
t7 + t27 + t33 + t57 + t93 + t101 + t109 + t122 − y14 = 0
t8 + t34 + t67 + t76 + t85 + t94 + t102 + t115 + t123 − y15 = 0
y0, y1, . . . , y15, t0, t1, . . . , t123 are binaries

(6)

16

4 Applications of MILP-Aided Bit-Based Division
Property

In this section, we show some applications of MILP-aided bit-based division prop-
erty. Firstly, we present the applications of MILP-aided bit-based division prop-
erty to some word-oriented block ciphers, such as Midori64, LED, Joltik-BC,
and AES. Then we evaluate some bit-oriented block ciphers, including Serpent
and Noekeon. At last, the bit-based division properties of the internal permuta-
tions used in some hash functions are concerned.

4.1 Applications to Word-Oriented Block Ciphers

Application to Midori64

A Brief Introduction of Midori64 [1] Midori64 is a block cipher with 64-bit
block and 128-bit key. The 64-bit state S is arranged in a 4× 4 matrix of 4-bit
cells:

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .
Our searching algorithm related to the data processing part MidoriCore(16),
which is a 16-round SP-network, and each round takes the following four opera-
tions and the final round omits ShuffleCell and MixColumn operations. Before
the first round, there is a key whitening operation. For more details, please refer
to [1].

– SubCell: A 4-bit S-box, shown in Table 3, is applied to every cell of the
state S.

– ShuffleCell: Each cell of the state is permuted as follows:

(s0, s1, . . . , s15)← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8)

– MixColumn: Multiplying each column by a 4 × 4 matrix MMidori64 over F42,
where

MMidori64 =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

– KeyAdd: The i-th 64-bit round key RKi is XORed to the state S.

Since KeyAdd operation does not affect the propagation of division property,
we do not consider it in our analysis.

17

Table 3: Midori64’s S-Box SMidori64 [1]

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] c a d 3 e b f 7 8 9 1 5 0 2 4 6

Applying MILP-Aided Bit-Based Division Property to Midori64

– Generating Linear Inequality System for S-box: The propagation ta-
ble for SMidori64 has 48 vectors, and 54 linear inequalities are returned by
invoking inequality generator(). After using Greedy Algorithm, only 5
linear inequalities are left, which are provided in Supplementary Material
B.

– Generating Linear Inequality System for MixColumns Operation:
There are 48 non-zero elements in the primitive representation of MMidori64.
Thus, 48 × 4 = 192 intermediate variables t0 ∼ t191 are required for one
round of encryption since there are four columns in the state.

Experimental Results of Midori64 We put different initial division properties
into the MILP model and a 7-round integral distinguisher is obtained, which
gains one more round than the previous cryptanalysis. Besides, the data com-
plexity is reduced significantly for r-round distinguisher where r 6 6. Our results
are in accordance with the expectation of the designers that the length of the
integral distinguisher is bounded by 7. The concrete number of chosen plain-
texts to construct r-round distinguisher are listed in Table 1, and the integral
distinguishers for Midori64 are presented in Supplementary Material B.

Applications to Some AES-like Block Ciphers We also test some AES-
like block ciphers, e.g., LED [14], Joltik-BC [16], and AES [20]. For LED
and Joltik-BC, the data requirements for 4-round and 5-round distinguish-
ers are reduced by half. As to AES, even the initial division property k =
[ffffffff,ffffffff,ffffffff,fffffffe], of which the Hamming weight is
127, is put into AES’s MILP model, however, there is no bit satisfying zero-sum
property after five-round encryption. Our experimental results indicate that in-
tegral distinguishers built upon bit-based division property, covering more than
four rounds probably do not exist. The comparison and the numbers of chosen
plaintexts to construct r-round integral distinguishers for these ciphers are given
in Table 4. s

Comparing to the dedicated attack to search integral distinguishers for AES-
like ciphers in [26], we propagate the S-box at the bit-level and consider the
concrete form of the linear layer. Thus, the bit-based division properties for
specific ciphers should be better than or at least equal to the more general
search in [26]. From Table 4, the data requirements of r-round distinguishers
for LED and Joltik-BC are improved where 3 < r < 6, which is in accordance
with the former claim. When we directly searched for 6-round distinguishers, we
observed that Gurobi gradually ran out of memory and no solution was returned.

18

To settle this issue, we notice that Todo et al. [27] proposed the idea of adding
dummy objective function to accelerate the solving time of MILP at CRYPTO
2017. The primary purpose is to modify the objective function as

Obj : Max{ar0 + ar1 + · · ·+ arn−1},

which is meaningless, and we only care whether the problem is feasible or not. We
adopt this method in search of 6-round distinguishers. For the initial division
property k = [ffff, ff0f, fff0, 0fff] with Hamming weight 52, Gurobi
still cannot return any results. However, the experimental result illustrates that
there is no zero-sum bit when the initial division property only has 51 non-
zero bits. Since the bit-based division property for specific ciphers is no worse
than the general search, we conclude that the date requirements for 6-round
distinguishers are 252.

Table 4: Comparison of the Numbers of Chosen Plaintexts to Construct r-Round
Integral Distinguishers for Some AES-Like Block Ciphers.

Cipher
log2(#texts)

Reference
r= 3 r= 4 r= 5 r= 6

LED & Joltik-BC

4 11 31 52∗ Section 4.1

4 12 32 52 [26]

12 28 52 60 [26]

28 52 60 63 [7]‡

4 16 - - [8, 17]‡

AES

8 32 - - Section 4.1

56 120 - - [26]

117 127 - - [7]‡

8 32 - - [8, 17]‡

‡
The corresponding distinguishers are derived with the method intro-
duced in the literatures.
∗

The results are obtained under dummy objective function. chosen
plaintexts.

The integral distinguishers corresponding to the results in Table 4 can be
found in Supplementary Material C.

4.2 Applications to Bit-Oriented Block Ciphers

Application to Serpent

19

A Brief Introduction of Serpent [3] Serpent is a block cipher which was one of
the five finalists for Advanced Encryption Standard [19]. It is a 32-round SPN
structure operating on four 32-bit words (X0, X1, X2, and X3), thus giving a
block size of 128 bits. Its round function consists of alternating layers of key
mixing, S-boxes, and linear transformation. Serpent has eight S-boxes (S0 ∼ S7)
and the set of eight S-boxes is used four times. Each round function uses a single
S-box 32 times in parallel. The first round uses S0 and the second round uses
S1. After using S7 in the eighth round, S0 is used again in the ninth round. The
bit-wise linear transformation of Serpent is omitted for space limitation. Please
refer to [3] for more information.

