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Abstract. Multi-input functional encryption is a paradigm that allows an authorized user to compute a

certain function—and nothing more—over multiple plaintexts given only their encryption. The particular

case of two-input functional encryption has very exciting applications, including comparing the relative

order of two plaintexts from their encrypted form (order-revealing encryption).

While being extensively studied, multi-input functional encryption is not ready for a practical deployment,

mainly for two reasons. First, known constructions rely on heavy cryptographic tools such as multilinear

maps. Second, their security is still very uncertain, as revealed by recent devastating attacks.

In this work, we investigate a simpler approach towards obtaining practical schemes for functions

of particular interest. We introduce the notion of function-revealing encryption, a generalization of

order-revealing encryption to any multi-input function as well as a relaxation of multi-input functional

encryption. We then propose a simple construction of order-revealing encryption based on function-

revealing encryption for simple functions, namely orthogonality testing and intersection cardinality. Our

main result is an efficient order-revealing encryption scheme with limited leakage based on the standard

DLin assumption.

Keywords: Order-revealing encryption; property-preserving encryption; multi-input functional encryp-

tion; function-revealing encryption.

1 Introduction

The growing reliance on numerous cloud-based services for storing and processing sensitive data

demonstrated limitations of traditional encryption techniques. Specifically, traditional encryption is

an all-or-nothing notion: informally, an unauthorized user (i.e., who has not access to the decryption

key) should not learn any information whatsoever about a plaintext given its encryption. But in

many use cases, there is often a need to get a much more fine-grained control of the decryption

policy.

(Multi-Input) Functional Encryption. The paradigm of functional encryption [BSW11,SW05] is an

extension of traditional encryption that enables an authorized user to compute a certain function of

the plaintext. Each decryption key sk f corresponds to a specific function f . Informally, this private

key sk f , given the encryption of a plaintext x, allows her holder to learn f (x), and nothing more.

An important subclass of functional encryption is predicate encryption [BW07,KSW08]. A plaintext x
is viewed as pair (I , Ûx)where I is some attribute (associated to the message) and Ûx is the message

itself; functionality f is then defined as

f (I , Ûx) �
{
Ûx if P(I) � 1, and

⊥ otherwise

for a given predicate P.
The function can be defined over multiple plaintexts given their corresponding ciphertexts.

This gives rise to multi-input functional encryption introduced in [GGG
+
14,BLR

+
15]. Of particular
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interest is the case of two-input functional encryption. Suppose that given two encrypted plaintexts,

a cloud-based service wishes to compute their respective ordering. For a public comparison function,

such a functionality is offered by order-revealing encryption (ORE) [BCO11,BLR
+
15]. We note that

order-revealing encryption necessarily requires secret-key encryption as otherwise a binary search

from the encryption of chosen plaintexts would yield bit-by-bit the decryption of a given target

ciphertext using the ORE comparison procedure. ORE can thus be seen as a secret-key two-input

functional encryption for (public) comparison. It is a very useful primitive as it allows one to

answer queries over encrypted data, including range queries, sorting queries, searching queries,

and more [AKSX04,BCLO09].

From OPE to ORE. Order-revealing encryption evolved from order-preserving encryption (OPE)

[BCLO09,BCO11], an encryption primitive that preserves the relative ordering of the plaintexts.

Clearly, an OPE scheme cannot achieve the standard security notion of indistinguishability under
chosen-plaintext attacks (IND-CPA). The best we can hope from an OPE scheme is that the encryption

of a sequence of plaintexts reveals nothing beyond their relative ordering, the resulting security

notion is termed IND-OCPA. Unfortunately, Boldyreva et al. showed in [BCLO09] that it is impossible

to efficiently meet this natural security notion of IND-OCPA, even when the size of the ciphertext

space is exponentially larger than that of the message space.

The situation for ORE schemes is different. In [BLR
+
15], Boneh et al. present an ORE scheme

actually meeting the analogue of IND-OCPA security. But their construction is mostly of existential

nature and as such should be considered as a possibility result. The candidate ORE scheme

presented in [BLR
+
15] is hardly implementable since it relies on heavy cryptographic tools,

namely (`/2 + 1)-way multilinear maps for comparing `-bit values. Furthermore, and maybe more

importantly, the underlying security assumption is questionable owing to the recent attacksmounted

against multilinear maps [CFL
+
16,CHL

+
15].

ORE in Practice. A practical construction for order-revealing encryption is proposed in [CLWW16].

It merely requires a pseudorandom function F with output space {0, 1, 2}. The encryption under

secret key K of an `-bit plaintext x � m1m2 · · ·m` with mi ∈ {0, 1}, ct � (c1 , c2 , . . . , c`), is obtained
iteratively as

ci �
[
F
(
K, (i ,m1m2 · · ·mi−1‖0`−i)

)
+ mi

]
mod 3 , for 1 ≤ i ≤ ` .

The comparison of two ciphertexts ct � (c1 , c2 , . . . , c`) and ct′ � (c′1 , c′2 , . . . , c′`), corresponding to

plaintexts x and x′, is conducted by finding the first index i, 1 ≤ i ≤ `, such that c′i , ci . Then,{
x < x′ if there exists such an index i and if c′i ≡ ci + 1 (mod 3)
x ≥ x′ otherwise

.

While this construction is very efficient, it has the drawback of leaking an important amount

of information, as one obtains immediately, given two ciphertexts, the size of the largest common

prefix of the two corresponding plaintexts. In particular, this provides an upper bound on the

distance separating the two plaintexts.

Our Contributions. In thiswork, we investigate a new approach towards building efficient secret-key

multi-input functional encryption. We propose the notion of function-revealing encryption, which

can be viewed both as a generalization of the notion of property-preserving encryption [CD15,PR12]

and as a specialization of the notion of multi-input functional encryption. Basically, a function-

revealing encryption scheme is a secret-key encryption scheme associated to a k-ary function f . The
encryption algorithm takes as input a secret key, a message, and some index i ∈ [k] and outputs a
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ciphertext. Moreover, there exists a public procedure such that, given k ciphertexts ct1 , . . . , ctk , each

corresponding to an encryption of a message xi at index i, for i ∈ [k], one can compute f (x1 , . . . , xk).
In particular, considering the comparison function defined as:

f< : (x , y) 7→
{

1 if x < y
0 otherwise

,

our notion matches precisely the notion of order-revealing encryption.

We note that our general framework slightly generalizes the definition of order-revealing

encryption, since the original definition is “symmetric” and ours is “asymmetric” (in the sense that

our definition only allows to compare a ciphertext with index 1 with a ciphertext with index 2). This
is without loss of generality since a symmetric scheme results immediately from an asymmetric

scheme.

We consider two (indistinguishability-based and simulation-based) security notions that take

into account a possible leakage. The leakage comprises at least the information resulting from the

evaluation function, which is unavoidable. However, contrary to a perfect solution that would only

permit this unavoidable leakage (as the one offered in [BLR
+
15]), we allow for additional leakage,

provided it is very limited. Doing so, we are able to devise constructions that can be used in practical

applications.

We then focus on the particular case of 2-ary functions (so the index is 1 or 2) and specifically on

building efficient order-revealing encryption. Our main construction is an efficient order-revealing

encryption scheme with limited leakage, under standard assumptions.

Our Techniques. We first show that one can build an order-revealing encryption scheme given only a

function-revealing encryption scheme for the function computing the cardinality of the intersection

of two sets f#: (S ,T ) 7→ #(S ∩ T ). This result follows from a fairly simple technique to compare

two bitstrings. Consider two bitstrings of same length x � x1 ‖ . . . ‖ xn and y � y1 ‖ . . . ‖ yn , then

we have x < y if and only if there exists i ∈ [n] such that x j � y j for every j < i and xi � 0 and yi � 1.
Thus, we have x < y if and only if there exists a prefix z ‖ 0 of x with z ∈ {0, 1}∗ such that z ‖ 1 is a

prefix of y, and one can then compare x and y by checking if the sets {z ‖ 1 | z ‖ 0 is a prefix of x}
and {z ‖ 1 | z ‖ 1 is a prefix of y} are disjoint.

The next step is then to construct a function-revealing encryption scheme for intersection

cardinality. We show that one can build such a scheme with only limited leakage based on the

existence of function-revealing encryption for the function checking the orthogonality of two

vectors f⊥: (®a , ®b) 7→ 〈®a , ®b〉 � 0 (this function outputs the value of the predicate 〈®a , ®b〉 � 0). This
transformation relies on the following technique to compute the cardinality of the intersection.

