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Abstract. We propose a new zero-knowledge protocol for proving knowl-
edge of short preimages under additively homomorphic functions that
map integer vectors to an Abelian group. The protocol achieves amor-
tized efficiency in that it only needs to send O(n) function values to
prove knowledge of n preimages. Furthermore we significantly improve
previous bounds on how short a secret we can extract from a dishonest
prover, namely our bound is a factor O(k) larger than the size of secret
used by the honest prover, where k is the statistical security parameter.
In the best previous result, the factor was O(k'°8*n).

Our protocol can be applied to give proofs of knowledge for plaintexts in
(Ring-)LWE-based cryptosystems, knowledge of preimages of homomor-
phic hash functions as well as knowledge of committed values in some
integer commitment schemes.

1 Introduction

Proofs of Knowledge In a zero-knowledge protocol, a prover demonstrates
that some claim is true (and in some cases that he knows a proof) while giving
the verifier no other knowledge beyond the fact that the claim is true. Zero-
knowledge protocols are essential tools in cryptographic protocol design. For
instance, one needs zero-knowledge proofs of knowledge in multiparty computa-
tion to have a player demonstrate that he knows the input he is providing.

In this work, we will consider the problem of proving knowledge of a preimage
under a one-way functions f : Z" — G where G is an Abelian group (written
additively in the following), and where furthermore the function is additively
homormorphic, i.e., f(a)+ f(b) = f(a+b). We will call such functions iwOWF’s
(for homomorphic One-Way Functions over Integer Vectors). This problem was
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considered in several earlier works, in particular recently in [BDLN16], from
where we have borrowed most of the notation and basic definitions we use in the
following.

ivOWF turns out to be a very general notion. Examples of ivOWF's include:

— The encryption function of several (Ring-)LWE-based cryptosystems(such
as the one introduced in [BGV12] and used in the so-called SPDZ protocol
[DPSZ12]).

— The encryption function of any semi-homomorphic cryptosystem as defined
in [BDOZ11].

— The commitment function in commitment schemes for committing to integer
values (see, e.g., [DF02]).

— Hash functions based on lattice problems such as [GGH96,LMPROS]|, where
it is hard to find a short preimage.

We will look at the scenario where a prover P and a verifier V are given y € G
and P holds a short preimage x of y, i.e., such that ||z|| < S for some S.
P wants to prove in zero-knowledge that he knows such an . When f is an
encryption function and y is a ciphertext, this can be used to demonstrate that
the ciphertext decrypts and P knows the plaintext. When f is a commitment
function this can be used to show that one has committed to a number in a
certain interval.

A well-known, simple but inefficient solution is the following protocol 7:

(1) P chooses r at random such that ||r|| < 7- 8 for some sufficiently large 7,
the choice of which we return to below.

(2) P then sends a = f(r) to V.

(3) V sends a random challenge bit b.

(4) P responds with z =7 +b - x.

(5) V checks that f(z) =a+b-y and that ||z]| < 7-S.

If 7 is sufficiently large, the distribution of z will be statistically independent of

x, and the protocol will be honest verifier statistical zero-knowledge*. On the

other hand, we can extract a preimage of y from a cheating prover who can

produce correct answers zg, z1 to b = 0,b = 1, namely f(z1 — z¢) = y. Clearly,

we have ||z1 — zo|| < 2-7- 5. We will refer to the factor 27 as the soundness slack

of the protocol, because it measures the discrepancy between the interval used

by the honest prover and what we can force a dishonest prover to do. The value

of the soundness slack is important: if f is, e.g., an encryption function, then a

large soundness slack will force us to use larger parameters for the underlying

cryptosystem to ensure that the ciphertext decrypts even if the input is in the

larger interval, and this will cost us in efficiency.

The naive protocol above requires an exponentially large slack to get zero-

knowledge, but using Lyubachevsky’s rejection sampling technique, the sound-

ness slack can made polynomial or even constant (at least in the random oracle

4 We will only be interested in honest verifier zero-knowledge here. In applications one
would get security for malicious verifiers by generating the challenge in a trusted way,
e.g., using a maliciously secure coin-flip protocol.



model, at the cost that even the honest prover may sometimes fail to execute
the protocol).

The obvious problem with the naive solution is that one needs to repeat the
protocol k times where k is the statistical security parameter, to get soundness
error probability 27%. This means that one needs to generate 2(k) auxiliary
f-values. We will refer to this as the overhead of the protocol and use it as a
measure of efficiency.

One wants, of course as small overhead and soundness slack as possible, but as
long as we only want to give a proof for a single f-value, we do not know how
to reduce the overhead dramatically in general. But if instead we want to give a
proof for k or more f-values, then we know how to reduce the amortised over-
head: Cramer and Damgard ([CD09], see also full version in [CDK14]) show how
to get amortised overhead O(1), but unfortunately the soundness slack is 202(k)
even if rejection sampling is used®. In [DKL'13] two protocols were suggested,
where one is only covertly secure. The other one can achieve polynomial sound-
ness slack with overhead £2(k) and works only in the random oracle model®. This
was improved in [BDLN16]: a protocol was obtained (without random oracles)
that has O(1) overhead and quasi polynomial soundness slack (proportional to
n - (2k 4 1)10)/2).

1.1 Contributions & Techniques

In this paper, we improve significantly the result from [BDLN16] and [DKL*13]:
we obtain O(1) overhead and soundness slack O(k). All results hold in the stan-
dard model (no random oracles are needed). As with any other protocol with
amortised efficiency, one needs to amortise over at least some number of in-
stances before the amortisation “kicks in”, i.e., n needs to be large enough in
order to achieve the amortized efficiency. Our most basic construction needs n
to be ©(k?), and we later improve this to ©(k%/?), still with the same overhead
and soundness slack.