Applying MILP-Aided Bit-Based Division Property to Serpent

– Generating Linear Inequality Systems for Eight S-boxes: For space
limitation, we do not give the propagation tables and the linear inequality
systems for the eight S-boxes of Serpent.

– Generating Linear Inequality System for Linear Transformation:
For the linear layer, we treat it as a large 128 × 128 matrix and there are
610 non-zero elements in the primitive representation of Serpent’s linear
layer. Thus 610 intermediate variables t0 ∼ t609 are needed for one round of
encryption.

Experimental Results for Serpent Since different rounds use different S-boxes, the
starting round may influence the length of the resulting integral distinguisher.
After analyzing all possible cases, we find that the data requirements are different
for different initial rounds, and the experimental results are shown in Table 5.
Comparing to the results given by Todo [26], we improve the data complexities of
some distinguishers for shorter rounds (r < 6). For r > 6, the data requirements
are same to the previous results. The explicit forms of these distinguishers can
be found in Supplementary Material D.

Table 5: Comparison of Data Requirements for Serpent with Different Initial
Rounds.

Initial Round
log2(#texts)

Reference
r= 4 r= 5 r= 6 r= 7

0 23 83 113 124

Section 4.21, 2, and 6 24 83 113 124

3, 4, 5, and 7 24 84 113 124

all 28 84 113 124 [26]

20

Application to Noekeon The bit-based division property for Noekeon [9] is
also considered. Note that Noekeon follows PSP structure, actually. Since Step
2 of Algorithm 2 in Todo’s work [26] deals with division property propagation
of non-linear layer firstly, we conjecture that Todo transformed Noekeon into
the SPN structure, so that we also do the transformations in order to compare
to the results of [26]. The experimental results can be found in Table 1, and
the concrete forms of the integral distinguishers are given in Supplementary
Material E.

4.3 Applications to Other Primitives

Application to SPONGENT

A Brief Introduction of SPONGENT [4] SPONGENT is a family of lightweight
hash functions with different hash sizes and similar round functions. There are
five variants of SPONGENT, and we only analyze SPONGENT-88, SPONGENT-
128, and SPONGENT-160 with hash size 88, 128, and 160, respectively. SPON-
GENT uses SP-network and utilizes a PRESENT-type permutation which iter-
ates 45, 70, and 90 times for the former mentioned three variants. The non-linear
layer uses a 4-bit S-box (SSPONTENT) in parallel. An illustration of SPONGENT-
88’s round function is depicted in Figure 3. For more details about SPON-
GENT, please refer to [4].

S S



Fig. 3: Round Function of SPONGENT-88.

Applying MILP-Aided Bit-Based Division Property to SPONGENT

– Generating Linear Inequality Systems for S-boxes: Since we need
to find zero-sum distinguishers in opposite directions, the propagation ta-
bles for SSPONGENT and S−1SPONGENT are required. When we need to find
the zero-sum distinguishers in the forward direction, we use SSPONGENT’s
propagation table. If we turn to search the zero-sum distinguishers in the
backward direction, we apply the propagation table of S−1SPONGENT. There
are 48 vectors in the propagation table of SSPONGENT. 197 inequalities are
returned by calling inequality generator(). After utilizing Greedy Al-
gorithm, we obtain 10 inequalities. For S−1SPONGENT, 48 elements return 180
inequalities. After applying Greedy Algorithm, 11 inequalities are left.
The linear inequality systems for SSPONGENT and S−1SPONGENT are provided
in Supplementary Material F.

21

– Generating Linear Inequality System for Linear Layer: Since the
linear layer of SPONGENT-88 (SPONGENT-128, SPONGENT-160) is sim-
ple bit-permutation, we do not need to introduce intermediate variables and
88×2 = 176 (128×2 = 256, 160×2 = 320) variables (including the variables
representing the division property for the input bits of the next round) are
enough to constitute the linear inequality system for one round.

Experimental Results for SPONGENT For SPONGENT-88, we find four zero-
sum distinguishers, and the general information is listed in Table 2. One of
them is a 15-round zero-sum distinguisher with data complexity 280. Comparing
to the former results, this newly obtained distinguisher achieves one more round
than the one proposed by Fan and Duan [12] while keeps the same complexity.
The best one is an 18-round zero-sum distinguisher with data complexity 287,
which gains four more rounds than the previous ones. Besides, we also give some
results for SPONGENT-128 and SPONGENT-160. The concrete information for
these distinguishers can be obtained in Supplementary Material F.

Applications to PHOTON Permutations We also analyze the internal
permutation Pt of PHOTON [13], which is a family of hash functions, where
t ∈ {100, 144, 196, 256, 288}. All Pt’s adopt AES-like structure, and the cell sizes
of the first four variants are all 4-bit while the last one has 8-bit cell size. The
experimental results for different variants can be found in Table 6. Similarly to
the cases as mentioned above for LED and Joltik-BC, for some initial division
properties, the direct search is out of operation. To handle this problem, we in-
troduce the dummy objective, and the results obtained under this method are
marked with ‘∗’ in Table 6. For the cases marked with ‘6’ in Table 6, Gurobi
cannot give any results even though we apply the dummy objective function.
Thus, we only claim an upper-bound for the data requirement.

From the observation of Table 6, the advantages can be summarized into
three points. Firstly, we improve the data complexities of 4-round integral dis-
tinguishers for variants with 4-bit cell size, and the data complexity of 7-round
distinguisher for P144 is reduced by half. Secondly, we significantly reduce the
data requirements of distinguishers for P288, whose cell size is 8-bit. Besides,
we obtain a 9-round distinguisher for P256 whose initial division property has a
large Hamming weight, and extend the length of the integral distinguisher for
P256 by one round. The explicit forms of these newly obtained distinguishers can
be found in Supplementary Material G.

5 Conclusion

In this paper, we answer the open question proposed by Xiang et al. at ASI-
ACRYPT 2016, and construct new models to illustrate that the MILP technique
is applicable to primitives with non-bit-permutation linear layers.

The key point is to transform the complicated linear layers to the primi-
tive representations, and generalize the original Copy and XOR models to depict

22

Table 6: Comparison of the Numbers of Chosen Plaintexts to Construct r-Round
Integral Distinguishers for Internal Permutations of PHOTON.