Consider two sets A � {a1 , . . . , an} and B � {b1 , . . . , bm}. A simple way to compute #(A ∩ B) is to
evaluate the polynomial

∏n
i�1(X − ai)whose roots are the elements of A on every b j for j ∈ [m], and

to return the number of times this evaluates to 0. This can be done by computing inner products,

since

∏n
i�1(X − ai) is a degree n polynomial that can be written as

∑n
i�0 αiX i

and thus, we have

n∏
i�1

(b − ai) � 〈(α0 , . . . , αn), (1, b , b2 , . . . , bn)〉 ,

so checking if this evaluates to 0 corresponds precisely to checking if the above vectors are

orthogonal.

Finally, we show that one can build a function-revealing encryption scheme for f⊥ under the

standard DLin assumption. In particular, we show that any fully-secure predicate encryption scheme
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for a class of predicate P � {Pa : b 7→ P(a , b)} can be turned into a function-revealing encryption

scheme for the function P.
Yet, there is a small catch in our transform from orthogonality to intersection cardinality. Indeed,

the above function-revealing encryption scheme for f# not only reveals the cardinality of the

intersection, but also the elements of B that are in A, as each element bi of B is encrypted separately

(by encrypting the corresponding vector (1, bi , b2i , . . . , b
n
i )). In particular, even if bi is hidden,

intersecting A with B and A′ with B might also reveal some information about the intersection of A
and A′ (for instance, if bi ∈ A and bi ∈ A′, then we also learn that A ∩ A′ , ∅ which should not

have been revealed). Thus, our construction reveals a bit more than what we would like ideally.

We briefly discuss how one can reduce this leakage by reducing the efficiency of our construction

(though the only way to obtain ideal leakage with our technique is by having exponential-size

ciphertexts). Also, we note that our leakage is ideal if there is only one set A that is encrypted at

index 1, whatever the number of sets B, C, . . . encrypted at index 2 (or more generally for bounded

ciphertexts at index 1 and unbounded ciphertexts at index 2). Finally, since our transformation

from intersection cardinality to relative order is generic, any improvement on the security of the

underlying scheme for intersection cardinality (both in terms of efficiency and of leakage) would

immediately results in an improved construction of order-revealing encryption.

Of independent interest, we also provide a very simple order-revealing encryption scheme

achieving the best possible security for short messages, assuming only the existence of one-way

functions.

Concurrent and Related Works. In a concurrent work by Lewi and Wu [LW16], the authors also

proposed a similar construction for short messages. In this paper, we deviate from this approach

and adopt a different one to obtain efficient constructions, while Lewi and Wu investigate how to

extend the small domain construction to larger domains. They propose a transform from small

domains to larger domains using random oracles. Intuitively, for plaintexts of length n · k, they
encrypt small blocks of k bits with the perfect scheme (whose complexity is exponential in k), and
then compose with the scheme from [CLWW16] for each of the n blocks (the complexity of the

latter scheme being linear in n). However, since the scheme from [CLWW16] has an important

leakage, this transform also incurs a leakage. Specifically, the ciphertexts reveal the position of the

first blocks of k bits on which corresponding plaintexts differ. Then, the bigger the blocks are, the

less efficient the resulting scheme is, but also, the bigger the blocks are, the smaller the leakage is.

In another recent work by Durak, DuBuisson, and Cash [DDC16], the authors show that even

ideal leakage can reveal important information for certain particular applications of ORE (e.g., when

plaintexts come from particular distributions). This work emphasizes that an important leakage

could be devastating, so reducing the leakage as much as possible (while preserving good efficiency

due to the practical importance of ORE) is of prime interest. Our work proposes a first step towards

obtaining smaller leakage (in particular achieving ideal leakage in restricted cases). A recent and

concurrent work by Cash, Liu, O’Neill, and Zhang [CLOZ16] also makes a step in this direction.

In this work, the authors construct an order-revealing encryption scheme with limited leakage

under SXDH. Their construction is slightly more efficient than ours (basing our construction on

current state-of-the-art fully-secure IPE [KT14]) but their leakage is slightly worse than ours, our

construction beneficing from its asymmetry. They obtain a construction, based on pairings, that

only leaks the equality pattern of the most significant differing bit (that is, for any 3 plaintexts

m0 ,m1 ,m2, whether the most significant differing bit of m0 and m1 is the same as the one of m0 and

m2), while the construction from [CLWW16] reveals the position of the most significant differing

bit. Despite the similarity of our results, both constructions are significantly different in terms of

techniques, as [CLOZ16] is based on the work by Chenette et al. [CLWW16] while our work opens a
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new path. In particular, any improvement of our building blocks (e.g., more efficient fully-secure

IPE or construction for cardinality of intersection with smaller leakage) would immediately benefit

to our ORE scheme.

Concerning multi-input functional encryption, a recent work by Brakerski, Komargodski, and

Segev [BKS16], improved in [KS17], propose a more general approach that allows going from

single-input functional encryption to t-input functional encryption in the private key-setting, as long

as t is constant (or poly-logarithmic assuming quasi-polynomial security). In particular, this allows

one to obtain function-revealing encryption scheme for functions with t-arity from LWE [GKP
+
13]

(or from low-complexity PRG and public-key encryption [GVW12]) for a bounded number T of

ciphertexts for one index and unbounded ciphertexts for the others (where the size of the ciphertexts

grow with T and the depth of the circuit computing the function). A similar result for the case

of 2-arity functions can also be obtained directly from the reusable garbled circuits construction

from [GKP
+
13]. The general case with unbounded ciphertexts at both indexes remains out of reach

since it requires unbounded-collusion functional encryption, which is not known from standard

assumptions (and implies iO [BNPW16,KS17] up to subexponential security).

Finally, our notion of function-revealing encryption has also been defined in a recent concurrent

work (as “revealing encryption”) by Haagh, Ji, Li, Orlandi, and Song [HJL
+
17]. In this paper, the

authors also propose a function-revealing scheme for the comparison of two vectors (xi < yi or

xi ≥ yi for all i or ®x and ®y are incomparable). Their construction is obtained by extending the

order-revealing construction from [CLWW16] and thus implies as well an important leakage.

2 Definitions

2.1 Function-Revealing Encryption

We introduce the paradigm of function-revealing encryption (FRE), as a generalization of property-

preserving encryption defined by Pandey and Rouselakis [PR12] as well as a weakening of the

general notion of multi-input functional encryption [BLR
+
15,GGG

+
14]. Our notion assumes the

private-key setting [SSW09] and corresponds to dedicatedmulti-input functional encryption schemes

where the evaluation of the function is public (i.e., no functional secret key is involved).

Definition 1 (Function-Revealing Encryption).A function-revealing encryption scheme for a k-ary
function f consists of a tuple of algorithms FRE � (Setup, Enc, Eval f ), defined below.

– Setup(1κ) is a probabilistic algorithm that takes as input the security parameter 1κ and outputs a secret
key sk (and public parameters pp—including the message spaceM).

– Enc(i , sk, x) takes as input an index i ∈ [k], a key sk, and a message x ∈ M. It outputs a ciphertext ct.
Index i indicates that the output ciphertext ct constitutes the i-th input to function f .

– Eval f (ct1 , . . . , ctk) takes as input k ciphertexts ct1 , . . . , ctk and outputs a value y in the range of f .

For correctness, it is required that for all sk
$← Setup(1κ) and all (x1 , . . . , xk) ∈ Mk :

Eval f (ct1 , . . . , ctk) � f (x1 , . . . , xk) where cti � Enc(i , sk, xi) .

Remark 2.
1. Definition 1 is “asymmetric” in the sense that a given ciphertext is bound to a specific input

position in the Eval f procedure. We could define a “symmetric” version of function-revealing

encryption where the encryption algorithm Enc no longer takes in an index i ∈ [k] so that a

ciphertext can be used in any input position for the Eval f procedure. We do not study this

symmetric version further since, as stated in Lemma 5, it is implied by the asymmetric version.
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2. We choose not to include a decryption algorithm in our definition, since this omission is without

loss of generality. Indeed, if necessary, one could just augment the encryption of a message

x with an encryption of x with a CPA-secure symmetric encryption scheme under a specific

secret-key. Via CPA-security, this additional information does not compromise the security of

the construction.