Our protocol uses a high-level strategy similar to [BDLN16]:

(1) Do a cut-and-choose style protocol for the inputs 1, ..., y,. This is a rela-
tively simple but imperfect proof of knowledge: It only guarantees that the
prover knows almost all preimages.

(2) Let the verifier assign each y; to one of several buckets.

® In [CD09], the main result was first shown for functions dealing with finite rings
and groups, and then generalised to the integers. The result is optimal for the finite
case, while the integer case leaves room for improvement.

5 The protocol in [DKL"13] is actually stated as a proof of plaintext knowledge for
random ciphertexts, but generalizes to a protocol for ivOWFs. It actually offers a
tradeoff between soundness slack s and overhead in the sense that the overhead is
M -log(k), where M has to be chosen such that the error probability (1/s)™ is
negligible. Thus to get exponentially small error probability in k as we do here, one
can choose s to be poly(k) and hence M will be 2(k/logk).



(3) For each bucket, add all elements that landed in the bucket and do an im-
perfect proof of knowledge as in the first step, but now with all the bucket
sums as input.

The reason why one might hope this would work is as follows: as mentioned, the
first step will ensure that we can extract almost all of the required n preimages,
in fact we can extract all but k preimages (we assume throughout that n >> k).
In the second step, since we only have k elements left that were “bad” in the
sense that we could not yet extract a preimage, then if we have many more
than k buckets and distribute them in buckets according to a carefully designed
strategy, we may hope that with overwhelming probability, all the bad elements
will be alone in one of those buckets for which we can extract a preimage of
the bucket sum. This seems plausible because we can extract almost all such
preimages. If indeed this happens, we can extract all remaining preimages by
linearity of f: each bad element can be written as a sum of elements for which
the extractor already knows a preimage.

Furthermore, the overall cost of doing the protocol would be O(n), and the
soundness slack will be limited by the maximal number of items in a bucket. In
fact, if each bucket contains O(k) elements, then the soundness slack is O(k) as
well. Our main technical contribution is a construction of a strategy for assign-
ment to buckets with properties as we just outlined. We explain more about the
intuition below.

In comparison, the protocol from [BDLN16] also plays a “balls and buckets”
game. The difference is that they use only O(k) buckets, but repeat the game
2(log k) times. This means that their extraction takes place in 2(log k) stages,
which leads to the larger soundness slack. Also, they use a randomised strategy
for assignment to buckets. While this makes the protocol and analysis some-
what more complicated, the randomization seems critical to make the proof go
through: it makes essential use of the fact that the adversary does not know how
elements are distributed in buckets until after the “bad” elements from Step 1
have been fixed. It is therefore somewhat surprising that the problem can be
solved with a deterministic strategy, as we do here.

We also show a probabilistic strategy which is inferior to our deterministic one
in that it requires k£ input instances to work. On the other hand, it differs from
the deterministic strategy by being more flexible: if the number of instances is
less than k3, then the protocol will not remove all bad elements, but it will
reduce the number of bad elements significantly. We can therefore combine the
deterministic and probabilistic methods to get a protocol that works already for
k3/2 input instances, still with the same overhead and soundness slack.

Our protocol is honest verifier zero-knowlegde and is sound in the sense of a
standard proof of knowledge, i.e., we extract the prover’s witness by rewinding.
Nevertheless, the protocol can be readily used as a tool in a bigger protocol that
is intended to be UC secure against malicious adversaries. Such a construction
is already known from [DPSZ12].

We now explain how we arrive at our construction of the strategy for assigning
elements to buckets: We define the buckets via a bipartite graph. Consider a



finite, undirected, bipartite graph G = (L, R, F) without multi-edges, where
L denotes the set of vertices “on the left,” R those “on the right” and E the
set of edges. Write n = |L| and m = |R|. Each vertex w € R on the right
gives a “bucket of vertices” N({w}) C L on the left, where N({w}) denotes the
neighborhood of w.

We say that the bipartite graph G has the (f1, f2)-strong unique neighbour prop-
erty if the following holds. For each set Ny C L with |Ny| = fi, for each set
Ny C R with |Na| = fa, and for each i € Ny, there is w € R\ Ny such that
N1 N N({w}) = {i}. Note that this property is anti-monotonous in the sense
that if it holds for parameters (f1, f2) it also holds for parameters (f1, f5) with
fi < fiand f3 < fo.

With f; corresponding to the failures in step 1 and f; corresponding to those
in step 3, it should be clear that this property on (an infinite family of bi-
partite graphs) G, together with the conditions that n = poly(k), m = O(n),
fi = O(k), fa = O(k) and the condition that the right-degrees in G are all in
O(k), is sufficient to pull off our claimed result. Of course, in addition, this re-
quires efficient construction of G. We propose two approaches satisfying each of
these requirements. The first one, based on a construction from universal hash
functions, achieves n = O(k?). A second approach, based on certain excellent
(nonconstant-degree) expander graphs achieves n = O(k?), but also achieves a
weaker (but still useful) “neighbour property” even if n is much smaller than &3.

Notation

Throughout this work we will format vectors such as b in lower-case bold face
letters, whereas matrices such as B will be in upper case. We refer to the ith
position of vector b as b[i], let [r] := {1,...,7} and define for b € Z" that ||b|| =
max;c(r){|b[7]|}. To sample a variable g uniformly at random from a set G we

use g & a. Throughout this work we will let A\ be a computational and k be
a statistical security parameter. Moreover, we use the standard definition for
polynomial and negligible functions and denote those as poly(-), negl(-).

2 Homomorphic OWFs and Zero-Knowledge Proofs

We first define a primitive called homomorphic one-way functions over integer
vectors. It is an extension of the standard definition of a OWF found in [KL14].
Let A € N be the security parameter, we consider a probabilistic polynomial
time algorithm Gen which on input 1% outputs: an Abelian group G, natural
numbers G, 7, and a function f : Z" — G. Let A be any algorithm. Consider the
following game:

Invert 4 gen(N):
(1) Run Gen(1*) to get G, 3, and f.
(2) Choose x € Z", ||z|| < S and compute y = f(x).
(3) On input (1*,y, G, B, f) the algorithm A computes an z'.



