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Abstract

Hierarchical identity-based encryption (HIBE) can be extended to revocable HIBE (RHIBE) if a
private key of a user can be revoked when the private key is revealed or expired. Previously, many
selectively secure RHIBE schemes were proposed, but it is still unsolved problem to construct an adap-
tively secure RHIBE scheme. In this work, we propose two RHIBE schemes in composite-order bilinear
groups and prove their adaptive security under simple static assumptions. To prove the adaptive security,
we use the dual system encryption framework, but it is not simple to use the dual system encryption
framework in RHIBE since the security model of RHIBE is quite different with that of HIBE. We show
that it is possible to solve the problem of the RHIBE security proof by carefully designing hybrid games.
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1 Introduction

Hierarchical identity-based encryption (HIBE) is an important extension of identity-based encryption (IBE)
[6] that uses the identity of a user as the public-key of the user. In HIBE, the identity of a user is represented
as a hierarchical structure and a user with a private key can delegate his private key to next-level users. The
concept of HIBE was introduced by Horwitz and Lynn [14] to reduce the burden of a private key generation
in a trusted center and a secure HIBE scheme that supports arbitrary many levels are proposed by Gentry
and Silverberg [12]. HIBE can be extended to broadcast encryption, forward-secure encryption, chosen-
ciphertext secure encryption, and searchable encryption [1, 7, 8, 10] and it has many interesting applications
like encryption systems for medical data and range query on encrypted data [2, 31].

To use an HIBE scheme in real applications, we should revoke the private key of a user if his private
key is revealed or his credential is expired. Revocable HIBE (RHIBE) is an extension of HIBE that supports
the revocation functionality by broadcasting an update key for non-revoked users per each time period.
Previously, an efficient revocable IBE (RIBE) schemes were proposed by many researchers [3,18,22,24,28].
Seo and Emura [27] proposed the first RHIBE scheme by following the design strategy of Boldyreva et
al. [3] that uses a binary tree and proved its selective security. After that, some efficient RHIBE schemes
with improved parameters were proposed [20, 30], but these are also proven to be selectively secure.

The right security model of RHIBE is the adaptive model where an adversary can select a target in the
challenge step. In RIBE, adaptively secure RIBE schemes were already proposed in [18, 22, 28]. However,
all RHIBE schemes only provide the selective security where the challenge identity ID∗ and the challenge
time T ∗ should be submitted before receiving public parameters or the selective revocation list security
where the challenge revocation set R∗ should be additionally submitted [20, 27, 30]. Although an RHIBE
scheme claimed to be adaptively secure was proposed in [29], the security proof that uses the dual system
encryption technique has some flaws. The flaw is that the private key of ID ∈ Prefix(ID∗) and the update
key of T = T ∗ cannot be directly converted from normal to semi-functional since the simple information
theoretic argument doesn’t work for this case. Therefore, the construction of an adaptively secure RHIBE
scheme is an unsolved open problem.

1.1 Our Results

In this paper, we give an answer to this unsolved problem by proposing two RHIBE schemes in composite-
order bilinear groups and proving their adaptive security under simple static assumptions.

We first propose an RHIBE-CS scheme by combining the HIBE and IBE schemes of Lewko and Waters
[21] and the complete subtree (CS) scheme of Naor, Naor, and Lotspiech [23] in a modular way. For the
construction of our RHIBE-CS scheme, we follow the modular design approach of Lee and Park [20] except
that the underlying HIBE and IBE schemes are replaced by the schemes of Lewko and Waters. We then prove
the adaptive security of our RHIBE-CS scheme by using the dual system encryption framework [21, 35].
However, the naive approach of dual system encryption does not work for RHIBE since an adversary can
query a private key for ID that is a prefix of ID∗ and an update key for T ∗ where ID∗ is the challenge identity
and T ∗ is the challenge time, and these private key and update key cannot be easily converted from normal
to semi-functional. Thus, solving this problem of RHIBE when the dual system encryption was used is the
core of the security proof. The main technical idea of solving this problem is described in the later part of
this section.

Next, we propose an RHIBE-SD scheme by using the subset difference (SD) scheme instead of using
the CS method to reduce the size of an update key. As mentioned before, we also follow the modular
design approach of Lee and Park [20]. Our RHIBE-SD scheme has O(r) number of group elements in an
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Table 1: Comparison of revocable hierarchical identity-based encryption schemes

Scheme PP Size SK Size UK Size CT Size Model Assumption

SE [27] O(L) O(`2 logN) O(`r log N
r ) O(`) SE-IND DBDH

SE (CS) [30] O(L) O(L logN) O(Lr log N
r ) O(1) SE-IND q-Type

SE (SD) [30] O(L) O(L log2 N) O(Lr) O(1) SRL-IND q-Type

RLPL [25] O(1) O(` logN) O(`r log N
r ) O(`) SE-IND q-Type

LP (CS) [20] O(1) O(logN) O(`+ r log N
r ) O(`) SE-IND q-Type

LP (SD) [20] O(1) O(log2 N) O(`+ r) O(`) SRL-IND q-Type

Ours (CS) O(L) O(L logN) O(L+ r log N
r ) O(1) AD-IND Static

Ours (SD) O(L) O(L log2 N) O(L+ r) O(1) AD-IND Static

Let N be the number of maximum users in each level, r be the number of revoked users. Let L and ` be the
maximum depth and the depth of a hierarchical identity respectively. We count the number of group elements
to measure the size of parameters. We use symbols SE-IND for selective IND-CPA, SRL-IND for selective
revocation list IND-CPA, and AD-IND for adaptive IND-CPA.

update key and O(log2 Nmax) number of group elements in a private key whereas our RHIBE-CS scheme has
O(r log(Nmax/r)) number of group elements in an update key and O(logNmax) number of group elements in
a private key. The detailed comparison of RHIBE schemes in bilinear groups is given in Table 1. To prove
the adaptive security of our RHIBE-SD scheme, we carefully use the proof technique of Lee et al. [18] that
was used to prove the adaptive security of their RIBE scheme.

1.2 Our Techniques

To prove the adaptive security of an HIBE scheme, the dual system encryption framework was introduced
by Waters [35]. In the dual system encryption framework, ciphertexts and private keys can be normal or
semi-functional in which a normal ciphertext can be decrypted by a normal or semi-functional private key
whereas a semi-functional ciphertext cannot be decrypted by a semi-functional private key. To prove the
adaptive security, a normal challenge ciphertext is changed to be semi-functional, and then each normal
private key is changed to be semi-functional one by one through hybrid games. The main obstacle of this
proof is to overcome the paradox of dual system encryption in which a simulator can check whether a private
key is normal or semi-functional by decrypting a semi-functional ciphertext since a simulator can generate
a ciphertext and a private key for any identity. Lewko and Waters [21] solved this problem by introducing
the nominally semi-functional type of private keys where a semi-functional ciphertext can be decrypted by
a nominally semi-functional private key. Note that an information theoretic argument should be given to
argue that a nominally semi-functional key is indistinguishable from a semi-functional key.

For the security proof of an RHIBE scheme, one may simply use the dual system encryption technique
that changes private keys and update keys from normal types to semi-functional types one by one through
hybrid games. However, this simple strategy does not work since the adversary of RHIBE can query a
private key for ID that is a prefix of ID∗ and an update key for T = T ∗ where ID∗ and T ∗ are the challenge
identity and time. That is, we cannot show the information theoretic argument for these private key and
update key since ID is a prefix of ID∗ and T = T ∗. In HIBE, the restriction of an adversary that ID is not
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a prefix of ID∗ is essentially used to show the information theoretic argument. Thus, it is not easy to prove
the adaptive security of an RHIBE scheme by using the dual system encryption framework.

Our strategy to overcome this problem is that private keys and update keys of an RHIBE scheme are first
divided into smaller component keys and then these component keys that are related to the same node in a
binary tree are grouped together. Next, these component keys that belong to the same group are changed
from normal types to semi-functional types one by one through hybrid games. Similar proof strategy was
used in [17, 18, 26]. In particular we consider an RHIBE-CS scheme that use the CS method. A private key
consists of many HIBE private keys that are related to a path in a binary tree and an update key also consists
of many IBE private keys that are related to a cover set in a binary tree. By the grouping of HIBE private
keys and IBE private keys with the same node, we can use the restriction of the RHIBE security model to
show an information theoretic argument.

For example, if an adversary requests a private key for ID ∈ Prefix(ID∗) and one HIBE private key of
this private key is related to a node v∗, then all IBE private keys in update keys satisfy T 6= T ∗ for this node
v∗ since this private key should be revoked on time T ∗ by the restriction of the security model. Thus, we
first change IBE private key related to v∗ from normal to semi-functional one by one by using T 6= T ∗, and
then we change HIBE private keys related to v∗ from normal to semi-functional at once. Note that there is
no paradox of dual system encryption when we change HIBE private keys from normal to semi-functional
since IBE private keys are already semi-functional. Recall that an information theoretic argument is not
needed if nominally semi-functional keys are not used. Similar argument also applies when the adversary
requests an update key for T = T ∗ and one IBE private key of this update key is related to a node v∗ since
we have ID 6∈ Prefix(ID∗) for all HIBE private key for this node v∗.

To prove the adaptive security of our RHIBE-SD scheme, we also use the similar proof strategy that
private keys and update keys are divided into smaller component keys and these component keys that belong
to the same group are changed from normal to semi-functional. In our RHIBE-CS scheme, a group is simply
defined by a node v j in a binary tree. In our RHIBE-SD scheme, a group is defined as a set of subsets Si, j

such that vi is the same and the depth d j of v j is the same where Si, j is defined by two nodes vi and v j in
a binary tree. To change HIBE private keys and IBE private keys in the same group from normal to semi-
functional, we carefully design hybrid games since a group is very complex. Note that Lee et al. [18] also
used this proof strategy to prove the adaptive security of their RIBE-SD scheme.

1.3 Related Work

An IBE scheme with key revocation was first proposed by Boneh and Franklin [6] in which each user should
retrieve his private key from a trusted center for the identity ID‖T per each time period T . Boldyreva, Goyal,
and Kumar [3] proposed a scalable RIBE scheme by combining a fuzzy IBE scheme and the CS method in
which an update key is broadcasted to non-revoked users per each time period. This design method that uses
the CS method for key revocation was also used to build other adaptively secure RIBE schemes [22,28]. The
SD method is an improvement on the CS method since the size of a broadcasting set can be reduced [23].
Lee et al. [18] proposed an RIBE scheme that uses the SD method to improve the size of an update key and
proved its adaptive security under static assumptions. An RIBE scheme based on a binary tree cannot have
short private keys and update keys. To overcome this problem, Park et al. [24] proposed an RIBE scheme
with short private keys and update keys by using multilinear maps. Watanabe et al. proposed an adaptively
secure RIBE scheme in prime order groups with short public parameters [34]. RIBE schemes using lattice
have been proposed [9, 32].

As mentioned before, the first selectively secure RHIBE scheme was proposed by Seo and Emura [27] by
combining the HIBE scheme of Boneh and Boyen [4] and the CS method. This RHIBE scheme is relatively
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inefficient since a user should retrieve all update keys generated by his ancestors to decrypt a ciphertext. To
solve this problem of inefficiency, Seo and Emura [30] proposed another selectively secure RHIBE scheme
with history-free updates that uses the CS (or SD) method where a user only needs to retrieve an update key
generated by his parent. Lee and Park [20] proposed new RHIBE schemes with shorter private keys and
update keys by combining a new HIBE scheme that has short intermediate private keys and the CS (or SD)
method in a modular way. After the work of our RHIBE scheme in this paper, adaptively secure RHIBE
schemes under standard assumptions were proposed by Emura et al. [11]. In addition, RHIBE schemes from
lattices have been proposed [15, 33].

An attribute-based encryption (ABE) scheme also can be extended to support the key revocation. A
revocable ABE (RABE) scheme was also proposed by Boldyreva et al. [3] by combining a key-policy
ABE scheme and the CS method and its selective revocation list security was claimed. To securely protect
information stored in cloud storage, one may use an RABE scheme since it provides the access control on
encrypted data as well as the key revocation. Sahai et al. [26] pointed out that RABE is not enough for cloud
storage and then they proposed a revocable-storage ABE (RS-ABE) scheme that supports the key revocation
and the ciphertext update. After that, Lee et al. showed that an RS-ABE scheme can be improved by using
a self-updatable encryption (SUE) scheme [16, 17, 19].

2 Preliminaries

In this section, we introduce composite-order bilinear groups and complexity assumptions. Next, we define
the syntax and the adaptive security model of RHIBE.

2.1 Notation

Let I be the identity space. A hierarchical identity ID with a depth k is defined as an identity vector
ID = (I1, . . . , Ik) ∈ Ik. We let ID| j be a vector (I1, . . . , I j) of size j derived from ID. If ID = (I1, . . . , Ik), then
we have ID = ID|k. We define ID|0 = ε (i.e. the empty string) for simplicity. The function Prefix(ID|k)
returns a set of prefix vectors {ID| j} for all 1 ≤ j ≤ k where ID|k = (I1, . . . , Ik) ∈ Ik for some k. For two
hierarchical identities ID|i and ID| j with i < j, ID|i is an ancestor of ID| j and ID| j is a descendant of ID|i if
ID|i ∈ Prefix(ID| j).

2.2 Binary Tree

A perfect binary tree BT is a tree data structure in which all internal nodes have two child nodes and all leaf
nodes have the same depth. Let N = 2n be the number of leaf nodes in BT . The number of all nodes in BT
is 2N−1 and we denote vi as a node in BT for any 1≤ i≤ 2N−1. The depth di of a node vi is the length of
the path from a root node to the node. The root node of a tree has depth zero. The depth of BT is the length
of the path from the root node to a leaf node. A level of BT is a set of all nodes at given depth.

Each node vi ∈ BT has an identifier Li ∈ {0,1}∗ which is a fixed and unique string. An identifier of
each node is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on whether it is
connected to the left or right child node. The identifier Li of a node vi is obtained by reading all labels of
edges in a path from the root node to the node vi. The root node has an empty identifier ε . For a node vi, we
define Label(vi) be the identifier Li of vi and Depth(vi) be the depth di of vi.

A subtree Ti in BT is defined as a tree that is rooted at a node vi ∈ BT . A subset Si is defined as a
set of all leaf nodes in Ti. For any two nodes vi,v j ∈ BT where v j is a descendant of vi, Ti, j is defined
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as a subtree Ti−T j, that is, all nodes that are descendants of vi but not v j. A subset Si, j is defined as
the set of leaf nodes in Ti, j, that is, Si, j = Si \ S j. For S j and Si, j, we define Label(Si) = Label(vi) and
Label(Si, j) = (Label(vi),Label(v j)) respectively.

For a perfect binary tree BT and a subset R of leaf nodes, ST R is defined as the Steiner Tree induced
by the set R and the root node, that is, the minimal subtree of BT that connects all the leaf nodes in R and
the root node.

2.3 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two multiplicative cyclic
groups of same composite order N and g be a generator of G. The bilinear map e : G×G→ GT has the
following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ ZN , e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are
all efficiently computable. Furthermore, we assume that the description of G and GT includes generators
of G and GT respectively. We use the notation Gpi to denote the subgroups of order pi of G respectively.
Similarly, we use the notation GT,pi to denote the subgroups of order pi of GT respectively. We note that if
hi ∈Gpi and h j ∈Gp j for i 6= j, then e(hi,h j) is the identity element in GT . This orthogonality property of
Gp1 ,Gp2 ,Gp3 will be used to implement semi-functionality in our constructions.

2.4 Complexity Assumptions

Assumption 1 (Subgroup Decision, SD). Let (N,G,GT ,e) be a description of the bilinear group of com-
posite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The SD
assumption is that if the challenge tuple

D = ((N,G,GT ,e),g1,g3) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = X1 ∈ Gp1 from Z = Z1 = X1R1 ∈ Gp1 p2 with
more than a negligible advantage. The advantage of A is defined as AdvSD

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−

Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of X1 ∈Gp1 and R1 ∈Gp2 .

Assumption 2 (General Subgroup Decision, GSD). Let (N,G,GT ,e) be a description of the bilinear group
of composite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
GSD assumption is that if the challenge tuple

D = ((N,G,GT ,e),g1,g3,X1R1,R2Y1) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = X2Y2 ∈ Gp1 p3 from Z = Z1 = X2R3Y2 ∈ Gp1 p2 p3

with more than a negligible advantage. The advantage of B is defined as AdvGSD
A (λ ) =

∣∣Pr[A(D,T0) =
0]−Pr[A(D,T1) = 0]

∣∣ where the probability is taken over random choices of X1,X2 ∈Gp1 , R1,R2,R3 ∈Gp2 ,
and Y1,Y2 ∈Gp3 .
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Assumption 3 (Composite Diffie-Hellman, ComDH). Let (N,G,GT ,e) be a description of the bilinear
group of composite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively.
The ComDH assumption is that if the challenge tuple

D = ((N,G,GT ,e),g1,g2,g3,ga
1R1,gb

1R2) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = e(g1,g1)
ab from Z = Z1 = e(g1,g1)

c with more
than a negligible advantage. The advantage of A is defined as AdvComDH

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−

Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of a,b,c ∈ ZN , and R1,R2 ∈Gp2 .

2.5 Pseudo-Random Functions

A pseudo-random function (PRF) [13] is an efficiently computable function F :K×X →Y where K is the
key space, X is the domain, and Y is the range. Let F(k, ·) be an oracle for a uniformly chosen k ∈ K and
f (·) be an oracle for a uniformly chosen function f : X →Y . We say that a PRF is secure if for all efficient
adversaries A the advantage AdvPRF

A (λ ) =
∣∣Pr[AF(k,·) = 1]−Pr[A f (·) = 1]

∣∣ is negligible.