3. As specified in the introduction, we focus on the three following functions:

– f⊥: (®a , ®b) 7→
{

1 if 〈®a , ®b〉 � 0

0 otherwise

;

– f#: (S ,T ) 7→ #(S ∩ T ) ;

– f<: (x , y) 7→
{

1 if x < y
0 otherwise

.

2.2 Two Security Flavors

We examine two different security notions and explore the relations between them. The first notion

is defined as an indistinguishability-based security game, while the second (and stronger) one as a

simulation-based security game. These are generalizations of classical notions considered in the

case of property-preserving encryption, e.g. in [AAB
+
15,CD15,CGKO06,PR12].

The two notions are defined relatively to a leakage function L. As a FRE scheme for a function

f has to reveal, via the Eval f procedure, at least the values of the function f according to any tuple

of k messages x1 , . . . , xk such that xi is encrypted for index i ∈ [k], L will contain at least this

information. This leakage is written L f and is defined below.

Definition 3 (Leakage of a Function). The leakage L f of a k-ary function f with respect to k vectors
®x1 , . . . , ®xk of q1 , . . . , qk messages respectively —one vector of messages per position in the input of the
function, so ®xi � (xi ,1 , . . . , xi ,qi )— is defined as:

L f (®x1 , . . . , ®xk) � ( f (x1,i1 , . . . , xk ,ik ))i1∈[q1],...,ik∈[qk] .

L-Indistinguishability Security. A FRE scheme (Setup, Enc, Eval f ) for a k-ary function f is L-
indistinguishability secure if, for any two sequences of plaintexts with the same leakage, the

corresponding sequences of ciphertexts are computationally indistinguishable. Security is defined

by a variant of the standard semantic security game and is depicted in Figure 1.

Specifically, the adversary has black-box access to a left-or-right encryption oracle LoR. This
oracle can be adaptively queriedwith an index i and a pair ofmessages (x(0) , x(1)) to getEnc(i , sk, x(b))
with b being a fixed bit and sk being a secret key, initialized by the Initialize procedure. At the end,

the adversary outputs a bit b′ and wins if b � b′; namely, Finalize(b′) � 1. In order to prevent trivial

attacks (i.e., attacks resulting from the leakage function), the adversary is restricted as follows. If

((x(0)i ,1 , x
(1)
i ,1), . . . , (x

(0)
i ,qi
, x(1)i ,qi
)) denotes the sequence of qi queries made with index i to the LoR oracle

then, letting ®x(t)i � (x(t)i ,1 , . . . , x
(t)
i ,qi
) for t ∈ {0, 1}, the sequence of queries made by the adversary has

to satisfy:

L
(
®x(0)1 , . . . , ®x(0)k

)
� L

(
®x(1)1 , . . . , ®x(1)k

)
.

L-Simulation Security. A FRE scheme (Setup, Enc, Eval f ) for a k-ary function f is L-simulation

secure if, for any efficient adversary A � (A0 ,A1 , . . . ,Aq) which is given black-box access

to encryption oracle Enc that it queries q times, there exists an efficient stateful simulator S �

(S0 ,S1 , . . . ,Sq) such that the outputs of the twodistributionsRealFRE
A (κ) and SimFRE

A ,S ,L(κ), described
in Figure 2, are computationally indistinguishable.
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proc Initialize
b ← {0, 1}
sk

$← Setup(1κ)
For i ∈ [k]:
®̀(0)
i , ®̀(1)i ← ()

proc Finalize(b′)
Return b′ � b

proc LoR(i , x(0) , x(1))
®̀(0)
i ← ®̀

(0)
i .append(x(0))

®̀(1)
i ← ®̀

(1)
i .append(x(1))

If L( ®̀(0)1 , . . . , ®̀(0)k ) ,
L( ®̀(1)1 , . . . , ®̀(1)k ):

Return ⊥
Else:

ct
$← Enc(i , sk, x(b))

Return ct

Fig. 1. Game defining the L-indistinguishability
security of a FRE scheme.

proc RealFRE
A (κ)

sk
$← Setup(1κ)

stA ←A0(1κ)
For i ∈ [k]:
®cti ← ()

For C ∈ [q]:
((i , x), stA) ←
AC(stA , ( ®ct1 , . . . , ®ctk))

ct
$← Enc(i , sk, x)

®cti ← ®cti .append(ct)
Return ( ®ct1 , . . . , ®ctk)

proc SimFRE
A ,S ,L(κ)

stS ← S0(1κ)
stA ←A0(1κ)
For i ∈ [k]:
®cti ← (); ®xi ← ()

For C ∈ [q]:
((i , x), stA) ←
AC(stA , ( ®ct1 , . . . , ®ctk))

®xi ← ®xi .append(x)
(ct, stS)

$←
SC(stS ,L(®x1 , . . . , ®xk))
®cti ← ®cti .append(ct)

Return ( ®ct1 , . . . , ®ctk)

Fig. 2.Game defining theL-simulation security of a FRE scheme.

2.3 Relations Between These Security Notions

As one could expect, simulation security implies indistinguishability security, as stated in the

following lemma. Moreover, as already mentioned in Remark 2, for both security notions, the

existence of a secure “asymmetric” FRE implies the existence of secure “symmetric” FRE, as stated

in Lemma 5.

Lemma 4. Assuming FRE is an L-simulation secure function-revealing encryption scheme, then FRE is
an L-indistinguishability secure function-revealing encryption scheme.

Lemma 5. Assuming there exists anL-indistinguishability (resp.L-simulation) secure asymmetric function-
revealing encryption scheme for a function f , there exists a symL-indistinguishability (resp. symL-simulation)
secure symmetric function-revealing encryption scheme for the function f , with symL(®x) � L(®x , . . . , ®x).

The proofs of these two lemmata are detailed in Appendix A.

3 Order-Revealing Encryption with Simulation-Security for Polynomial-Size
Message Space

Before starting to build our main construction, which is an efficient function-revealing encryption

scheme for the function f< (i.e., order-revealing encryption scheme) with limited leakage, we would

like to startwith a simple remark.While it seems extremely hard to obtain anL f< -indistinguishability

secure order-revealing encryption scheme from standard assumptions, there is actually a very

simple construction that even achieves simulation-based security assuming only one-way functions.

However, this construction is only efficient for polynomial-size message space. To improve efficiency,

our construction can be instantiated using a pseudorandom permutation, such as AES. This leads

to a very efficient construction for small message spaces (e.g., 10-bit integers).
Let {0, . . . ,N − 1} denote the message space, and let F: {0, 1}κ × D → R be a pseudorandom

function such that its domainD contains {0, . . . ,N − 1} × {0, . . . , 2(N − 1)}.

Construction 1 We define FRE< � (Setup< , Enc< , Eval f<) as follows:

– Setup<(1κ) picks K
$← {0, 1}κ at random and returns it as the secret key sk;

7



– Enc<(i , sk, x) with x ∈ {0, . . . ,N − 1} is defined as:

Enc<(i , K, x) �
{
shuffle(FK(x , x + 1), . . . , FK(x , x + N − 1)) if i � 1

shuffle(FK(0, x), . . . , FK(N − 1, x)) if i � 2
;

[Here shuffle is a randomized algorithm that returns a random shuffling of its inputs.]
– Eval f<(ct1 , ct2) checks whether there is a common value in ct1 and ct2. If so, it outputs 1 (“<”); if not, it
outputs 0 (“≥”).

Correctness. It is clear that if there is no common value, the output of the evaluation algorithm,

“≥”, is correct. However, it might happen that there is a common value due to a collision. Hence, to

ensure that this does not happen, we might want FK to be injective (e.g., using a pseudorandom

permutation instead of a pseudorandom function, e.g. AES), but one could simply make the range

R big enough so that the probability of a collision is negligible.

Construction 1 being deterministic, it reveals if two ciphertexts encrypted with the same index

corresponds to the same plaintext. This is the only extra information, beyond the relative order,

that is leaked. However, this extra-information is always leaked in the “symmetric” case, as one

can always check, given two ciphertexts ct1 , ct2 corresponding to plaintexts x1 , x2, whether x1 ≥ x2

and x2 ≥ x1. Thus, if x1 � x2, the equality is revealed. For this reason, we claim that Construction 1

achieves ideal security, and we define its leakage L<,� as:

L<,�(®x1 , ®x2) � (L f<(®x1 , ®x2),L�(®x1 , ®x2)) ,

with L�(®x1 , ®x2) � (1�(xb ,ib , xb , jb ))ib , jb∈[| ®xb |],b∈{1,2} where 1�(a , b) returns 1 if and only if a � b.
Precisely, L f<(®x1 , ®x2) reveals exactly the relative order of messages encrypted with index 1 relatively

to messages encrypted with index 2, while L�(®x1 , ®x2) reveals exactly the pairs of equal messages

encrypted with the same index.

