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Abstract

Multilinear maps enable homomorphic computation on encoded values and a public proce-
dure to check if the computation on the encoded values results in a zero. Encodings in known
candidate constructions of multilinear maps have a (growing) noise component, which is crucial
for security. For example, noise in GGH13 multilinear maps grows with the number of levels that
need to be supported and must remain below the maximal noise supported by the multilinear
map for correctness. A smaller maximal noise, which must be supported, is desirable both for
reasons of security and efficiency.

In this work, we put forward new candidate constructions of obfuscation for which the
maximal supported noise is polynomial (in the security parameter). Our constructions are
obtained by instantiating a modification of Lin’s obfuscation construction (EUROCRYPT 2016)
with composite order variants of the GGH13 multilinear maps. For these schemes, we show that
the maximal supported noise only needs to grow polynomially in the security parameter. We
prove the security of these constructions in the weak multilinear map model that captures all
known vulnerabilities of GGH13 maps. Finally, we investigate the security of the considered
composite order variants of GGH13 multilinear maps from a cryptanalytic standpoint.

1 Introduction

Program obfuscation aims to make computer programs “unintelligible” while keeping their func-
tionalities intact. The known obfuscation constructions [25, 12, 8, 45, 5, 50, 6, 29, 7, 38, 11, 26]
are all based on new candidate constructions [24, 17, 18, 27] of multilinear maps [10], security of
which is poorly understood [24, 14, 15, 33, 16, 43].

Briefly, multilinear maps (a.k.a. graded encodings) allow “leveled” homomorphic computations
of a-priori bounded degree (say κ) polynomials on “encoded” values. Furthermore, they provide a
mechanism to publicly check if the result of a polynomial computation is a zero or not. At a high
level, known obfuscation methods map the program to a sequence of encodings. These encodings
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are such that the output of the program on a specific input is zero if and only if the output of a
corresponding input dependent polynomial (of degree κ) on the encoded values yields a zero.

Noise in GGH-based Obfuscations. Encodings in the known candidate multilinear map1

constructions are generated to have a noise component (referred to as “fresh” encoding/noise2)
that is necessary for security. Homomorphic computations on these fresh encodings yield encodings
with increased noise due to accumulation of the fresh noise (hence called “accumulated” noise). In
the candidate construction by Garg, Gentry and Halevi [24] (a.k.a. GGH), the noise level in the
fresh level-1 encodings can be set to be as low as a polynomial in the security parameter, without
hurting the security. However, the noise level in the fresh level-i encodings grow exponentially in i.3

Furthermore, the accumulated noise also grows with the number of homomorphic multiplications.
The GGH construction is parameterized by a modulus q that needs to be greater than the maximum
supported noise (referred to as “noise bound”) of any encoding in the system in order to preserve
functionality. Most obfuscation constructions involve homomorphic multiplication of polynomially
many “fresh” encodings. Therefore, these constructions need to support exponentially large noise.
An exception 4 to this is the recent construction of Lin [38] that only needs a constant number
of multiplications on composite-order multilinear maps. However, this construction still needs to
give out “fresh” encodings at polynomially high levels. Thus it would still need exponential noise
if one was to use a composite order variant of GGH multilinear maps (e.g. the one eluded to in
the first EPRINT draft of GGH [23] or the one from [30, Appendix B.3]). Another alternative is
to use a composite order variant of the [17, 18] multilinear maps, e.g. the one by Gentry et al. [30,
Appendix B.3 and B.4]. Note that in the CLT based constructions the number of primes needed
is always polynomial in the security parameter. This is the case even if the construction itself uses
a constant number of slots, as is the case in Lin’s scheme. This use of polynomially many primes
is essential for security — specifically, in order to avoid lattice attacks. Consequently, the noise
growth in this case is also exponential (as elaborated on in [30, Appendix B.5]).

In the context of GGH multilinear maps, the use of an exponential “noise bound,” and hence
the modulus q, is not desirable in light of the recent NTRU attacks5 [3, 34]. It is desirable to have
a much smaller value of q (say poly(λ)). Furthermore, having a smaller modulus offers asymptotic
efficiency improvements.

Weak Multilinear Map Model for GGH. Typically, candidate obfuscation schemes (including
the above constructions) are proven secure in so-called ideal graded encoding model, that does not
capture all the known vulnerabilities of the GGH multilinear maps [24, 33, 43]. In particular, Miles,
Sahai and Zhandry [43] exploit these vulnerabilities of GGH to show attacks against obfuscation
constructions. In light of these attacks, [43] proposed the weak multilinear map model that better

1Throughout this paper, we use multilinear maps to refer to private encoding multilinear maps. In other words,
no public low-level encodings of zero are provided in our constructions.

2By “fresh” encodings we mean that it is generated via the encoding procedure using the secret parameters and
not produced as a result of homomorphic computations.

3The reported noise is for the recommended version of the GGH multilinear maps [23, Section 6.4]. This recom-
mendation was made in [24] with the goal of avoiding averaging attacks [32, 44, 19]. Similar recommendation is made
in [3, Section 4.2].

4Another exception is [36] which uses Reniy divergence to construct a map called GGHLite that supports more
efficient concrete parameters than GGH.

5Specifically, the subfield lattice attack is sub-exponential as soon as q is super-polynomial. Furthermore, using
attack of [34] becomes polynomial for power-of-two cyclotomic fields when q = 2Ω(

√
n log logn). We note that the

attack of [34] is much more general, but we are only concerned with these parameter choices.
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captures the known vulnerabilities of the GGH multilinear maps. Subsequently, Garg et al. [26]
gave an obfuscation scheme provable secure in this model.

In this work, we ask the following question.

Can we construct an obfuscation scheme using low noise multilinear maps and prove its security
in the weak multilinear map model?

1.1 Our Result

In this work, we resolve the above question affirmatively providing new candidate indistinguishabil-
ity obfuscation constructions such that: (i) they only require a modulus q which grows polynomially
in the security parameter, and (ii) they are provably secure in the weak multilinear map model.

Our construction is instantiated using composite order GGH multilinear maps6 that are the
same as the composite order proposal of [23] except that we use a specific choice of the Lagrange
Coefficients used in Chinese Remaindering in our construction.7 This specific choice of Lagrange
Coefficients is done in order to strengthen security — specifically, in order to obtain a proof of
security in the weak multilinear map model. We evaluate the security of the GGH composite order
multilinear maps (with our choice of Lagrange Coefficients) in light of known attack strategies (see
Section C.3).

Next, in order to enable constructions with low noise, we suggest two ways to modify the GGH
sampling procedure [23, Section 6.4] such that: (i) The first one is a variation of the original GGH
sampling procedure. (ii) Our second variant departs more from the GGH sampling procedure but
obtains better efficiency in terms of the dimension of the lattice necessary. From a cryptanalytic
standpoint (see Section C.3), we do not know of any attacks against this more aggressive variation.

Additional Contribution. As mentioned earlier, recent work by Garg et al. [26] provides the first
construction of obfuscation in the weak multilinear map model. However, this construction works
by converting a circuit into a branching program. Our work also provides a direct construction
(obtained by slightly modifying our main construction) for circuits, for which security can be argued
in the weak multilinear map model. Previous works [6, 50] in this direction proved security only in
the ideal graded encoding model.