(4) Output 1iff f(x') = y,||2'|| < S5, and 0 otherwise.

Definition 1 (Homomorphic OWF over Integer Vectors (ivOWF)). The
algorithm Gen producing functions of form f : Z" — G is called a homomorphic
one-way function generator over the integers if the following conditions hold:

(1) There exists a polynomial-time algorithm evaly such that evaly(x) = f(x)
forallx € Z".

(2) For all x,x’ € Z" it holds that f(x) + f(x') = f(x + x').

(8) For every probabilistic polynomial-time algorithm A there exists a negligible
function negl(A) such that

Prilnvert 4 gen(A) = 1] < negl(X)

In the following, we will abuse terminology slightly by referring to a fixed func-
tion f: Z" — G as an ivOWF. As mentioned in the introduction, this abstrac-
tion captures, among other primitives, lattice-based encryption schemes such as
[BGV12,GSW13,BV14] where the one-way property is implied by IND-CPA and
B is as large as the plaintext space. Moreover it also captures hash functions such
as [GGH96,LMPRO0S8], where it is hard to find a preimage for all sufficiently short
vectors that have norm smaller than 3.

2.1 Proving Knowledge of Preimage

We consider two parties, the prover P and the verifier V. P holds values x4, ..., x,, €
7", both parties have values yi,...,y, € G and P wants to prove to V that
y; = f(x;) and that @; is short, while giving away no extra knowledge on the
x;. More formally, the relation that we want to give a zero-knowledge proof of
knowledge for is

RKSP = {(G7ﬁ,U7U1) U= (ylv vyn) ANw = (wlv "~7wn)/\

[i = f(@) A || Sﬂ]ie[n] }

However, like all other protocols for this type of relation, we will have to live
with a soundness slack T as explained in the introduction. What this means
more precisely is that there must exist a knowledge extractor with properties
exactly as in the standard definition of knowledge soundness, but the extracted
values only have to satisfy [y; = f(x;) A [|2s|] < 7 Bligpn-

3 Proofs of Preimage

3.1 Imperfect Proof of Knowledge

The first tool we need for our protocol is a subprotocol which we borrow from
[BDLN16], a so-called imperfect proof of knowledge. This protocol is proof of



knowledge for the above relation with a certain soundness slack, however, the
knowledge extractor is only required to extract almost all preimages. We note
that to show knowledge soundness later for our full protocol, Goldreich and
Bellare [BG93] have shown that it is sufficient to consider deterministic provers,
therefore we only need to consider deterministic provers in the following.

The idea for the protocol is that the prover constructs T' = 3n auxiliary values
of form z; = f(r;) where r; is random and short. The verifier asks the prover
to open half the values (chosen at random) and aborts if the preimages received
are not correct and short. One can show that this means the prover must know
correct preimages of almost all the unopened values. The prover must now reveal,
for each y; in the input, a short preimage of the sum y; 4 z; for some unopened
zj. By the homomorphic property of f this clearly means we can extract from
the prover also a short preimage of most of the y;’s.

The reason one needs to have more than 2n auxiliary values is that the protocol
makes use of Lyubashevsky’s rejection sampling technique [Lyu08,Lyu09], where
the prover is allowed to refuse to use some of the auxiliary values. This allows
for a small soundness slack while still maintaining the zero-knowledge property.
For technical reasons the use of rejection sampling means that the prover should
not send the auxiliary values z; in the clear at first but should commit to them,
otherwise we cannot show zero-knowledge.

The following theorem is proved in [BDLN16] (their Theorem 1):

Theorem 1. Let f be an wwOWEF, k be a statistical security parameter, As-
sume we are given Cuyz, a perfectly binding/computationally hiding commitment
scheme over G, 7 =100 -7 and T = 3 - n, n > max{10,k}. Then there exists a
protocol PrypgrrecrProor With the following properties:

Efficiency: The protocol requires communication of at most T = 3n f-images
and preimages.

Completeness: If P,V are honest and run on an instance of Rxsp, then the
protocol succeeds with probability at least 1 — negl(k).

Soundness: For every deterministic prover P that succeeds to run the protocol
with probability p > 27%+1 one can extract at least n — k values x} such that
f(x}) =y; and ||x}|| < 2-7- 83, in expected time O(poly(s) - k*/p) where s is
the size of the input to the protocol.

Zero-Knowledge: The protocol is computational honest-verifier zero-knowledge.

In the following we will use Prypgrrecrproor (v, w, T, 7, 8) to denote an invocation
of the protocol from this theorem with inputs v = (y1,...,yn), w = (@1, ..., Ty)
and parameters T, (3.

3.2 The Full Proof of Knowledge

The above imperfect protocol will be used as a building block. After executing
it with the (z;,y;) as input, we may assume that a preimage of most of the y;’s
(in fact, all but k) can be extracted from the prover.



The strategy for the last part of the protocol is as follows: each y; is assigned to
one of several buckets. Then, for each bucket, we add all elements that landed
in the bucket and have the prover demonstrate that he knows a preimage of the
sum. The observation (made in [BDLN16]) is that we can now extract a preimage
of every bad elements that is alone in a bucket. The question, however, is how we
distribute items in buckets to maximize our chance of extracting all the missing
preimages, and how many buckets we should use. One solution to this was given
in [BDLN16], but it requires repeating the experiment log k times before all bad
elements have been handled with good probability.

Here we propose a new strategy that achieves much better results: we need just
one repetition of the game and each bucket will contain only O(k) items which
gives us the soundness slack of O(k).