Theorem 6. Assuming one-way functions exist, there exists an L<,�-simulation secure function-revealing
encryption scheme for the function f<, for polynomial-size message spaces.

The proof of the above theorem is detailed in Appendix B.

4 Order-Revealing Encryption with Limited Leakage

We now describe how to build an order-revealing encryption scheme (a.k.a. function-revealing

encryption scheme for f<) from any function-revealing encryption scheme for f#. As a preliminary,

we explain how one can compare two integers by simply checking the disjointness of two sets.

4.1 From Bitstrings to Sets

We define functions Σ0 and Σ1, taking as input an n-bit string x and returning a set of prefixes, as

follows:

Σb : x ∈ {0, 1}n 7−→ Σb(x) �
{

xn−1 ‖ . . . ‖ xi+1 ‖ 1 | xi � b
}
0≤i≤n−1 , (1)

for b ∈ {0, 1}. That is, Σ1(x) returns the set of every prefix of x that ends with a 1, and Σ0(x) returns
the set of every z ‖ 1 such that z ‖ 0 is a prefix of x. It is easily seen that #Σ1(x) � hw(x) and that

#Σ0(x) � hw(x̄). In particular, we have Σ0(1n) � Σ1(0n) � ∅ and thus #Σ0(1n) � #Σ1(0n) � 0. It is
also immediate that #Σ1(x ‖ x̄) � #Σ0(x ‖ x̄) � n, for every x ∈ {0, 1}n .

Functions Σ0 and Σ1 are useful as they allow computing the relative order of two integers [LT05].

More precisely, we have:
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Lemma 7. Let x , y be two integers such that 0 ≤ x , y < 2n and viewed as n-bit strings. Then

x < y ⇐⇒ #
(
Σ0(x) ∩ Σ1(y)

)
� 1 and x ≥ y ⇐⇒ #

(
Σ0(x) ∩ Σ1(y)

)
� 0 .

Proof. Suppose first that x ≤ y. Then there must exist a biggest index i ∈ {0, . . . , n − 1} such that

xi � 0 and yi � 1 and, if i , n − 1, xn−1 ‖ . . . ‖ xi+1 � yn−1 ‖ . . . ‖ yi+1. If i � n − 1 this implies

{1} ⊆ Σ0(x) ∩ Σ1(y), and if i , n − 1 this implies {xn−1 ‖ . . . ‖ xi+1 ‖ 1} ⊆ Σ0(x) ∩ Σ1(y).
Suppose now thatΣ0(x)∩Σ1(y) , ∅. IfΣ0(x)∩Σ1(y) � {1} then it is clear that x < y. Otherwise,

there exists an index i ∈ {0, . . . , n − 2} such that xn−1 ‖ . . . ‖ xi+1 ‖ 1 ∈ Σ0(x) ∩ Σ1(y). This means

that xi � 0, yi � 1, and xn−1 ‖ . . . ‖ xi+1 � yn−1 ‖ . . . ‖ yi+1, which in turn means x < y, since∑i−1
k�0 yk · 2k ≤ ∑i−1

k�0 2k � 2i − 1 < 2i
.

It remains to show that Σ0(x) ∩ Σ1(y) contains at most one element. Let us assume that

#
(
Σ0(x) ∩ Σ1(y)

)
> 1. Then there exist i , j ∈ {0, . . . , n − 1} distinct and such that we have

xn−1 ‖ . . . ‖ xi+1 � yn−1 ‖ . . . ‖ yi+1 as well as xn−1 ‖ . . . ‖ x j+1 � yn−1 ‖ . . . ‖ y j+1, and xi � x j � 0,
and yi � y j � 1. We can assume without loss of generality that i > j. Hence, i ≥ j + 1 and since

xi � 0 and yi � 1, it is impossible that xn−1 ‖ . . . ‖ x j+1 � yn−1 ‖ . . . ‖ y j+1. This concludes the

proof. ut

Remark 8. Since the cardinality of the intersection is always 0 or 1, one could also base our order-

revealing encryption scheme on any function-revealing scheme for the disjointness (i.e. that only

reveals if two sets intersect or not).

4.2 A Generic Transform from FRE# to FRE<
Our transform simply relies on the above technique. Let FRE# � (Setup# , Enc# , Eval f#) be a

function-revealing encryption scheme for the function f#. For simplicity, instead of directly

encrypting the sets Σ0(x) or Σ1(x), one encrypts the sets Σ0(x ‖ x̄) or Σ1(x ‖ x̄), which are both of

size n if x is an n-bit integer. This allows us to assume that the sets encrypted by FRE# all have

the same size. It is very easy to see that Lemma 7 still holds even if we replace Σ0(x) and Σ1(y) by
Σ0(x ‖ x̄) and Σ1(y ‖ ȳ) respectively.

Construction 2 We build a function-revealing encryption scheme FRE< � (Setup< , Enc< , Eval f<) for the
function f< as follows:

– Setup< takes as input the security parameter κ and outputs Setup#(1κ) � sk;
– Enc< takes as input an index i ∈ {1, 2}, a secret key sk, and a message x and outputs:

Enc<(i , sk, x) �
{
Enc#(1, sk,Σ0(x ‖ x̄)) if i � 1

Enc#(2, sk,Σ1(x ‖ x̄)) if i � 2
;

– Eval f< takes as input a pair of ciphertexts (ct1 , ct2) encrypted with index 1 and 2 respectively, and returns
Eval f#(ct1 , ct2).

Correctness. The correctness easily follows from the correctness of FRE# and from Lemma 7.

Security. Security immediately follows from the security of FRE# and the leakage is simply the

leakage associated of FRE# applied to the encrypted sets, which are either Σ0(x ‖ x̄) or Σ1(x ‖ x̄).
Let L denote a leakage such that FRE# is L-indistinguishability secure. Then, we define the

leakage of Construction 2 as:

LL(®x1 , ®x2) � L(Σ0(®x1),Σ1(®x2)) ,
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where ®xi � (xi ,1 , . . . , xi ,qi ) is the sequence of integers encryptedwith index i, for i ∈ {1, 2}, andwhere

Σ0(®x1) � (Σ0(x1,1 ‖ x̄1,1), . . . ,Σ0(x1,q1 ‖ x̄1,q1)), and Σ1(®x2) � (Σ1(x2,1 ‖ x̄2,1), . . . ,Σ1(x2,q2 ‖ x̄2,q2)).

Theorem 9. Assuming there exists an L-indistinguishability secure function-revealing encryption scheme
for the function f#, then there exists an LL-indistinguishability secure 2-input functional encryption scheme
for the function f<.

Proof. LetA be an adversary against the LL-indistinguishability security of FRE< obtained via

Construction 2. Then, one can build an adversary B against the L-indistinguishability security of

FRE# as follows: whenA makes a query (i , x(0) , x(1)) to the encryption oracle,B does the following.

First, it computes (S(0) ,S(1)) � (Σ0(x(0)),Σ0(x(1))) if i � 1 or (S(0) ,S(1)) � (Σ1(x(0)),Σ1(x(1))) if i � 2.
It then queries (i ,S(0) ,S(1)) to its encryption oracle, and returns the value it gets to adversaryA.

When adversary A halts with output b, so does B. It is clear that the simulation is perfect. The

only thing that one needs to prove is that the sequence of queries made by B is possible. This is

immediate from the definition of LL . Theorem 9 follows. ut

Remark 10. One could also prove in a very similar manner that the obtained construction is

simulation-secure assuming the underlying scheme FRE# is simulation-secure.

4.3 Computing Cardinality of Intersection with Limited Leakage

We now describe the second step in building our efficient order-revealing encryption scheme

with limited leakage, which is to build a function-revealing encryption scheme for computing the

cardinality of intersection. Specifically, the messages are sets of fixed size n and the function f
we target is the function f#: (S1 ,S2) 7→ #(S1 ∩ S2). Our construction relies on the existence of a

function-revealing encryption scheme for f⊥.
In order to ease the reading, we assume that every set in the message space has a fixed size n.

One could circumvent this condition as long as the maximal size of a set is known and fixed in

advance, but this is not useful for our purpose.