Cipher
log2(#texts)

Reference
r= 3 r= 4 r= 5 r= 6 r= 7 r= 8 r= 9

P100 in PHOTON

4 11 20 672 97∗ - - Section 4.3

4 12 20 72 97 - - [26]

12 28 76 92 - - - [26]

28 76 92 98 - - - [7]‡

4 20 - - - - - [8, 17]‡

P144 in PHOTON

4 11 24 684 131∗ - - Section 4.3

4 12 24 84 132 - - [26]

12 28 84 124 140 - - [26]

28 82 124 138 142 - - [7]‡

4 24 - - - - - [8, 17]‡

P196 in PHOTON

4 11 24∗ 84∗ 164∗ 192 - Section 4.3

4 12 24 84 164 192 - [26]

12 28 84 160 184 192 - [26]

28 82 158 184 192 195 - [7]‡

4 28 - - - - - [8, 17]‡

P256 in PHOTON

4 11 28 92∗ 6204 249∗ 252 Section 4.3

4 12 28 92 204 249 - [26]

12 28 84 200 237 252 - [26]

28 82 198 237 250 254 - [7]‡

4 32 - - - - - [8, 17]‡

P288 in PHOTON
8 48 - - - - - Section 4.3

253 283 - - - - - [7]‡

‡
The corresponding distinguishers are derived with the method introduced in
the literatures.
∗

The results are obtained under dummy objective function.

the primitive representations. Accordingly, the MILP-aided bit-based division
property can be performed. We adopt MILP-aided bit-based division property
to detect integral distinguishers for some word-oriented block ciphers, such as
Midori64, LED, Joltik-BC, and AES. For Midori64, we significantly improve
the data requirements of the previous results and extend the length of integral
distinguisher by one round. As to LED and Joltik-BC, we reduce the numbers
of chosen plaintexts of 4-round and 5-round distinguishers by half. Although

23

we do not discover any distinguisher covering more than four rounds for AES,
we confirm that there is no integral distinguisher based on bit-based division
property achieving five rounds. Then, some bit-oriented block ciphers, including
Serpent and Noekeon, are considered. For both of them, the data complexities
of some short-round distinguishers are decreased. Furthermore, the bit-based di-
vision properties of the internal permutations employed in some hash functions
are evaluated, too. An 18-round zero-sum distinguisher for SPONGENT-88 is
obtained, which achieves four more rounds than the previous results. For all
PHOTON permutation with 4-bit cell, the data requirements for 4-round dis-
tinguishers are reduced by half. Besides, the length of P256’s distinguisher is
extended by one round. Furthermore, we dramatically decrease the data com-
plexities of distinguishers for P288, which is a variant of PHOTON permutation
with 8-bit S-box.

References

1. S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and
F. Regazzoni. Midori: A block cipher for low energy. In Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II, pages 411–436, 2015.

2. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The
SIMON and SPECK lightweight block ciphers. In Proceedings of the 52nd Annual
Design Automation Conference, San Francisco, CA, USA, June 7-11, 2015, pages
175:1–175:6, 2015.

3. E. Biham, R. J. Anderson, and L. R. Knudsen. Serpent: A new block cipher
proposal. In Fast Software Encryption, 5th International Workshop, FSE ’98,
Paris, France, March 23-25, 1998, Proceedings, pages 222–238, 1998.

4. A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede.
SPONGENT: the design space of lightweight cryptographic hashing. IEEE Trans.
Computers, 62(10):2041–2053, 2013.

5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block cipher.
In Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, pages 450–466,
2007.

6. C. Boura and A. Canteaut. Another view of the division property. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages 654–682,
2016.

7. C. Boura, A. Canteaut, and C. D. Cannière. Higher-order differential properties
of Keccak and Luffa. In Fast Software Encryption - 18th International Workshop,
FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers, pages
252–269, 2011.

8. J. Daemen, L. R. Knudsen, and V. Rijmen. The block cipher Square. In Fast
Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January
20-22, 1997, Proceedings, pages 149–165, 1997.

24

9. J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. Nessie proposal: Noekeon.
In First Open NESSIE Workshop, pages 213–230, 2000.

10. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Information Security and Cryptography. Springer, 2002.

11. L. Dong, W.-L. Wu, S. Wu, and J. Zou. Another look at the integral attack by the
higher-order differential attack. Jisuanji Xuebao(Chinese Journal of Computers),
35(9):1906–1917, 2012.

12. S. Fan and M. Duan. Improved zero-sum distinguisher for SPONGENT-88. 2015.
13. J. Guo, T. Peyrin, and A. Poschmann. The PHOTON family of lightweight hash

functions. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages
222–239, 2011.

14. J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw. The LED block cipher. In
Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th International
Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings, pages 326–
341, 2011.

15. J. Hefferon. Linear Algebra. Virginia Commonwealth University Mathematics,
2006.

16. J. Jean, I. Nikolić, and T. Peyrin. Joltik v1. 3. CAESAR Round, 2, 2015.
17. L. R. Knudsen and D. Wagner. Integral cryptanalysis. In Fast Software Encryp-

tion, 9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002,
Revised Papers, pages 112–127, 2002.

18. M. Matsui. New block encryption algorithm MISTY. In Fast Software Encryp-
tion, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997,
Proceedings, pages 54–68, 1997.

19. A. NIST. Request for candidate algorithm nominations for the AES. Available
on-line at http://www. nist. gov/aes.

20. N. F. Pub. 197: Advanced encryption standard (AES). Federal Information Pro-
cessing Standards Publication, 197:441–0311, 2001.

21. B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. AlKhzaimi, and C. Li.
Links among impossible differential, integral and zero correlation linear crypt-
analysis. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I,
pages 95–115, 2015.

22. L. Sun and M. Wang. Towards a further understanding of bit-based division prop-
erty. IACR Cryptology ePrint Archive, 2016:392, 2016.

23. S. Sun, L. Hu, M. Wang, P. Wang, K. Qiao, X. Ma, D. Shi, L. Song, and K. Fu. To-
wards finding the best characteristics of some bit-oriented block ciphers and auto-
matic enumeration of (related-key) differential and linear characteristics with pre-
defined properties. Technical report, Cryptology ePrint Archive, Report 2014/747,
2014.

24. T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. TWINE : A lightweight
block cipher for multiple platforms. In Selected Areas in Cryptography, 19th In-
ternational Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012,
Revised Selected Papers, pages 339–354, 2012.

25. Y. Todo. Integral cryptanalysis on full MISTY1. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, pages 413–432, 2015.

26. Y. Todo. Structural evaluation by generalized integral property. In Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the

25

Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, pages 287–314, 2015.

27. Y. Todo, T. Isobe, Y. Hao, and W. Meier. Cube attacks on non-blackbox polynomi-
als based on division property. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III, pages 250–279, 2017.