Before we can describe the protocol, we need to define a combinatorial object
we use in the protocol, namely a good set system:

Definition 2. A set system S with parameters n,m is a collection of m index
sets Bi, ..., By, where each B; C [n], and [n] = {1,...,n}. Both n and m depend
on a security parameter k. The set system is good if the mazimal size of a set
B; is O(k), m is O(n) and if for every set Ny C [n] of size k, every set Ny C [m]
of size k and every i € Ny, there exists j € [m] — No such that B; N Ny = {i}.

The idea in the definition is that the buckets are defined by the sets {B;}. Then,
if the set system is good, and if we can extract preimage sums over all bucket
except k, then we will be in business.

Procedure PCOMPLETEPROOF

Let f be an ivOWF. P inputs w to the procedure and V inputs v. We assume that
good set system S = {Bu, ..., B} is given with parameters n, m.

proof (v, w, 8) :

(1) Let v = (y1,-.-,Yn), w = (21, ..., n). Run PiperescrProor (v, w, 3n, 1007, 8). If
V in PruperrecrProor aborts then abort, otherwise continue.

(2) For j =1,...,m, both players compute 7, = ZieB]_ v; and P also computes
6; = Ziij x;. Let h be the maximal size of a bucket set Bj, and set
’y = (717"'777"’7«)’ 6: (617""6771)'

(3) Run PIl\IPHmeC'[‘P11001"('775, 3777/,1007”, h,@) If V in PivperrectPROOF aborts then
abort, otherwise accept.

Fig. 1. A protocol to prove the relation Rxsp

Theorem 2. Let f be an ivOWF, k be a statistical security parameter, and 3 be
a given upper bound on the size of the finest prover’s secrets. If PcompLereProor
is executed using a good set system S, then it is an interactive honest-verifier
zero-knowledge proof of the relation Rysp with knowledge error 271, More
specifically, it has the following properties:



Efficiency The protocol has overhead O(1).

Correctness: If P,V are honest then the protocol succeeds with probability at
least 1 — 27 OK)

Soundness: For every deterministic prover P that succeeds to run the protocol
with probability p > 2~ %1 one can extract n values x; such that f(x}) = y;
and ||z}|| < O(k - r - ) except with negligible probability, in expected time
poly(s, k)/p, where s is the size of the input to the protocol.

Zero-Knowledge: The protocol is computational honest-verifier zero-knowledge.

Proof. Efficiency is immediate from Theorem 1 and the fact that we use a good
set system, so that m is O(n). Note also that the verifier can specify the set
system for the prover using O(m - k - logn) bits. This will be dominated by the
communication of m preimages if a preimage is larger than klogn bits, which
will be the case for any realistic setting.

Correctness is immediate from correctness of PryprrrrctPrOOF -

The extractor required for knowlege soundness will simply run the extractor
for PryuperrecrProor tWice, corresponding to the 2 invocations of PrypgrercrProor-
Let Ni be the set of k& preimages we fail to extract in the first invocation, and
let Ny be the set of bucket sums we fail to extract in the second invocation.
The properties of a good set system distribution now guarantee that no matter
what set Ny turns out to be, we can find, for each i € Ny, a set B; where we
know a preimage of the sum over the bucket (j € [m] — Na), and furthermore
B;NNy = {i}. Concretely, we know &; such that f(d;) =3 .5y and we know
preimages of all summands except for y;. By the homomorphic property of f
we can solve for a preimages of y;, and the size of the preimage found follows
immediately from Theorem 1 and the fact that buckets have size O(k).
Honest-verifier zero-knowledge follows immediately from Theorem 1. We do the
simulation by first invoking the simulator PryperrecrProor With the input pa-
rameters for the first step. We then sample according to D, compute the inout
parameters for the second invocation and run the simulator for PryprrrectProor
again. a

To make this theorem be useful, we need of course that good set systems exist.
This is taken care of in the following theorem which we prove in the next section.

Theorem 3. Good set systems exist with parameters n = m € O(k?) and can
be constructed in time polynomial in k.

This theorem implies that we need to have at least £2(k?) instances to amortise
over to get an efficient protocol. Of course, for the applicability of the protocol
it is better if one could make do with less. We now sketch how to get the same
overhead and soundness slack using only O(k3/ 2) inputs.

This is based on a weaker, but more flexible notion of set system, namely an
(k,d, s)-good set system:

Definition 3. A set system S with parameters n,m is a collection of m index
sets By, ..., By, with each B; C [n]. Both parameters n,m depend on a security



parameter k. We say a set system is (k,d,s)-good for Ny if m is O(n), the
mazimal size of a set B; is d and if N1 C [n] of size k satisfies the following: for
every set No C [m] of size k, there exists a subset T C Ny of size at least k — s
such that for every i € T, there exists j € [m| — Ny satisfying B; N Ny = {i}.

As before, the idea is that the system can be used to design a protocol based on
a balls-and-buckets game similar to the above, where the B;’s define the buckets,
and Np, Ny correspond to the subset of instances we fail to extract via the weak
zero-knowledge protocol. The final requirement now says that if the system is
good for N7, then we can extract witnesses for k — s of the remaining bad items
in N7 using the witnesses we have for the bucket sums.

While it seem like bad news that we will not be able to kill all the bad items
in Ny, the point is that this relaxed requirement enables us to construct such
set systems with different parameters, in particular with much smaller n,m
compared to k that we can get for a regular set system. In particular we have
the following theorem which is proved in the next section.

Theorem 4. For any constant 0 < ¢ < 1, there is a probabilistic polynomial
time algorithm for constructing set systems where m = n = O(k'*2¢), such that
for any fived Ny C [n] of size k, the resulting system is (k, k¢, 5k'=¢)-good for
Ny except with probability exponentially small in k,

In our protocol, we set ¢ = 0.25, so we get that we can construct a set system
81 ={A1,..., A} with m = n = O(k®), such that for any fixed Ny, it will be
(k, k025, 5k0-75)-good for Ny, except with exponentially small probability. Note
that this property does not guarantee that the system will be good for every Ny
simultaneously.