2.6 Revocable HIBE

RHIBE is an extension of HIBE and it provides the revocation functionality in which each user can revoke
child users if the private key of a child user is revealed [27]. In RHIBE, each user additionally provides an
update key UK per each time period and a child user can derive a (short-term) decryption key DK to decrypt
a ciphertext by combining his (long-term) private key SK and the update key UK if he is not revoked in the
update key. The syntax of RHIBE with history-free updates [30] is defined as follows:

Definition 2.1 (Revocable HIBE). An RHIBE scheme with history-free updates for the identity space I,
the time space V , and the message space M, consists of seven algorithms Setup, GenKey, UpdateKey,
DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:

Setup(1λ ,L,Nmax): This algorithm takes as input a security parameter 1λ , the maximum depth L, and the
maximum number Nmax of users in each level. It outputs a master key MK, an (empty) revocation list
RLε , a state STε , and public parameters PP.

GenKey(ID|k,STID|k−1 ,PP): This algorithm takes as input a hierarchical identity ID|k = (I1, . . . , Ik) ∈ Ik,
the state STID|k−1 , and public parameters PP. It outputs a private key SKID|k .

UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): This algorithm takes as input time T ∈ V , a revoca-
tion list RLID|k−1 , a decryption key DKID|k−1,T , and public parameters PP. It outputs an update key
UKID|k−1,T .

DeriveKey(SKID|k ,UKID|k−1,T ,PP): This algorithm takes as input a private key SKID|k for a hierarchical
identity ID|k, an update key UKID|k−1,T for time T , and the public parameters PP. It outputs a decryp-
tion key DKID|k,T .

Encrypt(ID|`,T,M,PP): This algorithm takes as input a hierarchical identity ID|` = (I1, . . . , I`) ∈ I`, time
T , a message M, and the public parameters PP. It outputs a ciphertext CTID|`,T .

Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): This algorithm takes as input a ciphertext CTID|`,T , a decryption key
DKID′|k,T ′ and the public parameters PP. It outputs an encrypted message M.
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Revoke(ID|k,T,RLID|k−1 ,STID|k−1): This algorithm takes as input a hierarchical identity ID|k, revocation
time T , a revocation list RLID|k−1 , and a state STID|k−1 . It updates the revocation list RLID|k−1 .

The correctness of RHIBE is defined as follows: For all MK and PP generated by Setup(1λ ,L,Nmax), SKID|k
generated by GenKey(ID|k,ST |k−1,PP), UKID|k−1,T generated by UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,
PP), and CTID|`,T generated by Encrypt(ID|`,T,M,PP), it is required that

• If ID|k ∈Prefix(ID|`), ID|k 6∈RLID|k−1 , and T =T ′, then Decrypt(CTID|`,T , DeriveKey(SKID|k ,UKID|k−1,T ,
PP),PP) = M.

The adaptive security model of RHIBE can be defined by extending the adaptive security model of RIBE.
We use the adaptive model of RHIBE by extending the selective model of Seo and Emura [27] to support
the decryption key exposure resistance (DKER) property [28]. In the adaptive security model of RHIBE, an
adversary can adaptively request a private key query for any ID and an update key query for time T . In the
challenge step, the adversary selects the challenge identity ID∗ and challenge time T ∗, and two challenge
messages M∗0 ,M

∗
1 with some restrictions. After receiving the challenge ciphertext, the adversary guesses the

encrypted message in the challenge ciphertext. The formal security definition of RHIBE is given as follows:

Definition 2.2 (Adaptive IND-CPA Security). The adaptive IND-CPA security (AD-IND-CPA) of RHIBE
is defined in terms of the following experiment between a challenger C and a PPT adversary A:

1. Setup: C obtains a master key MK, a revocation list RLε , a state STε , and public parameters PP by
running Setup(1λ ,L,Nmax). It keeps MK,RLε ,STε to itself and gives PP to A.

2. Phase 1: A adaptively requests a polynomial number of queries. These queries are processed as
follows:

• Create key: If it is a create key query for a hierarchical identity ID|k, then C creates a private key
SKID|k by running GenKey(ID|k,STID|k−1 ,PP) with the restriction that the private key SKID|k−1

was already created.

• Private key: If it is a private key query for a hierarchical identity ID|k, then C reveals the private
key SKID|k that was already created.

• Update key: If it is an update key query for a hierarchical identity ID|k−1 and time T , then
C gives an update key UKID|k−1,T by running UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP)
with the restrictions that SKID|k−1 was already created and ID|k−1 or one of its ancestor was not
revoked on time T . Although we described this update key as a key query, we can assume that
all update keys for created private keys are broadcasted to A.

• Decryption key: If it is a decryption key query for a hierarchical identity ID|k and time T ,
then C gives a decryption key DKID|k,T by running DeriveKey(SKID|k ,UKID|k−1,T ,PP) with the
restriction that SKID|k−1 was already created and IDID|k is not revoked in UKID|k−1,T .

• Revocation: If it is a revocation query for a hierarchical identity ID|k and time T , then C updates
a revocation list RLID|k−1 by running Revoke(ID|k,T,RLID|k−1 ,STID|k−1) with the restriction: A
revocation query for ID|k on time T cannot be requested if an update key query for ID|k on the
time T was requested.

Note that we assume that update key, decryption key, and revocation queries are requested in non-
decreasing order of time.
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3. Challenge: A submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
` ), challenge time T ∗, and

two challenge messages M∗0 ,M
∗
1 with the following restrictions:

• If a private key query for ID|k ∈ Prefix(ID∗|`) was requested, then ID|k or one of its ancestors
must be revoked at some time T ≤ T ∗.

• A decryption key query for ID|k ∈ Prefix(ID∗|`) on the challenge time T ∗ was not requested.

C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext CT ∗ID∗|`,T ∗ to A by running En-
crypt(ID∗|`,T ∗,M∗µ ,PP).

4. Phase 2: A may continue to request a polynomial number of queries subject to the restrictions of the
challenge step.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvAD-IND-CPA
RHIBE,A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over
all the randomness of the experiment. An RHIBE scheme is AD-IND-CPA secure if for all probabilistic
polynomial-time (PPT) adversaryA, the advantage ofA in the above experiment is negligible in the security
parameter λ .

Remark 1. The stronger security model of RHIBE is the insider security model that considers internal
attackers. The insider security model of RHIBE was introduced by Seo and Emura [30], and it allows the
exposure of state information in addition to the private key through the private key query. The security
model of RHIBE in this paper does not take into account the insider security since our RHIBE schemes do
not provide the insider security.

Remark 2. The RHIBE security model in this paper only considers the standard DKER property defined
by Seo and Emura [28]. Recently, a strong DKER property that allows an attacker to query a decryption
key with ID|k ∈ Prefix(ID∗|`)∧ k < ` and T = T ∗ was defined by Katsumata et al. [15]. Since our RHIBE
schemes in this paper do not provide this strong DKER property, we only consider the standard DKER
property in the RHIBE security model.

3 Revocable HIBE with Complete Subtree

In this section, we propose an RHIBE scheme via the complete subtree method and prove its adaptive
security under simple static assumptions.

3.1 Complete Subtree Method

The complete subtree (CS) method is a specific instance of the subset cover framework of Naor et al. [23].
We follow the definition the CS method in the work of Lee and Park [20].

CS.Setup(Nmax): Let Nmax = 2n for simplicity. It first sets a perfect binary tree BT of depth n. Each user is
assigned to a different leaf node in BT . The collection S is defined as {Si} where Si is the set of all
leaves in a subtree Ti with a subroot vi ∈ BT . It outputs the binary tree BT .

CS.Assign(BT ,v): Let v be a leaf node of BT that is assigned to a user ID. Let (vk0 ,vk1 , . . . ,vkn) be the
path from the root node vk0 = v0 to the leaf node vkn = v. It initializes a private set PV as an empty
one. For all j ∈ {k0, . . . ,kn}, it adds S j into PV . It outputs the private set PV = {S j}.
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CS.Cover(BT ,R): It first computes the Steiner tree ST R. Let Tk1 , . . .Tkm be all the subtrees of BT that
hang off ST R, that is all subtrees whose roots vk1 , . . .vkm are not in ST R but adjacent to nodes of
outdegree 1 in ST R. It initializes a cover set CV as an empty one. For all i ∈ {k1, . . . ,km}, it adds Si

into CV . It outputs the cover set CV = {Si}.

CS.Match(CV,PV ): It finds a common subset Sk with Sk ∈ CV and Sk ∈ PV . If there exists a common
subset, it outputs (Sk,Sk). Otherwise, it outputs ⊥.

The correctness of the CS scheme requires that if v 6∈ R, then CS.Match(CV,PV ) = (Sk,Sk) for the same
Sk where CV and PV are associated with R and v respectively.

Lemma 3.1 ( [23]). In the CS method, the size of a private set is O(logNmax) and the size of a cover set is
O(r log(Nmax/r)) where Nmax is the maximum number of leaf nodes and r is the size of revoked users R.

3.2 Construction

To build an RHIBE-CS scheme, we follow the design strategy of Lee and Park [20]. That is, we construct an
RHIBE-CS scheme by combining HIBE and IBE schemes with special properties and the CS method. For
our construction, we use the LW-HIBE scheme in composite-order bilinear groups as the underlying HIBE
scheme for our RHIBE scheme. The LW-HIBE scheme has short ciphertexts similar to the BBG-HIBE
scheme [5], but it is fully secure under static assumptions [21]. Lee and Park [20] also pointed out that the
BBG-HIBE scheme also can be used to build a selectively secure RHIBE scheme. Our RHIBE-CS scheme
is similar to that of Lee and Park [20] except that it uses composite-order bilinear groups and the underlying
HIBE and IBE schemes are replaced by the HIBE and IBE schemes of Lewko and Waters [21]. However,
we prove the adaptive security of our RHIBE scheme.

Let PRF be a pseudo-random function for K = {0,1}λ , X = {0,1}∗, and Y = ZN . Our RHIBE scheme
for I = ZN , V = ZN , andM∈GT is described as follows:

RHIBE-CS.Setup(1λ ,L,Nmax): Let λ be a security parameter, L be the maximum depth of a hierarchical
identity, and Nmax be the maximum number of users for each level.

1. It first generates bilinear groups G,GT of composite order N = p1 p2 p3 where p1, p2, and p3 are
random primes. It selects random generators g1,g3 of Gp1 ,Gp3 respectively.

2. It selects a random exponent α ∈ ZN and chooses random elements h,u1, . . . ,uL,v,w ∈ Gp1 . It
outputs a master key MK = α and public parameters

PP =
(
(N,G,GT ,e), g = g1,Y = g3,h,u1, . . . ,uL, v,w, Ω = e(g,g)α ,Nmax

)
.

We define F(ID|k) = (h∏
k
i=1 uIi

i ) for ID|k = (I1, . . . , Ik) and use the notation SKID|0 = MK.

RHIBE-CS.GenKey(ID|k,STID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Zk
N be a hierarchical identity with k ≥ 1

and STID|k−1 be a state information.

1. If STID|k−1 is empty, then it obtains BT ID|k−1 by running CS.Setup(Nmax) and selects a random
exponent βID|k−1 ∈ ZN and a PRF key zID|k−1 ∈ K. It sets STID|k−1 = (BT ID|k−1 ,βID|k−1 ,zID|k−1).

2. It assigns ID|k to a random leaf node v∈BT ID|k−1 and obtains a private set PV = {S j} by running
CS.Assign(BT ID|k−1 ,v).
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For each S j ∈PV , it proceeds as follows: It computes γ j =PRF(zID|k−1 ,L j) where L j =Label(S j).
It selects random r ∈ ZN , Y0,Y1,Y2,k+1, . . . ,Y2,L ∈Gp3 and creates an HIBE key

SKHIBE,S j =
(

K0 = gγ j F(ID|k)rY0, K1 = g−rY1,
{

K2,i = ur
iY2,i

}L
i=k+1

)
.

3. Finally, it outputs a private key SKID|k =
(
PV,{SKHIBE,S j}S j∈PV

)
where the master key part of

SKHIBE,S j is γ j.

RHIBE-CS.UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): Let DKID|k−1,T = (DKHIBE ,DKIBE) be a de-
cryption key.

1. If STID|k−1 is empty, then it obtains BT ID|k−1 by running CS.Setup(Nmax) and selects a random
exponent βID|k−1 ∈ ZN and a PRF key zID|k−1 ∈ K. It sets STID|k−1 = (BT ID|k−1 ,βID|k−1 ,zID|k−1).

2. It derives the set of revoked nodes R at time T from RLID|k−1 and obtains a cover set CV = {Si}
by running CS.Cover(BT ID|k−1 ,R).
For each Si ∈CV , it proceeds as follows: It computes γi = PRF(zID|k−1 ,Li) where Li = Label(Si).
It selects random r ∈ ZN , Y0,Y1 ∈Gp3 and creates an IBE key

SKIBE,Si =
(

U0 = gβID|k−1
−γi(vwT )rY0, U1 = g−rY1

)
.

3. Let DKHIBE = (D0,D1,{D2,i}) and DKIBE = (V0,V1) where the master key parts are η and α−η

respectively. It chooses a random exponent η ′ ∈ZN and creates temporal blinded HIBE and IBE
keys

T BKHIBE =
(

A′0 = D0 ·gη ′ , A′1 = D1,
{

A′2,i = D2,i
}L

i=k

)
T BKIBE =

(
B′0 =V0 ·g−βID|k−1

−η ′ , B′1 =V1

)
.

4. Next, it chooses random r′,r′′ ∈ ZN , Y ′0,Y
′
1,Y
′
2,k, . . . ,Y

′
2,L, Y ′′0 ,Y

′′
1 ∈ Gp3 and randomizes blinded

HIBE and IBE keys

BKHIBE =
(

A0 = A′0 ·F(ID|k−1)
r′Y ′0, A1 = A′1 ·g−r′Y ′1,

{
A2,i = A′2,i ·ur′

i Y ′2,i
}L

i=k

)
BKIBE =

(
B0 = B′0 · (vwT )r′′Y ′′0 , B1 = B′1 ·g−r′′Y ′′1

)
.

5. Finally, it outputs an update key UKID|k−1,T =
(
CV,{SKIBE,Si}Si∈CV ,BKID|k−1,T =(BKHIBE ,BKIBE)

)
where the master key parts of SKIBE,Si , BKHIBE , and BKIBE are βID|k−1−γi, η ′′, and α−βID|k−1−
η ′′ for random η ′′ = η +η ′ respectively.

RHIBE-CS.DeriveKey(ID|k,T,SKID|k ,UKID|k−1,T ,PP): Let ID|k = (I1, . . . , Ik) with k ≥ 0, SKID|k = (PV,
{SKHIBE,S j}S j∈PV ), and UKID|k−1,T = (CV,{SKIBE,Si}Si∈CV ,BKID|k−1,T ) where BKID|k−1,T = (BKHIBE ,
BKIBE).

If k = 0, then SKID|0 = MK = α and UKID|−1,T is empty. It proceeds as follows:

1. It first selects a random exponent η ∈ ZN . It chooses random r,r′ ∈ ZN , Y0,Y1,Y2,1, . . . ,Y2,L,
Y ′0,Y

′
1 ∈Gp3 and creates HIBE and IBE keys

DKHIBE =
(

D0 = gη(h)rY0, D1 = g−rY1,
{

D2,i = ur
iY2,i

}L
i=1

)
,

DKIBE =
(

V0 = gα−η(vwT )r′Y ′0, V1 = g−r′Y ′1
)
.
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2. It outputs a decryption key DKID|0,T =
(
DKHIBE ,DKIBE

)
.

If k ≥ 1, then it proceeds as follows:

1. It first obtains (Si,Si) by running CS.Match(CV,PV ). If it fails, it outputs ⊥. It then retrieves
SKHIBE,Si = (K0,K1,{K2,i}) from SKID|k and SKIBE,Si = (U0,U1) from UKID|k−1,T where the mas-
ter key parts are γi and βID|k−1− γi respectively.

2. Let BKHIBE = (A0,A1,{A2,i}) and BKIBE = (B0,B1) where the master key parts are η and α−
βID|k−1−η respectively. It chooses a random exponent η ′ ∈ ZN and creates temporal HIBE and
IBE keys by combining the retrieved keys as

T DKHIBE =
(

D′0 = A0AIk
2,kK0 ·gη ′ , D′1 = A1K1,

{
D′2,i = A2,iK2,i

}L
i=k+1

)
,

T DKIBE =
(

V ′0 = B0U0 ·g−η ′ , V ′1 = B1U1

)
.

3. Next, it chooses random r,r′ ∈ ZN , Y0,Y1,Y2,k+1, . . . ,Y2,L, Y ′0,Y
′
1 ∈ Gp3 and creates randomized

HIBE and IBE keys

DKHIBE =
(

D0 = D′0 ·F(ID|k)rY0, D1 = D′1 ·g−rY1,
{

D2,i = D′2,i ·ur
iY2,i

}L
i=k+1

)
,

DKIBE =
(

V0 =V ′0 · (vwT )r′Y ′0, V1 =V ′1 ·g−r′Y ′1
)
.

4. Finally, it outputs a decryption key DKID|k,T =
(
DKHIBE ,DKIBE

)
where the master key parts of

DKHIBE and DKIBE are η ′′ and α−η ′′ for random η ′′ = η + γi +η ′ respectively.

RHIBE-CS.Encrypt(ID|`,T,M,PP): Let ID|` = (I1, . . . , I`) ∈ I` be a hierarchical identity with ` ≥ 1. It
first chooses a random exponent t ∈ ZN and creates HIBE and IBE ciphertext headers

CHHIBE =
(

C0 = gt , C1 = F(ID|`)t
)
, CHIBE =

(
E0 = gt , E1 = (vwT )t

)
.

It outputs a ciphertext CTID|k,T =
(
CHHIBE ,CHIBE ,C = Ωt ·M

)
.