28. Y. Todo and M. Morii. Bit-based division property and application to SIMON
family. In Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pages 357–377,
2016.

29. W. Wu and L. Zhang. LBlock: A lightweight block cipher. In Applied Cryptography
and Network Security - 9th International Conference, ACNS 2011, Nerja, Spain,
June 7-10, 2011. Proceedings, pages 327–344, 2011.

30. Z. Xiang, W. Zhang, Z. Bao, and D. Lin. Applying MILP method to searching
integral distinguishers based on division property for 6 lightweight block ciphers.
In Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I, pages 648–678, 2016.

31. G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong. The Simeck family
of lightweight block ciphers. In Cryptographic Hardware and Embedded Systems -
CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-16,
2015, Proceedings, pages 307–329, 2015.

32. M. R. Z’aba, H. Raddum, M. Henricksen, and E. Dawson. Bit-pattern based
integral attack. In Fast Software Encryption, 15th International Workshop, FSE
2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, pages
363–381, 2008.

33. W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede. RECTAN-
GLE: a bit-slice lightweight block cipher suitable for multiple platforms. SCIENCE
CHINA Information Sciences, 58(12):1–15, 2015.

26

Supplementary Materials

Most of the Supplementary Materials are the distinguishers corresponding
to the experimental results in the main body of the paper. When we present
an integral distinguisher, the following symbols are adopted. ‘Ai’ represents an
i-bit vector with every bit being active. ‘Ci’ denotes an i-bit vector with every bit
being constant. ‘Bi’ indicates an i-bit vector with every bit satisfying zero-sum
property. ‘U i’ means an i-bit vector and the properties of the internal bits are
all unknown.

A: Obtaining Primitive Representation of a Linear Transformation

Suppose that there is a linear transformation h operating on n-bit vectors, and
we want to get its primitive representation. Namely, we aim to find an n × n
matrix MPRh satisfying h(x)T = MPRh · xT . Let

MPRh =


m0,0 m0,1 · · · m0,n−1
m1,0 m1,1 · · · m1,n−1

...
...

. . .
...

mn−1,0 mn−1,1 · · · mn−1,n−1

 ,

and denote ei the i-th (i = 0, 1, . . . , n− 1) unit vector. Note that

MPRh · eTi =


m0,i

m1,i

...
mn−1,i

 .

Thus, to determine the elements of MPRh , we only need to let h operate on all
n unit vectors, and put the resulted vectors corresponding to ei into the i-th
column of the matrix.

For more details, please refer to Section III.1 of [15].

B: Auxiliary Materials for Midori64

B.1: Linear Inequalities of Midori64’s S-box
Suppose that

(x0, x1, x2, x3)
SMidori64−−−−−→ (y0, y1, y2, y3)

is a division trail of SMidori64, then x0, x1, . . ., x3, y0, y1, . . . , y3 satisfy the linear
inequality system (7).

x0 + x1 + 4x2 + x3 − 2y0 − 2y1 − 2y2 − 2y3 > −1

−3x2 + y0 + y1 − 2y2 + y3 > −2

−y0 − y1 + 2y2 − y3 > −1

−x0 − x1 − x3 + 2y0 + 2y1 + 2y2 + 2y3 > 0

−x1 − x3 + y1 + y2 + y3 > −1

x0, x1, . . . , x3, y0, y1, . . . , y3 are binaries

(7)

27

B.2: Integral Distinguishers for Midori64

The variables used to build MILP model for one round Midori64 are il-
lustrated in Figure 4. On the one hand, the allocation of the variables may
influence the look of the resulting linear inequality system. On the other hand,
since each variable represents the division property of the corresponding bit, the
order of variables is exactly same to the order of elements in division property.
For example, if we say that the initial division property of Midori64 follows
D164

{k}, where k = (k0, k1, . . . , k63), we mean that x0 = k0, x1 = k1, . . ., and
x63 = k63.


x0 ∼ x3 x16 ∼ x19x32 ∼ x35x48 ∼ x51

x4 ∼ x7 x20 ∼ x23x36 ∼ x39x52 ∼ x55

x8 ∼ x11 x24 ∼ x27x40 ∼ x43x56 ∼ x59

x12 ∼ x15x28 ∼ x31x44 ∼ x47x60 ∼ x63

 SubCell−−−−→


y0 ∼ y3 y16 ∼ y19y32 ∼ y35y48 ∼ y51

y4 ∼ y7 y20 ∼ y23y36 ∼ y39y52 ∼ y55

y8 ∼ y11 y24 ∼ y27y40 ∼ y43y56 ∼ y59

y12 ∼ y15y28 ∼ y31y44 ∼ y47y60 ∼ y63



ShuffleCell−−−−−−−→


y0 ∼ y3 y56 ∼ y59y36 ∼ y39y28 ∼ y31

y40 ∼ y43y16 ∼ y19y12 ∼ y15y52 ∼ y55

y20 ∼ y23y44 ∼ y47y48 ∼ y51 y8 ∼ y11

y60 ∼ y63 y4 ∼ y7 y24 ∼ y27y32 ∼ y35



MixColumn−−−−−−→
t0∼t191


x64 ∼ x67x80 ∼ x83 x96 ∼ x99 x112 ∼ x115

x68 ∼ x71x84 ∼ x87x100 ∼ x103x116 ∼ x119

x72 ∼ x75x88 ∼ x91x104 ∼ x107x120 ∼ x123

x76 ∼ x79x92 ∼ x95x108 ∼ x111x124 ∼ x127


Fig. 4: Variables for One Round of Midori64.

4-Round Integral Distinguisher with Data Complexity 24

The input of the distinguisher satisfies

(A4C12, C16, C16, C16).

After four rounds of encryption, there are 4 bits satisfying zero-sum property,
which are labeled as 0 ∼ 3.

5-Round Integral Distinguisher with Data Complexity 212

The input of the distinguisher follows

(A4C12, C4A4C8, C8A4C4, C16).

There still are 4 bits satisfying zero-sum property after five rounds of encryption,
whose labels are 2, 6, 10 and 14.

6-Round Integral Distinguisher with Data Complexity 245

The input of the distinguisher has the following form

(A8C4A4,A12C4, C4A12,A1C7A8).

After six rounds of encryption, there are 16 bits satisfying zero-sum property.
These bits are dyed in red in Figure 5.

28

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

Fig. 5: The Output of the 6-Round and 7-Round Distinguishers for Midori64

7-Round Integral Distinguisher with Data Complexity 261

The input of the distinguisher follows

(A16,A16,A16,A12C2A1C1).

Then, after seven rounds of encryption, there are 16 zero-sum bits. They are also
those bits dyed in red in Figure 5.