On the other hand, this property is guaranteed by the good set systems from
Theorem 3. Tt is easy to see that these are simultaneously (r, 2r,0)-good for all Ny
of size k. We are going to set = 5k%75. So we obtain a (5% 7%, 10k%75, 0)-good
set system Sy = {By, ..., By} with m = n = O(k!).

Here follows an informal sketch of the protocol we can now construct for an
input consisting of n = O(k!%) f-images y = (y1, ..., yn):

(1) Both players compute bucket sums § = (41, ..., d,,) of the y;’s according to
the set system Ss.

(2) Run the imperfect zero-knowledge proof for both y and §. Note that at this
point we cannot hope to extract all witnesses. This would require that only
597 witnesses were left unknown by the imperfect proofs. But this is not
the case. Therefore we extend the protocol to reduce this number:

(3) The verifier constructs a set system S; according to Theorem 4 with param-
eters as defined above. Both players compute bucket sums w = (uq, ..., U,)
of the y;’s according to the set system S;. Moreover, the players compute
bucket sums w = (w1, ..., wn,) of the §;’s according to the system Sj.

(4) Run the imperfect zero-knowledge proof for u and w.

We sketch the argument that this is sound as a proof of knowledge: after we
run the extractor for the first two imperfect proofs, we know witnesses for all y;



except for a set N7 and for all §; except for a set Ni. Now, we know that except
with negligible probability the set system S; will be good for both Ny and N{
(by a union bound). And we can run the knowledge extractor for the last two
imperfect proofs so we will get witnesses for all u; except a set Ny and for all w;
except a set Nj. All these sets have size k.

Now, by Definition 3, and because we can assume that Sy is (k, k -good
for both Ny and N7, we can use the homomorphic property of f and the known
witnesses for y, w in the usual way to reduce the set of unknown witnesses for y
(in V1) to a set M, of size 5k%-75. Like wise, we can reduce the set of unknown
witnesses (in N7) for § to a set My of size 5k%7°.

Finally, we are in a position to use that Sy is a (557 10k%-75 0)-good set
system, where M7, My are the set of unknown witnesses. This will allow us to
extract all witnesses. Note that the set M; is not fixed when Sy is constructed
but this is fine since S is simultaneously good for all sets of size 5k%7°.

We leave it to the reader to verify that this protocol has overhead O(1) and
soundness slack O(k).

0.25, 5k0'75)

4 Proof of Theorem 3 and Theorem 4

4.1 Definitions and Conventions

Let G = (L, R, E) be a finite, undirected bipartite graph. For simplicity we also
assume G has no multi-edges. ” Here, L denotes the set of vertices “on the left,”
R the set of vertices “on the right” and F the set of edges. A vertex v is said to
be adjacent to a vertex w if (v,w) € E. An edge e € E is incident to a vertex
v if there is a vertex w such that e = (v, w). Suppose S C L and T' C R. The
neighborhood of S, denoted N(.S), consists of all vertices adjacent to some vertex
in S. Note that
N(S)CR

since G is bipartite. If S = @) then N(S) = 0. The neighborhood N(T') C L of
T C R is defined similarly.

The unique neighbor set U(S) C R of the set S C L consists of all w € R such
that
IN{w}) 0S| =1,

i.e., it consists of all vertices “on the right” whose respective neighborhoods
have “a single vertex” intersection with S “on the left.” We make extensive use
of the following refinement that “prescribes” that intersection. For v € S, the
set U(S,v) consists of all w € R such that

N({w}h NS = {v}.

Note that
U(S) C N(S),

7 We do not necessarily require that each of L, R is nonempty. But, of course, if at
least one of them is, then also E = ().



and that
U(S,v) C N({v}).

Also note that, if v,v" € S and if v # v/, then
U(S,v)NU(S,v") = 0.

The corresponding notions for 7' C R may be defined similarly, but we will not
need any of these.

Let d,d’, f1, f1, f4, f2, f, /' be nonnegative integers.

We say that the graph G is d-left-bounded if, for each v € L, it holds that
IN({v})| < d. In other words, each of “the degrees on the left” is at most d. If
there is equality for each vertex, i.e., each of the degrees on the left equals d, we
say that the graph G is d-left-reqular. Similarly for d’'-right-bounded. The graph
G is (d,d")-bi-bounded if it is d-left-bounded and d’-right-bounded. Finally, the
graph G is d-biregular if it is d-left-regular and d-right-regular.

Definition 4 (Unique Neighbor Property). The set S has the unique neigh-
bor property if it holds that U(S) # (.

Definition 5 (Strong Unique Neighbor Property of a Set). The set S
has the strong unique neighbor property if, for each v € S, we have U(S,v) # (.

Definition 6 (f-Strong Unique Neighbor Property of a Set). The set S
has the f-strong unique neighbor property if, for each v € S, we have |U(S,v)| >

f.

Remark 1. The latter is equivalent to the requirement that, for an arbitrary
selection of f vertices from R, the set S has the strong unique neighbor property
in the bipartite subgraph G’ obtained from G by removing this selection of f
vertices from R and by removing their incident edges from E.

Remark 2. Unlike the unique neighbor property, the (f-)strong unique neighbor
property is anti-monotonous in the following sense. If S has the ( f-)strong unique
neighbor property and if S C S (and if f/ < f), than S’ has the (f’-)strong
unique neighbor property. This follows trivially by exploiting that fact that, by
definition, “intersection with S can be prescribed.”

Definition 7 ((f1, f2)-Strong Unique Neighbor Property of a Graph G).
The bipartite graph G = (L, R, E) has the (f1, f2)-strong unique neighbor prop-
erty if each set S C L with |S| = f1 has the fa-strong unique neighbor property.

By an earlier remark, it follows that this property is anti-monotonous in the
sense that the (f1, f2)-strong unique neighbor property implies the (f{, f5)-strong
unique neighbor property if f; < f; and f} < f.