We compute the cardinality of the intersection of two sets as follows: given two sets of integers

A � {a1 , . . . , an} andB � {b1 , . . . , bn}, one can compute the polynomial PA(X) �
∏n

i�1(X−ai) such
that b ∈ A ⇔ PA(b) � 0. The problem is that this technique does not hide anything about elements

in A and B. To address this issue, one simply notices that, given PA(X) �
∑n

i�0 αi · X i
, testing

PA(b) � 0 simply consists in checking if 〈 ®α, ®β〉 � 0, with ®α � (α0 , . . . , αn) and ®β � (1, b , b2 , . . . , bn).
Therefore, this can be tested privately using a function-revealing encryption for orthogonality

testing.

We denote by coef(S) the vector (α0 , . . . , αn) such that

∏
s∈S(X − s) � ∑n

i�0 αi · X i
and by exp(s)

the vector (1, s , s2 , . . . , sn). It is straightforward that, for n being polynomial, computations of

coef(S) and exp(s) are polynomial-time. Let FRE⊥ � (Setup⊥ , Enc⊥ , Eval f⊥) be a function-revealing

encryption scheme for orthogonality testing.

Construction 3 We build a function-revealing encryption scheme FRE# � (Setup# , Enc# , Eval f#) for
the function f# as follows:

– Setup# takes as input the security parameter κ and outputs Setup⊥(1κ) � sk;
– Enc# takes as input an index i ∈ {1, 2}, a secret key sk, and a set S � {s1 , . . . , sn} and outputs:

Enc#(i , sk,S) �

Enc⊥(1, sk, coef(S)) if i � 1 ;

shuffle(Enc⊥(2, sk, exp(s1)), . . . ,
Enc⊥(2, sk, exp(sn))) if i � 2 .

10



– Eval f# takes as input a pair of ciphertexts (ct1 , ct2) encrypted with index 1 and 2 respectively and with
ct2 � (ct2,1 , . . . , ct2,n), computes yi � Eval f⊥(ct1 , ct2,i) for i � 1, . . . , n and outputs

∑n
i�1 yi .

Correctness. Correctness follows immediately from the correctness of FRE⊥.

Security. To compute the size of the intersection of a set S encrypted with index 1 with a set T
encrypted with index 2, one checks, for every element t ∈ T , if t ∈ S. Therefore, while it clearly

allows to compute the size of the intersection, this also leaks more information. Indeed, consider

two sets S1 and S2 encrypted with index 1 and another set T encrypted with index 2. Then, for
every t ∈ T , one can check if t ∈ S1 and if t ∈ S2. Hence, not only the cardinality T ∩S1 and T ∩S2
is revealed, but also the one of T ∩ S1 ∩ S2. More generally, if k sets S1 , . . . ,Sk are encrypted with

index 1 and a set T is encrypted with index 2, their encryptions reveal the size of the intersection of

T with any intersection of 1 to k different sets from {S1 , . . . ,Sk}.
We prove that this is exactly the information that is leaked by our construction and define the

leakage of our construction, denoted L#∗ , as follows. For two sequences of sets
®S � (S1 , . . . ,Sq1)

and
®T � (T1 , . . . ,Tq2) encrypted respectively with index 1 and 2, we define:

L#∗( ®S , ®T ) � (#(I ∩ Ti))I∈ ®S∩ ,i∈[q2] , (2)

where
®S∩ � {Si1 ∩ · · · ∩Si j | j ∈ [q1], i j ∈ [q1]}, so ®S∩ contains every intersection of 1 to q1 different

sets encrypted at index 1. In particular, every set Si is in ®S∩.

Theorem 11. Assuming there exists an L⊥-indistinguishability secure function-revealing encryption
scheme for orthogonality testing, then there exists an L#∗-indistinguishability secure function-revealing
encryption scheme for cardinality of intersection.

The proof of the above theorem is detailed in Appendix C. Note that, even if L#∗ is formally an

exponential-size vector, checking whether a query made by an adversary is valid or not remains

polynomial. A formal proof of the latter statement is also given in Appendix C.

4.4 Orthogonality Testing and Relation with Predicate Encryption

We finally describe how we obtain a function-revealing encryption for orthogonality testing, namely

for the function

f⊥: (®a , ®b) ∈ Zn
p 7→

{
1 if 〈®a , ®b〉 � 0

0 otherwise

.

This is the last step in building our efficient order-revealing encryption scheme with limited leakage

and from standard assumptions.

The existence of such a scheme is actually implied by the existence of a fully-secure secret-key

inner-product encryption scheme, which in particular exists under the DLin assumption [BBS04];

e.g., [KT14]. More generally, we describe a transformation from any fully-secure secret-key predicate

encryption for a class of predicate Ff � { fa : b ∈ M 7→ f (a , b) ∈ {0, 1} | a ∈ M} to a function-

revealing encryption scheme for the function f . A very similar result was already proposed in the

case of property-preserving encryption in [AAB
+
13,CD15]. For completeness, definitions of the

DLin assumption and of fully-secure secret-key predicate encryption and inner-product encryption

are recalled in Appendix D. In particular, note that by fully-secure, we mean predicate-hiding and

attribute-hiding.
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Theorem 12. Let f :M ×M → {0, 1} be any function. Assuming there exists a fully-secure secret-key
predicate encryption scheme for the class of predicates Ff � { fa : b ∈ M 7→ f (a , b) ∈ {0, 1} | a ∈ M},
then there exists an L f -indistinguishability secure function-revealing encryption scheme for the function f .

Proof. Let (Setup,TokenGen, Enc,Dec) be a fully-secure secret-key predicate encryption scheme for

the class of predicates Ff . We build an L f -indistinguishability secure function-revealing encryption

scheme (Setup f , Enc f , Eval f ) for f as follows: Setup f is the same as Setup. Enc f (i , sk, x) returns
TokenGen(sk, x) if i � 1 and Enc(sk, (x , 1)) if i � 2, meaning that it encrypts 1 with the attribute

x. Finally, Eval f (ct1 , ct2) simply uses ct1 to decrypt ct2, and return 1 if and only if the decryption

outputs 1, and 0 otherwise. Both correctness and security immediately follow from the correctness

and the security of the underlying predicate encryption scheme, and Theorem 12 follows. ut

5 Putting Everything Together

We conclude by assembling all our results and obtain an order-revealing encryption scheme with

limited leakage assuming the standard DLin assumption. We denote by L⊥ the (ideal) leakage of

the function f⊥ (so L⊥ � L f⊥ in the sense of Definition 3).

Corollary 13. AssumingDLin, there exists anL⊥-indistinguishability secure function-revealing encryption
scheme for orthogonality testing.

Proof. Corollary 13 follows from the existence of a fully-secure inner-product encryption scheme

under the DLin assumption, as in [KT14], and from Theorem 12. ut

Corollary 14. Assuming DLin, there exists an L#∗-indistinguishability secure function-revealing encryp-
tion scheme for the function f#.

Proof. Immediate from Theorem 11 and Corollary 13. ut

Corollary 15. Assuming DLin, there exists a LL#∗ -indistinguishability secure function-revealing encryp-
tion scheme for the function f< (a.k.a. order-revealing encryption scheme).

Proof. Immediate from Theorem 9 and Corollary 14. ut

5.1 Detailed Leakage and How to Reduce It

For the sake of clarity, here is a more intelligible description of the leakage of our resulting

order-revealing encryption scheme. For simplicity, let us consider a sequence of integers (x1 , . . . , xq)
encrypted respectively with index 1 and an integer y encrypted with index 2. Then, our encryption
scheme reveals the order of xi relatively to y, for any 1 ≤ i ≤ q, as expected, but also the following:

For every subset S of {x1 , . . . , xq} of size at least 2, it reveals whether there exists a bitstring z such

that z ‖ 0 is a common prefix of every x ∈ S and z ‖ 1 is a prefix of y. Since, as shown in Lemma 7,

there is at most one such prefix, it is sufficient to consider only sets S of size exactly 2 (as to check

any larger set S � {x1 , . . . , xq}, you can just check every set Sj � {x1 , x j}, j � 2, . . . , q2; It is easy to

see that there is such a prefix for S and y if and only if there is one for every Sj and y).
The general case where multiple integers are encrypted with index 2 simply reveals the two

information detailed above for every y encrypted with index 2.