RHIBE-CS.Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): Let CTID|`,T =(CHHIBE ,CHIBE ,C) and DKID′|k,T ′ =(DKHIBE ,
DKIBE) where CHHIBE =(C0,C1), CHIBE =(E0,E1), DKHIBE =(D0,D1,{D2,i}), and DKIBE =(V0,V1).
From the ciphertext header and the decryption key, it computes two session keys as

EKHIBE = e(C0,D0

`

∏
i=k+1

DIi
2,i) · e(C1,D1), EKIBE = e(E0,V0) · e(E1,V1).

It outputs a decrypted message M =C · (EKHIBE ·EKIBE)
−1.

RHIBE-CS.Revoke(ID|k,T,RLID|k−1 ,STID|k−1): If ID|k is not assigned in BT ID|k−1 , then it outputs ⊥. Oth-
erwise, it updates RLID|k−1 by adding (ID|k,T ) to RLID|k−1 .
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3.3 Correctness

Let SKID|k = (PV,{SKHIBE,S j}) be a private key generated by the GenKey algorithm. The HIBE key
SKHIBE,S j is similar to the private key of LW-HIBE except that the master key part is γ j. Let UKID|k−1,T =
(CV,{SKIBE,Si},BKID|k−1,T = (BKHIBE ,BKIBE)) be an update key generated by the UpdateKey algorithm.
The master key part of SKIBE,Si is βID|k−1 − γi. The master key parts of BKHIBE and BKIBE are η ′′ and
α−βID|k−1 −η ′′ respectively since the master key parts of DKHIBE and DKIBE are η and α−η , and expo-
nents η ′ and −βID|k−1−η ′ are added to the temporal keys.

We show that a decryption key DKID|k,T generated by the DeriveKey algorithm is correctly derived
from SKID|k and UKID|k−1,T . If (ID|k,T ′) 6∈ RLID|k−1 for all T ′ ≤ T , then the master key parts of SKHIBE,Si

and SKIBE,Si are associated with γi and βID|k−1 − γi since these keys are related to the same tree node by
the correctness of the CS scheme. The master key parts of BKHIBE and BKIBE are associated with η and
α − βID|k−1 −η . Thus, the master key part of T DKHIBE and T DKIBE are associated with η + γi +η ′ and
(α−βID|k−1−η)+(βID|k−1− γi)−η ′ = α−η− γi−η ′ respectively. Since the master key parts of DKHIBE

and DKIBE are same with that of T DKHIBE and T DKIBE , two master key parts of DKHIBE and DKIBE are η ′′

and α−η ′′ for some random η ′′ respectively.
Next, we show that an original message M outputted by the Decrypt algorithm is correctly derived

from CTID|`,T = (CHHIBE ,CHIBE) and DKID′|k,T ′ = (DKHIBE ,DKIBE). If ID′|k ∈ Prefix(ID|`), then a partial
session key EKHIBE is correctly derived by the following equation

e(C0,D0

`

∏
i=k+1

DIi
2,i) · e(C1,D1) = e(gt ,gη ′′) · e(gt ,F(ID|`)r) · e(F(ID|`)t ,g−r) = e(g,g)tη ′′

If T ′ = T , then another partial session key EKIBE is correctly derived by the following equation

e(E0,V0) · e(E1,V1) = e(gt ,gα−η ′′(vwT )rY0) · e((vwT )t ,g−rY1) = e(g,g)t(α−η ′′)

By multiplying two partial session keys, we have e(g,g)tα .

3.4 Security Analysis

To prove the adaptive security of our RHIBE-CS scheme, we use the dual system encryption proof technique
of Lewko and Waters [21]. As mentioned before, we simply cannot change normal private keys and normal
update keys into semi-functional keys one by one through hybrid games. Instead, we divide private keys
and update keys into small component keys and these small component keys are grouped together if they
are related to the same node in a binary tree. The security proof is described as follows.

Theorem 3.2. The above RHIBE-CS scheme is AD-IND-CPA secure if the SD, GSD, and ComDH assump-
tions hold.

Proof. We first define the semi-functional type of HIBE private keys, HIBE ciphertext, IBE private keys,
and IBE ciphertexts. For the semi-functional type, we let g2 denote a fixed generator of the subgroup Gp2 .

HIBE.SK-SF1. Let SK′HIBE = (K′0,K
′
1,{K′2,i}L

i=k+1) be a normal HIBE key for ID|k. It chooses random
exponents a0,b0,{zi}L

i=k+1 ∈ ZN and outputs a semi-functional-type1 HIBE key SKHIBE =
(
K0 =

K′0ga0
2 ,K1 = K′1g−b0

2 ,
{

K2,i = K′2,ig
b0zi
2

}L
i=k+1

)
.
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HIBE.SK-SF2. Let SK′HIBE = (K′0,K
′
1,{K′2,i}L

i=k+1) be a normal HIBE key. It chooses a random exponent
a0 ∈ ZN and outputs a semi-functional-type2 HIBE key SKHIBE =

(
K0 = K′0ga0

2 ,K1 = K′1,
{

K2,i =

K′2,i
}L

i=k+1

)
.

HIBE.SK-SF. Let SK′HIBE = (K′0,K
′
1,{K′2,i}L

i=k+1) be a normal HIBE key. Let δ0 ∈ ZN be a fixed random
exponent that will be defined in RHIBE. It outputs a semi-functional HIBE key SKHIBE =

(
K0 =

K′0gδ0
2 ,K1 = K′1,

{
K2,i = K′2,i

}L
i=k+1

)
.

HIBE.CH-SF. Let CH ′HIBE = (C′0,C
′
1) be a normal ciphertext. It chooses random exponents c,d0 ∈ ZN and

outputs a semi-functional ciphertext CHHIBE =
(
C0 =C′0gc

2,C1 =C′1gcd0
2

)
.

Note that if a semi-functional-type1 HIBE key are used to decrypt a semi-functional HIBE ciphertext, then
an additional random element e(g2,g2)

c(a0+∑
`
i=k+1 b0ziIi−b0d0) is left. If a0 +∑

`
i=k+1 b0ziIi = b0d0, then this

HIBE key is nominally semi-functional-type1.

IBE.SK-SF1. Let SK′IBE = (U ′0,U
′
1) be a normal IBE key for T . It chooses random exponents a1,b1 ∈ ZN

and outputs a semi-functional-type1 IBE key SKIBE =
(
U0 =U ′0ga1

2 ,U1 =U ′1g−b1
2

)
.

IBE.SK-SF2. Let SK′IBE = (U ′0,U
′
1) be a normal IBE key. It chooses a random exponent a1 ∈ ZN and

outputs a semi-functional-type2 IBE key SKIBE =
(
U0 =U ′0ga1

2 ,U1 =U ′1
)
.

IBE.SK-SF. Let SK′IBE = (U ′0,U
′
1) be a normal IBE key. Let δ1 ∈ ZN be a fixed random exponent that will

be defined in RHIBE. It outputs a semi-functional IBE key SKIBE =
(
U0 =U ′0gδ1

2 ,U1 =U ′1
)
.

IBE.CH-SF. Let CH ′IBE = (E ′0,E
′
1) be a normal ciphertext. It chooses random exponents c,d1 ∈ ZN and

outputs a semi-functional ciphertext CHIBE =
(
E0 = E ′0gc

2,E1 = E ′1gcd1
2

)
.

Note that if a semi-functional-type1 IBE key is used to decrypt a semi-functional IBE ciphertext, then an
additional random element e(g2,g2)

c(a1−b1d1) is left. If a1 = b1d1, then this IBE key is nominally semi-
functional type-1.

We now define the semi-functional types of private keys, update keys, decryption keys, and ciphertexts
in RHIBE by using the semi-functional HIBE and IBE types.

RHIBE-CS.SK-SF. To generate a semi-functional private key, it proceeds as follows.

1. It first creates a normal private key SK′ID|k = (PV,{SK′HIBE,S j
}S j∈PV ) by using MK where each

SK′HIBE,S j
is a normal HIBE key.

2. For each S j ∈ PV , it fixes a random exponent δ j,0 ∈ ZN once for S j ∈ BT ID|k−1 and converts
SK′HIBE,S j

to a semi-functional HIBE key SKHIBE,S j with the exponent δ j,0.

3. It outputs a semi-functional private key SKID|k =
(
PV,{SKHIBE,S j}S j∈PV

)
.

RHIBE-CS.UK-SF. To generate a semi-functional update key, it proceeds as follows.

1. It first creates a normal update key UK′ID|k−1,T
=(CV,{SK′IBE,Si

}Si∈CV ,BK′ID|k−1,T
=(BK′HIBE ,BK′IBE))

by using MK where BK′HIBE is a normal HIBE key, BK′IBE and SK′IBE,Si
are normal IBE keys.

2. For each Si ∈ CV , it fixes a random exponent δi,1 ∈ ZN once for Si ∈ BT ID|k−1 and converts
SK′IBE,Si

to a semi-functional IBE key SKIBE,S j with the exponent δi,1.

15



Table 2: Hybrid games from G0 to G6

Game
CT = SK = UK = DK =

(CHHIBE ,CHIBE ,C) ({SKHIBE}) ({SKIBE},BKHIBE ,BKIBE) (DKHIBE ,DKIBE)

G0 (N, N, N) ({N}) ({N}, N, N) (N, N)

G1 (N, N, N) ({N}) ({N}, N, N) (N, N)

G2 (SF, SF, N) ({N}) ({N}, N, N) (N, N)

G3 (SF, SF, N) ({SF}) ({SF}, N, N) (N, N)

G4 (SF, SF, N) ({SF}) ({SF}, SF, SF) (N, N)

G5 (SF, SF, N) ({SF}) ({SF}, SF, SF) (SF2, SF2)

G6 (SF, SF, R) ({SF}) ({SF}, SF, SF) (SF2, SF2)

We use symbols N for normal, SF2 for semi-functional-type2, SF for semi-functional, and R for random.

3. It chooses a random exponent a0 ∈ ZN and fixes a random exponent aID|k−1 ∈ ZN for BT ID|k−1 .
It converts BK′HIBE to a semi-functional HIBE key BKHIBE with the exponent a0. It also converts
BK′IBE,T to a semi-functional IBE key BKIBE with the exponent aID|k−1 − a0. It sets a semi-
functional BKID|k−1,T = (BKHIBE ,BKIBE).

4. It outputs a semi-functional update key UKID|k−1,T =
(
CV,{SKIBE,Si}Si∈CV ,BKID|k−1,T

)
.

RHIBE-CS.DK-SF. To generate a semi-functional decryption key, it proceeds as follows.

1. It first creates a normal decryption key DK′ID|k,T =(DK′HIBE ,DK′IBE) by using MK where DK′HIBE

is a normal HIBE key, DK′IBE is a normal IBE key.

2. It chooses random exponents a0,a1 ∈ ZN . It converts DK′HIBE to a semi-functional-type2 HIBE
key DKHIBE with the exponent a0. It also converts DK′IBE to a semi-functional-type2 IBE key
DKIBE with the exponent a1.

3. It outputs a semi-functional decryption key DKID|k,T = (DKHIBE ,DKIBE).

RHIBE-CS.CT-SF. To generate a semi-functional ciphertext, it proceeds as follows.

1. It first creates a normal ciphertext CT ′ID|`,T = (CH ′HIBE ,CH ′IBE ,C
′) where CT ′HIBE is a normal

HIBE ciphertext, CT ′IBE is a normal IBE ciphertext.

2. It chooses random exponents c,d0,d1 ∈ZN . It converts CH ′HIBE,ID|` to a semi-functional CHHIBE

with the exponents c,d0. It also converts CH ′IBE to a semi-functional CHIBE,T with the exponents
c,d1.

3. It outputs a semi-functional ciphertext CTID|`,T = (CHHIBE ,CHIBE ,C′).

The security proof consists of a sequence of hybrid games G0,G1, . . . ,G6. The first game will be the
original security game and the last one will be a game in which an adversary has no advantage. The structure
of games is given in Table 2. We define the games as follows:

Game G0. This game is the original security game. In this game, all private keys, update keys, decryption
keys and the challenge ciphertext are normal.
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Game G1. In the game G1, the PRFs that are used in the generation of private keys and update keys are
changed to be truly random functions.

Game G2. In this game, the challenge ciphertext is changed to be semi-functional. All other keys are still
normal.

Game G3. Next, we define a new game G3. In this game, all private keys and all update keys (except
blinded keys in update keys) are changed to be semi-functional. The process of changing from the
game G2 to the game G3 is the essential part of this security proof and it consists of very complex
steps.

To play this game, we notice that a private key consists of many HIBE private keys associated with
binary tree nodes, and an update key is also consists of many IBE private keys associated with binary
tree nodes. Thus, we define a number of sub-games related to tree nodes, and we change HIBE private
keys and IBE private keys associated to the same tree node from the normal type to the semi-functional
type in one sub-game for each tree node. Note that an HIBE private key (or an IBE private key) cannot
be directly converted into a semi-function key at once, but additional sub-games that convert a normal
key into semi-functional-type1, semi-functional-type2, and semi-functional key are required. The
detailed definition of these sub-games is given in Lemma 3.5.

Game G4. This game G4 is similar to the game G3 except that the remaining blinded keys in update keys
are changed to be semi-functional.

Game G5. In this game G5, the remaining decryption keys are changed to be semi-functional. In this game,
all private keys, update keys, decryption keys, and the challenge ciphertext are now semi-functional.
To play this game, we define additional sub-games to change normal decryption keys to semi-function
decryption keys one by one. A more detailed definition of these sub-games is given in Lemma 3.8.

Game G6. In the final game G6, the session key in the semi-functional challenge ciphertext is changed to
be random. In this game, the adversary cannot distinguish the challenge messages since the session
key is random.

Let AdvG j
A be the advantage ofA in the game G j. We have that AdvAD-IND-CPA

RHIBE,A (λ ) =AdvG0
A , and AdvG5

A = 0.
From the following Lemmas 3.3, 3.4, 3.5, 3.7, 3.8, and 3.11, we obtain the equation

AdvAD-IND-CPA
RHIBE,A (λ )≤

6

∑
j=1

∣∣AdvG j−1
A −AdvG j

A
∣∣

≤ O(qsk +quk)AdvPRF
B (λ )+AdvSD

B (λ )+

O(qsk logNmax +qukrmax logNmax +qdk)AdvGSD
B (λ )+AdvComDH

B (λ )

where qsk, quk, and qdk are the number of private key, update key, and decryption key queries respectively.
This completes the proof.

Lemma 3.3. If the PRF is secure, then no probabilistic polynomial-time (PPT) adversary can distinguish
G0 from G1 with a non-negligible advantage.

Proof. This proof of this lemma is relatively straightforward from the security of PRF. That is, we can
use additional hybrid games that change a PRF to a truly random function. Note that there are at most
O(qsk +quk) number of binary trees in the security proof where qsk is the number of private key queries and
quk is the number of update key queries. We omit the detailed proof.
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Lemma 3.4. If the SD assumption holds, then no PPT adversary can distinguish G1 from G2 with a non-
negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes G1 from G2 with a non-negligible advantage.
A simulator B that solves the SD assumption using A is given: a challenge tuple D = ((N,G,GT ,e),g1,g3)
and Z where Z = Z0 = X1 ∈ Gp1 or Z = Z1 = X1R1 ∈ Gp1 p2 . Then B that interacts with A is described as
follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN . It sets MK = α and publishes PP =(

(N,G,GT ,e),g = g1,Y = g3,h = gh′ ,u1 = gu′1 , . . . ,uL = gu′L ,v = gv′ ,w = gw′ ,Ω = e(g,g)α
)
.

Phase 1: B creates normal keys by running normal algorithms except that each γ j is randomly chosen in ZN

instead of calculating it by running PRF.
Challenge: For challenge ID∗|` and T ∗, B builds CHHIBE =

(
C0 = Z,C1 = (Z)h′+∑

`
i=1 u′iI

∗
i
)

and CHIBE =(
E0 = Z,E1 = (Z)v′+w′T ∗

)
. Next, it flips a random coin µ ∈ {0,1} and creates a challenge ciphertext

CT ∗ID∗|`,T ∗ =
(
CHHIBE ,CHIBE ,C = e(Z,g)α ·M∗µ

)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X1, then the simulation is the same as G1. If Z = Z1 = X1R1, then it is the same as G2
since the challenge ciphertext is semi-functional by implicitly setting d0 ≡ h′+∑

`
i=1 u′iI

∗
i mod p2 and d1 ≡

v′+w′T ∗ mod p2. Note that d0 and d1 are random since h′,u′1, . . . ,u
′
L,v
′,w′ modulo p2 are not correlated

with their values modulo p1 by the Chinese Remainder Theorem (CRT). This completes our proof.

Lemma 3.5. If the GSD assumption holds, then no PPT adversary can distinguish G2 from G3 with a
non-negligible advantage.

Proof. For the proof of this lemma, we cannot use simple hybrid games that change a normal private key
(or normal update key) to a semi-functional private key (or semi-functional update key) one by one since the
adversary of RHIBE can query a private key for ID|k ∈ Prefix(ID∗|`) and an update key for T = T ∗. Note that
these normal keys cannot directly converted to semi-functional keys since an information theoretic argument
cannot be used. To solve this problem, we use the restriction that a private key for ID|k ∈ Prefix(ID∗|`)
should be revoked in an update key for the time T = T ∗ as mentioned in Section 1.2.