Independent and Follow-Up Work. In a concurrent and independent work, Lin and Vaikun-
tanathan [41] obtain a construction which when instantiated with GGH multilinear maps would
yield a construction that supports low noise. However, a bonus of our scheme is that it is proved
secure in the weak multilinear map model. Furthermore, the techniques introduced in this work are
orthogonal to the work of Lin and Vaikuntanathan [41] and are of independent interest. Following
[41], Lin [39] and Ananth and Sahai [4] provided constructions of iO from degree 5 multilinear
maps, which were subsequently improved to degree 3 by Lin and Tessaro [40] . Both these results

6In the first draft of [23], authors suggested a composite order variant of multilinear maps. However, in later
versions they restricted their claims to the prime order construction. This was in light of the weak-discrete log
attacks they found against their construction. However, these attacks worked only when public encodings of zero are
provided and rendered assumptions such as subgroup hiding easy. In particular, all known attacks against composite
order GGH maps use low level encodings of zero [24] or some specific high-level encodings of zero [15]. In light of the
Miles et al. attacks [43] we envision more (potential) attacks but they are all captured by the weak multilinear map
model.

7We do not provide public encodings of zero in our constructions. Therefore, they are insufficient to instantiate
the assumptions made by Gentry et al. [28, 29].
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rely on yet unrealized notions of noise-free multilinear maps and do not deal with imperfections
of candidate constructions of multilinear maps. In particular, they have no mechanism to protect
against zeroizing attacks.

Ducas and Pellet-Mary [20] consider the security of the modified straddling set systems proposed
in this work and identify a statistical leak in one of our two candidates. This statistical leak weakly
depends on the (secret) ideal generator g of the ideal lattice I. While [20] shows that this leak can
be used to attack a simplified instantiation of our multilinear maps, it falls short of a full attack.

1.2 Technical Overview

We start from a brief overview of Lin’s construction [38].

Overview of Lin’s construction: iO from constant-degree multilinear map. It has two
main steps.

Step-1: Stronger bootstrapping. All existing candidates of indistinguishability obfuscation
(iO for short) for all circuits (i.e., P/Poly) rely on “bootstrapping” iO for weaker class of
circuits. Known techniques [25, 13] require iO for NC1 to start with: the idea is to first
construct a scheme only for NC1 circuits and then use cryptographic primitives (e.g., fully
homomorphic encryption) to “bootstrap” this into a construction for P/Poly. In contrast,
[38] uses a much stronger bootstrapping technique that only requires iO (with some neces-
sary efficiency requirements) for specific constant-degree circuits (as opposed to general NC1

circuits in the earlier constructions). To realize that, only multilinear maps supporting a
constant number of multiplications suffice. Such specific circuit class is referred to as the
“seed class” and denoted by Cseed in the following.

Step-2: Special purpose iO for Cseed. In the second step, [38] gives a candidate iO-construction
for this seed class. The construction builds on the techniques from [6, 50] for obfuscating
NC1 circuits directly while ensuring constant-degree computation. Lin then proves that her
construction is secure in the ideal graded encoding model.

Our techniques: main steps. To achieve our result, we build on the bootstraping result of [38]
and focus on building the iO-candidate (Step-2) for Cseed such that it only requires a polynomial
sized modulus and is secure in weak multilinear map model. Our main steps of construction are as
follows:

1. Composite-order GGH multilinear map. We propose a composite-order extension of
the GGH multilinear map candidate. Our candidate is the same as the first proposal of GGH
maps (as in the first EPRINT version of [23]) except that we use specific Lagrange Coefficients
in Chinese Remaindering in the construction. This choice allows us to argue security in the
weak multilinear map model.

2. Security in the weak multilinear map model. We strengthen the security of the basic
iO construction of [38] via the so-called self-fortification technique, similar to [26]. As a result
we are able to prove that our construction is secure in the (GGH-based) weak multilinear map
model (see Appendix F for details on the model).
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3. GGH with low-noise. We propose two modifications of composite-order GGH multilinear
maps such that all “fresh” encodings that need to be provided in our construction can be
provided with noise of size poly(λ). Moreover, any κ degree computation results in final
encodings with noise of size O(exp(κ)poly(λ)). Using the fact that Cseed has constant degree
(i.e., κ is constant), we obtain polynomial sized modulus q.

Overview of composite-order GGH multilinear maps. An instance of the GGH scheme is
parameterized by the security parameter λ and the required multilinearity level κ ≤poly(λ). Based
on these parameters, consider the 2n-th cyclotomic ring R = Z[X]/(Xn + 1), where n is a power of
2 (n is set large enough to ensure security), and a modulus q that defines Rq = R/qR (with q large
enough to support functionality). The secret encoding procedure encodes elements of a quotient
ring R/I, where I is a principal ideal I = 〈g〉 ⊂ R, generated by g. In the composite order setting,
g is equal to a product of several (say t) “short” ring elements g1, g2, . . . , gt. These ring elements
are chosen such that the norms N(gi) = |R/〈gi〉| are equal to “large” (exponential in λ) primes pi
for each gi. By the Chinese Remainder Theorem (CRT for short) one can observe that the following
isomorphism R/I ∼= R/I1× . . .×R/It for ideals Ii = 〈gi〉 holds. Hence each element e ∈ R/I has
an equivalent CRT representation in R/I1 × . . .×R/It that is denoted by (eJ1K, . . . , eJtK). Recall
that, in this representation it holds that e ≡ eJiKmod Ii and eJiK is called the value of e in the i-th
slot ; moreover, any arithmetic operation over R/I can be done “slot-wise.” The short generator g
(and all gi) is kept secret, and no “good” description of I (or of Ii) is made public.

Let U denote the universe such that U = [`].8 To enforce the restricted multilinear structure
(a.k.a. straddling sets) secrets z1, . . . ,z` are sampled randomly from Rq (and hence, they are
“not short”). The sets v ⊆ U are called the levels. An encoding of an element a ∈ R/I at
a level v is given by e = [ã/

∏
i∈v zi]q ∈ Rq where ã is a “short element” in the coset a + I

sampled via a specific procedure.9 The quantity ‖ã‖ is called the noise of the encoding e and is
denoted by noise(e). Rigorous calculation from the sampling procedure (c.f. Sec A) shows that
noise(e) = O(exp(t, |v|)). Note that in Lin’s construction [38] as well as our construction, t will be
a constant, but |v| is not.

The arithmetic computations are restricted by the levels of the encodings: addition is allowed
between encodings in the same level whereas multiplication is allowed at levels v and v′ when
v ∩ v′ = ∅.10 Furthermore, the GGH map provides a public zero-testing mechanism to check if
any given encoding at level U is an encoding of an element that is equal to 0mod g (equivalently
0mod gi in the i-th slot for all i ∈ [t]). Notice that since the map allows κ-degree computations, the
noise in the top-level encoding resulting after such a computation can be at most O(exp(κ, t, `)).

Reducing noise in GGH. We first elaborate on the GGH sampling procedure [23, Section
6.4] as follows: To encode at level v ⊆ U, the encoding procedure samples a ring element from
the fractional ideal 〈g/zv〉, where zv =

∏
i∈v zi.

11 Hence, the amount of noise generated by the
encoding procedure depends on the size of the generator g/zv, which is in turn dominated by the

8In the actual construction the structure of the elements of U are much involved. But for simplicity here we just
assume U = [`] that suffices to convey the main idea.