The unique neighbor property has been widely considered before and it has
many known applications. There are also several applications of an approximate



version of the strong unique neighbor property, namely where the property is
only guaranteed to hold for a given fraction of each set S.

The following lemma collects some immediate, useful consequences of the defi-
nitions.

Lemma 1. Let G = (L, R, E) be a d'-right-bounded bipartite graph. Suppose
there are nonnegative integers f1, fo and a cover of L consisting of sets S C L
such that |S| = f1 such that S has the fa-strong unique neighbor property. Then
each of the following holds.

(1) |R| > N(S) > fi(fe+ 1), for each S in the cover.
(2) For each v € L, it holds that |[N({v})| > fa2 + 1.

(8) d' > (fo+ V)5 if R#0D.

PRrOOF. Fix an arbitrary v € L. Let S C L be such that v € S, |S| = f1 and S
has the fs-strong unique neighbor property. Such S exists by the cover condition.
Since we have U(S,v) C N({v}) in general and since we have |U(S,v)| > fo +1
by the choice of S, the second claim follows. As to the third claim, we have

d|R| > |E| = (f2 + 1)|L],

where the inequality on the left follows by the definition of d’-right-boundedness
and where the inequality on the right follows from the second claim. As to the
first claim, since the sets U(S,v) C R with v € S are pairwise disjoint in general
and since each of them satisfies |U(S,v)| > f2 + 1 by the choice of S, we have
that

[R| > [N(9)] = fi(f2+1).

A

Of course, the lemma holds if the graph has the (f1, f2)-unique neighbor prop-
erty. But its actual formulation under the weaker cover condition is convenient
for a purpose later on.

4.2 Details of the Proof

We show the following theorem, which immediately implies Theorem 3 by the
correspondence between bi-partite graphs and the balls-and-buckets game ex-
plained in the introduction.

Theorem 5. There is an effective construction that, for each k > 1, gives a
bipartite graph G = (L, R, E) such that

(1) |L| = |R| = ck?® where 4 < ¢ < 16,

(2) G is d'-right-bounded with d' = k

(3) G has the (f1, f2)-strong unique neighbor property with f1 = fo = k.

Moreover, under our conditions that f1, fo € 2(k) and that |R| = O(|L|), each
of the achieved parameters for |L| and d' is asymptotically optimal.



To prove this theorem, we now show the claimed construction and provide its
analysis. The optimality claim is an immediate consequence of Lemma 1; by
substitution of the conditions (dictated by our application to Sigma-protocols),
we get |L| € 2(k?) and we get d’' € 2(k).

Now let H be a p-universal family of hash functions h : X — Y. Thus, for each
x,x’ € X with & # 2/, the collision probability that h(z) = h(z’) is at most p if
h € H is selected uniformly random. 8

We define a bipartite graph G = (X, H x Y, E) as follows. For a pair
(x,(h,y) € X x (HxY),

we declare
(z,(h,y)) € E ifand only if h(z) =v.

We also define
d = MaX(p y)eH xY {h ()},

the maximum preimage size. Thus, the graph G is d’-right-bounded. Note that
each of the degrees on the left equals |H|. Thus, the graph G is |H|-left-regular.

Before proceeding, we first argue why we may exclude the case p = 0. This
case arises if and only if each of the functions is injective. Now, even if some
h € H is injective, this implies that |Y'| > |X]|. So, under our condition that
|R| = O(|L]), it should be the case that |H| is constant. But this leads to
a contradiction. Namely, since G is |H|-left-regular, it follows that G is left-
bounded by a constant. But, by Lemma 1, each of the left-degrees is greater
than fy and fo € £2(k) by our condition. So we assume p # 0.

Lemma 2. Let S C X be nonempty. Then, for each x € S, it holds that
(L= p(IS] = 1)) [H] < [U(S,2)| < [H]

ProOOF. The inequality on the RHS follows from the facts that U(S,z) C N({z})
in general and that, by |H|-left-regularity of G, we have [N ({z})| = |H|. As to the
inequality on the LHS, fix S. In the case that |S| = 1, we have U(S, z) = N({z})
and, once again by |H|-left-regularity, we have |N({z})| = [H]. So the inequality
follows. Now assume |S| > 1 and fix € S. Consider the neighborhood of z, i.e.,
the set

N{z})={(h,h(z)) :heH} CHXY.

It is clear at once that
|U(S,z)] =|{h € H : for each 2’ € S\ {x}, it holds that h(z) # h(z')}|

Fixing 2’ € S\ {z} for now, there are at most p|H| hash functions h such that
h(z) = h(z'), by definition of collision probability. Hence, the number of hash
functions h such that h(z) = h(z') for some z’ € S\ {z} is at most p|H|(|S]| —1).

8 Note that p = 0 only if each h € H is injective.



In conclusion, the number of of hash functions h such that h(z) # h(z’) for each
' € S\ {z} is at least (1 — p(|S| — 1)) |H| and the claim follows. A

Note that the lemma only gives a nontrivial result if |S| <1+ 1/p.

Let p be a prime number with p > 2k + 1. By Bertrand’s Postulate, there exists
such prime p with p < 4k. Now consider the family with

H=F, X=F,Y =F,
such that, for A € F,,, the corresponding hash function is defined as
h: Ff, - F,

(xo, 1) = xoh + 1.
One verifies directly that for this family we can take

p=1/pand d = p.
Setting |S| = k, it follows by Lemma 2 that, for each z € S, we have

U(S2)| 21— (k-1)/pp=p—k+1

Therefore, |U(S,z)| > k if the prime p satisfies p > 2k + 1. This concludes the
proof of Theorem 5.

4.3 Alternative Approaches and Generalization

An alternative constructive approach can be based on graphs G with “excellent
expansion,” a basic concept from the theory of expander graphs. We say that a
d-left-bounded graph G expands excellently on a set S C L if the neighborhood
N(S) C R of S satisfies

IN(S)| = (1 —e€)d]S]|

where € is a nonnegative real number with
e<1/2.