We first divide each private key and update key into small HIBE keys and IBE keys. Recall that a private
key SKID|k consists of many HIBE keys and an update key UKID|k−1,T consists of many IBE keys and a
blinded key where each HIBE key (or an IBE key) is associated with a node v j (or a subset S j) in BT ID|k−1 .
Next, HIBE keys and IBE keys that are related to the same node v j in BT ID|k−1 are grouped together. To
uniquely identify a node v j ∈ BT ID|k−1 , we define a node identifier NID of this node as a string ID|k−1‖L j

where L j = Label(S j). To prove this lemma, we change normal HIBE keys (or normal IBE keys) that are
related to the same node identifier NID into semi-functional HIBE keys (or semi-functional IBE keys) by
defining additional hybrid games. This additional hybrid games are performed for all node identifiers that
are used in the key queries of the adversary.

For additional hybrid games that change HIBE keys (or IBE keys) that are related to the same node
identifier NID = ID|k−1‖L j from normal keys to semi-functional keys, we need to define an index pair
(in, ic) for an HIBE key (or an IBE key) that is related to the node v j ∈ BT ID|k−1 where in is a node index and
ic is a counter index. Suppose that an HIBE key (or an IBE key) is related to a node NID. The node index
in for the HIBE key (or the IBE key) is assigned as follows: If the node v j ∈ BT ID|k−1 with a node identifier
NID appears first time in key queries, then we set in as the number of distinct node identifiers in previous
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Table 3: Hybrid games from G2 to G3

Game
SKHIBE ∈ SK or SKIBE ∈UK with an index (in, ic)

in = 1 in = 2 . . . in = h−1 in = h . . . in = qn

G2,0 N N
. . . N N . . . N

G2,1 SF N
...

...
...

...
...

...

G2,h−1 SF SF
. . .

SF N
. . .

N

G2,h SF SF SF SF N
...

...
...

...
...

...

G2,qn SF SF . . . SF SF . . . SF

We use symbols N for normal and SF for semi-functional.

key queries plus one. If the node identifier NID already appeared before in key queries, then we set in as the
value i′n of previous HIBE key (or IBE key) with the same node identifier. The counter index ic of an HIBE
key is assigned as follows: If the node identifier NID appears first time in HIBE keys, then we set ic as one.
If the node identifier NID appeared before in HIBE keys, then we set ic as the number of HIBE keys with
the same node identifier that appeared before plus one. Similarly, we assign the counter index ic of an IBE
key.

For the security proof, we define a sequence of additional hybrid games G2,1, . . . ,G2,h, . . . ,G2,qn to
change HIBE private keys (or IBE private keys) from normal to semi-functional one by one where G2 =G2,0,
G3 = G2,qn , and qn is the number of all node identifiers that are used in HIBE keys of private keys and IBE
keys of update keys. The structure of hybrid games is given in Table 3. In the game G2,h for 1 ≤ h ≤ qn,
the challenge ciphertext is semi-functional, HIBE keys and IBE keys with a node index in ≤ h are semi-
functional, the remaining HIBE keys and IBE keys with a node index in > h are normal, and all blinded keys
in update keys are still normal.

Let AdvG j
A be the advantage ofA in the game G j. From the following Lemma 3.6, we have the following

equation

AdvG2
A −AdvG3

A ≤
qn

∑
h=1

∣∣AdvG2,h−1
A −AdvG2,h

A
∣∣≤ O(qsk logNmax +qukrmax logNmax)AdvGSD

B (λ )

where qsk and quk are the number of private key and update key queries respectively. This completes the
proof.

Lemma 3.6. If the GSD assumption holds, then no PPT adversary can distinguish G2,h−1 from G2,h with a
non-negligible advantage.

Proof. We first divide the adversaries into two types based on the behavior of adversaries on the node index
h: Type-h-I and Type-h-II. Let ID∗|` be the challenge hierarchical identity and T ∗ be the challenge time. For
the node index h, an adversary can query HIBE keys for all ID or it can query HIBE key at least one ID.
The adversary types are formally defined as follows:
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Table 4: Hybrid games from G2,h−1 to G2,h for Type-h-I

Game
SKHIBE with an index (h, ic) SKIBE with

ic = 1 ic = 2 . . . ic = hc . . . ic = qc an index (h, ic)

H0,2 N

N . . . N . . . N NH1,1 SF1

H1,2 SF2
...

...
...

...
...

...

Hhc−1,2

. . .

N

. . . N NHhc,1 SF1

Hhc,2

SF2 SF2

SF2
...

...
...

...
...

...

Hqc−1,2

. . . . . .

N

Hqc,1 SF1

Hqc,2 SF2

H′qc,1 SF1′

H′qc,2

SF2 SF2 SF2

SF

N

...
...

...
...

...
...

H′2,2 SF2

. . . . . .

N

H′1,1 SF1′ N

H′1,2 SF N

H′′ SF

SF SF SF

SF

We use symbols N for normal, SF1 for semi-functional-type1, SF2 for semi-functional-type2, SF1′ for semi-
functional-type1 with an additional δ , and SF for semi-functional.

Type-h-I. An adversary is Type-h-I if all HIBE keys with the node index h satisfy ID|k 6∈ Prefix(ID∗|`) and
at least one IBE key with the node index h satisfies T = T ∗.

Type-h-II. An adversary is Type-h-II if all IBE keys with the node index h satisfy T 6= T ∗. In this case,
at least one HIBE key with h satisfies ID|k ∈ Prefix(ID∗|`), or all HIBE keys with h satisfy ID|k 6∈
Prefix(ID∗|`).

These two types cover all possible strategies of adversaries related to the node index h since the remaining
case of at least one HIBE key satisfies ID|k ∈ Prefix(ID∗|`) and at least one IBE key satisfies T = T ∗ does
not occur by the restriction of the security model. Note that Type-h-I and Type-h-II adversaries only check
the conditions of the HIBE keys and IBE keys related to the node index h, and do not check the conditions
of other node index. Thus, if the node index h is given, then there are only two possible types of adversaries.

We next show that this lemma holds for two types of the adversary. To guess the type of the adversary, we
can simply toss a coin since there are only two types for the node index h. If an adversary is Type-h-I, then
all HIBE keys with the node index h are changed to be semi-functional through hybrid games by using the
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restriction ID|k 6∈ Prefix(ID∗|`). After that, the remaining IBE keys with h are change to be semi-functional.
Note that there is no paradox of the dual system encryption when the remaining IBE keys are changed since
HIBE keys are already semi-functional. If an adversary is Type-h-II, then all IBE keys with h are changed
to be semi-functional by using the restriction T 6= T ∗ and then the remaining HIBE keys are changed to be
semi-functional.

For the Type-h-I adversaryAI , we define hybrid games H1,1,H1,2, . . . ,Hqc,1,Hqc,2,H′qc,1,H
′
qc,2, . . . ,H

′
1,1,

H′1,2,H′′ where G2,h−1 = H0,2, Hqc,2 = H′qc+1,2, H′′ = G2,h, and qc is the maximum number of HIBE keys
for the node index h. The structure of hybrid games is given in Table 4. These games are formally defined
as follows:

Game Hhc,1. This game Hhc,1 for 1 ≤ hc ≤ qc is almost the same as G2,h−1 except the generation of HIBE
keys and IBE keys with the node index h. An IBE key with an index pair (h, ic) is generated as normal.
An HIBE key with an index pair (h, ic) is generated as follows:

• ic < hc: It generates a normal SK′HIBE,S j
and converts this key to a semi-functional-type2 SKHIBE,S j

by selecting a new random exponent a0 ∈ ZN .

• ic = hc: It generates a normal SK′HIBE,S j
for S j and converts the key to a semi-functional-type1

SKHIBE,S j by selecting new random exponents a0,b0,{zi} ∈ ZN .

• ic > hc: It simply creates a normal HIBE key.

Recall that if a0 +∑
`
i=k+1 b0ziIi = b0d0, then this HIBE key is nominally semi-functional-type1 where

d0 is the exponent of the challenge HIBE ciphertext.

Game Hhc,2. This game Hhc,2 is almost the same as Hhc,1 except that the HIBE key for the index pair
(h, ic = hc) is generated with b0 = 0. That is, this HIBE key is generated as semi-functional-type2. In
the game Hqc,2, all HIBE keys with the node index h are semi-functional-type2, but all IBE keys with
the node index h are still normal.

Game H′hc,1. This game H′hc,1 is almost the same as Hhc,1 except the generation of an HIBE key with an
index pair (h, ic ≥ hc). This HIBE key is generated as follows:

• ic = hc: It first generates a semi-functional-type1 SK′HIBE,S j
= (K′0,K

′
1,{K′2,i}) as the same as

Hhc,1 with random exponents a0,b0,{zi}. Let δ j,0 ∈ ZN be a random exponent which is fixed

for the subset S j. It creates a semi-functional-type1 HIBE key SKHIBE,S j =
(
K0 = K′0gδ j,0

2 ,K1 =
K′′1 ,{K2,i = K′′2,i}

)
.

• ic > hc: It generates a semi-functional HIBE key with a fixed exponent δ j,0 which is chosen for
the subset S j.

Game H′hc,2. This game H′hc,2 is almost the same as H′hc,1 except that the HIBE key with the index pair
(h, ic = hc) is generated with b0 = 0. In the game H′1,2, all HIBE keys with the node index h are
semi-functional where a fixed δ j,0 is used for a subset S j, but all IBE keys with the node index h are
still normal.

Game H′′. This game H′′ is the same as G2,h. Compared to the game H′1,2, all normal IBE keys with the
node index h are changed to be semi-functional by using a fixed δi,1 for a subset Si.

21



Let AdvHi
AI

be the advantage of AI in a game Hi. From the following Lemmas 3.12, 3.13, 3.14, 3.15,
and 3.16, we obtain the following equation

AdvH0,2
AI
−AdvH ′′

AI
≤

qc

∑
hc=1

∣∣AdvHhc−1,2
AI

−AdvHhc,1
AI

∣∣+ qc

∑
hc=1

∣∣AdvHhc,1
AI
−AdvHhc ,2

AI

∣∣+
qc

∑
hc=1

∣∣Adv
H ′hc+1,2
AI

−Adv
H ′hc,1
AI

∣∣+ qc

∑
hc=1

∣∣Adv
H ′hc,1
AI
−Adv

H ′hc,2
AI

∣∣+ ∣∣Adv
H ′1,2
AI
−AdvH ′′

AI

∣∣
≤ O(qc)AdvGSD

B (λ ).

For the Type-h-II adversaryAII , we define hybrid games I1,1,I1,2, . . . ,Iqc,1,Iqc,2,I′qc,1,I
′
qc,2, . . . ,I

′
1,1,I′1,2,I′′

where G2,h−1 = I0,2, I′′ = G2,h, and qc is the maximum number of IBE keys for the node index h. These
games are formally defined as follows:

Game Ihc,1. This game Ihc,1 for 1 ≤ hc ≤ qc is almost the same as G1,h−1 except the generation of HIBE
keys and IBE keys with the node index h. An HIBE key with an index pair (h, ic) is generated as
normal. An IBE key with an index pair (h, ic) is generated as follows:

• ic < hc: It generates a normal SK′IBE,Si
and converts this key to a semi-functional-type2 SKIBE,Si

by selecting a new random exponent a1 ∈ ZN .

• ic = hc: It generates a normal SK′IBE,Si
and converts this key to a semi-functional-type1 SKIBE,Si

by selecting new random exponents a1,b1 ∈ ZN .

• ic > hc: It simply creates a normal IBE key.

Recall that if a1 = b1d1, then this IBE key is nominally semi-functional-type1 where d1 is the exponent
of the challenge IBE ciphertext.

Game Ihc,2. This game Ihc,2 is almost the same as Ihc,1 except that the IBE key for the index pair (h, ic = hc)
is generated with b1 = 0. That is, this IBE key is generated as semi-functional-type2. In the game
Iqc,2, all IBE keys with the node index h are semi-functional-type2, but all HIBE keys with the node
index h are still normal.

Game I′hc,1. This game I′hc,1 is almost the same as Ihc,1 except the generation of an IBE key with an index
pair (h, ic ≥ hc). This IBE key is generated as follows:

• ic = hc: It first generates a semi-functional-type1 SK′IBE,Si
= (U ′0,U

′
1) as the same as Ihc,1 with

random exponents a1,b1 ∈ ZN . Let δi,1 ∈ ZN be a random exponent fixed for the subset Si. It
creates a semi-functional-type1 IBE key SKIBE,Si =

(
U0 =U ′0gδi,1

2 ,U1 =U ′1
)
.

• ic > hc: It generates a semi-functional IBE key with a fixed exponent δi,1 which is chosen for
the subset Si.

Game I′hc,2. This game I′hc,2 is almost the same as I′hc,1 except that the IBE key with the index pair (h, ic = hc)
is generated with b1 = 0. This modification is similar to the game I′hc,1. In the game I′1,2, all IBE keys
with the node index h are semi-functional where a fixed δi,1 is used for a subset Si, but all HIBE keys
with the node index h are still normal.

Game I′′. This game I′′ is the same as G2,h. Compared to the game I′1,2, all normal HIBE keys with the
node index h are changed to be semi-functional by using a fixed δ j,0 for a subset S j.
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Let AdvIi
AII

be the advantage of AII in a game Ii. From the following Lemmas 3.17, 3.18, 3.19, 3.20,
and 3.21, we obtain the following equation

AdvI0,2
AII
−AdvI′′

AII
≤

qc

∑
hc=1

∣∣AdvIhc−1,2
AII

−AdvIhc,1
AII

∣∣+ qc

∑
hc=1

∣∣AdvIhc ,1
AII
−AdvIhc,2

AII

∣∣+
qc

∑
hc=1

∣∣Adv
I′hc+1,2
AII

−Adv
I′hc ,1
AII

∣∣+ qc

∑
hc=1

∣∣Adv
I′hc,1
AII
−Adv

I′hc,2
AII

∣∣+ ∣∣Adv
I′1,2
AII
−AdvI′′

AII

∣∣
≤ O(qc)AdvGSD

B (λ ).

This completes our proof.

Lemma 3.7. If the GSD assumption holds, then no PPT adversary can distinguish G3 from G4 with a
non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes G3 from G4 with a non-negligible advantage.
A simulator B that solves the GSD assumption using A is given: a challenge tuple D = ((N,G,GT ,e),
g1,g3,X1R1,R2Y1) and Z where Z = Z0 =X2Y2 or Z = Z1 =X2R3Y2. Then B that interacts withA is described
as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN . It sets MK = α and publishes PP =(

(N,G,GT ,e),g = g1,Y = g3,h = gh′ ,u1 = gu′1 , . . . ,uL = gu′L ,v = gv′ ,w = gw′ ,Ω = e(g,g)α
)
.

Phase 1: For each query, B proceeds as follows: If this is a private key query, then it creates a semi-
functional one by using R2Y1. That is, for each S j ∈ PV , it builds a normal HIBE key and converts it to a
semi-functional HIBE key by raising a fixed random exponent δ j,0 ∈ ZN to R2Y1.
If this is an update key query for ID|k−1 and T , then it creates each component as follows:

• It first fixes a random exponent βID|k−1 ∈ ZN for BT ID|k−1 .

• For each Si ∈CV , it builds a normal IBE key by using βID|k−1 and converts it to a semi-functional IBE
key by raising a fixed random exponent δi,1 to R2Y1.

• Next, it chooses random η ′,r′,r′′ ∈ ZN , Y ′0,Y
′
1,{Y ′2,i}L

i=k+1,Y
′′
0 ,Y

′′
1 ∈Gp3 and builds

BKHIBE =
(
A0 = (Z)η ′F(ID|k−1)

r′Y ′0,A1 = g−r′Y ′1,{A2,i = ur′
i Y ′2,i}

)
,

BKIBE =
(
B0 = gα(Z)−βID|k−1

−η ′(vwT )r′′Y ′′0 ,B1 = g−r′′Y ′′1
)
.

It creates a semi-functional blinded key BKID|k−1,T = (BKHIBE ,BKIBE).

If this is a decryption key query, then it creates a normal one by using MK.
Challenge: For challenge ID∗|` and T ∗, B builds CHHIBE =

(
C0 = X1R1, C1 = (X1R1)

h′+∑
`
i=1 u′iI

∗
i
)

and
CHIBE = (E0 = X1R1, E1 = (X1R1)

v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates a semi-
functional CTID∗|`,T ∗ = (CHHIBE ,CHIBE ,C = e(X1R1,g)α ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as G3 since all blinded keys are normal. If Z = Z1 =
X2R3Y2, then the simulation is the same as G4 since all blinded keys are semi-functional by implicitly setting
a0 ≡ cη ′ mod p2 and aID|k−1 −a0 ≡−cβID|k−1 − cη ′ mod p2 where c = logg2

(R3). In this case, the random
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Table 5: Hybrid games from G4 to G5

Game
DK = (DKHIBE ,DKIBE) with an index id

id = 1 id = 2 . . . id = hd−1 id = hd . . . id = qdk

J0,2 (N, N) (N, N)

. . . (N, N) (N, N) . . . (N, N)J1,1 (SF1, SF1) (N, N)

J1,2 (SF2, SF2) (N, N)
...

...
...

...
...

...

Jhd−1,1

. . .

(SF1, SF1) (N, N)

. . . (N, N)
Jhd−1,2 (SF2, SF2) (N, N)

Jhd ,1 (SF1, SF1)

Jhd ,2

(SF2, SF2) (SF2, SF2)

(SF2, SF2)
(SF2, SF2)

...
...

...
...

...
...

Jqdk,1 (SF1, SF1)

Jqdk,2
(SF2, SF2) (SF2, SF2) . . . (SF2, SF2) (SF2, SF2) . . .

(SF2, SF2)

We use symbols N for normal, SF1 for semi-functional-type1, and SF2 for semi-functional-type2.

η ′ is fresh one for each blinded key and two random values η ′ mod p2 and βID|k−1 mod p2 are independent
of their values in modulo p1 by CRT. Note that there is no paradox of dual system encryption since HIBE
keys in a private key and IBE keys in an update key are already semi-functional.

Lemma 3.8. If the GSD assumption holds, then no PPT adversary can distinguish G4 from G5 with a
non-negligible advantage.