9We use the notation [·]q to denote operations in Rq.
10Note that in the actual construction we use different restriction for multiplication due to difference in the structure

of the straddling levels and the universe.
11Notice that g/zv is in K. We generally use a/b ∈ K to denote “division” in the quotient field K of R for

a, b ∈ R. This is not to be confused with the notation a · [b−1]q ∈ R which is a multiplication operation in R where
the inverse [b−1]q is in Rq.
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size of 1/zv. Generally, following [24], one can sample atoms zi such that their inverse 1/zi is short
in K, say n2/q (where K is the quotient field of R). Now, expressing zv as zv =

∏
i∈v zi we obtain

‖1/zv‖ = O(exp(|v|)/q|v|). We show in Section A that the noise of the fresh encoding is dominated
by ‖zv‖·‖1/zv‖ which grows exponentially with |v|, i.e., the cardinality of v. As mentioned earlier,
in Lin’s construction, some elements are encoded at levels v of cardinality polynomial in λ resulting
in fresh encodings of noise O(exp(λ)).

To handle the noise in encodings more carefully, we provide two possible techniques specific to
our construction. The first technique is fairly simple and works by choosing the degree n of the
ring R sufficiently large (larger than the size of the circuit we obfuscate). With this parameter
choice we can guarantee with probability close to 1 that for all levels at which we encode and the
zero-testing level that ‖zv‖ · ‖1/zv‖ = poly(n). This comes at the expense of making the degree n
of the ring R grow with the size of the circuit (which is still polynomial in the security parameter).

The second technique follows a different strategy and avoids the dependence of n on the size of
the circuit. We first observe that, in our obfuscation construction many combinations of

∏
i zi (i.e.

many subsets of [`]) terms actually never arise. We illustrate our main idea with a toy example.
Assume that we only need to encode in levels v̂i = [`] \ {i} and vi = {i} for all i ∈ [`− 1] (and not
at the level {`}). Now, if we were to follow the above sampling procedure then clearly we will end
up with ‖zv̂i‖ · ‖1/zv̂i‖ = O(exp(` − 1)). Instead, we actually follow a different strategy, namely
we sample all the zi for i ∈ [`− 1] except the last z` term “as usual”, i.e. such that 1/zi is “short”
in K. However for the one remaining term (i.e. z`) we instead sample another value z?, such that
1/z? is “short” in K and then set

z` :=

[
z?

(
∏
i∈[`−1] zi)

]
q

.

Furthermore, we require that for i ∈ [` − 1], 1/[z−1
i ]q is also short in K. We can now compute a

value zv̂i := z? · [z−1
i ]q.

12 Observe that it holds that [zv̂i ]q = [
∏
i∈[`]\{i} zi]q as desired. Moreover,

1/zv̂i is now short in K:

‖1/zv̂i‖ = ‖1/(z? · [z−1
i ]q)‖ ≤

√
n · ‖1/z?‖ · ‖1/[z−1

i ]q‖,

which is “short”. The cost incurred by this modification is that 1/z` may not be “short” in K.
However, this will not pose a problem as z` is not used to sample encodings anyway (recall that
we do not require to sample at level {`}). We show that such modification brings down the noise
bound of fresh encodings to O(poly(`)exp(t)) and maximum noise bound (in any encoding produced
in our construction) to O(poly(`)exp(κ, t)). In our scheme, both κ and t will be constants.

Our security model: the weak multilinear map model. Typically, obfuscation candidates13

were proven secure in the so-called ideal graded encoding model. In contrast, we prove security
of our construction in the weak multilinear map model [43], a model that captures all currently
known vulnerabilities of multilinear maps. This model is similar to the ideal multilinear map
model (a.k.a., the ideal graded encoding model). However, it additionally allows for computation
on ring elements resulting from a zero-test performed on encodings of 0. The security definition

12Notice that, the inverse is in Rq but the product is in R
13There are some works e.g. [7, 11] that prove security of their constructions in slightly stronger models than the

ideal graded encoding model which captures some attacks on multilinear maps.

6



requires that the adversary can not come up with a polynomial which evaluates to 0 over these
post-zero ring elements. In the composite order setting we require that the adversary can not come
up with a polynomial which evaluates to 0 in any of the slots. Unlike the ideal model, this model is
not entirely agnostic about the underlying multilinear map instantiation. In particular, our weak
multilinear map model is based on the composite-order GGH multilinear maps and captures all
the attack directions investigated in our cryptanalysis.

Self-fortification from constant-degree multilinear maps. To prove security of our obfusca-
tion candidate in the weak multilinear map model, we make another modification to Lin’s obfus-
cation scheme for Cseed using a self-fortification technique similar to [26].

Recall that multilinear maps allow for testing of zero-encodings at the universe set (a.k.a. the
top level). All known attacks against multilinear map candidates exploit the “sensitive information”
leaked upon a successful zero-test. To protect against these attacks, the idea of [26] is to render
this “sensitive leakage” useless by “masking” it with a PRF output. Similarly, we achieve this by
augmenting the given circuit C with a parallel PRF computation, the output of which is used to
mask the leakage from the real computation. More care is required so that the PRF computation
does not affect the actual computation of C and “comes alive” only after a successful zero-test.

Before we describe our transformation, let us first describe the techniques of obfuscating cir-
cuits directly of [6, 50], also used in [38]. At a high level, consider a universal circuit U that
takes as input the circuit (to obfuscate) C and the input x to C and outputs C(x). The obfus-
cation consists of a collection of values in R/I encoded at carefully chosen levels (i.e., straddling
sets). Multiple slots are used where w.l.o.g. the first slot is used for actual computation and a
bunch of other slots are added with random values. These random values along with the choice
of straddling sets ensure that the random values are nullified only with a correct (and consistent)
evaluation corresponding to some input x. More precisely, a correct evaluation leads to an encoding
of (U(C, x)mod g1, 0mod g2, . . . , 0mod gt) at the highest level U; zero-testing of which would reveal
the output. On the other hand, any incorrect computation would not cancel out all random values,
and hence would result in a non-zero value in mod g with all but negligible probability.

Our idea is to add an extra slot (say the second slot) for PRF computation such that a correct
computation produces an encoding of (U(C, x)mod g1, g2 · U(CPRFψ , x), 0mod g3, . . . , 0mod gt+1)14

at the top level.15 Notice that due to a g2 multiplier in the second slot, the computation is not
affected by the PRF output as the value in the second slot is still 0mod g2. Nonetheless, we show
that a successful zero-test returns a ring element (say f) in R/I that has an additive blinding factor
α · CPRFψ(x) for some α ∈ R/I. Furthermore, we are able to show that as long as α is invertible
in (the composite order quotient ring) R/I the CRT representation of f given by (fJ1K, . . . ,fJtK)
is “somewhat random” in each slot (formally, fJiK has high min-entropy).

Cryptanalysis. In Section C.2, we discuss our change to the composite order generators g
from a cryptanalytic perspective. In a nutshell, existing lattice attacks, such as attacks against
overstretched NTRU assumptions [3, 34], do not exploit the specific distribution of instances, but
rather geometric properties (i.e. noise terms being short). Thus, our construction resists currently
known lattice attacks and there is no reason to believe choosing composite generators g =

∏
i gi

leads to less secure schemes than choosing primes ones. However, we do know that top-level

14CPRFψ is a circuit for computing PRF with the key ψ.
15In the construction this is implemented by canceling out the PRF value by multiplying with an appropriate

encoding that encodes a value which is 0mod g2 in the second slot.
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encodings of zero, with correlated randomness, can be dangerous. This is especially the case if
they can be used to obtain an element in the ideal 〈g〉. In the composite order setting, we expect
potential attacks if an element in the ideal 〈gi〉 for any i can be computed. However, all these
potential attacks are captured by the weak multilinear map model that we consider. At a high
level, our proof in the weak multilinear map model guarantees that no element in the ideal 〈gi〉 for
any i can be computed.