Excellent expansion is well-known to imply the unique neighbor property. We
adapt the arguments so as to imply the (f1, f2)-strong unique neighbor property
instead, in certain parameter regimes. Then we discuss elementary construction
of suitable expander graphs. We elaborate below.

The following lemma is well-known.

Lemma 3. Suppose G is d-left-bounded. If N(S) > (1 — €)d|S|, then

U(S)] = (1—26)d]S].



PROOF. Since G is d-left-bounded, there are at most d|S| edges “emanating”
from S and “arriving” at N(S). Write m; for the number of vertices w € N(S)
with |S N N({w})| = 1. Then we have the obvious bound

my + 2(|N(S)| —mq) < d|S]|.

Therefore,
ma > 2N(S)] — dlS)|.

Since |[N(S)| > (1 — €)d|S], it follows that
my > (1 —2e)d|S|,

as desired. A

Using a “greedy argument” the f-strong unique neighbor property for a set is
implied by a large unique neighbor set, as follows. Let § be a real number with
0<d<1.

Lemma 4. Suppose that G is d-left-bounded (d > 0) and that S C L is nonempty.
Write |U(S)| > (1 — 0)d|S|, where d is a real number with 0 < ¢ < 1. If

f
51S)| < 1— L

the set S has the f-strong unique neighbor property.

Proor. If |S| = 1, say S = {v}, then it follows at once that |U(S,v)| =
N({v})| > f and the claim follows. So now assume |S| > 1. Using a pigeon-
hole argument, we see that, if

(1—d)dS| - f

So1 >d, (*)

then the set S has the f-strong unique neighbor property. Indeed, consider the
subgraph G’ obtained by removing some f vertices from R and by removing
their incident edges from E. Towards a contradiction, suppose S does not have
the strong unique neighbor property in G’. Say it fails on some v € S. Then the
inequality implies that there is some v’ € S\ {v} with degree greater than d,
which contradicts the fact that, just as the graph G, its subgraph G’ is d-left-
bounded. The proof is finalized by observing that the inequality (*) is equivalent
to the inequality d|S| < 1 — f/d. A

By combining Lemmas 3 and 4 we get the following sufficient condition for the
f-strong unique neighbor property of a set S C L.

Corollary 1. Suppose G is d-left-bounded (d > 0) and suppose S C L is
nonempty. If, for some nonnegative real number € and for some nonnegative
integer f, it holds that

(1) N(S) > (1 —€)d|S| and



(2) 2¢[S| < 1L,
then S has the f-strong unique neighbor property.

Remark 3. In order to satisfy the conditions, it is necessary that ¢ < 1/2i.e.,
expansion is excellent.

We now discuss constructions based on this excellent expansion approach. Recall
that, under the constraints that f1, fo € £2(k) and that |R| = O(|L|), we wish to
minimize |L| (the size of the set of left-vertices) and d’ (the right-degree). From
the conditions in Corollary 1, we then have that 1/e € £2(k) and that d € 2(k).

Observe that the construction in Theorem 5 gives excellent expansion for all sets
of size k. Namely, by Lemma 1, the size of the neighborhood of a set of size k
equals (p — k + 1)k, where p = ¢’k for some constant ¢ > 2. Therefore, in this
case, e = (1—1/k)-1/c <1/2but 1/e = 'k/(k—1) € O(1). In conclusion, the
result of Theorem 5 cannot also be obtained by application of Corollary 1, except
for less favorable parameter settings. Namely, it would require setting p super-
linear in k, thus rendering |L| super-quadratic. Furthermore, since d € §2(k),
excellent constant left-degree expander graphs [CRVWO02] do not apply here.
A (well-known) variation on the greedy counting arguments above shows that
a combination of excellent expansion and constant left-degree does imply an
approzimate version of the f-strong unique neighbor property, i.e., it holds for
a certain fraction of each S. But this notion is not sufficient for our present
purposes.

To illustrate this approach based on excellent expansion, we show a construction
from random permutations instead. This is in contrast with the deterministic ap-
proach in Theorem 5 where permutations had to be excluded. We use a classical
result by Bassalygo [Bas81] who showed a Monte Carlo construction of bipartite
graphs with excellent expansion. Basically, a (d, d)-bi-bounded bipartite graph
with |L| = |R| is constructed by “taking the union” of d random perfect bi-
partite matchings (or, equivalently, permutations). In general, the probability of
success of this procedure is high but not exponentially close to 1. Therefore, it is
not sufficient for our purposes. However, choosing convenient parameters in the
procedure, one can show that each individual set S of size k has the required
expansion with probability of success exponentially (in k) close to 1. It is not
hard to see that this weaker “probabilistic, set-wise” property is sufficient for
our purposes as well. The downside, in addition to being Monte Carlo, is that |L|
here is cubic instead of quadratic. All in all, this leads to the following theorem.

Theorem 6. There is an efficient construction that, for each k > 1, gives a
bipartite graph G = (L, R, E) such that

(1) |L| € O(K®) and |R| = |L],

(2) G is O(k)-right-bounded,

(3) for each fized set S C L with |S| =k, it holds that S has the k-strong unique
neighbor property, except with exponentially small (in k) probability,



Remark 4. Lemma 1 implies that such a probabilistic approach obeys the same
lower bounds that |L| € 2(k?) and d’ € (k) as in the deterministic case,
conditioned on fi, fo € 2(k) and |R| = O(|L|). In a nutshell, there is a small
cover of L by sets S of size f1 such that, by a union-bound argument, each set
S in this cover has the fa-strong unique neighbor property, with probability still
extremely close to 1.