Proof. For the security proof, we define a sequence of hybrid games G4,1,G4,2, . . . ,G4,qdk where G4 = G4,0
and qdk is the number of decryption key queries. The structure of hybrid games is given in Table 5. In the
game G4,hd for 1≤ hd ≤ qdk, all private keys, all update keys, and the challenge ciphertext are generated as
semi-functional, but decryption keys are generated as follows: The first hd decryption keys are generated as
semi-functional and the remaining decryption keys are generated as normal.

To show that an adversary cannot distinguish G4,hd−1 from G4,hd , we additionally define games Jhd ,1,Jhd ,2
where Jhd ,2 = G4,hd . These games are defined as follows:

Game Jhd ,1. This game is almost similar to the game G4,hd−1 except the generation of hd th decryption key.
Let DK′HIBE = (D′0,D

′
1,{D′2,i}) be a normal HIBE key and DK′IBE = (V ′0,V

′
1) be a normal IBE key.

The hd th decryption key consists of a semi-functional-type1 HIBE key DKHIBE = (D0 = D′0ga0
2 ,D1 =

D′1g−b0
2 ,{D2,i = D′2,ig

b0zi
2 }) and a semi-functional-type1 IBE key DKIBE = (V0 = V ′0ga1

2 ,V1 = V ′1g−b1
2 )

where a0,b0,{zi},a1,b1 are random exponents in ZN .

Game Jhd ,2. In this game, the HIBE key and IBE key in the hd th decryption key is changed to be semi-
functional-type2. Recall that a decryption key is semi-functional if HIBE key and IBE key are semi-
functional-type2. It is obvious that Jhd ,2 = G4,hd .
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Note that if a semi-functional-type1 decryption key is used to decrypt a semi-functional challenge ciphertext,
then a random element e(g2,g2)

c(a0+∑
`
i=k+1 b0ziIi+a1−b0d0−b1d1) is left where d0,d1 are random exponents in

semi-functional CHHIBE , CHIBE respectively. If a0 +∑
`
i=k+1 b0ziIi + a1 ≡ b0d0 + b1d1 mod p2, then this

decryption key is nominally semi-functional-type1.
Let Adv

Jhd ,i

A be the advantage of A in the game Jhd ,i. We have that AdvG4
A = AdvJ0,2

A and AdvG5
A =

Adv
Jqdk ,2

A . From the following Lemmas 3.9 and 3.10, we obtain the following equation

AdvG4
A −AdvG5

A ≤
qdk

∑
hd=1

(∣∣Adv
Jhd−1,2

A −Adv
Jhd ,1

A
∣∣+ ∣∣Adv

Jhd ,1

A −Adv
Jhd ,2

A
∣∣)≤ O(qdk)AdvGSD

B (λ ).

This completes our proof.

Lemma 3.9. If the GSD assumption holds, then no PPT adversary can distinguish Jhd−1,2 from Jhd ,1 with a
non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes Jhd−1,2 from Jhd ,1 with a non-negligible advan-
tage. A simulator B that solves the GSD assumption usingA is given: a challenge tuple D = ((N,G,GT ,e),
g1,g3,X1R1,R2Y1) and Z where Z = Z0 =X2Y2 or Z = Z1 =X2R3Y2. Then B that interacts withA is described
as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN . It sets MK = α and publishes PP =(

(N,G,GT ,e),g = g1,Y = g3,h = gh′ ,u1 = gu′1 , . . . ,uL = gu′L ,v = gv′ ,w = gw′ ,Ω = e(g,g)α
)
.

Phase 1: For each query, B proceeds as follows: If this is a private key (or update key) query, then it creates
a semi-functional one by using MK and R2Y1.
If this is an hd th decryption key query for ID|k and T , then it handles this query as follows:

• j < hd : It creates a semi-functional decryption key by using MK and R2Y1.

• j = hd : It chooses random η ′,r′,r′′ ∈ ZN , Y ′0,Y
′
1,{Y ′2,i}L

i=k+1,Y
′′
0 ,Y

′′
1 ∈Gp3 and builds

DKHIBE =
(
D0 = (Z)η ′+(h′+∑

k
i=1 u′iIi)r′Y ′0,D1 = (Z)−r′Y ′1,{D2,i = (Z)u′ir

′
Y ′2,i}L

i=k+1
)
,

DKIBE =
(
V0 = gα(Z)−η ′+(v′+w′T )r′′Y ′′0 ,V1 = (Z)−r′′Y ′′1

)
.

It creates a decryption key DKID|k,T = (DKHIBE ,DKIBE).

• j > hd : It creates a normal decryption key by using MK.

Challenge: For challenge ID∗|` and T ∗, B builds CHHIBE =
(
C0 = X1R1,C1 = (X1R1)

h′+∑
`
i=1 u′iI

∗
i
)

and
CHIBE = (E0 = X1R1,E1 = (X1R1)

v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates a semi-
functional CTID∗|`,T ∗ = (CHHIBE ,CHIBE ,C = e(X1R1,g)α ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as Jhd−1,2 since the hd th decryption key is normal.
If Z = Z1 = X2R3Y2, then the simulation is almost the same as Jhd ,1 except that the hd th decryption key is
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nominally semi-functional-type1 by implicitly setting

a0 ≡ cη
′+ cr′(h′+∑

k
i=1 u′iIi) mod p2, b0 ≡ cr′ mod p2, zi ≡ u′i mod p2,

a1 ≡−cη
′+ cr′′(v′+w′T ) mod p2, b1 ≡ cr′′ mod p2,

d0 ≡ (h′+∑
`
i=1 u′iI

∗
i ) mod p2,

d1 ≡ (v′+w′T ∗) mod p2

where c = logg2
(R3). If ID|k ∈ Prefix(ID∗|`) and T = T ∗, then the hd th key is nominally semi-functional-

type1 since the following equation holds

a0 +∑
`
i=k+1 b0ziIi +a1

≡
(
cη
′+ cr′(h′+∑

k
i=1 u′iIi)

)
+∑

`
i=k+1 cr′u′iIi +

(
− cη ′+ cr′′(v′+w′T )

)
≡ cη

′+ cr′(h′+∑
`
i=1 u′iIi)− cη ′+ cr′′(v′+w′T )

≡ (cr′)(h′+∑
`
i=1 u′iIi)+(cr′′)(v′+w′T )

≡ b0d0 +b1d1 mod p2.

Note that we solve the paradox of dual system encryption by introducing the nominally semi-functional
decryption key.

To finish the proof, we should argue that the adversary cannot distinguish a nominally semi-functional
decryption key from a semi-functional one. For this argument, we can easily show an information theoretic
argument by using the restriction of a decryption key query in the security model and CRT. We omit the
details of this argument since it is similar to that of Lemma 3.12.

Lemma 3.10. If the GSD assumption holds, then no PPT adversary can distinguish Jhd ,1 from Jhd ,2 with a
non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 3.9, except the generation of the hd th
decryption key. The hd th decryption key for ID|k and T is generated as follows:

• j = hd : It chooses random η ′,r′,r′′,a′0,a
′
1 ∈ ZN , Y ′0,Y

′
1,{Y ′2,i}L

i=k+1,Y
′′
0 ,Y

′′
1 ∈Gp3 and builds

DKHIBE =
(
D0 = (Z)η ′+(h′+∑

k
i=1 u′iIi)r′(R2Y1)

a′0Y ′0,D1 = (Z)−r′Y ′1,{D2,i = (Z)u′ir
′
Y ′2,i}L

i=k+1
)
,

DKIBE =
(
V0 = gα(Z)−η ′+(v′+w′T )r′′(R2Y1)

a′1Y ′′0 ,V1 = (Z)−r′′Y ′′1
)
.

It creates DKID|k,T = (DKHIBE ,DKIBE).

Note that this hd th decryption key is no longer correlated with the challenge ciphertext since D0 and V0 are
randomized by using a′0 and a′1 respectively.

If Z = Z1 = X2R3Y2, then the simulation is the same as Jhd ,1 by implicitly setting

a0 ≡ cη
′+ cr′(h′+∑

k
i=1 u′iIi)+ c2a′0 mod p2, b0 ≡ cr′ mod p2, zi ≡ u′i mod p2,

a1 ≡−cη
′+ cr′′(v′+w′T )+ c2a′1 mod p2, b1 ≡ cr′′ mod p2

where c = logg2
(R3) and c2 = logg2

(R2). If Z = Z0 = X2Y2, then the simulation is the same as Jhd ,2 by
implicitly setting a0 ≡ c2a′0 mod p2 and a1 ≡ c2a′1 mod p2 where c2 = logg2

(R2).
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Lemma 3.11. If the ComDH assumption holds, then no PPT adversary can distinguish G5 from G6 with a
non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguish G5 from G6 with a non-negligible advantage.
A simulator B that solves the ComDH assumption using A is given: a challenge tuple D = ((N,G,GT ,e),
g1,g2,g3,ga

1R1,gb
1R2) and Z where Z = Z0 = e(g1,g1)

ab or Z = Z1 = e(g1,g1)
c. Then B that interacts with

A is described as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′ ∈ ZN . It implicitly sets α = a from ga

1R1
and publishes PP =

(
(N,G,GT ,e),g = g1,Y = g3,h = gh′ ,u1 = gu′1 , . . . ,uL = gu′L ,v = gv′ ,w = gw′ ,Ω =

e(g,ga
1R1)

)
.

Phase 1: For each query, B creates a semi-functional key by using ga
1R1 and g2. Note that it cannot create a

normal update key (and a normal decryption key) since ga
1 is not given.

Challenge: For challenge ID∗|` and T ∗, B builds CHHIBE =
(
C0 = gb

1R2,C1 =(gb
1R2)

h′+∑
`
i=1 u′iI

∗
i
)

and CHIBE =

(E0 = gb
1R2,E1 = (gb

1R2)
v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates a challenger ciphertext

CTID∗|`,T ∗ = (CHHIBE ,CHIBE ,C = Z ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0, then the simulation is the same as G5. If Z = Z1, then the simulation is the same as G6 since
C is random.

3.5 Type-h-I Adversary

Lemma 3.12. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish Hhc−1,2 from
Hhc,1 with a non-negligible advantage.

Proof. Suppose there exists an adversary AI that distinguishes Hhc−1,2 from Hhc,1 with a non-negligible
advantage. A simulator B that solves the GSD assumption using AI is given: a challenge tuple D =
((N,G,GT ,e),g1,g3,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that interacts
with AI is described as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN . It sets MK = α and publishes PP =(

(N,G,GT ,e),g = g1,Y = g3,h = gh′ ,u1 = gu′1 , . . . ,uL = gu′L ,v = gv′ ,w = gw′ ,Ω = e(g,g)α
)
.

Phase 1: For each query, B proceeds as follows: If this is a decryption key query, then it creates a normal
key.
If this is an HIBE key in a private key or an IBE key in an update key query with indexes (in, ic), then B
handles this key as follows:

• Case in < h: It builds a normal key by using MK and converts this key to a semi-functional one with
fixed random exponents δ j,0,δ j,1 ∈ ZN for the subset S j by using R2Y1.

• Case in = h: If this is an IBE key, then it creates a normal IBE key by using MK. If this is an HIBE
key, then it proceeds as follows:

– ic < hc: It builds a normal HIBE key and converts this key to a semi-functional-type2 key by
raising a random exponent a0 ∈ ZN to R2Y1.

– ic = hc: It chooses random elements Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates an HIBE key

SKHIBE,S j =
(
K0 = gγ j(Z)h′+∑

k
i=1 u′iIiY ′0, K1 = (Z)−1Y ′1, {K2,i = (Z)u′iY ′2,i}

)
.
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– ic > hc: It creates a normal HIBE key by using MK.

• Case in > h: It creates a normal HIBE key or a normal IBE key.

Challenge: For challenge ID∗|` and T ∗, B builds CHHIBE =
(
C0 = X1R1,C1 = (X1R1)

h′+∑
`
i=1 u′iI

∗
i
)

and
CHIBE =

(
E0 = X1R1,E1 = (X1R1)

v′+w′T ∗
)
. Next, it flips a random coin µ ∈ {0,1} and creates a semi-

functional CTID∗|`,T ∗ = (CHHIBE ,CHIBE ,C = e(X1R1,g)α ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as Hhc−1,2 since the HIBE key with (in = h)∧(ic = hc)
is normal. If Z = Z1 = X2R3Y2, then the simulation is almost the same as Hhc,1 except that the HIBE key
with (in = h)∧ (ic = hc) is nominally semi-functional-type1 by implicitly setting

a0 ≡ c(h′+∑
k
i=1 u′iIi) mod p2, b0 ≡ c mod p2, zi ≡ u′i mod p2,

d0 ≡ (h′+∑
`
i=1 u′iI

∗
i ) mod p2

where c= logg2
(R3). Note that the paradox of dual system encryption is solved by introducing the nominally

semi-functional-type1 key. That is, the simulator cannot check whether the HIBE key is normal or nominally
semi-functional-type1 since the exponents a0,b0,{zi} of the HIBE key are correlated to the exponent d0 of
the challenge HIBE ciphertext.

Next, we should argue that the Type-h-I adversary cannot distinguish a nominally semi-functional-type1
HIBE key from a semi-functional-type1 HIBE key. For this argument, we show an information theoretic
argument by using the fact that ID|k 6∈ Prefix(ID∗|`) for all HIBE keys with the node index h. Suppose there
exists an unbounded Type-h-I adversary. If the HIBE keys are with (in = h)∧ (ic = hc), then the adver-
sary can gather the exponents a0,b0 from the HIBE key and d0 from the challenge HIBE ciphertext. We
easily show that h′+∑

k
i=1 u′iIi mod p2 looks random to the adversary since h′+u′jI j is a pair-wise indepen-

dent function, ∃ j such that I j 6= I∗j if ID|k 6∈ Prefix(ID∗|`), and h′ mod p2 and u′j mod p2 are information
theoretically hidden to the adversary by the CRT. This completes our proof.

Lemma 3.13. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish Hhc,1 from
Hhc,2 with a non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 3.12. The only difference is the
generation of an HIBE key with indexes (in = h, ic = hc). This HIBE key is generated as follows:

• ic = hc: It chooses random a′0 ∈ ZN , Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates an HIBE key

SKHIBE,S j =
(
K0 = gγ j(Z)h′+∑

k
i=1 u′iIiY ′0(R2Y1)

a′0 , K1 = (Z)−1Y ′1, {K2,i = (Z)u′iY ′2,i}
)
.

Note that the exponent of this HIBE key is no longer correlated with the exponent of the challenge HIBE
ciphertext since K0 is randomized by a′0.

Let c = logg2
(R3) and c2 = logg2

(R2). If Z = Z1 = X2R3Y2, then the simulation is the same as Hhc,1

since the HIBE key is semi-functional-type1 by implicitly setting a0 ≡ c(h′ + ∑
k
i=1 u′iIi) + c2a′0 mod p2,

b0 ≡ c mod p2, and zi ≡ u′i mod p2. If Z = Z0 = X2Y2, then the simulation is the same as Hhc,2 since the
HIBE key is semi-functional-type2 by implicitly setting a0 ≡ c2a′0 mod p2.

Lemma 3.14. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H′hc+1,2 from
H′hc,1 with a non-negligible advantage.
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Proof. The proof of this lemma is almost the same as that of Lemma 3.13. The only difference is that the
element K0 of the HIBE key with the indexes (in = h, ic = hc) that is generated in Lemma 3.13 is additionally
multiplied by (R2Y1)

δ ′j,0 where a fixed exponent δ ′j,0 is related with the node v j as follows:

SKHIBE,S j =
(
K0 = gγ j(Z)h′+∑

k
i=1 u′iIiY ′0(R2Y1)

a′0(R2Y1)
δ ′j,0 , K1 = (Z)−1Y ′1, {K2,i = (Z)u′iY ′2,i}

)
.

Let c = logg2
(R3) and c2 = logg2

(R2). If Z = Z0 = X2Y2, then the simulation is the same as H′hc+1,2 since
the HIBE key is semi-functional-type2 by implicitly setting a0 ≡ c2a′0+c2δ ′j,0 mod p2. If Z = Z1 = X2R3Y2,
then the simulation is the same as H′hc,1 since the HIBE key is semi-functional-type1 by implicitly setting
a0 ≡ c(h′+∑

k
i=1 u′iIi)+ c2a′0 + c2δ ′j,0 mod p2, b0 ≡ c mod p2, and zi ≡ u′i mod p2.

Lemma 3.15. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H′hc,1 from
H′hc,2 with a non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 3.12. The only difference is that each
element K0 of HIBE keys with the indexes (in = h, ic = hc) that is generated in Lemma 3.12 is additionally
multiplied by (R2Y1)

δ ′j,0 where a fixed exponent δ ′j,0 is related with the node v j as follows:

SKHIBE,S j =
(
K0 = gγ j(Z)h′+∑

k
i=1 u′iIiY ′0(R2Y1)

δ ′j,0 , K1 = (Z)−1Y ′1, {K2,i = (Z)u′iY ′2,i}
)
.

Let c = logg2
(R3) and c2 = logg2

(R2). If Z = Z1 = X2R3Y2, then the simulation is the same as H′hc,1

since the HIBE key is semi-functional-type1 by implicitly setting a0 ≡ c(h′+∑
k
i=1 u′iIi) + c2δ ′j,0 mod p2,

b0 ≡ c mod p2, and zi ≡ u′i mod p2. Recall that h′+∑
k
i=1 u′iIi looks random to an adversary by the analysis

in Lemma 3.12. If Z = Z0 = X2Y2, then the simulation is the same as H′hc,2 since the HIBE key is semi-
functional by implicitly setting δ j,0 ≡ c2δ ′j,0 mod p2.

Lemma 3.16. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H′0,2 from H′′

with a non-negligible advantage.