In Section C.3, we discuss reasons for the believed security of our variants of the GGH sampling
procedure.

1.3 Roadmap

The rest of the paper is organized as follows. In Section 2 we briefly summarize Lin’s bootstrapping
theorem and a few related definitions. Our main iO-construction is provided in Section 3. In
Section A we provide a composite-order GGH multilinear map candidate. In Section B we provide
our modifications on the composite-order GGH multilinear map to achieve low noise. We conclude
the main body of the paper in Section C with a cryptanalytic discussion of our modifications to
the asymmetric GGH multilinear maps. The formal description of weak multilinear map model is
provided in Appendix F and the preliminaries can be found in Appendix D and Appendix E.

2 Bootstrapping iO for Special Purpose Circuits

In this section, we state the main results from [38] relevant to our work.

Theorem 2.1 (Bootstrapping iO for constant degree circuits, [38], Theorem 5). Assume sub-
exponential hardness of LWE, and the existence of a sub-exponentially secure constant-degree PRG.
There exist a family of circuit classes of constant degree, such that iO for that family with universal
efficiency can be bootstrapped into iO for P/poly.

Universal efficiency means the following: iO for constant degree circuits has universal efficiency
if the run-time of the obfuscator is independent of the degree of the computation. More precisely,
there is a universal polynomial p such that for every circuit C of degree d, obfuscating C takes time
p(1λ, |C|), for a sufficiently large λ.

Moreover, in Lin’s iO construction, it does not suffice that the circuits of the seed class are of
a constant degree. In fact, the degree of multilinearity required of multilinear maps grows with the
type degree and input types of the special circuits used for bootstrapping in the above theorem.

One of the main contributions of [38] is to prove that the seed class of circuits indeed has constant
number of input types as well as constant type degree. For the purpose of being self-contained, we
define the input types and type degree first.

Definition 2.2 (Type Function, [38], Definition 18). Let Σ be any alphabet where every symbol in
Σ is represented as a binary string of length ` ∈ N. Let U(?, ?) be an arithmetic circuit over domain
Σc × {0, 1}m with some m, c ∈ N. We say that U has c input types and assign every wire w ∈ U
with a type tw ∈ Nc+1 through the following recursively defined function tw = type (U , w).

• Base Case: If w is the ith input wire,

– If i ∈ [(k − 1)`+ 1, k`] for some k ∈ [c] (meaning that w describes xk), assign type
tw = 1k (a vector with one at position k and zeros everywhere else).
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– If i ∈ [c`+ 1, c`+m] (meaning that w describes the circuit C), assign type tw = 1c+1.

• Recursion: If w is the output wire of gate g with input wires u, v of types tu = type (U , u)
and tv = type (U , v) respectively.

– If g is an addition/subtraction gate and tu = tv, then assign type tw = tu.

– Otherwise (i.e., g is a multiplication gate or tu 6= tv), then assign tw = tu + tv.

Definition 2.3 (Type Degree). We define the type degree of the following objects:

• The type degree of a wire w of U is tdeg (U , w) = |type (U , w)|1.

• The type degree of U is tdeg (U) = maxw∈U (tdeg (U , w)).

The fact that the seed class of [38] has constant input types and constant type degree is sum-
marized in the following lemma.

Lemma 2.4 (The Special-Purpose Circuits Have Constant Type-Degree, [38], Lemma 5). The class
of special purpose circuits {PT,nλ } has universal arithmetic circuits {Uλ} of constant cT,n input-types,
constant type degree tdegT,n, and size u(1λ, n, log T ), for a universal polynomial u independent of
T, n.

Given the above lemma, [38] gives an iO construction in the ideal graded encoding model, where
the oracle has degree d = O(tdeg+c), i.e. a constant. In our work, we give an iO construction that
improves upon the construction of [38] in two ways. We show that our construction is secure against
all known attacks including annihilation attacks [43] and has only a polynomial noise growth as
mentioned in Section 1.

3 Construction of the Obfuscator

In this section, we give our iO construction for the seed class of circuits from [38] and prove security
in the weak multilinear map model. We build on the construction of [38] in composite-order ideal
graded encoding model, and use new ideas to achieve security in the weak multilinear map model
and constant noise growth.

[38] gives a construction for obfuscation which obfuscates circuits with multi-bit outputs directly.
The reason stated in [38] is the following: Direct conversion from a multi-bit output circuit C
to a single-bit output circuit C̄ by taking an additional input for an index of the output wire as
C̄(x, i) = C(x)i might not preserve constant type degree of C (which is crucial for the construction).
This is because the multiplexer circuit that chooses the ith output depending on input i might not
have constant type degree. In this work, we observe that obfuscating one-bit output circuits suffices
if we give out a different obfuscation per-output bit of the circuit. Let Ci = C(x)i denote the circuit
that that outputs the ith bit of the circuit. We can easily construct Ci by removing some gates of C
that do not contribute to ith output wire. This transformation does not increase the type-degree.
Hence, for simplicity, we only focus on obfuscating Lin’s seed class of circuits for one bit outputs.

Construction Overview. Let C be a circuit that has a single bit output and which can be
computed by a universal arithmetic circuit U(x, C). Recall that x ∈ Σc and each input wire takes
in a symbol from Σ as input. At a high level, in Lin’s [38] construction, for every input wire and
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every symbol, encodings are given per symbol bit. Also, encodings are given per description bit of
the circuit C. Then given an input x, an evaluator can simply pick the encodings corresponding
to x, C and homomorphically evaluate U on the encodings of x and C to obtain an encoding of
U(x, C), which can then be zero-tested. This basic idea is not secure and [6, 38] need a composite
ring with many primes to make it secure. The actual computation happens in one of the sub-rings
and computation on random elements happen in other sub-rings to protect against input-mixing
attacks as well as low-level zeroes. Moreover, they also need carefully chosen straddling sets (to
encode the elements) to ensure input consistency.

In our case, the goal is to prove security against post-zeroizing computations as well. For this,
as already mentioned in the introduction, the main idea is the following: We add one more sub-ring
where a PRF is computed.16 The key idea is that though the PRF is being computed in only one of
the sub-rings, after zero-testing it yields a random ring element in all the sub-rings, in particular,
a random element in Rmod I, where I = 〈g〉 (c.f. Section A for definitions of R and I). So we
start by computing a one-bit PRF on input x in one of the sub-rings.

To argue security, we need that the PRF output has sufficient min-entropy. But since the PRF
has a one-bit output similar to U , it does not have enough min-entropy. So the final idea is to
compute multiple PRFs in parallel and combine them to get a ring element. In doing this, we need
to use an unbounded addition gate and need to take care that it does not blow up the type-degree
of the computation. For this, we ensure that, before being added, all PRF outputs are at the
same type-degree or straddling set and also have the same El-Gamal randomness of the encodings.
Recall that [6, 38] use El-Gamal encodings to encode elements and to be able to add two encodings
without increasing the type-degree, it is important that they have the same randomness r term.