C: Integral Distinguishers for Some AES-Like Block Ciphers

C.1: Integral Distinguishers for LED

3-Round Integral Distinguisher with Data Complexity 24

(A4C12, C16, C16, C16)
3 Rounds−−−−−−→ (B16,B16,B16,B16)

4-Round Integral Distinguisher with Data Complexity 211

(A4C12, C4A4C8, C8A3C5, C16)
4 Rounds−−−−−−→ (B16,B16,B16,B16)

5-Round Integral Distinguisher with Data Complexity 231

(A4C8A3C1,A8C8, C4A8C4, C8A8)
5 Rounds−−−−−−→ (B16,B16,B16,B16)

C.2: Integral Distinguishers for Joltik-BC

3-Round Integral Distinguisher with Data Complexity 24

(A4C12, C16, C16, C16)
3 Rounds−−−−−−→ (B16,B16,B16,B16)

4-Round Integral Distinguishers with Data Complexity 211

(A4C12, C4A4C8, C8A1C1A2C4, C16)
4 Rounds−−−−−−→ (B16,B16,B16,B16)

(A4C12, C4A4C8, C8A2C1A1C4, C16)
4 Rounds−−−−−−→ (B16,B16,B16,B16)

29

5-Round Integral Distinguishers with Data Complexity 231

(A4C8A1C1A2,A8C8, C4A8C4, C8A8)
5 Rounds−−−−−−→ (B16,B16,B16,B16)

(A4C8A2C1A1,A8C8, C4A8C4, C8A8)
5 Rounds−−−−−−→ (B16,B16,B16,B16)

C.3: Integral Distinguishers for AES

3-Round Integral Distinguisher with Data Complexity 28

(A8C24, C32, C32, C32)
3 Rounds−−−−−−→ (B32,B32,B32,B32)

4-Round Integral Distinguisher with Data Complexity 232

(A8C24, C8A8C16, C16A8C8, C24A8)
4 Rounds−−−−−−→ (B32,B32,B32,B32)

4-Round Integral Distinguisher with Data Complexity 2127

(A32,A32,A32,A31C1)
4 Rounds−−−−−−→ (B32,B32,B32,B32)

D: Integral Distinguishers for Serpent

The allocation of variables for one round Serpent is depicted in Figure 6. When
across the linear layer, the first line of the internal state represents X0 and the
last line of the internal state represents X3.


a124a120a116 · · ·a4a0

a125a121a117 · · ·a5a1

a126a122a118 · · ·a6a2

a127a123a119 · · ·a7a3

 S-box−−−−→


b124 b120 b116 · · ·b4 b0
b125 b121 b117 · · ·b5 b1
b126 b122 b118 · · ·b6 b2
b127 b123 b119 · · ·b7 b3

 Linear−−−−−−→
t0∼t609


a252a248a244 · · ·a132a128

a253a249a245 · · ·a133a129

a254a250a246 · · ·a134a130

a255a251a247 · · ·a135a131


Fig. 6: Variables for One Round of Serpent.

D.1: Integral Distinguishers for Serpent Starting from the First Round

4-Round Integral Distinguisher with Data Complexity 223

The input of the distinguisher has the following form

(A22C1A1C8, C32, C32, C32).

After four rounds of encryption, there still is one bit satisfying zero-sum property,
whose label is 37.

30

5-Round Integral Distinguisher with Data Complexity 283

(A32,A32,A18C1A1C12, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

6-Round Integral Distinguisher with Data Complexity 2113

(A32,A32,A32,A17C15)
6 Rounds−−−−−−→ (B32,B32,B32,B32)

7-Round Integral Distinguisher with Data Complexity 2124

(A32,A32,A32,A28C4)
7 Rounds−−−−−−→ (B32,B32,B32,B32)

Since the 6-round and 7-round distinguishers for different initial rounds are ex-
actly the same, we only list the 4-round and 5-round distinguishers in the re-
maining cases.

D.2: Integral Distinguishers for Serpent Starting from the Second
Round

4-Round Integral Distinguisher with Data Complexity 224

Suppose that the input follows

(A24C8, C32, C32, C32).

Then there are 97 bits with zero-sum property after four rounds of encryption,
which are dyed in red in Figure 7.

92

93

94

95

88

89

90

91

84

85

86

87

80

81

82

83

76

77

78

79

72

73

74

75

68

69

70

71

64

65

66

67

124

125

126

127

120

121

122

123

116

117

118

119

112

113

114

115

108

109

110

111

104

105

106

107

100

101

102

103

96

97

98

99

28

29

30

31

24

25

26

27

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

60

61

62

63

56

57

58

59

52

53

54

55

48

49

50

51

44

45

46

47

40

41

42

43

36

37

38

39

32

33

34

35

Fig. 7: The Output of the 4-Round Distinguisher for Serpent Starting from the
Second Round.

5-Round Integral Distinguisher with Data Complexity 283

(A32,A32,A19C13, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

D.3: Integral Distinguishers for Serpent Starting from the Third Round

31

4-Round Integral Distinguisher with Data Complexity 224

Suppose that the input follows

(A24C8, C32, C32, C32).

After four rounds of encryption, there are 44 bits satisfying zero-sum property,
which are dyed in red in Figure 8.

92

93

94

95

88

89

90

91

84

85

86

87

80

81

82

83

76

77

78

79

72

73

74

75

68

69

70

71

64

65

66

67

124

125

126

127

120

121

122

123

116

117

118

119

112

113

114

115

108

109

110

111

104

105

106

107

100

101

102

103

96

97

98

99

28

29

30

31

24

25

26

27

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

60

61

62

63

56

57

58

59

52

53

54

55

48

49

50

51

44

45

46

47

40

41

42

43

36

37

38

39

32

33

34

35

Fig. 8: The Output of the 4-Round Distinguisher for Serpent Starting from the
Third Round.

5-Round Integral Distinguisher with Data Complexity 283

(A32,A32,A16C1A3C12, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

D.4: Integral Distinguishers for Serpent Starting from the Fourth
Round

4-Round Integral Distinguisher with Data Complexity 224

Let the input of the distinguisher follow

(A24C8, C32, C32, C32).

Then, there are 115 bit satisfying zero-sum property after four rounds of encryp-
tion, which are dyed in red in Figure 9.