Proof. The proof of this lemma is the important part of the security proof since it changes the IBE key
for T ∗ from a normal type to a semi-functional type. It should be noted that this changes from normal to
semi-functional cannot be handled by introducing a nominally semi-functional type since an information
theoretic argument for T ∗ cannot be used. To solve this problem, we directly change normal keys with the
index h to semi-functional keys without introducing nominally semi-functional keys.

Many part of this proof are similar to that of Lemma 3.12 except that the generation of HIBE keys and
IBE keys with the node index h. These keys with the node index in = h are generated as follows:

• Case in = h: Let δ ′j,0 be a fixed exponent in ZN for the subset S j in this node index h.

If this is an HIBE key, then it selects random r′ ∈ ZN ,Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates an HIBE key

SKHIBE,S j =
(
K0 = Z ·F(ID|k)r′Y ′0 · (R2Y1)

δ ′j,0 , K1 = g−r′Y ′1, {K2,i = ur′
i Y ′2,i}

)
.

If this is an IBE key, then it selects random r′′ ∈ ZN ,Y ′′0 ,Y
′′
1 ∈Gp3 and creates an IBE key

SKIBE,Si =
(
U0 = gβID|k−1 (Z)−1(vwT )−r′′Y ′′0 , U1 = g−r′′Y ′′1

)
.
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If Z = Z0 = X2Y2, then the simulation is the same as H′1,2 since all HIBE keys with h are semi-functional
and all IBE keys with h are normal. If Z = Z1 = X2R3Y2, then the simulation is the same as H′′ since it
implicitly sets δ j,0 = c+ c2δ ′j,0 mod p2 and δ j,1 =−c mod p2 where c = logg2

(R3) and c2 = logg2
(R2).

We now show that the paradox of dual system encryption does not occur. To check whether an IBE
key with h is normal or semi-functional, the simulator may try to decrypt a semi-functional ciphertext by
deriving a decryption key from these keys with h. However, the simulator always derives a semi-functional
decryption key from those keys since the HIBE key with h is already semi-functional. Thus, the simulator
cannot check whether the IBE key with h is normal or semi-functional since the decryption always fails.
This completes our proof.

3.6 Type-h-II Adversary

Lemma 3.17. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish Ihc−1,2 from
Ihc,1 with a non-negligible advantage.

Lemma 3.18. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish Ihc,1 from Ihc,2
with a non-negligible advantage.

Lemma 3.19. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish I′hc+1,2 from
I′hc,1 with a non-negligible advantage.

Lemma 3.20. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish I′hc,1 from I′hc,2
with a non-negligible advantage.

Lemma 3.21. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish I′1,2 from I′′

with a non-negligible advantage.

The proofs of Lemmas 3.17, 3.18, 3.19, 3.20, and 3.21 are almost the same as those of Lemmas 3.12,
3.13, 3.14, 3.15, and 3.16 respectively except that IBE keys are first changed to semi-functional by using the
restriction T 6= T ∗ and the master key part of an IBE key is set with the exponent βID|k−1 − γi. Note that the
IBE scheme is a specific case of the HIBE scheme. We omit the detailed proofs of these lemmas.

4 Revocable HIBE with Subset Difference

In this section, we propose an RHIBE-SD scheme by combining HIBE, IBE, and SD schemes and prove its
adaptive security under simple static assumptions.

4.1 Subset Difference Method

The subset difference (SD) method is also a specific instance of the subset cover framework of Naor et
al. [23]. We also follow the SD definition of Lee and Park [20].

SD.Setup(Nmax): Let Nmax = 2n for simplicity. It first sets a perfect binary tree BT of depth n. Each user is
assigned to a different leaf node in BT . The collection S of SD is the set of all subsets {Si, j} where
vi,v j ∈ BT and v j is a descendant of vi. It outputs the binary tree BT .
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SD.Assign(BT , ID): Let v be the leaf node of BT that is assigned to the user ID. Let (vk0 ,vk1 , . . . ,vkn) be
the path from the root node vk0 to the leaf node vkn = v. For all i, j ∈ {k0, . . . ,kn} such that v j is a
descendant of vi, it adds the subset Si, j defined by two nodes vi and v j in the path into PV . It outputs
the private set PV = {Si, j}.

SD.Cover(BT ,R): It first sets a subtree T as the Steiner Tree ST R that is the minimum subtree of BT that
connects all the leaf nodes in R and the root node, and then it builds a cover set CV iteratively by
removing nodes from T until T consists of just a single node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v of vi and v j does
not contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v
such that vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left,
it makes vi = v j to the leaf node, v to be the root of T and vl = vk = v.

2. If vl 6= vi, then it adds the subset Sl,i to CV ; likewise, if vk 6= v j, it adds the subset Sk, j to CV .

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the cover set CV = {Si, j}.

SD.Match(CV,PV ): It finds two subsets Si, j ∈CV and Si′, j′ ∈ PV such that (vi = vi′)∧(d j = d j′)∧(v j 6= v j′)
where d j is the depth of v j. If it found two subsets, then it outputs (Si, j,Si′, j′). Otherwise, it outputs
⊥.

Lemma 4.1 ( [23]). In the SD method, the size of a private set if O(log2 Nmax) and the size of a cover set is
O(r) where Nmax is the maximum number of leaf nodes and r is the size of revoked users R.

4.2 Construction

Our RHIBE-SD scheme is also very similar to that of Lee and Park [20] except that the underlying HIBE
and IBE schemes are replaced by the LW-HIBE and LW-IBE schemes. We define GMLabel(Si, j) = (GL =
Label(vi)‖Depth(v j),L j = Label(v j)) where Si, j = (vi,v j). Let ∆i,I be a Lagrange coefficient which is de-
fined as ∆i,I(x) = ∏ j∈I, j 6=i

x− j
i− j for an index i ∈ ZN and a set of indexes I in ZN .

Let PRF be a pseudo-random function for K = {0,1}λ , X = {0,1}∗, and Y = ZN . Our RHIBE scheme
for I = ZN , V = ZN , andM∈GT is described as follows:

RHIBE-SD.Setup(1λ ,L,Nmax): Let λ be a security parameter, L be the maximum depth of a hierarchical
identity, and Nmax be the maximum number of users for each level.

1. It first generates bilinear groups G,GT of composite order N = p1 p2 p3 where p1, p2, and p3 are
random primes. It selects random generators g1,g3 of Gp1 ,Gp3 respectively.

2. It selects a random exponent α ∈ ZN and chooses random elements h,u1, . . . ,uL,v,w ∈ Gp1 . It
outputs a master key MK = α and public parameters

PP =
(
(N,G,GT ,e), g = g1,Y = g3,h,u1, . . . ,uL, v,w, Ω = e(g,g)α ,Nmax

)
.

We define F(ID|k) = (h∏
k
i=1 uIi

i ) for ID|k = (I1, . . . , Ik) and use the notation SKID|0 = MK.

RHIBE-SD.GenKey(ID|k,STID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik be a hierarchical identity with k ≥ 1,
and STID|k−1 be a state information.
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1. If STID|k−1 is empty, then it obtains BT ID|k−1 by running SD.Setup(Nmax) and selects a random
exponent βID|k−1 ∈ ZN and a PRF key zID|k−1 ∈ K. It sets STID|k−1 = (BT ID|k−1 ,βID|k−1 ,zID|k−1).

2. It assigns ID|k to a random leaf node v ∈ BT ID|k−1 and obtains a private set PV = {Si, j} by
running SD.Assign(BT ID|k−1 , ID|k).
For each Si, j ∈PV , it sets (GL,L j)=GMLabel(Si, j) and proceeds as follows: It defines fGL(x)=
aGLx+βID|k−1 by computing aGL =PRF(zID|k−1 ,GL). It selects random r ∈ZN , Y0,Y1,Y2,k+1, . . . ,
Y2,L ∈Gp3 and creates an HIBE key

SKHIBE,Si, j =
(

K0 = g fGL(L j)F(ID|k)rY0, K0 = g−rY1,
{

K0 = ur
iY2,i

}L
i=k+1

)
.

3. Finally, it outputs a private key SKID|k =
(
PV,{SKHIBE,Si, j}Si, j∈PV

)
. Note that the master key part

of SKHIBE,Si, j is fGL(L j) = aGLL j +βID|k−1 .

RHIBE-SD.UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): Let DKID|k−1,T = (DKHIBE ,DKIBE) be a de-
cryption key.

1. If STID|k−1 is empty, then it obtains BT ID|k−1 by running SD.Setup(Nmax) and selects a random
exponent βID|k−1 ∈ ZN and a PRF key zID|k−1 ∈ K. It sets STID|k−1 = (BT ID|k−1 ,βID|k−1 ,zID|k−1).

2. It derives the set R of revoked identities at time T from RLID|k−1 and obtains a cover set CV =
{Si, j} by running SD.Cover(BT ID|k−1 ,R).
For each Si, j ∈CV , it sets (GL,L j)=GMLabel(Si, j) and proceeds as follows: It defines fGL(x)=
aGLx+βID|k−1 by computing aGL = PRF(zID|k−1 ,GL). It selects random r ∈ ZN , Y0,Y1 ∈Gp3 and
creates an IBE key

SKIBE,Si, j =
(

U0 = g fGL(L j)(vwT )rY0, U1 = g−rY1

)
.

3. Let DKHIBE = (D0,D1,{D2,i}) and DKIBE = (V0,V1) where the master key parts are η and
α−βID|k−1−η respectively. It chooses random η ′ ∈ZN and creates temporal blinded HIBE and
IBE keys

T BKHIBE =
(

A′0 = D0 ·gη ′ , A′1 = D1,
{

A′2,i = D2,i
}L

i=k

)
T BKIBE =

(
B′0 =V0 ·g−βID|k−1

−η ′ , B′1 =V1

)
.

4. Next, it chooses random r′,r′′ ∈ ZN , Y ′0,Y
′
1,Y
′
2,k, . . . ,Y

′
2,L, Y ′′0 ,Y

′′
1 ∈ Gp3 and randomizes blinded

HIBE and IBE keys

BKHIBE =
(

A0 = A′0 ·F(ID|k−1)
r′Y ′0, A1 = A′1 ·g−r′Y ′1,

{
A2,i = A′2,i ·ur′

i Y ′2,i
}L

i=k

)
BKIBE =

(
B0 = B′0 · (vwT )r′′Y ′′0 , B1 = B′1 ·g−r′′Y ′′1

)
.

5. Finally, it outputs an update key UKID|k−1,T =
(
CV,{SKIBE,Si, j}Si, j∈CV ,BKID|k−1,T = (BKHIBE ,

BKIBE)
)

where the master key parts of SKIBE,Si, j , BKHIBE , and BKIBE are fGL(L j) = aGLL j +
βID|k−1 , η ′, and α−βID|k−1−η ′ for some random η ′ respectively.
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RHIBE-SD.DeriveKey(ID|k,T,SKID|k ,UKID|k−1,T ,PP): Let ID|k = (I1, . . . , Ik) with k ≥ 0, SKID|k = (PV,
{SKHIBE,Si, j}Si, j∈PV ), and UKID|k−1,T =(CV,{SKIBE,Si, j}Si, j∈CV ,BKID|k−1,T ) where BKID|k−1,T =(BKHIBE ,
BKIBE).

If k = 0, then SKID|0 = MK and UK is empty. It proceeds as follows:

1. It first selects a random exponent η ∈ ZN . It chooses random r,r′ ∈ ZN , Y0,Y1,Y2,1, . . . ,Y2,L,
Y ′0,Y

′
1 ∈Gp3 and creates HIBE and IBE keys

DKHIBE =
(

D0 = gη(h)rY0, D1 = g−rY1,
{

D2,i = ur
iY2,i

}L
i=1

)
,

DKIBE =
(

V0 = gα−η(vwT )r′Y ′0, V1 = g−r′Y ′1
)
.

2. It outputs a decryption key DKID|0,T = (DKHIBE ,DKIBE).

If k ≥ 1, then it proceeds as follows:

1. It first obtains (Si, j,Si′, j′) by running SD.Match(CV,PV ). If it fails, it outputs⊥. It then retrieves
SKHIBE,Si′, j′ = (K0,K1,{K2,i}) from SKID|k and SKIBE,Si, j = (U0,U1) from UKID|k−1,T where the
master key parts are fGL(L j′) = aGLL j′+βID|k−1 and fGL(L j) = aGLL j +βID|k−1 respectively.

2. Let BKHIBE = (A0,A1,{A2,i}) and BKIBE = (B0,B1) where the master key parts are η and α−
βID|k−1 −η respectively. Next, it calculates two Lagrange coefficients ∆L j′ ,I(0) =

−L j
L j′−L j

mod N

and ∆L j,I(0) =
−L j′

L j−L j′
mod N for the set I = {L j,L j′} and creates temporal HIBE and IBE keys

by selecting a random exponent η ′ ∈ ZN as

T DKHIBE =
(

D′0 = A0AIk
2,k(K0)

∆L j′ ,I
(0) ·gη ′ , D′1 = A1(K1)

∆L j′ ,I
(0)
,
{

D′2,i = A2,i(K2,i)
∆L j′ ,I

(0)}L
i=k+1

)
,

T DKIBE =
(

V ′0 = B0(U0)
∆L j ,I(0) ·g−η ′ , V ′1 = B1(U1)

∆L j ,I(0)
)
.

3. After that, it chooses random r,r′ ∈ ZN , Y0,Y1,Y2,k+1, . . . ,Y2,L, Y ′0,Y
′
1 ∈Gp3 and creates random-

ized HIBE and IBE keys

DKHIBE =
(

D0 = D′0 ·F(ID|k)rY0, D1 = D′1 ·g−rY1,
{

D2,i = D′2,i ·ur
iY2,i

}L
i=k+1

)
,

DKIBE =
(

V0 =V ′0 · (vwT )r′Y ′0, V1 =V ′1 ·g−r′Y ′1
)
.

4. Finally, it outputs a decryption key DKID|k,T =
(
DKHIBE ,DKIBE

)
. Note that the master key parts

of DKHIBE and DKIBE are η ′′ and α −η ′′ for some random η ′′ = η + fGL(L j′)∆L j′ ,I(0) +η ′

respectively since the following equation holds

α−βID|k−1−η + fGL(L j)∆L j,I(0)−η
′

= α−βID|k−1 + fGL(L j)∆L j,I(0)− (η ′′− fGL(L j′)∆L j′ ,I(0))

= α−βID|k−1 +βID|k−1−η
′′ = α−η

′′.

RHIBE-SD.Encrypt(ID|`,T,M,PP): It is the same as the algorithm in Section 3.2.

RHIBE-SD.Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): It is the same as the algorithm in Section 3.2.

RHIBE-SD.Revoke(ID|k,T,RLID|k−1 ,STID|k−1): It is the same as the algorithm in Section 3.2.
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4.3 Correctness

To show the correctness of the above RHIBE-SD scheme, we only show that a decryption key is correctly
derived from a private key and an update key since other parts are almost the same as those of the RHIBE-CS
scheme.

Let SKID|k = (PV,{SKHIBE,Si, j}) be a private key generated by the GenKey algorithm. The master key
part of SKHIBE,Si, j is fGL(L j) = aGLL j +βID|k−1 . Let UKID|k−1,T = (CV,{SKIBE,Si, j},BKID|k−1,T = (BKHIBE ,
BKIBE)) be an update key generated by the UpdateKey algorithm. The master key part of SKIBE,Si, j is
fGL(L j) = aGLL j +βID|k−1 . The master key parts of BKHIBE and BKIBE are η ′′ and α−βID|k−1 −η ′′ respec-
tively since the master key parts of DKHIBE and DKIBE are η and α−η , and exponents η ′ and−βID|k−1−η ′

are added to the temporal keys.
We show that a decryption key DKID|k,T generated by the DeriveKey algorithm is correctly derived from

SKID|k and UKID|k−1,T . If (ID|k,T ′) 6∈ RLID|k−1 for all T ′ ≤ T , then the master key parts of SKHIBE,Si′, j′ and
SKIBE,Si, j are associated with fGL(L j′) = aGLL j′ +βID|k−1 and fGL(L j) = aGLL j +βID|k−1 where L j′ 6= L j by
the correctness of the SD scheme. If two Lagrange coefficients are multiplied, then we have the following
equation

fGL(L j′)∆L j′ ,I(0)+ fGL(L j)∆L j,I(0)

= (aGLL j′+βID|k−1)
−L j

L j′−L j
+(aGLL j +βID|k−1)

−L j′

L j−L j′

= (−aGLL j′L j−βID|k−1L j +aGLL jL j′+βID|k−1L j′)
1

L j′−L j

= βID|k−1

L j′−L j

L j′−L j
= βID|k−1 .

The master key parts of BKHIBE and BKIBE are associated with η and α − βID|k−1 −η . Thus, the master
key parts of T DKHIBE and T DKIBE are associated with η + fGL(L j′)∆L j′ ,I(0)+η ′ and α − βID|k−1 −η +
fGL(L j)∆L j,I(0)−η ′ respectively. If we implicitly set η ′′ = η + fGL(L j′)∆L j′ ,I(0)+η ′, then we have the
following equation

α−βID|k−1−η + fGL(L j)∆L j,I(0)−η
′

= α−βID|k−1 + fGL(L j)∆L j,I(0)− (η ′′− fGL(L j′)∆L j′ ,I(0))

= α−βID|k−1 +( fGL(L j)∆L j,I(0)+ fGL(L j′)∆L j′ ,I(0))−η
′′

= α−βID|k−1 +βID|k−1−η
′′ = α−η

′′.

Since the master key parts of DKHIBE and DKIBE are same with that of T DKHIBE and T DKIBE , two master
key parts of DKHIBE and DKIBE are η ′′ and α−η ′′ for some random η ′′ respectively.