Then, considering a sequence of integers (x1 , . . . , xq1) encrypted respectively with index 1 and

(y1 , . . . , yq2) encrypted with index 2, our scheme leaks precisely the following information:
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1. the order of xi relatively to y j , for any 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2;
2. for every 1 ≤ j ≤ q2 and every S � {xi , xk} with 1 ≤ i , k ≤ q1, if xi and y j have the same most

significant differing bit as xk and y j , if and only if xi < y j and xk < y j .

Please note that even if xi and x j have many common prefixes, an encryption y j can only reveal that

xi and x j have one common prefix (amongst the potential n − 1 common prefixes for any xi , x j).

Also, note that the leakage is ideal if there is only one element encrypted at index 1, even for an

unbounded number of integers encrypted at index 2. Thus, we have the following corollary.

Corollary 16. Assuming DLin, there exists an order-revealing encryption scheme with ideal leakage for
bounded ciphertexts at index 1 and unbounded ciphertexts at index 2.

The latter construction simply consists in encrypting N times each plaintext with N independent

secret keys, where N is a bound on the number of ciphertexts at index 1.

Possible Security Trade-Off. Since the leakage only depends on the number of common prefixes,

a simple way to reduce this leakage is to first encrypt the messages with an order-preserving

encryption scheme. This results in eliminating part of the common prefixes and reduce the overall

leakage.

Another way to reduce the leakage is to improve the underlying construction of function-

revealing encryption for cardinality of intersection. We recall that a construction for cardinality

of intersection with ideal leakage would immediately imply a solution for comparison with ideal

leakage.

In particular, thanks to Remark 8, one actually just needs to check for disjointness instead of

computing the exact cardinality of the intersection (since it is either 0 or 1 anyway). Thus, one

could use multivariate polynomials instead of univariate polynomials to check the intersection.

Intuitively, instead of testing PA(b) � 0 with PA(X) �
∏

a∈A(X − a) for checking if b ∈ A, one could

test P(k)A (b1 , . . . , bk) � 0 with P(k)A (X1 , . . . ,Xk) �
∏

i∈[k]
∏

a∈A(Xi − a). The leakage now only reveals

if k-tuple of elements in B have a non-empty intersection withA, but the size of the ciphertexts

grows exponentially with k, since one needs to compute inner-products of vectors of length (n + 1)k
instead of vectors of length n + 1. However, this leads to a solution with ideal leakage if we set k � n
(but then again, we need n to be logarithmic for this construction to be polynomial).

5.2 Comparison with [CLOZ16]

Here we precise in more detail how our scheme competes with the recent one proposed by Cash et
al. in [CLOZ16].

Efficiency. Using the Kawai-Takashima construction [KT14], which is the state of the art for

fully-secure secret-key IPE, to instantiate our construction, we obtain the following parameters.

Table 1. Efficiency Comparison with [CLOZ16] for n-bit plaintexts.

Groups |ct| at index 1 |ct| at index 2 Complexity Assumption

This paper Prime order 6n · |G| 6n2 · |G| 6n2
pairings DLin

[CLOZ16] Prime order 4n · |G| 4n · |G| n2
pairings SXDH

As it appears from the table, our construction is slightly less efficient than the concurrent one

proposed by Cash et al. Yet, as our construction uses in a black-box way a fully-secure (secret-key)
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IPE scheme, it would immediately benefits from improvements of this primitive. In particular,

in [OT12], Okamoto and Takashima propose an IPE scheme that achieves a slightly weaker security

notion (fully-attribute hiding) with constant-size tokens (10 · |G|), and linear-size ciphertexts (5n · |G|).
Achieving constant size for one index is particularly interesting for certain applications, in particular

for range queries, since one could encrypt a whole data base with constant-size ciphertexts, and

make range queries by sending two ciphertexts encrypted with the other index that define the

range. Also, any more efficient construction for constructing the cardinality of intersection would

immediately improve our construction.

Leakage. While the scheme in [CLOZ16] is slightly more efficient, our scheme achieves a slightly

higher level of security. Precisely, as detailed above, considering a sequence of integers (x1 , . . . , xq)
encrypted respectively with index 1 and an integer y encrypted with index 2, the only additional

leakage our scheme reveals is if, for any 1 ≤ i , j ≤ q, xi and y have the same most significant

differing bit as x j and y if and only if xi < y and x j < y. The scheme by Cash et al. reveals almost the

same information, except that if reveals it even if xi > y or x j > y. Note that this condition being

revealed by the functionality of the scheme, our scheme reveals less information. This difference is

due to the asymmetry of our construction.

5.3 Applications

To conclude this paper, we propose two applications of our constructions. In particular, these

applications do not suffer much from our additional leakage.

Membership Testing on a Database and Searchable Encryption. Our notion of function-revealing

encryption for the function f# naturally yields a solution to test whether some private data is

already in a database stored by a given server. Indeed, one could split the database into distinct

sets S1 , . . . ,Sq of fixed size n and storing encryptions Enc#(1, sk, coef(Si)) for i ∈ [q]. Then, one
can simply send to the server Enc#(2, sk, exp(a)) so it can learn whether a is already in the database.

One could also use this method with a plaintext x being a tag used to ask the server to return every

encrypted data with the same tag.

Similarly, one could associate a vector ®x to a data and perform searchable encryption using our

function-revealing encryption scheme for orthogonality (whose leakage is ideal). Doing so, one

could query all the data whose tag ®x is orthogonal to some vector ®y.
Range Queries. Our notion of function-revealing encryption for the function f< allows one to

perform efficient range queries on a database. One could indeed store encryptions Enc<(1, sk, x) on
the server, andmakes queries of the form Enc<(2, sk, a), Enc<(2, sk, b) to get encrypted data x ∈ [a; b).
In particular, as our notion is “asymmetric”, the server learns only a few extra information, while

classical order-revealing encryption let the server knows the complete order of the elements. Due

to the form of our leakage, the leaked information is ideal if only one such query is made by the

user. Moreover, as explained above, the asymmetry of our construction benefits to this application.

In particular, a fully-secure secret-key IPE scheme with constant-size tokens or ciphertexts would

imply a very efficient solution for range queries.
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A Proofs of Lemmata in Section 2.3

A.1 Proof of Lemma 4

Let FRE be an L-simulation secure function-revealing encryption scheme. Then, there exists a sim-

ulator S such that for any adversaryA, the distributions RealFRE
A and SimFRE

A ,S ,L are computationally

indistinguishable.

Let B denote an adversary against the L-indistinguishability security of FRE that makes a

sequence of queries (®x1 , . . . , ®xk). Then, the sequence of ciphertexts ( ®ct1 , . . . , ®ctk) is computation-

ally instinguishable from the distribution output by the simulator S which is computed only

from L(®x1 , . . . , ®xk). Hence, as the latter distribution does not depend on the messages but only

on their leakage, for any two sequences of queries (®x(0)1 , . . . , ®x(1)k ) and (®x
(1)
1 , . . . , ®x(1)k ) such that

L(®x(0)1 , . . . , ®x(0)k ) � L(®x
(1)
1 , . . . , ®x(1)k ), the distributions of ciphertexts are computationally indistin-

guishable. Lemma 4 follows. ut

A.2 Proof of Lemma 5

Indistinguishability Security. Let FRE � (Setup, Enc, Eval f ) be an L-indistinguishability se-

cure “asymmetric” function-revealing encryption scheme for a k-ary function f . Then, FRE ′ �
(Setup, Enc′, Eval f )with Setup, Eval f being the same as in FRE and Enc′(sk, x) � (Enc(1, sk1 , x), . . . ,
Enc(k , skk , x)), is a symL-indistinguishability secure “symmetric” function-revealing encryption
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scheme for the function f . The proof is immediate: given an adversary A against the indistin-

guishability security of FRE ′ that makes a sequence of queries ((x(0)1 , x(1)1 ), . . . , (x
(0)
q , x(1)q )), one can

simply build an adversary B against the indistinguishability security of FRE as follows: whenA
makes a query (x(0) , x(1)), B makes the query (i , x(0) , x(1)) to its oracle for all i � 1, . . . , k and returns

the tuple of k ciphertexts obtained toA. WhenA halts with output b, so does B. The only thing

that one needs to prove is that the sequence of queries made by B is possible. This is immediate

from the fact thatA is restricted to make sequences of queries ((x(0)1 , x(1)1 ), . . . , (x
(0)
q , x(1)q )) such that

symL(®x(0)) � symL(®x(1)).
Simulation Security. Let FRE � (Setup, Enc, Eval f ) be an L-simulation secure “asymmetric”

function-revealing encryption scheme for a k-ary function f . Then, FRE ′ � (Setup, Enc′, Eval f )
with Setup, Eval f being the same as in FRE and Enc′(sk, x) � (Enc(1, sk1 , x), . . . , Enc(k , skk , x)) is a
symL-simulation secure symmetric function-revealing encryption scheme for the function f . The
proof is immediate: given an adversaryA against the symL-simulation security of FRE ′ that makes

a sequence of queries (x1 , . . . , xq), one can simply build an adversary B against the simulation

security of FRE as follows: when A makes a query x, B makes the query (i , x) to its oracle for

all i � 1, . . . , k. The L-simulation security of FRE guarantees that the distribution of ciphertexts

obtained is indistinguishable from the one computed by the simulator S given only L(®x , . . . , ®x).
Lemma 5 easily follows. ut

B Proof of Theorem 6

LetA � (A0 , . . . ,Aq1+q2) be an adversary against the L<,�-simulation security of FRE<, described

in Construction 1, where q1 , q2 are polynomial in the security parameter and correspond to the

number of queries made with index 1 and 2 respectively. To prove security, one needs to build a

simulator S � (S0 , . . . ,Sq1+q2) such that the distributions output by the experiments RealFRE<
A and

SimFRE<

A ,S ,L<,� are computationally indistinguishable.