92

93

94

95

88

89

90

91

84

85

86

87

80

81

82

83

76

77

78

79

72

73

74

75

68

69

70

71

64

65

66

67

124

125

126

127

120

121

122

123

116

117

118

119

112

113

114

115

108

109

110

111

104

105

106

107

100

101

102

103

96

97

98

99

28

29

30

31

24

25

26

27

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

60

61

62

63

56

57

58

59

52

53

54

55

48

49

50

51

44

45

46

47

40

41

42

43

36

37

38

39

32

33

34

35

Fig. 9: The Output of the 4-Round Distinguisher for Serpent Starting from the
Fourth Round.

32

5-Round Integral Distinguisher with Data Complexity 284

(A32,A32,A20C12, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

D.5: Integral Distinguishers for Serpent Starting from the Fifth Round

4-Round Integral Distinguisher with Data Complexity 224

Let the input of the distinguisher follow

(A24C8, C32, C32, C32).

There are 78 zero-sum bits after four rounds of encryption, which are dyed in
red in Figure 10.

92

93

94

95

88

89

90

91

84

85

86

87

80

81

82

83

76

77

78

79

72

73

74

75

68

69

70

71

64

65

66

67

124

125

126

127

120

121

122

123

116

117

118

119

112

113

114

115

108

109

110

111

104

105

106

107

100

101

102

103

96

97

98

99

28

29

30

31

24

25

26

27

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

60

61

62

63

56

57

58

59

52

53

54

55

48

49

50

51

44

45

46

47

40

41

42

43

36

37

38

39

32

33

34

35

Fig. 10: The Output of the 4-Round Distinguisher for Serpent Starting from the
Fifth Round.

5-Round Integral Distinguisher with Data Complexity 284

(A32,A32,A20C12, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

D.6: Integral Distinguishers for Serpent Starting from the Sixth Round

4-Round Integral Distinguisher with Data Complexity 224

(A24C8, C32, C32, C32)
4 Rounds−−−−−−→ (B32,B32,B32,B32)

5-Round Integral Distinguisher with Data Complexity 284

(A32,A32,A20C12, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

D.7: Integral Distinguishers for Serpent Starting from the Seventh
Round

33

4-Round Integral Distinguisher with Data Complexity 224

Suppose that the input of the distinguisher follows

(A24C8, C32, C32, C32).

After four rounds of encryption, there still are 24 zero-sum bits, which are dyed
in red in Figure 11.

92

93

94

95

88

89

90

91

84

85

86

87

80

81

82

83

76

77

78

79

72

73

74

75

68

69

70

71

64

65

66

67

124

125

126

127

120

121

122

123

116

117

118

119

112

113

114

115

108

109

110

111

104

105

106

107

100

101

102

103

96

97

98

99

28

29

30

31

24

25

26

27

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

60

61

62

63

56

57

58

59

52

53

54

55

48

49

50

51

44

45

46

47

40

41

42

43

36

37

38

39

32

33

34

35

Fig. 11: The Output of the 4-Round Distinguisher for Serpent Starting from the
Seventh Round.

5-Round Integral Distinguisher with Data Complexity 283

(A32,A32,A17C1A2C12, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

D.8: Integral Distinguishers for Serpent Starting from the Eighth
Round

4-Round Integral Distinguisher with Data Complexity 224

Let the input of the distinguisher follows

(A24C8, C32, C32, C32).

There are 105 zero-sum bits after four rounds of encryption, which are dyed in
red in Figure 12.

92

93

94

95

88

89

90

91

84

85

86

87

80

81

82

83

76

77

78

79

72

73

74

75

68

69

70

71

64

65

66

67

124

125

126

127

120

121

122

123

116

117

118

119

112

113

114

115

108

109

110

111

104

105

106

107

100

101

102

103

96

97

98

99

28

29

30

31

24

25

26

27

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

60

61

62

63

56

57

58

59

52

53

54

55

48

49

50

51

44

45

46

47

40

41

42

43

36

37

38

39

32

33

34

35

Fig. 12: The Output of the 4-Round Distinguisher for Serpent Starting from the
Eighth Round.

34

5-Round Integral Distinguisher with Data Complexity 284

(A32,A32,A20C12, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

E: Integral Distinguishers for Noekeon

4-Round Integral Distinguishers with Data Complexity 227

Supposed that the input of the distinguisher follows

(A6C26,A7C25,A7C25,A7C25) or (A7C25,A6C26,A7C25,A7C25).

Then, after four rounds of encryption, there are 25 zero-sum bits, which are dyed
in red in Figure 13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Fig. 13: The Output of the 4-Round Distinguisher for Noekeon.

5-Round Integral Distinguishers with Data Complexity 283

(A20C12,A21C11,A21C11,A21C11)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

(A21C11,A20C12,A21C11,A21C11)
5 Rounds−−−−−−→ (B32,B32,B32,B32)

6-Round Integral Distinguishers with Data Complexity 2113

(A28C4,A28C4,A28C4,A29C3)
6 Rounds−−−−−−→ (B32,B32,B32,B32)

7-Round Integral Distinguishers with Data Complexity 2124

(A31C1,A31C1,A31C1,A31C1)
7 Rounds−−−−−−→ (B32,B32,B32,B32)

F: Auxiliary Materials for SPONGENT-88

F.1: Linear Inequality System of SSPONGENT

Denote (x0, x1, x2, x3)
SSPONGENT−−−−−−−−→ (y0, y1, y2, y3) a division trail of SSPONGENT.

Then x0, x1, . . . , x3, y0, y1, . . . , y3 satisfy the linear inequality system (8).

35



x0 + x1 + x2 + x3 − y0 − y1 − y2 − y3 > 0

−x1 − x2 − 2x3 + 2y0 + y1 + y2 + y3 > −1

3x3 − y0 − y1 − y2 − y3 > −1

−x0 + x1 − 3y0 + 3y1 − 2y2 − 2y3 > −4

−x0 + x2 − 3y0 − 2y1 + 3y2 − 2y3 > −4

−2x0 − x1 − x2 − 2x3 + 5y0 + 4y1 + 4y2 + 2y3 > 0

−x0 − y0 − y1 − y2 + 2y3 > −2

−x0 + x2 + y0 − 2y1 − y2 − y3 > −3

−x1 − x2 + y1 + y2 + y3 > −1

3x0 + x1 + x2 + x3 − 3y0 − 2y1 − 2y2 − y3 > −2

x0, x1, . . . , x3, y0, y1, . . . , y3 are binaries

(8)



x0 + x1 + x2 + x3 − y0 − y1 − y2 − y3 > 0

−5x0 − 3x1 − 3x2 − 4x3 − y0 + 2y1 + 2y2 + 4y3 > −8

3x0 − y0 − y1 − y2 − y3 > −1

−2x0 − x1 − x3 + y0 − 3y1 + 2y2 − y3 > −5

−2x0 − x2 − x3 + y0 + 2y1 − 3y2 − y3 > −5

−x1 − x2 + 2y0 + 2y1 + 2y2 + y3 > 0

3x2 + x3 − y0 − y1 − 2y2 − 2y3 > −2

3x1 + x3 − y0 − 2y1 − y2 − 2y3 > −2

−2x0 − x1 − x2 − x3 + 2y0 + 3y1 + 3y2 + 4y3 > 0

x2 − y0 − y3 > −1

−2x0 − 2x1 − x2 + y0 + y2 + y3 > −3

x0, x1, . . . , x3, y0, y1, . . . , y3 are binaries

(9)