4.4 Security Analysis

We also use the dual system encryption proof technique of Lewko and Waters [21] to prove the adaptive
security of our RHIBE-SD scheme. The overall strategy of this security proof is somewhat similar to that
of our RHIBE-CS scheme, but we use a different grouping method of small component keys because of
the difference between the CS method and the SD method. The details of the security proof are given as
follows.
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Theorem 4.2. The above RHIBE-SD scheme is AD-IND-CPA secure if the SD, GSD, and ComDH assump-
tions hold.

Proof. We first define the semi-functional types of private keys, update keys, decryption keys, and cipher-
texts in RHIBE by using the semi-functional types of HIBE and IBE in Theorem 3.2. For the semi-functional
type, we let g2 denote a fixed generator of the subgroup Gp2 .

RHIBE-SD.SK-SF. To generate a semi-functional private key, it proceeds as follows.

1. It first creates a normal private key SK′ID|k = (PV,{SK′HIBE,Si, j
}Si, j∈PV ) by using MK where each

SK′HIBE,Si, j
is a normal HIBE key.

2. For each Si, j ∈ PV , it chooses a random exponent δi, j ∈ZN once for Si, j ∈BT ID|k−1 and converts
SK′HIBE,Si, j

to a semi-functional SKHIBE,Si, j with the exponent δi, j.

3. It outputs a semi-functional private key SKID|k =
(
PV,{SKHIBE,Si, j}Si, j∈PV

)
.

RHIBE-SD.UK-SF. To generate a semi-functional update key, it proceeds as follows.

1. It first creates a normal update key UK′ID|k−1,T
= (CV,{SK′IBE,Si, j

}Si, j∈CV ,BK′ID|k−1,T
= (BK′HIBE ,

BK′IBE)) by using MK where BK′HIBE is a normal HIBE key, SK′IBE,Si, j
and BK′IBE are normal IBE

keys.

2. For each Si, j ∈CV , it chooses a random exponent δi, j ∈ ZN once for Si, j and converts a normal
SK′IBE,Si, j

to a semi-functional SKIBE,Si, j with the exponent δi, j.

3. It chooses a random exponent a0 ∈ ZN and fixes a random exponent aID|k−1 ∈ ZN for BT ID|k−1 .
It converts BK′HIBE to a semi-functional HIBE key BKHIBE with the exponent a0. It also con-
verts BK′IBE to a semi-functional IBE key BKIBE with the exponent aID|k−1 − a0. It sets a semi-
functional BKID|k−1,T = (BKHIBE ,BKIBE).

4. It outputs a semi-functional update key UKID|k−1,T =
(
CV,{SKIBE,Si, j}Si, j∈CV ,BKID|k−1,T

)
.

RHIBE-SD.DK-SF. To generate a semi-functional decryption key, it proceeds as follows.

1. It first creates a normal decryption key DK′ID|k,T =(DK′HIBE ,DK′IBE) by using MK where DK′HIBE

is a normal HIBE key and DK′IBE is normal IBE key.

2. It chooses random exponents a0,a1 ∈ ZN . It converts DK′HIBE to a semi-functional-type2 HIBE
key DKHIBE with the exponent a0. It also converts DK′IBE to a semi-functional-type2 IBE key
DKIBE with the exponent a1.

3. It outputs a semi-functional decryption key DKID|k,T =
(
DKHIBE ,DKIBE

)
.

RHIBE-SD.CT-SF. To generate a semi-functional ciphertext, it proceeds as follows.

1. It first creates a normal ciphertext CT ′ID|`,T = (CH ′HIBE ,CH ′IBE ,C
′) where CH ′HIBE is a normal

HIBE ciphertext and CH ′IBE is a normal IBE ciphertext.

2. It chooses random exponents c,d0,d1 ∈ ZN . It converts CH ′HIBE to a semi-functional CHHIBE

with the exponents c,d0. It also converts CH ′IBE to a semi-functional CHIBE with the exponents
c,d1.

3. It outputs a semi-functional ciphertext CTID|`,T =
(
CHHIBE ,CHIBE ,C′

)
.
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The security proof consists of the sequence of hybrid games G0,G1, . . . ,G6 defined in Theorem 3.2.
The first game G0 is the original security game and the last one G6 is a game such that the adversary has no
advantage. We omit the definition of these games since they are given in Theorem 3.2.

Let AdvG j
A be the advantage of A in the game G j. We have that AdvAD-IND-CPA

RHIBE,A (λ ) = AdvG0
A and

AdvG6
A = 0. From the following Lemmas 4.3, 4.4, 4.5, 4.7, 4.8 and 4.9, we obtain the following equation

AdvAD-IND-CPA
RHIBE,A (λ )≤

6

∑
j=1

∣∣AdvG j−1
A −AdvG j

A
∣∣

≤ O(qsk +quk)AdvPRF
B (λ )+AdvSD

B (λ )+

O((qsk logNmax +qukrmax)(qsk +quk)+qdk)AdvGSD
B (λ )+AdvComDH

B (λ )

where qsk, quk, and qdk are the number of private key, update key, and decryption key queries respectively.
This completes our proof.

Lemma 4.3. If the PRF is secure, then no PPT adversary can distinguish G0 from G1 with a non-negligible
advantage.

Lemma 4.4. If the SD assumption holds, then no PPT adversary can distinguish G1 from G2 with a non-
negligible advantage.

The proofs of Lemmas 4.3 and 4.4 are the same as those of Lemmas 3.3 and 3.4.

Lemma 4.5. If the GSD assumption holds, then no PPT adversary can distinguish G2 from G3 with a
non-negligible advantage.

Proof. For the proof of this lemma, we cannot use simple hybrid games that change a normal private key
(or normal update key) to a semi-functional private key (or semi-functional update key) one by one since the
adversary of RHIBE can query a private key for ID|k ∈ Prefix(ID∗|`) and an update key for T ∗. Note that
these normal keys cannot directly converted to semi-functional keys since an information theoretic argument
cannot be used.

To solve this problem, we first divide each private key and update key into small HIBE keys and IBE
keys. Recall that a private key SKID|k consists of many HIBE keys and an update key UKID|k−1,T consists of
many IBE keys and a blinded key where each HIBE key (or an IBE key) is associated with a subset Si, j in
BT ID|k−1 . Next, HIBE keys and IBE keys that are related to the same group of a subset Si, j in BT ID|k−1 are
grouped together. To uniquely identify the group of a subset Si, j ∈ BT ID|k−1 , we define a group identifier
GID of this subset as a string ID|k−1‖Li‖d j where (Li,L j) = Label(Si, j) and d j = Depth(S j). To prove this
lemma, we change normal HIBE keys and normal IBE keys that are related to the same group identifier into
semi-functional keys by defining additional hybrid games. This additional hybrid games are performed for
all group identifiers that are used in the key queries of the adversary.

For additional hybrid games that change HIBE keys (or IBE keys) that are related to the same group
identifier GID = ID|k−1‖Li‖d j from normal keys to semi-functional keys, we need to state additional infor-
mation of a subset Si, j in BT ID|k−1 . Note that an HIBE key for Si, j and an IBE key for Si′, j′ share the same
polynomial f (x) if (Li = Li′)∧ (d j = d j′) since they belong to the same group. Thus we associate an HIBE
key (or an IBE key) with an index pair (ig, im, ic) to state additional information where ig is a group index,
im is a member index, and ic is a counter index.

Suppose that an HIBE key (or an IBE key) is related with a subset Si, j, Then this key has a group
identifier GID = ID|k−1‖Li‖d j and a member label L j. The group index ig for HIBE keys (or IBE keys) is
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assigned as follows: If the group identifier GID appears first time in queries, then we set ig as the number of
distinct group identifiers in previous queries plus one. If the group identifier GID already appeared before
in queries, then we set ig as the value i′g of previous HIBE key (or IBE key) with the same group identifier
GID. The member index im for the group index ig is assigned as follows: If the member label L j for this
group identifier GID appears first time in queries, then we set im as the number of distinct members for this
group identifier GID in previous queries plus one. If the member label L j for this group identifier already
appeared before in queries, then we set im as the value i′m of previous one. The counter index ic is assigned
as follows: If the group identifier and member label (GID,L j) appears first time in queries, then we set ic
as one. If the group identifier and member label (GID,L j) appeared before in queries, then we set ic as the
number of queries with the group identifier and member label (GID,L j) that appeared before plus one.

For the security proof, we additionally define a sequence of games G2,1, . . . ,G2,h, . . . ,G2,qg where G2 =
G2,0,G3 =G2,qg , and qg is the maximum number of group identifiers that are used in private keys and update
keys. In the game G2,h for 1≤ h≤ qg, the challenge ciphertext is semi-functional, HIBE keys and IBE keys
with a group identifier ig≤ h are semi-functional, the remaining HIBE keys and IBE keys with a group index
ig > h are normal, and all blinded keys in update keys are still normal.

Let AdvG j
A be the advantage ofA in the game G j. From the following Lemma 4.6, we have the following

equation

AdvG2
A −AdvG3

A ≤
qg

∑
h=1

∣∣AdvG2,h−1
A −AdvG2,h

A
∣∣

≤ O((qsk logNmax +qukrmax)(qsk +quk))AdvGSD
B (λ ).

This completes the proof.

Lemma 4.6. If the GSD assumption holds, then no PPT adversary can distinguish G2,h−1 from G2,h with a
non-negligible advantage.

Proof. We first divide the adversaries into two types based on the behavior of adversaries on the group
index h: Type-h-I and Type-h-II. Let ID∗|` be the challenge hierarchical identity and T ∗ be the challenge
time respectively. The adversary types are formally defined as follows:

Type-h-I. An adversary is Type-h-I if at least one HIBE key with the group index h satisfies ID|k ∈
Prefix(ID∗|`) or at least one IBE key with the group index h satisfies T = T ∗. More specifically,
this adversary can be divided as follows:

• Type-h-I-A. All HIBE keys with the group index h satisfy ID|k 6∈ Prefix(ID∗|`) and at least one
IBE key with the group index h satisfies T = T ∗.

• Type-h-I-B. At least one HIBE key with the group index h satisfies ID|k ∈ Prefix(ID∗|`) and all
IBE keys with the group index h satisfy T 6= T ∗.

• Type-h-I-C. At least one HIBE key with the group index h satisfies ID|k ∈ Prefix(ID∗|`) and at
least one IBE key with the group index h satisfies T = T ∗.

Type-h-II. An adversary is Type-h-II if all HIBE keys with the group index h satisfy ID|k 6∈ Prefix(ID∗|`)
and all IBE keys with the group index h satisfy T 6= T ∗.
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Table 6: Hybrid games from G2,h−1 to G2,h for Type-h-I

Game
SKHIBE ,SKIBE with h,(im 6= h∗m, ic) SKHIBE ,SKIBEwith

(1,1) (1,2) . . . (hm,hc) . . . (qm,qc) h,(im = h∗m, ic)

H(0,qc),2 N

N . . . N . . . N NH(1,1),1 SF1

H(1,1),2 SF2
...

...
...

...
...

...

H(hm,hc−1),2

. . .

N

. . . N NH(hm,hc),1 SF1

H(hm,hc),2

SF2 SF2

SF2
...

...
...

...
...

...

H(qm,qc−1),2

. . . . . .

N

H(qm,qc),1 SF1

H(qm,qc),2 SF2

H′(qm,qc),1 SF1′

H′(qm,qc),2

SF2 SF2 SF2

SF

N

...
...

...
...

...
...

H′(1,2),2 SF2

. . . . . .

N

H′(1,1),1 SF1′ N

H′(1,1),2 SF N

H′′1 SF SF2

H′′2 SF

SF SF SF

SF

We use symbols N for normal, SF1 for semi-functional-type1, SF2 for semi-functional-type2, SF1′ for semi-
functional-type1 with an additional δ , and SF for semi-functional.

Note that these two types of adversaries cover all possible strategies related to the group index h.
Let’s assume that the group index h for this game is defined in BT ID|k−1 . Let CV ∗ be the cover set of

an update key for the challenge time T ∗ and the revoked set R∗ at time T ∗, and PV ∗ be the private set of an
private key for an hierarchical identity ID∗|k ∈ Prefix(ID∗|`). Let h∗m be a member index of the group index
h such that the HIBE key for ID∗|k or the IBE key for T ∗ belong to the member index h∗m. Note that we can
randomly guess h∗m since it is polynomially bounded in Lemma 4.10. If the adversary is Type-h-I-A, then
there is only one member index h∗m since CV ∗ is a partition. If the adversary is In Type-h-I-B, then there
is only one member index h∗m since PV ∗ is related with a path. If the adversary is Type-h-I-C, the member
index h∗m of CV ∗ with the group index h should be the same as that of PV ∗ with the same group index h in
the SD method since ID∗|k ∈ R∗ by the restriction of the security model. If the adversary is Type-h-II, then
there is no member index h∗m since the adversary does not request a key query for ID∗|k or T ∗. We next show
that this lemma holds for two types of the adversary. To guess the type of the adversary, we simply toss a
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coin since there are only two types for the group index h.

For the Type-h-I adversaryAI , we define hybrid games H(1,1),1,H(1,1),2, . . . ,H(qm,qc),1,H(qm,qc),2,H
′
(qm,qc),1,

H′(qm,qc),2, . . . ,H
′
(1,1),1,H

′
(1,1),2,H

′′
1,H′′2 where G2,h−1 = H(0,qc),2, H′′2 = G2,h, qm is the maximum number of

distinct member subsets of the group index h, and qc is the maximum number of queries for one member
subset. The structure of hybrid games is given in Table 6. These games are formally defined as follows:

Game H(hm,hc),1. This game H(hm,hc),1 for 1≤ hm ≤ qm and 1≤ hc ≤ qc is almost the same as G2,h−1 except
the generation of HIBE keys and IBE keys with the group index h. These HIBE keys and IBE keys
with indexes (ig = h, im, ic) are generated as follows:

• Case ig < h: The HIBE (or IBE) keys are generated as semi-functional.

• Case ig = h: The HIBE (or IBE) keys are generated as follows:

– (im 6= h∗m∧ im < hm) or (im 6= h∗m∧ im = hm)∧ (ic < hc):
If this is an HIBE key, then it generates a normal SK′HIBE,Si, j

and converts this key to a
semi-functional-type2 SKHIBE,Si, j by selecting a new random exponent a0 ∈ ZN .
If this is an IBE key, then it generates a normal SK′IBE,Si, j

and converts this key to a semi-
functional-type2 SKIBE,Si, j by selecting a new random exponent a1 ∈ ZN .

– (im 6= h∗m∧ im = hm)∧ (ic = hc):
If this is an HIBE key, then it generates a normal SK′HIBE,Si, j

and converts this key to a
semi-functional-type1 SKHIBE,Si, j by selecting new random exponents a0,b0,{zi} ∈ ZN .
If this is an IBE key, then it generates a normal SK′IBE,Si, j

and converts this key to a semi-
functional-type1 SKIBE,Si, j by selecting new random exponents a1,b1 ∈ ZN .

– (im 6= h∗m∧ im = hm)∧ (ic > hc) or (im 6= h∗m∧ im > hm):
It simply creates a normal key.

– (im = h∗m): It simply creates a normal key.

• Case ig > h: The HIBE (or IBE) keys are generated as normal.

Recall that if a0 +∑
`
i=k+1 b0ziIi = b0d0, then this HIBE key is nominally semi-functional-type1. Sim-

ilarly, if a1 = b1d1, then this IBE key is nominally semi-functional type-1.

Game H(hm,hc),2. This game H(hm,hc),2 is almost the same as H(hm,hc),1 except that the HIBE key (or the
IBE key) with the indexes (ig = h, im, ic) such that (im 6= h∗m∧ im = hm)∧ (ic = hc) is generated with
b0 = b1 = 0. In the game H(qm,qc),2, all HIBE keys and IBE keys with the group index h are semi-
functional-type2 except that HIBE keys and IBE keys with the member index h∗m are normal.

Game H′(hm,hc),1. This game H′(hm,hc),1 is almost the same as H(hm,hc),1 except the generation of an HIBE (or
IBE) key with the indexes (ig = h, im, ic) such that (im 6= h∗m∧ im = hm)∧ (ic ≥ hc) or (im 6= hm∧ im >
hm). These HIBE (or IBE) keys are generated as follows:

• (im 6= h∗m∧ im = hm)∧(ic = hc): Let δi, j be a random exponent in ZN that is fixed for this member
subset Si, j.
If this is an HIBE key, then it generates a semi-functional-type1 SK′HIBE,Si, j

= (K′0,K
′
1,{K′2,i})

as the same as H(hm,hc),1 and creates a semi-functional-type1 SKHIBE,Si, j =
(
K0 = K′0gδi, j

2 ,K1 =
K′1,{K2,i = K′2,i}

)
with a fixed δ .
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If this is an IBE private key, then it generates a semi-functional-type1 SK′IBE,Si, j
= (K′0,K

′
1) as the

same as H(hm,hc),1 and creates a semi-functional-type1 SKIBE,Si, j =
(
K0 = K′′0 gδi, j

2 ,K1 = K′′1
)

with
a fixed δ .

• (im 6= h∗m∧ im = hm)∧ (ic > hc) or (im 6= h∗m∧ im > hm):
It creates a semi-functional HIBE (or IBE) key by using the fixed exponent δi, j for this member
subset Si, j.

Game H′(hm,hc),2. This game H′(hm,hc),2 is almost the same as H′(hm,hc),1 except that the HIBE key or IBE key
with the indexes (ig = h, im, ic) such that (im 6= h∗m∧ im = hm)∧(ic = hc) is generated with b0 = b1 = 0.
In the game H′(1,1),2, all HIBE keys and all IBE keys with the group index h except the keys with the
member index h∗m are semi-functional where a fixed δi, j is used for each member.