The distribution output by experiment RealFRE<
A consists in a sequence of ciphertexts ( ®ct1 , ®ct2)

which are q1 ciphertexts encrypted with index 1 and q2 ciphertexts encrypted with index 2. Let us
recall that:

Enc<(i , K, x) �
{
shuffle(FK(x , x + 1), . . . , FK(x , x + N − 1)) if i � 1

shuffle(FK(0, x), . . . , FK(N − 1, x)) if i � 2
.

Then, under the PRF security of F, the distribution output by RealFRE<
A is computationally

indistinguishable from the distribution Hyb where the ciphertexts are computed using a trully

random function f : D → R.
We now describe our simulator S. S0 initializes an empty table T of size (q1 + q2) × (N + 2) and

outputs stS � T. At any time, the i-the row of T has the following form: the first column contains

whether the i-th query of A is a query with index 1 or 2. The second column will be a counter

starting from 3. The remaining columns contain the N components of the encryption returned to

the adversary.

WhenAt asks for an encryption of a message xt , St does the following: let us denote by i and j
the numbers of queries made by the adversary to oracle with index 1 and 2 respectively before step

t, so t � i + j + 1, and let (x1,1 , . . . , x1,i) and (x2,1 , . . . , x2, j) denote these two series of queries.

We assume the adversary does not make twice the same query to the same encryption algorithm.

If it does, one can simply adapt the simulator as follows: assume that there exists k < t such

17



that Ak made the same query xt as At to the same encryption algorithm. Then, St returns

shuffle(T[k , 3], . . . ,T[k ,N + 2]).
Let us now assume that all queries made byA to encryption oracle are different.

Let us assume that the adversary makes a query (1, xt) and let ®x1 � ®x1.append(xt). St is executed

on input stS and L<,�(®x1 , ®x2). In particular, St knows, for every 1 ≤ k ≤ j whether xt < x2,k . St
let T[t , 1] ← 1. Let n1 , . . . , n j denote the j indices of the rows of T that corresponds to queries

with index 2. Let c � 3. Then, for any 1 ≤ k ≤ j, St does the following: if xt < x2,k , St lets

T[t , c] ← T[nk ,T[nk , 2]], T[nk , 2] ← T[nk , 2] + 1, c ← c + 1; if xt ≥ x2,k , St does nothing. Finally,

St sets T[t , 2] ← c picks N + 3 − c values at random in R and completes the last N + 3 − c empty

cases of the t-th row of T with these values. It finally outputs shuffle(T[t , 3], . . . ,T[t ,N + 2]) as the
ciphertext ct1,i+1.

Let us now assume that the adversary makes a query (2, xt) and let ®x2 � ®x2.append(xt). St
is executed on input stS and L<,�(®x1 , ®x2). In particular, St knows, for every 1 ≤ k ≤ i whether

x1,k < xt . St let T[t , 1] ← 2. Let n1 , . . . , ni denote the i indices of the rows of T that corresponds to

queries with index 1. Let c � 3. Then, for any 1 ≤ k ≤ i, St does the following: if x1,k < xt , St lets

T[t , c] ← T[nk ,T[nk , 2]], T[nk , 2] ← T[nk , 2] + 1, c ← c + 1; if x1,k ≥ xt , St does nothing. Finally,

St sets T[t , 2] ← c picks N + 3 − c values at random in R and completes the last N + 3 − c empty

cases of the t-th row of T with these values. It finally outputs shuffle(T[t , 3], . . . ,T[t ,N + 2]) as the
ciphertext ct2, j+1.

Then, it is immediate that the distribution described above is identical to the distribution of

Hyb, which is computationally indistinguishable from the distribution of RealFRE<
A . Theorem 6

follows. ut

C Proof of Theorem 11

First, let us prove that, even if L#∗ is formally an exponential-size vector, checking whether a query

made by an adversary is valid or not remains polynomial. This can be done as follows: Consider a

sequence of queries (1,S(0)1 ,S(1)1 ), ..., (1,S
(0)
q1 ,S

(1)
q1 ), (2,T

(0)
1 ,T (1)1 ), ..., (2,T

(0)
q2 ,T (1)q2 ), simply denoted

as Q in what follows. We recall that we assume every set to be of fixed size n. We define isValid(Q)
as the predicate L#∗( ®S(0) , ®T (0)) � L#∗( ®S(1) , ®T (1)), so that isValid(Q) � 1 if and only if the sequence

of queries Q is valid.

Computing isValid(Q) can be done in polynomial-time by the following algorithm:

1. Build the 2 · q2 tables U(0)` ,U
(1)
` ∈ {0, 1}n×q1

, ` � 1, . . . , q2, defined as U(b)` [i , j] � 1 if and only

if t(b)`,i ∈ S
(b)
j , where {t(b)`,1 , . . . , t

(b)
`,n} � T

(b)
` . Note that the order of the rows (i.e. the order of

the elements in T (b)` ) is arbitrary but the order of columns is fixed by the order of the queries

(column j corresponds to j-th query (1,S(0)j ,S(1)j )).
2. For every 1 ≤ ` ≤ q2 and b ∈ {0, 1}, consider rows of U(b)` as q1-bit integers and re-order the

rows of U(b)` according to the lexicographic order of these integers (say in decreasing order).

Denote ord.U(b)` the resulting table.

This process is clearly polynomial-time as soon as q1 and q2 are polynomial, which directly follows

from the fact that the adversary is polynomial-time.

Claim. isValid(Q) � 1 if and only if ord.U(0)` � ord.U(1)` for all 1 ≤ ` ≤ q2.
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Proof. The first direction is immediate, as if isValid(Q) � 1, it is clear that ord.U(0)` � ord.U(1)` for all

1 ≤ ` ≤ q2.
Let us prove the more delicate second direction. We assume without loss of generality that

q2 � 1. We thus simplify notations by removing the index ` and we denote by (2,T (0) ,T (1)) the
single query made at index 2. Let us denote by k + 1 the index of the first column in which ord.U(0)

and ord.U(1) differ and denote ord.U.k(b) the subtable obtained by taking only the first k + 1 columns

of ord.U(b), for b ∈ {0, 1}. Each row of ord.U.k(b) can be seen as a k-bit integer and rows of table

ord.U(b) being ordered, so are rows of table ord.U.k(b). We regroup rows of ord.U.k(b) into blocks of

consecutive rows that have the same k-bit prefix. For any prefix p ∈ {0, 1}k , we associate the block

B(b)p of consecutive rows of ord.U.k(b) that start with prefix p. Then, for each corresponding block,

we just need to prove that there is the same number of 1 in the (k + 1)-th column of B(0)p and B(1)p for

contradiction (the number of 0 then being the same as well since both blocks have the same size as

ord.U(b) do not differ on their first k columns).

We show by induction that the number of 1 in the last column of a block can be expressed as a

sum of cardinal of intersections (of the form considered in the definition of L#∗ –see Equation 2–)

and thus are equal by definition of queries being valid.

Assume the rows are ordered in decreasing order. Then, the first block is indexed by prefix 1k
.

– Base case: The number of 1 in the last column of block B(b)
1k corresponds precisely to #(T (b) ∩

(⋂k+1
j�1 S

(b)
j )), then the claim holds.