F.2: Linear Inequality System of S−1
SPONGENT Denote

(x0, x1, x2, x3)
S−1
SPONGENT−−−−−−−−→ (y0, y1, y2, y3)

a division trail of S−1SPONGENT. Then x0, x1, . . . , x3, y0, y1, . . . , y3 satisfy the
linear inequality system (9).

F.3: Zero-Sum Distinguishers of SPONGENT-88
The allocation of variables is simply a0 ∼ a87, from left to right.

15-Round Zero-Sum Distinguisher with Data Complexity 280

Let D188

{[fffffffffff,fffffffff00]} be the division property for the input multi-set
of the seventh round, i.e., we traverse the first 80 bits.

36

– In the forward direction, we find that the objective function is equal to 1 after
eight rounds of encryption. But there are only 59 unit vectors. The absences
of the other 29 unit vectors indicate that there are 29 bits satisfying zero-
sum property. Those 29 bits satisfying zero-sum property are labeled as 10,
18 ∼ 21, 38, 41 ∼ 43, 60, 63 ∼ 65, 68, 70, 72 ∼ 73, 75 ∼ 76, and 78 ∼ 87.

– In the backward direction, we find that the objective function is equal to
1 after seven rounds of decryption. But there are only 68 unit vectors. The
absences of the other 20 unit vectors indicate that there are 20 bits satisfying
zero-sum property after seven rounds of decryption. Those 20 bits satisfying
zero-sum property are labeled as 0, 8, 16, 20, 24, 28, 32, 36, 40, 44, 48, 56,
60, 64, 68, 72, 80 ∼ 82, and 84.

Combining these short integral distinguishers in different directions, we get a
15-round higher-order integral distinguisher for SPONGENT-88 with complexity
280. Comparing to the former results, our newly found distinguisher achieves one
more round than the one proposed in [12] while keeps the same data complexity.

16-Round Zero-Sum Distinguisher with Data Complexity 284

Let D188

{[fffffffffff,ffffffffff0]} be the division property for the input multi-set
of the eighth round, i.e., we traverse the first 84 bits.

– In the forward direction, we find that the objective function is equal to 1 after
eight rounds of encryption. But there are only 55 unit vectors. The absences
of the other 33 unit vectors tell that there are 33 zero-sum bits. Those 33 bits
satisfying zero-sum property are labeled as 10, 18 ∼ 21, 38 ∼ 39, 41 ∼ 43,
60 ∼ 61, 63 ∼ 65, 68 ∼ 73, 75 ∼ 76, and 78 ∼ 87.

– In the backward direction, we observe that the objective function is equal to
1 after eight rounds of decryption. But there are only 82 unit vectors. The
absences of the other 6 unit vectors indicate that there are 6 zero-sum bits,
whose labels are 0, 16, 24, 40, 56, and 72.

Combining the above two short integral distinguishers in different directions,
we get a 16-round higher-order integral distinguisher for SPONGENT-88 with
complexity 284. Note that this newly obtained distinguisher achieves two more
rounds than the previous ones.

17-Round Zero-Sum Distinguisher with Data Complexity 285

Let D188

{[fffffffffff,ffffffffff1]} be the division property for the input multi-set
of the eighth round.

– In the forward direction, we find that the objective function is equal to 1
after nine rounds of encryption. But there are only 86 unit vectors. The
absences of the other 2 unit vectors tell that there still are 2 zero-sum bits,
which are labeled as 86 ∼ 87.

– In the backward direction, we observe that the objective function is equal to
1 after eight rounds of decryption. But there are only 45 unit vectors. The

37

absences of the other 43 unit vectors indicate that there are 43 bits satisfying
zero-sum property, whose labels are 0, 4, 8 ∼ 10, 12, 16 ∼ 18, 20, 24 ∼ 26,
28, 32 ∼ 36, 40 ∼ 42, 44, 48, 52, 56 ∼ 60, 64, 67 ∼ 68, 72 ∼ 76, and 80 ∼ 84.

Combining these two short distinguishers in opposite directions, we obtain a
17-round zero-sum distinguisher for SPONGENT-88 with data complexity 285.

18-Round Zero-Sum Distinguisher with Data Complexity 287

Let D188

{[fffffffffff,ffffffffff7]} be the division property for the input multi-set
of the ninth round.

– In the forward direction, we find that the objective function is equal to 1
after nine rounds of encryption. But there are only 72 unit vectors, which
indicates that there still are 16 zero-sum bits. The labels of those zero-sum
bits are 21, 42 ∼ 43, 64 ∼ 65, 70, 75 ∼ 76, 79, and 81 ∼ 87.

– In the backward direction, we observe that the objective function is equal to
1 after nine rounds of decryption. However, there are only 50 unit vectors,
which means that there are 38 zero-sum bits. The labels of these zero-sum
bits are 0, 4, 8 ∼ 10, 16 ∼ 18, 20, 24 ∼ 26, 28, 32 ∼ 36, 40 ∼ 42, 44, 48, 52,
56 ∼ 59, 64, 67 ∼ 68, 72 ∼ 74, 80 ∼ 82, and 84.

Integrating these two distinguishers in the opposite directions, we get an 18-
round zero-sum distinguisher, which gains four more rounds than the previous
ones.

F.4: Zero-Sum Distinguishers of SPONGENT-128
The allocation of variables is simply a0 ∼ a127, from left to right.

20-Round Zero-Sum Distinguisher with Data Complexity 2126

D1128

{[ffffffff, ffffffff, ffffffff, fffffff3]} be the division property for the input
multi-set of the tenth round.

– In the forward direction, we find that the objective function is equal to 1
after ten rounds of encryption. But there are only 127 unit vectors, which
indicates that there still is one zero-sum bit. And its label is 127.

– In the backward direction, we observe that the objective function is equal to
1 after ten rounds of decryption. However, there are 127 unit vectors, which
means that there still is one zero-sum bit. And its label is 0.