We will prove Theorem 6 by combining Corollary 1 with Proposition 1 below.
Suppose |L| = |R| = n. Write L = {vy,...,v,} and R = {wy,...,w,}. For a
permutation 7w on {1,...,n}, define E(7r) C L x R as the set of edges

{(Uh wﬂ'(l))? ey (’Un, wﬂ(n))}

Suppose 1 < d < n. For a d-vector IT = (71, ...,7q) of (not-necessarily distinct)
permutations on {1,...,n}, define the set

d
E()=|JE(m;) CLxR
j=1
and define the bipartite graph
G(II) = (L, R, E(II)).

Note that G is a (d, d)-bi-bounded (undirected) bipartite graph (without multi-
edges). We have the following proposition.

Proposition 1. Let G = (L, R, E) be a random (d, d)-bi-bounded bipartite graph
with |L| = |R| = n as described above. Let « be a real number with 0 < «a < 1.
Then, for any fixed set S C L with |S| = an, it holds that

N(S) = (d=2)[S],

. d2ae 2an
Ps=\o0-a))

where e denotes Euler’s constant.

except with probability

PRrROOF. Choose the d permutations 7y, ...,ms sequentially. For convenience,
write S = {1,...,s}. For i = 1,...,s and j = 1,...,d, consider the random
variables )

X7,
the image of ¢ € S under the permutation ;. We now think of these as “ordered”
X{,.o, XL X3, ..., X2, ..., “increasing” from left to right.
For given X/, condition on all “prior” random variables in the ordering. The
probability that Xij is a repeat, i.e., it lands in what is N(S)-so-far is at most

d|S| d|S|
< .
n—i+1~ n—|9]




Here the denominator on the LHS is due to the fact that when choosing the
image of 4, the ¢« — 1 distinct images of 1,...,7 — 1 are already taken. Hence,
the probability pls that the event |[N(S)| < (d — 2)|S| occurs is at most the
probability of the event that there are 2|S| repeats. By the union bound, the
latter probability is clearly at most

ds|\ (_ds| \**
2[S]) \n— 1|5
Therefore, °

o (dISN [/ dls| \E O raeNE oas) ! d2ae O\
ps < <(= (57— ) -
215]) \n = 19| 2 n—|S| 2(1— )

A

The proposition and its proof are adapted from the classical expander graph con-
struction due to Bassalygo [Bas81]. Our exposition follows (part of) the proof
of Theorem 4.4 in [Vad12]. The reason we do not apply the Bassalygo result di-
rectly is that the success probability of the construction of an excellent expander
is high (i.e., constant) but still much too small for our purposes. Fortunately,
we can do with the slightly weaker requirement on G that, for any fized set S
of precisely the dictated size, the probability that the set S does not expand ex-
cellently is negligibly small. As this saves two applications of the union bound,
one to quantify over all sets S of the dictated size and one to quantify over the
subsets of size smaller than the dictated size, we get exponentially small failure
probability instead of constant.

Now let ¢q, co be arbitrary positive integers. Set

( ) f1 = C1]€7 fg = Cgki.

(2) d = Cgk Wlth C3 = C1 +CQ =+ ].

3) a= 7d261+1'

(4) n=m= 2k = (d*e+ 1)c1k = (cek? + 1)erk = c1c3ek® + cik.

1

Then, for each fixed set S C L with |S| = f1, it holds that S has the f-strong
unique neighbor property, except with exponentially small (in k) probability

2c1k
P < 0
—\2

Namely, for each set S of size K = an = ¢k = fi, it holds that N(S) >
(d — 2)|S|. Note that ¢ = 2/d here. This means that the second condition for
the fo-strong unique neighbor property of sets of this size is f; + fo < d. This is
satisfied by definition. Efficiency of the construction is obvious. This concludes
the proof of Theorem 6.

" Note that (£)" < (1) < ()"



4.4 A Generalized Construction and Proof of Theorem 4

We now generalize the construction from Theorem 6 to get one where the number
of nodes can be much smaller compared to the size of the special set S at the
price that the unique neighbour property holds only in a weaker sense.

Recall that U(S,v) is the set of all w € R such that

N({w}) NS = {u}.
The set U(.S) is the union of U(S,v) for all v € S.

Definition 8 ((s,r)-approximate Unique Neighbour Property of a Set).
Given a bipartite graph G = (L, R, E), the set S C L has (s,r)-approzimate
unique neighbour property if there exists a subset S1 C S of size s such that for
any set T C R of size r, we have

[U(S,v)—T| >0 YveS.
We may ask whether such set exists. Our following lemma answers this question.
Lemma 5. Suppose G = (L, R, E) is d-left-bounded. If U(S) > (1—€)d|S]|, then
the set S has (s, r)-approvimate unique neighbour property for s = (1—¢)|S|— 7.

Proof. Let T C R of size r. Let Ty = U(S) — T and S; C S be the set such that
for any v € S1, N(v) NT} # ¢. Since deg(v) < d, there are at least u:ill vertices
contained in S7. We are done.

Combining Lemmas 5 and 3, we get a sufficient condition for the unique neigh-
bour property of a set S C L.

Corollary 2. Suppose G is d-left-bounded. If N(S) > (1 — €)d|S|, then the set
S C L has (s,r)-approzimate unique neighbour property for s = (1 —2¢)|S| — 5.

Now, if in Proposition 1, we set [S| =k, n = O(k'*%¢), e = 2 and d = k° for a
constant 0 < ¢ < 1, we can proceed in a way similar to the proof of Theorem 6,
and get the following theorem, which immediately implies Theorem 4.

Theorem 7. There is an efficient construction that, for each k > 1 and for a
constant 0 < ¢ < 1, gives a bipartite graph G = (L, R, E) such that

(1) |L| = |R| = O(k'**),

(2) G is O(k®)-right-bounded,

(3) for each fized set S C L with |S| = k, it holds that S has the (k — 5k*=¢ k)-
approximate unique neighbour property, except with exponentially small (in
k) probability.
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