Finally, the straddling sets are matrices of polynomial size and as detailed in Section A.2 if we
pick a zij corresponding to each entry in the matrix, the noise of encodings would be too high.
We explain in Section B, how we change the GGH instantiation of Section A to control the noise
growth.

3.1 Setting and Parameters

Consider an arbitrary circuit class {Cλ} with universal circuits {Uλ}. The universal circuit U = Uλ
has the following parameters:

• alphabet Σ with |Σ| symbols, each of length `, both |Σ| and ` being poly(λ),

• domain Σc × {0, 1}m, that is, every circuit C ∈ Cλ has input x = x1, · · · , xc where xk ∈ Σ for
every k ∈ [c] and can be described by an m-bit string,

• degree of the universal circuit is d = deg (U),

• an output wire o, denoted by t = type (U , o) ∈ Nc+1 the type of the output wire (see Defini-
tion 2.2). Note that t[k] denotes the type degree of xk in the output wire.

Recall the ring R = Z[X]/(Xn+1) defined in the composite-order GGH graded encoding scheme
(see Section A.1). In our construction, we will use PRF circuits with 1 bit output. Our construction
uses n independent PRFs, where n is the dimension of R. Let CPRFt : Σc → {0, 1} be a PRF for

16We note that such a PRF can be computed using constant input types and constant type degree. See more
details in Appendix G.2.
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all t ∈ [n]. As already shown in [38], these circuits also satisfy the constraints for constant input
types and constant type degree as the seed-class (c.f. Lemma G.9). More precisely, CPRFt(x) is a
circuit computing 1 bit for every t ∈ [n], and each circuit can be described by an m-bit string.

Encoding Levels: We specify the levels used in the iO construction in Figure 1. All levels are
represented as a (|Σ|+ 1)× (c+ 2) matrices over N.

Notation: In the following construction, we abuse the notations 0/1 to refer to both bits 0/1 and
ring elements 0/1.

∀k ∈ [c] , s ∈ Σ, ∀k ∈ [c] , s ∈ Σ,

vks =



(k)
0 · · · 0 · · · 0 0
...

. . .
...

. . .
...

...
(s) 0 · · · 1 · · · 0 0

...
. . .

...
. . .

...
...

0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0


v̂ks =



(k)
0 · · · t[k] · · · 0 0
...

. . .
...

. . .
...

...
(s) 0 · · · 0 · · · 0 0

...
. . .

...
. . .

...
...

0 · · · t[k] · · · 0 0
0 · · · 1 · · · 0 0



v∗ =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

0 · · · 0 1

 vc+1 =


0 · · · 0 1 0
...

. . .
...

...
...

0 · · · 0 1 0

0 · · · 0 0 0



ṽ =


0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

0 · · · 0 1 0

 v̄ =


0 · · · 0 1
...

. . .
...

...
0 · · · 0 1

0 · · · 0 0



vzt =


t[1] · · · t[c] t[c+ 1] + 1 1

...
. . .

...
...

...
t[1] · · · t[c] t[c+ 1] + 1 1

1 · · · 1 1 D

 where D = d+ c+ 2

Figure 1: Levels used in the obfuscation.

3.2 Our Obfuscator

Input: Security parameter λ, program description C ∈ Cλ.
Output: Obfuscated program with the same functionality as C.
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Algorithm: Our obfuscator proceeds as follows:

1. Instantiate a (c+ 3)-composite graded encoding scheme (params, sparams,pzt)← InstGen(1λ, 1c+3,vzt),
and receive a ring R ∼= R1 × R2 × · · · × Rc+3. Note that Ri ∼= Zpi for some prime pi for
all i ∈ [c + 3]. Hence, given sparams it is easy to sample a uniform element in any of the
sub-rings.

2. Compute encoding Z∗ = [w∗]v∗ for w∗ = (1, 1, 1, ρ∗1, · · · , ρ∗c) where ρ∗k
$←− Rk+3 for ∀k ∈ [c].

3. Encode the input symbol. For ∀k ∈ [c], encode the k-th input symbol:

• For every symbol s ∈ Σ, sample rks
$←− R and compute Rks =

[
rks
]
vks

.

• For ∀j ∈ [`], sample ykj
$←− R1.

• For every symbol s ∈ Σ, and every j-th bit sj , compute encoding Zks,j =
[
rks · wks,j

]
vks+v∗

for wks,j =
(
ykj , sj , sj , ρ

k
s,j,1, · · · , ρks,j,c

)
where

(
ρks,j,1, · · · , ρks,j,c

)
$←− R4 × · · · × Rc+3.

4. Encode the circuit and PRFs. Compute encoding Rc+1 =
[
rc+1

]
vc+1 where rc+1 $←− R.

For ∀t ∈ [n], generate the following encodings for program description: We will encode the
circuit C in R2 and circuit CPRFt in R3.

(a) For ∀j ∈ [m], compute encoding Zc+1
t,j =

[
rc+1 · wc+1

t,j

]
vc+1+v∗

for wc+1
t,j =

(
yc+1
t,j , Cj , CPRF

t

j , ρc+1
t,j,1, · · · , ρ

c+1
t,j,c

)
where yc+1

t,j
$←− R1 and

(
ρc+1
t,j,1, · · · , ρ

c+1
t,j,c

)
$←− R4 × · · · × Rc+3.

(b) Compute encoding Zc+1
t,m+1 =

[
rc+1 · wc+1

t,m+1

]
vc+1+v∗

for wc+1
t,m+1 =

(
yc+1
t,m+1, 1, e

t, ρc+1
t,m+1,1, · · · , ρ

c+1
t,m+1,c

)
where et is an element in the ring R

of the composite order GGH graded encoding scheme (see Section A.1),17 yc+1
t,m+1

$←− R1

and
(
ρc+1
t,m+1,1, · · · , ρ

c+1
t,m+1,c

)
$←− R4 × · · · × Rc+3. During computation, these encodings

will be used to combine the n one-bit PRF computations into a ring element.

5. Encode c elements for the purpose of canceling ρ in the last c slots: For ∀k ∈ [c] sample

ŵk =
(
ŷk, β̂k, α̂k, ρ̂k1, · · · , ρ̂kc

)
where ŷk, β̂k, α̂k, ρ̂k1, · · · , ρkc are all uniformly random except

that ρ̂kk = 0 and generate the following encodings:

For all s ∈ Σ, sample r̂ks
$←− R and compute encodings R̂ks =

[
r̂ks
]
v̂ks

and Ẑks =
[
r̂ks · ŵk

]
v̂ks+v∗

.

For the following: denote ŷ =
∏c
k=1 ŷ

k, β̂ =
∏c
k=1 β̂

k, α̂ =
∏c
k=1 α̂

k, ŵ =
∏c
k=1 ŵ

k =(
ŷ, β̂, α̂, 0, · · · , 0

)
.

17The values of et will be specified later in the proof of Theorem G.20 (Appendix G.5), which is crucial for proving
post zeroizing security, but does not affect the correctness of the obfuscator.
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6. Encode an element to cancel out the PRF computation in the 3rd slot: Compute encodings

R̃ = [r̃]ṽ and Z̃ = [r̃ · w̃]ṽ+v∗ for r̃
$←− R and w̃ =

(
ỹ, β̃, 0, ρ̃1, · · · , ρ̃c

)
where ỹ, β̃, ρ̃1, · · · , ρ̃c

are all uniformly random in respective sub-rings.