Combining the distinguishers in different directions, we obtain a 20-round zero-
sum distinguisher.

F.5: Zero-Sum Distinguishers of SPONGENT-160
The allocation of variables is simply a0 ∼ a159, from left to right.

38

21-Round Zero-Sum Distinguisher with Data Complexity 2159

D1160

{[ffffffff, ffffffff, ffffffff, ffffffff, fffffff7]} be the division property for
the input multi-set of the eleventh round.

– In the forward direction, we find that the objective function is equal to 1 after
ten rounds of encryption. And there are 115 unit vectors, which indicates
that there are 45 zero-sum bits. These zero-sum bits are labeled as 9, 19, 29,
34, 37 ∼ 39, 59, 69, 72, 74, 77 ∼ 79, 99, 109, 112, 114, 117 ∼ 119, 123 ∼ 124,
127 ∼ 129, 133 ∼ 134, 137 ∼ 139, 143 ∼ 144, 147 ∼ 149, and 151 ∼ 159.

– In the backward direction, we observe that the objective function is equal
to 1 after eleven rounds of decryption. However, there are 159 unit vectors,
which means that there still is one zero-sum bit. And its label is 96.

Integrating the distinguishers in opposite directions, we get a 21-round zero-sum
distinguisher.

G: Auxiliary Materials for PHOTON Permutations

G.1: Integral Distinguishers for P100

3-Round Integral Distinguisher with Data Complexity 24

(A4C16, C20, C20, C20, C20)
3 Rounds−−−−−−→ (B20,B20,B20,B20,B20)

4-Round Integral Distinguisher with Data Complexity 211

(A4C16, C4A4C12, C8A3C9, C20, C20)
4 Rounds−−−−−−→ (B20,B20,B20,B20,B20)

5-Round Integral Distinguisher with Data Complexity 220

(A4C16, C4A4C12, C8A4C8, C12A4C4, C16A4)
5 Rounds−−−−−−→ (B20,B20,B20,B20,B20)

G.2: Integral Distinguishers for P144

3-Round Integral Distinguisher with Data Complexity 24

(A4C20, C24, C24, C24, C24, C24)
3 Rounds−−−−−−→ (B24,B24,B24,B24,B24,B24)

4-Round Integral Distinguisher with Data Complexity 211

(A4C20, C4A4C16, C8A3C13, C24, C24, C24)
4 Rounds−−−−−−→ (B24,B24,B24,B24,B24,B24)

39

5-Round Integral Distinguisher with Data Complexity 224

(A4C20, C4A4C16, C8A4C12, C12A4C8, C16A4C4, C20A4)
5 Rounds−−−−−−→ (B24,B24,B24,B24,B24,B24)

7-Round Integral Distinguisher with Data Complexity 2131

(A24,A24,A11C1A12,A12C4A8,A16C4A4,A20C4)
7 Rounds−−−−−−→ (B24,B24,B24,B24,B24,B24)

G.3: Integral Distinguishers for P196

3-Round Integral Distinguisher with Data Complexity 24

(A4C24, C28, C28, C28, C28, C28, C28)
3 Rounds−−−−−−→ (B28,B28,B28,B28,B28,B28,B28)

4-Round Integral Distinguisher with Data Complexity 211

(A4C24, C4A4C20, C8A3C17, C28, C28, C28, C28)
4 Rounds−−−−−−→ (B28,B28,B28,B28,B28,B28,B28)

8-Round Integral Distinguisher with Data Complexity 2192

(C4A24,A28,A28,A28,A28,A28,A28)
8 Rounds−−−−−−→ (B28,B28,B28,B28,B28,B28,B28)

G.4: Integral Distinguishers for P256

3-Round Integral Distinguisher with Data Complexity 24

(A4C28, C32, C32, C32, C32, C32, C32, C32)
3 Rounds−−−−−−→ (B32,B32,B32,B32,B32,B32,B32,B32)

4-Round Integral Distinguisher with Data Complexity 211

(A4C28, C4A4C24, C8A3C21, C32, C32, C32, C32, C32)
4 Rounds−−−−−−→ (B32,B32,B32,B32,B32,B32,B32,B32)

5-Round Integral Distinguisher with Data Complexity 228

(A4C28, C4A4C24, C8A4C20, C12A4C16, C16A4C12, C20A4C8, C24A4C4, C32)
5 Rounds−−−−−−→ (B32,B32,B32,B32,B32,B32,B32,B32)

40

9-Round Integral Distinguisher with Data Complexity 2252 The input
of the distinguisher follows the following form.

(C4A28,A32,A32,A32,A32,A32,A32,A32)

After nine rounds of encryption, there are 96 bits satisfying zero-sum property.
These bits are dyed in red in Figure 14.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

32 33 34 35

36 37 38 39

64 65 66 67

68 69 70 71

20 21 22 23

40 41 42 43

44 45 46 47

24 25 26 27

48 49 50 51

52 53 54 55

72 73 74 75

76 77 78 79

80 81 82 83

96 97 98 99

100 101 102 103

104 105 106 107

108 109 110 111

128 129 130 131

132 133 134 135

136 137 138 139

160 161 162 163

164 165 166 167

192 193 194 195

28 29 30 31

56 57 58 59

60 61 62 63

84 85 86 87

88 89 90 91

92 93 94 95

112 113 114 115

116 117 118 119

120 121 122 123

124 125 126 127

140 141 142 143

144 145 146 147

148 149 150 151

152 153 154 155

156 157 158 159

168 169 170 171

172 173 174 175

176 177 178 179

180 181 182 183

184 185 186 187

188 189 190 191

196 197 198 199

200 201 202 203

204 205 206 207

208 209 210 211

212 213 214 215

216 217 218 219

220 221 222 223

224 225 226 227

228 229 230 231

232 233 234 235

236 237 238 239

240 241 242 243

244 245 246 247

248 249 250 251

252 253 254 255

Fig. 14: The Output of the 9-Round Integral Distinguisher for P256.

G.5: Integral Distinguishers for P288

3-Round Integral Distinguisher with Data Complexity 28

(A8C40, C48, C48, C48, C48, C48)
3 Rounds−−−−−−→ (B48,B48,B48,B48,B48,B48)

4-Round Integral Distinguisher with Data Complexity 248

(A8C40, C8A8C32, C16A8C24, C24A8C16, C32A8C8, C40A8)
4 Rounds−−−−−−→ (B48,B48,B48,B48,B48,B48)

41

	MILP-Aided Bit-Based Division Property for Primitives with Non-Bit-Permutation Linear Layers