– Induction: Let p ∈ {0, 1}k . The number of 1 in block B(b)p can be expressed as #(T (b) ∩
(⋂k+1

j�1|p j�1
S(b)j )) − (

∑
p′�p #(T (b) ∩ (⋂k+1

j�1|p′j�1
S(b)j ))) where p′ � p if and only if p′j ≥ p j for all

1 ≤ j ≤ k + 1. The terms of the latter sum correspond to all the elements of T (b)∩ (⋂k+1
j�1|p j�1

S(b)j )
that were already counted as being elements of an intersection of the these sets with some

more sets. By recursion, all the terms of the latter sum can be expressed by a sum of cardinal of

intersections (of the form considered in the definition of L#∗) as p′ � p ⇒ p′ > p. Hence, they

are equal by definition of queries being valid.

Therefore, the (k + 1)-th columns of ord.U(0) and ord.U(1) are equal, which concludes the proof by

contradiction. ut

Now that it is clear that the challenger can check the validity of queries made by an adversary

in polynomial-time, let us prove Theorem 11.

Proof. LetA be an adversary against the L#∗-indistinguishability security of the scheme FRE# �

(Setup# , Enc# , Eval f#) obtained via Construction 3, that makes q1 queries with index 1 and q2
queries with index 2 to its encryption oracle. Then one can design an adversary B against the

L⊥-indistinguishability security of FRE⊥ � (Setup, Enc, Eval f⊥) as follows: B starts by initializing

two empty lists list0 , list1. Next, B runs adversaryA. When the latter makes a query (i ,S(0) ,S(1)),
B does the following.

If i � 1, B first adds S(0) to list0 and S(1) to list1, then simply computes ®α(0) � coef(S(0)) and
®α(1) � coef(S(1)), queries (1, ®α(0) , ®α(1)) to its encryption oracle and returns the value it gets toA.

If i � 2, B proceeds as follows: let listb � (S(b)1 , . . . ,S(b)q ) be the two lists stored by B, for
b ∈ {0, 1} (each list contains respectively the q left or right queries already made byA with index

1). B initializes an empty list out and applies the following process, termed Pair, to sets S(0) ,S(1).
It picks an element s(0) in S(0) and checks for i � 1, . . . , q if s(0) ∈ S(0)i . Next, it searches for an
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element s(1) ∈ S(1) such that for i � 1, . . . , q, s(1) ∈ S(1)i if and only if s(0) ∈ S(0)i . Once such an

element has been found, it computes
®β(0) � exp(s(0)) and ®β(1) � exp(s(1)), and queries (2, ®β(0) , ®β(1))

to its encryption oracle and adds the value it gets to the list out. It then reiterates Pair to the sets

S(0) \ {s(0)},S(1) \ {s(1)}. Once every element has been handled, B shuffles out and sends a vector

whose components are the elements of the list (in a random order) toA. WhenA halts with some

output, so does B.
First, one needs to prove that the process Pair run by B to pair up elements from S(0) with

elements from S(1) can always be done. AsA is a polynomial-time adversary, it is clear that Pair is
polynomial, as q and n are polynomial. Furthermore, by definition,A is restricted to only make

sequences of queries such that at any time L#∗( ®S(0)1 , ®S(0)2 ) � L#∗( ®S(1)1 , ®S(1)2 ), where
®S(b)i denote the

series of left (if b � 0) or right (if b � 1) queries made at index i. This implies directly that Pair
always terminates.

Second, one needs to prove that every query (1, ®α(0) , ®α(1)) or (2, ®β(0) , ®β(1)) made by B to its

encryption oracle satisfies 〈 ®α(0) , ®β(0)〉 � 0 if and only if 〈 ®α(1) , ®β(1)〉 � 0. This is implied directly by

the way process Pair is defined.
Finally, one needs to show that B simulates correctly the oracle, which is immediate from the

description of Construction 3. This concludes the proof of Theorem 11. ut

D Additional Definitions

D.1 DLin assumption

We recall the definition of the DLin problem in a group G � 〈g〉 of order N, which states the

hardness of distinguishing whether z � gw1+w2
from a random group element, when given a tuple

(g , ga1 , ga2 , ga1w1 , ga2w2 , z), where ai , wi
$← ZN for i � 1, 2. The DLin assumption corresponds to

the hardness of the DLin problem.

D.2 Predicate Encryption and Inner Product Encryption

Definition 17 (Secret-Key Predicate Encryption). A secret-key predicate encryption scheme is a
tuple of PPT algorithms (Setup,TokenGen, Enc,Dec), defined as follows:

– Setup takes as input the security parameter 1κ and ouputs a secret key sk and public parameters pp;
– TokenGen takes as inputs a secret key sk and a predicate ®P and outputs a token tkP ;
– Enc takes as inputs a secret key sk and an attribute I and a message x and outputs a ciphertext ctI ,x ;
– Dec takes as input a token tkP and a ciphertext ctI ,x and outputs x or ⊥.

For correctness, we require that for any sk
$← Setup(1κ) and any pair (tkP , ctI ,x) with ctI ,x � Enc(sk, I , x)

and tkP � TokenGen(sk, P), then Dec(tkP , ctI ,x) � x ⇐⇒ P(I) � 1.

Security. A secret-key predicate encryption scheme is fully-secure if a token tk (resp. a ci-

phertext ct) reveals nothing about the predicate (resp. attribute, message) vector beyond the

value of the predicate on queried attributes (resp. the values of queried predicates on the

attribute). This security notion is defined as follows: the adversary has access to two left-or-

right oracles that can be adaptively queried with pair of predicates (P0 , P1) (resp. pair of at-

tributes and messages ((I0 , x0), (I1 , x1))) to get token tkPb (resp. ciphertext ctIb ,xb ), where b is

a fixed bit chosen at random in the Initialize procedure. At the end, the adversary outputs

a bit b′ and wins if b � b′. Once again, the adversary is restricted to avoid trivial attacks.

20



Hence, for any sequence of messages (((I(1)0 , x(1)0 ), (I
(1)
1 , x(1)1 )), . . . , ((I

(q1)
0 , x(q1)0 ), (I

(q1)
1 , x(q1)1 ))) and

predicates (P(1)0 , P(1)1 ), . . . , (P
(q2)
0 , P(q2)1 ), we require that for all 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2,

P( j)0 (I
(i)
0 ) � 1 ⇐⇒ P( j)1 (I

(i)
1 ) and if so, x(i)0 � x(i)1 .

Definition 18 (Secret-Key Inner Product Encryption). A secret-key inner product encryption

scheme is a tuple of probabilistic polynomial-time algorithms (Setup,TokenGen, Enc,Query), defined as
follows:

– Setup takes as input the security parameter 1κ and ouputs a secret key sk;
– TokenGen takes as inputs a secret key sk and a predicate vector ®y and outputs a token tk®y ;
– Enc takes as inputs a secret key sk and an attribute (or plaintext) vector ®x and outputs a ciphertext ct®x ;
– Query takes as input a token tk®y and a ciphertext ct®x and outputs 0 or 1.

For correctness, we require that for any sk
$← Setup(1κ) and any pair (tk®y , ct®x) with ct®x � Enc(sk, ®x) and

tk®y � TokenGen(sk, ®y), then Query(tk®y , ct®x) � 1 ⇐⇒ 〈®x , ®y〉 � 0.

Security. A secret-key inner product encryption scheme is fully-secure if a token tk (resp. a ciphertext
ct) reveals nothing about the predicate (resp. attribute) vector beyond the value of the predicate

on queried attributes (resp. the values of queried predicates on the attribute). This security notion

is defined as follows: the adversary has access to two left-or-right oracles that can be adaptively

queried with pair of predicates ( ®y0 , ®y1) (resp. pair of attributes (®x0 , ®x1)) to get token tk®yb
(resp.

ciphertext ct®xb
), where b is a fixed bit chosen at random in the Initialize procedure. At the end, the

adversary outputs a bit b′ and wins if b � b′. Once again, the adversary is restricted to avoid trivial

attacks. Hence, for any sequence of queries (®x(1)0 , ®x(1)1 ), . . . , (®x
(q1)
0 , ®x(q1)1 ), ( ®y

(1)
0 , ®y(1)1 ), . . . , ( ®y

(q2)
0 , ®y(q2)1 ),

we require that for all 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2, 〈®x(i)0 , ®y
( j)
0 〉 � 0 ⇐⇒ 〈®x(i)1 , ®y

( j)
1 〉 � 0.
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