7. Encode an element for the purpose of authentication of computation: Compute encodings

R̄ = [r̄]v̄ and Z̄ = [r̄ · w̄]v̄+Dv∗ , where D = d+c+2, for r̄
$←− R and w̄ = ŵ·w̃·(ȳ, n, 0, 0, · · · , 0),

where ȳ =
∑n

t=1

(
ȳt · yc+1

t,m+1

)
for ȳt =

U
({

y1
j

}
j∈[`]

, · · · ,
{
ycj

}
j∈[`]

,
{
yc+1
t,j

}
j∈[m]

)
.

8. The obfuscation. The obfuscated program consists of the following:

• The evaluation parameters params,pzt.

• The encoding Z∗.

• For ∀k ∈ [c],∀s ∈ Σ, the encodings Rks , R̂
k
s , Ẑ

k
s , and for ∀j ∈ [`], Zks,j .

• Rc+1, and for ∀t ∈ [n],∀j ∈ [m+ 1], Zc+1
t,j .

• The encodings R̃, Z̃, R̄, Z̄.

Efficiency: It is easy to see that the number of encodings in the obfuscated program is bounded by
poly(1λ, S(λ)), where S(λ) is the size of Uλ. The size of each encoding and `1-norm of vzt are also
bounded by poly(1λ, S(λ)). It is easy to check that all poly above are fixed universal polynomials.
Therefore the size of obfuscation is bounded by p(1λ, S(λ)) for a universal polynomial, which
satisfies the universal efficiency requirement in Section 2.
Evaluation: The evaluation procedure for our obfuscation scheme is given in section A.3.
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A Composite-Order GGH Graded Encodings

In this section we describe a version of the GGH graded encoding scheme [24] that supports op-
erations over composite-order groups. Composite order instantiations are known over the inte-
gers [17, 18], but no composite-order instantiations of the GGH graded encoding scheme were
explicitly described so far. Below we describe a composite-order instantiation of GGH graded en-
coding scheme that also has a few extra properties, which allow us to use it to instantiate the self
fortification paradigm of Garg et al. [26]. Our new scheme differs from the GGH scheme only with
respect to the instance generation and encoding procedures. In a nutshell, the ideal generator g is
sampled as a product of pairwise coprime factors gi, each of which has (large) prime norm.

We use the cyclotomic field K = Q[X]/(Xn + 1) and the ring R = Z[X]/(Xn + 1). Somewhat
more subtle changes will be necessary in the encoding procedure. Given elements (a1, . . . ,a`) ∈
R/〈g1〉 × · · · × R/〈g`〉 for the slots, we will reconstruct an element a ∈ R using the Chinese
Remainder Theorem. The Chinese Remainder Theorem basis has to be chosen carefully such that
reconstructed elements a ∈ R have small size. We will use a Chinese Remainder Theorem basis
of the form (γi ·

∏
j 6=i gj)i. One technical requirement for arguing security of our obfuscator in

the weak multilinear maps model is that the γi are units in R/〈g〉. This condition can be met
by reconstructing the γi ∈ R from (1, . . . , (

∏
j 6=i gj)

−1, . . . , 1) and not reducing the basis elements
γi ·
∏
j 6=i gj modulo 〈g〉.

A.1 Our Scheme

We will now describe our instantiation of composite-order GGH scheme more formally. Let n be a
power of 2. Just like the GGH construction, we use the cyclotomic field K = Q[X]/(Xn + 1) and
the rings R = Z[X]/(Xn+1) and Rq = R/qR. Let vzt be a k1×k2 matrix of non-negative integers;
we call vzt the (straddling) universe. We refer to k1 × k2 matrices18 v of non-negative integers as
levels and define their weight as |v| =

∑
i,j vij .

Instance generation: (params, sparams,pzt)← InstGen(1λ, 1`,vzt).

• Choose invertible zij ← R×q for (i, j) ∈ [k1] × [k2] uniformly at random repeatedly until for
all i, j, ‖1/zij‖ < n2/q in K (Lemma E.4, Appendix E) 19.

• For all i ∈ [`] sample gi ← DZn,σ with σ = λ
√
n repeatedly until the following conditions are

met: (i) ‖gi‖ ≤ σ
√
n and gi is invertible in Rq, (ii) ‖1/gi‖ ≤ nc (in K)20 for an appropriate

constant c, (iii) N(gi) ≥ 2Ω(n) is a prime and (iv) for all distinct i, j the ideals 〈gi〉 and
〈gj〉 are co-prime. As argued in GGH such (g1, . . . , g`) can be obtained after an expected
polynomial number of trials under mild number-theoretic assumptions.

Denote the product
∏`
i=1 gi by g. Define the ideals Ii = 〈gi〉 and I = 〈g〉. Note that by the

Chinese Remainder Theorem (CRT for short) we have R/I ∼= R/I1 × · · · × R/I` as the ideals
Ii are pairwise coprime. Any element a in the modular ring R/I can be represented via the
CRT isomorphism as a tuple (a1, . . . ,a`) in R/I1 × · · · × R/I` and vice versa. We will use a
particular CRT basis with additional properties. Specifically, let γ1, . . . , γ` ∈ R be elements such

18Here, we are using matrices to denote levels instead of sets in order to be consistent with our construction later.
19This condition is necessary to ensure correctness of the encoding procedure.
20This technical condition is needed for the zero-test to work.
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that γi
∏
j 6=i gj ≡ 1mod gi and γi ≡ 1mod 〈gj〉 for j 6= i. Such γi ∈ R can be found by standard

Lagrange interpolation. We further assume that the γi have been reduced with Babai’s roundoff
algorithm (c.f. Appendix D.2) with respect to I = 〈g〉, i.e. it holds that for all i we have ‖γi‖ ≤
n
2 · ‖g‖. We will perform CRT reconstruction with respect to the basis {γi ·

∏
j 6=i gj}i∈[`], i.e. an

element (a1, . . . ,a`) ∈ R/I1 × · · · ×R/I` is embedded into R via

ΦB(a1, . . . ,a`) =
∑
i

ai · γi ·
∏
j 6=i
gj

We assume that each ai is represented in R and has been reduced with respect to Ii = 〈gi〉 with
Babai’s roundoff algorithms, i.e. ‖ai‖ ≤ n

2 ‖gi‖. The instance generation procedure ensures that

‖gi‖ ≤ λ · n, thus we also get that ‖g‖ ≤ n
`
2
∏
i ‖gi‖ ≤ λ`n

3
2
`. Using this, we can bound the size of

ΦB(a1, . . . ,an) by

‖ΦB(a1, . . . ,a`)‖ ≤ n(`+1)/2
∑
i

‖ai‖ · ‖γi‖ ·
∏
j 6=i
‖gj‖ ≤

`

4
λ2`nO(`) (A.1)

Looking ahead, we have this particular choice of the γi as we will later need these terms to be
invertible in R/〈g〉 in one of our security proof. In this context, notice that the ouput of ΦB is not
reduced modulo I, as this would destroy this particular structure of the γi.