Game H′′1 . This game H′′1 is very similar to the game H′(1,1),2 except that the remaining HIBE keys and IBE
keys with the member index h∗m are changed to be semi-functional-type2 by using a random exponent.

Game H′′2 . This game H′′2 is the same as G2,h. Compared to the game H′′1 , the HIBE keys and IBE keys with
the member index h∗m are changed to be semi-functional by using a fixed δi, j for this member subset
Si, j.

Let AdvHi
AI

be the advantage of AI in a game Hi. From the following Lemmas 4.10, 4.11, 4.12, 4.13,
4.14, and 4.15, we obtain the following equation

AdvH(1,0),2
AI

−AdvH ′′2
AI

≤
qm

∑
hm=1

qc

∑
hc=1

∣∣AdvH(hm,hc−1),2
AI

−AdvH(hm,hc),1
AI

∣∣+ qm

∑
hm=1

qc

∑
hc=1

∣∣AdvH(hm,hc),1
AI

−AdvH(hm,hc),2
AI

∣∣+
qm

∑
hm=1

qc

∑
hc=1

∣∣Adv
H ′(hm,hc+1),2
AI

−Adv
H ′(hm,hc),1
AI

∣∣+ qm

∑
hm=1

qc

∑
hc=1

∣∣Adv
H ′(hm,hc),1
AI

−Adv
H ′(hm,hc),2
AI

∣∣+
∣∣Adv

H ′(1,1),2
AI

−AdvH ′′1
AI

∣∣+ ∣∣AdvH ′′1
AI
−AdvH ′′2

AI

∣∣
≤

qm

∑
hm=1

qc

∑
hc=1

O(qsk +quk)AdvGSD
B (λ ).

For the Type-h-II adversary AII , we define hybrid games I(1,1),1,I(1,1),2, . . . ,I(qm,qc),1,I(qm,qc),2,I
′
(qm,qc),1,

I′(qm,qc),2, . . . ,I
′
(1,1),1,I

′
(1,1),2 where G2,h−1 = I(0,qc),2 and I′(1,1),2 = G2,h. The games are formally defined as

follows:

Game I(hm,hc),1. This game I(hm,hc),1 is almost the same as H(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-h-II.

Game I(hm,hc),2. This game I(hm,hc),2 is almost the same as H(hm,hc),2 except that there is no case im = h∗m
since the adversary is Type-h-II.

Game I′(hm,hc),1. This game I′(hm,hc),1 is almost the same as H′(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-h-II.
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Game I′(hm,hc),2. This game I′(hm,hc),2 is almost the same as H′(hm,hc),2 except that there is no case im = h∗m
since the adversary is Type-h-II. In the game I′(1,1),2, all HIBE keys and all IBE keys with the group
index h are semi-functional where a fixed δi, j is used for each member.

Let AdvIi
AII

be the advantage ofAII in a game Ii. From the following Lemmas 4.16, 4.17, 4.18, and 4.19,
we can obtain the equation

AdvI(0,qc),2
AII

−Adv
I′(1,1),2
AII

≤
qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (λ )

.
Let EI,EII be the event such that an adversary behave like the Type-h-I, Type-h-II adversary respectively.

From the above three inequalities for three types, we have the following inequality

AdvG2,h−1
A −AdvG2,h

A ≤ Pr[EI]
∣∣AdvG2,h−1

A −AdvG2,h
A

∣∣+Pr[EII]
∣∣AdvG2,h−1

A −AdvG2,h
A

∣∣
≤
∣∣AdvH(0,qc),2

AI
−AdvH ′′2

AI

∣∣+ ∣∣AdvI(0,qc),2
AII

−Adv
I′(1,1),2
AII

∣∣.
This completes our proof.

Lemma 4.7. If the GSD assumption holds, then no PPT adversary can distinguish G3 from G4 with a
non-negligible advantage.

Lemma 4.8. If the GSD assumption holds, then no PPT adversary can distinguish G4 from G5 with a
non-negligible advantage.

Lemma 4.9. If the ComDH assumption holds, then no PPT adversary can distinguish G5 from G6 with a
non-negligible advantage.

The proofs of Lemmas 4.7, 4.8 and 4.9 are the same as those of Lemmas 3.7, 3.8 and 3.11.

4.4.1 Type-h-I Adversary

Lemma 4.10. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H(hm,hc−1),2
from H(hm,hc),1 with a non-negligible advantage.

Proof. Suppose there exists an adversary AI that distinguishes H(hm,hc−1),2 from H(hm,hc),1 with a non-
negligible advantage. A simulator B that solves the GSD assumption using AI is given: a challenge tuple
D= ((N,G,GT ,e),g1,g3,X1R1,R2Y1) and Z where Z = Z0 =X2Y2 or Z = Z1 =X2R3Y2. Then B that interacts
with AI is described as follows:

Setup: B first chooses random exponents h′,u′1, . . . ,u
′
L,v
′,w′,α ∈ ZN . It sets MK = α and publishes PP =(

(N,G,GT ,e),g = g1,Y = g3,h = gh′ ,u1 = gu′1 , . . . ,uL = gu′L ,v = gv′ ,w = gw′ ,Ω = e(g,g)α
)
.

Phase 1: Let h∗m be a member index of the group index h such that the HIBE key for ID∗|k or the IBE key for
T ∗ belong to the member index h∗m such that 1≤ h∗m ≤ qm where qm is the maximum number of members in
the group index h. As mentioned before, there is only one index h∗m in the Type-h-I adversary. By randomly
selecting an index, B can correctly guess h∗m with the probability of 1/qm. Note that qm ≤ qsk +quk since the
private set of a private key is related with a path and the cover set of an update key is a partition where qsk is
the number of private key queries and quk is the number of update key queries of the adversary.

For each query, B proceeds as follows: If this is a decryption key query, then it creates a normal one
since it knows MK. If this is an HIBE key or an IBE key with indexes (ig, im, ic), then it handles this query
as follows:
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• Case ig < h: It builds a normal key by using MK and converts the key to a semi-functional one with
a fixed random exponent δ ′i, j for the subset Si, j by using R2Y1.

• Case ig = h: It generates the key as follows:

– (im 6= h∗m∧ im < hm) or (im 6= h∗m∧ im = hm)∧ (ic < hc):
If this is an HIBE key, then it builds a normal key and converts the key to a semi-functional-type2
SKHIBE,Si, j with a new random exponent a′0 ∈ ZN by using R2Y1.
If this is an IBE key, then it builds a normal key and converts the key to a semi-functional-type2
SKIBE,Si, j with a new random exponent a′1 ∈ ZN by using R2Y1.

– (im 6= h∗m∧ im = hm)∧ (ic = hc):
If this is an HIBE key, then it chooses random Y ′0,Y

′
1,{Y ′2,i} ∈Gp3 and creates an HIBE key

SKHIBE,Si, j =
(
K0 = g fGL(L j)(Z)h′+∑

k
i=1 u′iIiY ′0, K1 = (Z)−1Y ′1, {K2,i = (Z)u′iY ′2,i}

)
.

If this is an IBE key, then it chooses random Y ′0,Y
′
1 ∈Gp3 and creates an IBE key

SKIBE,Si, j =
(
K0 = g fGL(L j)(Z)v′+w′TY ′0, K1 = (Z)−1Y ′1

)
.

– (im 6= h∗m∧ im = hm)∧ (ic > hc) or (im 6= h∗m∧ im > hm): It creates a normal key by using MK.

– (im = h∗m): It creates a normal key by using MK.

• Case ig > h: It creates a normal key by using MK.

Challenge: For challenge ID∗|` and T ∗, B builds CHHIBE =
(
C0 = X1R1,C1 = (X1R1)

h′+∑
`
i=1 u′iI

∗
i
)

and
CHIBE = (C0 = X1R1,C1 = (X1R1)

v′+w′T ∗). Next, it flips a random coin µ ∈ {0,1} and creates the semi-
functional challenger ciphertext CTID∗|`,T ∗ = (CHHIBE ,CHIBE ,C = e(X1R1,g)α ·M∗µ).
Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as H(hm,hc−1),2 since the HIBE key (or the IBE key)
with (im 6= h∗m∧ im = hm)∧ (ic = hc) and the semi-functional challenge ciphertext are correctly distributed.
If Z = Z1 = X2R3Y2, then the simulation is almost the same as H(hm,hc),1 except that the HIBE key (or the
IBE key) with (im 6= h∗m∧ im = hm)∧ (ic = hc) is generated as nominally semi-functional-type1 by implicitly
setting a0 ≡ logg2

(R3)(h′+∑
k
i=1 u′iIi) mod p2 (or a1 ≡ logg2

(R3)(v′+w′T ) mod p2), b0 ≡ b1 ≡ logg2
(R3)

mod p2, and zi ≡ u′i mod p2. Note that we solve the paradox of dual system encryption by introducing the
nominally semi-functional-type1 key.

Next, we should argue that the Type-h-I adversary cannot distinguish a nominally semi-functional-type1
key from a semi-functional-type1 key. For this argument, we show an information theoretic argument by
using the fact that ID|k 6∈ Prefix(ID∗|`) for all HIBE keys with indexes (ig = h, im, ic) such that im 6= h∗m, and
T 6= T ∗ for all IBE keys with indexes (ig = h, im, ic) such that im 6= h∗m. The analysis of this information
theoretic argument is the same as that in Lemma 3.12. This completes our proof.

Lemma 4.11. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H(hm,hc),1 from
H(hm,hc),2 with a non-negligible advantage.
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Proof. The proof of this lemma is almost the same as that of Lemma 4.10 except the generation of the key
with indexes ig = h and (im 6= h∗m ∧ im = hm)∧ (ic = hc). This key with the group index h is generated as
follows:

• (im 6= h∗m∧ im = hm)∧ (ic = hc):

If this is an HIBE key, then it chooses random a′0 ∈ ZN , Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates an HIBE key

SKHIBE,Si, j =
(
K0 = g fGL(L j)(Z)h′+∑

k
i=1 u′iIiY ′0(R2Y1)

a′0 , K1 = (Z)−1Y ′1, {K2,i = (Z)u′iY ′2,i}
)
.

If this is an IBE key, then it chooses random a′1 ∈ ZN , Y ′0,Y
′
1 ∈Gp3 and creates an IBE key

SKIBE,Si, j =
(
K0 = g fGL(L j)(Z)v′+w′TY ′0(R2Y1)

a′1 , K1 = (Z)−1Y ′1
)
.

Note that this HIBE key (or IBE key) is no longer correlated with the challenge ciphertext since K0 is
randomized by (R2Y1)

a′0 (or (R2Y1)
a′1).

Lemma 4.12. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H′(hm,hc−1),2
from H′(hm,hc),1 with a non-negligible advantage.

Lemma 4.13. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H′(hm,hc),1 from
H′(hm,hc),2 with a non-negligible advantage.

The proofs of Lemmas 4.12 and 4.13 are almost the same as those of Lemmas 4.10 and 4.11 respectively.
The only difference is that K0 of an HIBE key and K0 of an IBE key with indexes (ig = h, im, ic) such that
im 6= h∗m that are generated in Lemmas 4.10 and 4.11 respectively are additionally multiplied by (R2Y1)

δ ′i, j

where δ ′i, j is a fixed exponent that is related with the member subset Si, j. This modification is possible since
R2Y1 is given in the assumption. We omit the detailed proofs of these lemmas.

Lemma 4.14. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H′(1,0),2 from
H′′1 with a non-negligible advantage.

Proof. The proof of this lemma is the important part of the security proof since it changes the HIBE key
for ID∗|k ∈ Prefix(ID∗|`) and the IBE key for T ∗ from a normal type to a semi-functional type. It should be
noted that this changes from normal to semi-functional cannot be handled by introducing a nominally semi-
functional type since an information theoretic argument for ID∗|k and T ∗ cannot be used. Recall that h∗m be
the member index that is related to ID∗|k and T ∗. To solve this problem, we directly change normal keys for
h∗m to semi-functional keys without introducing nominally semi-functional keys, and then we argue that the
paradox of dual system encryption can be solved by the property of the Lagrange interpolation method.

Many parts of this proof are similar to that of Lemma 4.10 except the generation of HIBE keys and IBE
keys with the group index ig = h. These keys with the group index ig = h are generated as follows:

• Case ig = h: Let δ ′i, j be a fixed exponent in ZN for each member Si, j in this group index h.

– (im 6= h∗m): If this is an HIBE key, then it selects random r1 ∈ ZN , Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates

an HIBE key

SKHIBE,Si, j =
(
K0 = (Z)L j gβID|k−1 F(ID|k)r1Y ′0 · (R2Y1)

δ ′i, j , K1 = g−r1Y ′1, {K2,i = ur1
i Y ′2,i}

)
.

If this is an IBE key, then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈Gp3 and creates an IBE key

SKIBE,Si, j =
(
U0 = (Z)L j gβID|k−1 (vwT )r2Y ′0 · (R2Y1)

δ ′i, j , U1 = g−r2Y ′1
)
.
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– (im = h∗m): If this is an HIBE key, then it selects random r1 ∈ ZN , Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates

an HIBE key

SKHIBE,Si, j =
(
K0 = (Z)L j gβID|k−1 F(ID|k)r1Y ′0, K1 = g−r1Y ′1, {K2,i = ur1

i Y ′2,i}
)
.

If this is an IBE key, then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈Gp3 and creates an IBE key

SKIBE,Si, j =
(
U0 = (Z)L j gβID|k−1 (vwT )r2Y ′0, U1 = g−r2Y ′1

)
.

If Z = Z0 = X2Y2, then the simulation is the same as H′(1,0),2 since all HIBE keys and IBE keys with the
group index h implicitly use a random polynomial fGL(x)≡ logg(X2) · x+βID|k−1 mod p1 and it implicitly
sets δi, j ≡ logg2

(R2)δ
′
i, j mod p2 for each member index im 6= h∗m. If Z = Z1 = X2R3Y2, then the simulation is

the same as H′′1 since it implicitly sets δi, j = logg2
(R3)L j mod p2 for the member index h∗m. As mentioned

before, the HIBE key for ID∗|k and the IBE key for T ∗ should belong to the same member index h∗m by the
restriction ID∗|k ∈ R∗ of the security model.

We now show that the paradox of dual system encryption can be solved. To check whether an HIBE
key for h∗m and an IBE key for h∗m are normal or semi-functional, the simulator may try to decrypt a semi-
functional ciphertext by deriving a decryption key from these keys for h∗m. However, the simulator cannot
derive a decryption key from those keys since the Lagrange interpolation method does not work for the same
h∗m since only one point of fGL(x) is revealed. Recall that the Lagrange interpolation method requires two
points of fGL(x) to derive fGL(0). Thus, the simulator cannot check whether these two keys for the same h∗m
are normal or semi-functional. This completes our proof.

Lemma 4.15. If the GSD assumption holds, then no PPT Type-h-I adversary can distinguish H′′1 from H′′2
with a non-negligible advantage.

Proof. The proof is similar to that of Lemma 4.14 except the generation of HIBE keys and IBE keys with
the group index ig = h and the member index im = h∗m. These keys with the indexes ig = h and im = h∗m are
generated as follows:

• Case ig = h: Let δ ′i, j be a fixed exponent in ZN for each member Si, j in this group index h.

– (im = h∗m): If this is an HIBE key, then it selects random r1 ∈ ZN , Y ′0,Y
′
1,{Y ′2,i} ∈Gp3 and creates

an HIBE key

SKHIBE,Si, j =
(
K0 = (Z)L j gβID|k−1 F(ID|k)r1Y ′0 · (R2Y1)

δ ′i, j , K1 = g−r1Y ′1, {K2,i = ur1
i Y ′2,i}

)
.

If this is an IBE key, then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈Gp3 and creates an IBE key

SKIBE,Si, j =
(
U0 = (Z)L j gβID|k−1 (vwT )r2Y ′0 · (R2Y1)

δ ′i, j , U1 = g−r2Y ′1
)
.

If Z = Z1 = X2R3Y2, then the simulation is the same as H′′1 since it implicitly sets δi, j = logg2
(R3)L j +

logg2
(R2)δ

′
i, j mod p2 for the member index h∗m. If Z = Z0 = X2Y2, then the simulation is the same as H′′2

since all HIBE keys and IBE keys with the group index h implicitly use a random polynomial fGL(x) ≡
logg(X2) · x + βID|k−1 mod p1 and it implicitly sets δi, j ≡ logg2

(R2)δ
′
i, j mod p2 for all member indexes.

This completes our proof.
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4.4.2 Type-h-II Adversary

Lemma 4.16. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish I(hm,hc−1),2
from I(hm,hc),1 with a non-negligible advantage.

Lemma 4.17. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish I(hm,hc),1 from
I(hm,hc),2 with a non-negligible advantage.

Lemma 4.18. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish I′(hm,hc+1),2
from I′(hm,hc),1 with a non-negligible advantage.

Lemma 4.19. If the GSD assumption holds, then no PPT Type-h-II adversary can distinguish I′(hm,hc),1 from
I′(hm,hc),2 with a non-negligible advantage.

The proofs of Lemmas 4.16, 4.17, 4.18, and 4.19 are almost the same as those of Lemmas 4.10, 4.11,
4.12, and 4.13 respectively except that there is no case im = h∗m since the Type-h-II adversary does not request
an HIBE key for ID∗|k ∈ Prefix(ID∗|`) and an IBE key for T ∗. We omit the detailed proofs of these lemmas.

5 Conclusion

In this work, we proposed two RHIBE schemes by combining LW-HIBE and LW-IBE schemes in composite-
order bilinear groups, and the CS (or SD) scheme in a modular way, and then we proved the adaptive security
of our RHIBE schemes by using the dual system encryption technique. As mentioned before, we carefully
re-designed hybrid games to use the dual system encryption technique since a naive approach of dual sys-
tem encryption does not work. Our RHIBE schemes are the first RHIBE schemes that achieve the adaptive
security.
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