Next, we sample the zero testing parameter pzt. Let zvzt ∈ R be computed by zvzt =∏
i,j z

vzt(i,j)
ij as a product in R, i.e. we have that ‖zvzt‖ ≤ nO(|vzt|) · q|vzt| and ‖1/zvzt‖ ≤

n
5
2
|vzt|/q|vzt|. We sample an element h? from a discrete gaussian with parameter

√
q · ‖zvzt/g‖ ≤√

q ·
√
n · ‖zvzt‖ · ‖1/g‖ over the fractional ideal 〈zvzt/g〉. The choice of this gaussian parameter

ensures that we can efficiently sample from this distribution via the discrete gaussian sampler (The-
orem D.2). We compute h = h? ·g/zvzt ∈ K and note that h ∈ R. If for any i ∈ {1, . . . , `} it holds
that h ∈ 〈gi〉 we reject h and resample it until h /∈ 〈gi〉 for all i. We then set pzt = [h ·zvzt · g−1]q.
Notice that by Lemma D.5 the size of h? is bounded by O(

√
q ·n · ‖zvzt‖ · ‖1/g‖). We can therefore

bound the size of h in K by

‖h‖ ≤ n · ‖h?‖ · ‖g‖ · ‖1/zvzt‖
≤ O(

√
q · n · ‖g‖ · ‖1/g‖ · ‖zvzt‖ · ‖1/zvzt‖)

≤ O(
√
q · nO(1) · ‖zvzt‖ · ‖1/zvzt‖),

i.e. the length of h is dominated by the product ‖zvzt‖ · ‖1/zvzt‖. For the above choice of zvzt
we get ‖zvzt‖ · ‖1/zvzt‖ = nO(|vzt|) and therefore ‖h‖ = O(

√
q · nO(|vzt|)), which means that

the length of h depends exponentially on |vzt|. The instance-generation procedure outputs the
public parameters params = (n, q), the public zero-test parameters pzt and the secret parameters
sparams = (g, {zij}, B).

Encoding of (a1, . . . ,a`) at level v: u← enc(sparams,v, (a1, . . . ,a`)).

First embed (a1, . . . ,a`) into R by computing a = ΦB(a1, . . . ,a`). Next, set zv =
∏
i,j z

vij
ij

and notice that it holds ‖zv‖ ≤ nO(|v|) · q|v| and ‖1/zv‖ = nO(|v|)/q|v|. Sample an element a? from
a discrete gaussian with parameter λ · ‖g/zv‖ ≤ λ ·

√
n · ‖g‖ · ‖1/zv‖ and mean 0 over the coset

a
zv

+ 〈g/zv〉 of the fractional ideal 〈g/zv〉 and set ã = a? · zv ∈ R. The choice of this gaussian
parameter ensures that we can efficiently sample from this distribution via the discrete gaussian
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sampler (Theorem D.2) and the distribution of ã depends only on the coset a + 〈g〉, but not on

the representative a. Output the encoding
[

ã
zv

]
q
∈ Rq.

The noise level of this encoding is bounded by

‖ã‖ ≤ ‖a?‖ · ‖zv‖ ≤ O(nO(1) · ‖zv‖ · ‖1/zv‖),

where we’ve bounded ‖a?‖ by O(λ · n · ‖g‖ · ‖1/zv‖) via Lemma D.5 (Appendix D.2) and used
‖g‖ ≤ nO(1). By the choice of zv we have ‖zv‖ · ‖1/zv‖ ≤ nO(|v|), which is exponential in |v|.

Adding and multiplying encodings. It is easy to see that the encoding as above is additively
homomorphic over R/I ∼= R/I1 × · · · ×R/I` for a bounded number of additions, in the sense that
adding encodings at the same level yields an encoding of the sum at the same level v. By the
triangle inequality, the size of the numerator of the sum can be bounded by the sum of the sizes of
the numerators of the summands. More precisely, let zv =

∏
i,j z

vij
ij . It holds that∑

i

[
ãi
zv

]
q

=

[∑
i ãi
zv

]
q

,

and it holds that ‖
∑

i ãi‖ ≤
∑

i ‖ãi‖.
Moreover, since I is an ideal in R, multiplying two encodings at levels v1 and v2 yields an

encoding of the product at level v1 + v2, where the size of the numerator grows as the product of
the sizes of the numerators of the multiplicands. Specifically[

ã1

zv1

]
q

·
[
ã2

zv2

]
q

=

[
ã1 · ã2

zv1+v2

]
q

,

and it holds that ‖ã1 · ã2‖ ≤
√
n · ‖ã1‖ · ‖ã2‖.

Finally, notice that via the Chinese Remainder Theorem additions and multiplications in R/I
correspond to component wise additions and multiplications in the slots R/Ii.

Zero testing: isZero(params,pzt,u)
?
= 0/1. Recall that we are testing if an encoding u is 0

(mod I), which is exactly the case if u is identically 0 in all slots. To test if a level vzt en-
coding u = [c/zvzt ]q is an encoding of 0 (mod I), we just multiply it in Rq by pzt and check
whether the resulting element w = [pzt · u]q is short (e.g., shorter than q3/4). Namely, we use the
test

isZero(params,pzt,u) =

{
1 if ‖[pztu]q‖∞ < q3/4

0 otherwise
(A.2)

We will now argue correctness of our zero-testing procedure. This is analogous to the GGH
construction but needs a reproof as we are now working with a polynomial size q (GGH used a
super-polynomial sized q). Let u = [ã/zvzt ] be a correctly computed encoding at level vzt and
assume that q is large enough such that the noise level ‖ã‖ of u is bounded by q1/8. First assume
that u is an encoding of zero at level vzt. Then it holds that ã ∈ 〈g〉 and therefore ã = r · g for an
r ∈ R. We can bound the size of r by

‖r‖ = ‖ã · g−1‖ ≤
√
n · ‖ã‖ · ‖g−1‖ ≤ q1/8 · nO(1).

Thus it holds that

[pzt · u]q =

[
h · zvzt
g

· r · g
zvzt

]
q

= [h · r]q.
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We can bound the size of h · r by

‖h · r‖ ≤
√
n · ‖h‖ · ‖r‖ ≤ √q · q1/8 · nO(|vzt|) ≤ q5/8 · nO(|vzt|).

Thus, if we choose q sufficiently large such that the above is upper bounded by q3/4, then encodings
of zero will pass the zero test.

Now assume that u is not an encoding of zero, i.e. it holds that ã /∈ 〈g〉. The zero test computes
a value

w = [pzt · u]q = [h · ã/g]q.

Assume that the zero test fails on u, i.e. it holds that ‖w‖ ≤ q3/4. Then it holds that

‖w · g‖ ≤
√
n · ‖w‖ · ‖g‖ ≤ q3/4nO(1) < q/2

and

‖h · ã‖ ≤
√
n · ‖h‖ · ‖ã‖ ≤ ‖h‖ ·B · nO(1) ≤ √q · nO(|vzt|) · q1/8 ≤ q5/8nO(|vzt|) < q/2

hold. But this means that w · g = h · ã in R, as this equality holds modulo q as both sides are
smaller than q/2. Therefore, we also have equality of ideals, i.e. 〈w〉 · 〈g〉 = 〈h〉 · 〈ã〉. Moreover, as
g = g1 · · · · · g`, it also holds that 〈g〉 = 〈g1〉 · · · · · 〈g`〉. Consequently, we have that

〈w〉 · 〈g1〉 · · · · · 〈g`〉 = 〈h〉 · 〈ã〉.

As N(gi) is prime for each gi, it holds that each 〈gi〉 is a prime ideal. Since R is a Dedekind domain,
each prime factor 〈gi〉 must either appear in 〈h〉 or 〈ã〉. Assume that a 〈gi〉 is a factor of 〈h〉. This
implies that h ∈ 〈gi〉. This however is a contradiction, as h is chosen such that h /∈ 〈gi〉 for all i.
Consequently, it must hold that all 〈gi〉 must appear in the factorization of 〈ã〉, which implies that
ã ∈ 〈g〉. This however, is a contradiction.

Thus, if we choose q sufficiently large depending on the nO(1) and nO(|vzt|) factors above, we
can conclude that the zero test has perfect correctness.

A.2 Discussion on Noise

Notice that the size of the blinding term h in the zero testing parameter pzt and the noise level
‖ã‖ depend exponentially on the size of the straddling set vzt for the zero testing parameter
and encoding level v respectively. As discussed in the description of the instance generation and
encoding procedures, the critical terms that are responsible for this exponential dependency are the
products ‖zv‖ · ‖1/zv‖ for v = vzt when we sample h and levels v at which we encode. Looking
ahead, in Section B we will remove this exponential dependency by providing a new sampling
procedure for the zij terms that is custom-made for the straddling sets used in our construction in
Section 3. This new sampling procedure will ensure that ‖zv‖ · ‖1/zv‖ ≤ nO(1) for all levels v at
which we encode and v = vzt. This will ensure that all encodings have polynomial noise level and
h has length

√
q · nO(1). Moreover, the size of the CRT encoded values a = ΦB(a1, . . . ,a`) also

depends exponentially on the number of slots `, but this will not pose a problem as our construction
in Section 3 uses a constant number of slots.

As in the discussion of the zero test, the scheme is correct if we can guarantee that the noise level
(i.e. the size of the numerator) never exceeds (say) q1/8. Thus, we will always choose the parameter
q at last as a function of all remaining parameters, including the circuit we want to evaluate. This
will become important in Section B, where we can actually choose q to be polynomial in n and the
size of a (universal) circuit.

22



A.3 Evaluating an Obfuscated Program and Correctness

To evaluate the program on an input x = x1, . . . , xc ∈ Σc, we will use the following encodings:{(
Rkxk , Z

k
xk,j

)}
k∈[c],j∈[`]

,
{(
Rc+1, Zc+1

t,j

)}
t∈[n],j∈[m+1]

,{(
R̂kxk , Ẑ

k
xk

)}
k∈[c]

,
(
R̃, Z̃

)
,
(
R̄, Z̄

)
, Z∗.

We in-line the analysis of correctness in the description of the evaluation below.

1. For every t ∈ [n], do the following:

(a) Consider the encodings
(
Rk
xk
, Zk

xk,j

)
for k ∈ [c], j ∈ [`], and

(
Rc+1, Zc+1

t,j

)
for j ∈

[m]. Apply the circuit U on these pairs of encodings. More specifically, we recursively
associate every wire α in U with a pair of encodings

(
Rα = [rα]vα , Zα = [rα · wα]vα+dαv∗

)
in El-Gamal form as follows:

Input: Two pairs of encodings
(
Rα = [rα]vα , Zα = [rα · wα]vα+dαv∗

)
and(

Rβ = [rβ]vβ , Zβ = [rβ · wβ]vβ+dβv∗

)
, encoding Z∗ = [w∗]v∗ , and an operator op,

Output: A pair of encodings
(
Rσ = [rσ]vσ , Zσ = [rσ · wσ]vσ+dσv∗

)
Algorithm:

i. Permute the operands to ensure that δ = dβ − dα ≥ 0.

ii. Consider the operator op:

• Multiplication: If op = ×, then Rσ = Rα ×Rβ and Zσ = Zα × Zβ.
(rσ = rα · rβ, vσ = vα + vβ, and dσ = dα + dβ.)

• Addition/Subtraction: If op = +/− and vα 6= vβ, then Rσ = Rα × Rβ and

Zσ = Zα ×Rβ × (Z∗)δ + /− Zβ ×Rα.
(rσ = rα · rβ, vσ = vα + vβ, and dσ = dβ.)

• Constrained Addition/Subtraction: If op = +/− and vα = vβ = v (by induction

it is guaranteed that rα = rβ = r), then Rσ = Rα and Zσ = Zα × (Z∗)δ + /− Zβ.
(rσ = r, vσ = v, and dσ = dβ.)

Figure 2: Computation over El-Gamal encodings

• Base Case: For every k ∈ [c] and every j ∈ [`], the jth input wire of xk is associated

with pair
(
Rk
xk
, Zk

xk,j

)
. For every j ∈ [m], the jth program bit is associated with(

Rc+1, Zc+1
t,j

)
.

• Recursion: For every gate g ∈ U with input wires α, β and output wire σ, apply
the computation as described in Figure 2, over the encodings Z∗, (Rα, Zα) , (Rβ, Zβ)
and the operator of g.
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A pair of encodings for the output wire o is obtained:(
RU = [rU ]vU , Zt,U = [rU · wt,U ]vU+dv∗

)
,

where (let 1 denote an all-one vector, 0 an all-zero vector, and let 1i denote a vector
with one at position i and zeros everywhere else)

vU =

[
t[1] · 1x1 · · · t[c] · 1xc t[c+ 1] · 1 0

0 · · · 0 0 0

]
,

wt,U =

(
U
({

y1
j

}
j∈[`]

, · · · ,
{
ycj
}
j∈[`]

,
{
yc+1
t,j

}
j∈[m]

)
,U (x, C) ,U

(
x, CPRF

t
)
,

?, · · · , ?)

=
(
ȳt, C(x), CPRF

t

(x), ?, · · · , ?
)
.

In the above, the values denoted by ? do not matter for correctness, and hence are not
mentioned explicitly.

(b) Take the product of (RU , Zt,U ) with
(
Rc+1, Zc+1

t,m+1

)
and obtain a pair of encodings

(computation done as in Figure 2):(
R̈U = [r̈U ]v̈U , Z̈t,U = [r̈U · ẅt,U ]v̈U+(d+1)v∗

)
, where

v̈U =

[
t[1] · 1x1 · · · t[c] · 1xc (t[c+ 1] + 1) · 1 0

0 · · · 0 0 0

]
,

ẅt,U = wt,U · wc+1
t,m+1 =

(
ȳt · yc+1

t,m+1, C(x), CPRF
t

(x) · et, ?, · · · , ?
)
.

Remark A.1. Note that our construction ensures that
(
R̈U , Z̈t,U

)
has the same level and

same r̈U for every t ∈ [n]. This is crucial to do the next step of addition of n terms using
constrained addition. This ensures that the addition does not grow the levels of multilinearity
needed.

2. Take the sum of
{(
R̈U , Z̈t,U

)}
t∈[n]

and obtain a pair of encodings:(
R̈U = [r̈U ]v̈U , Z̈U = [r̈U · ẅU ]v̈U+(d+1)v∗

)
, where

ẅU =
n∑
t=1

ẅt,U =
(
ȳ, n · C(x), CPRF(x), ?, · · · , ?

)
,

where CPRF(x) =
∑

t∈[n] e
tCPRFt(x).

3. Take the product of
(
R̈U , Z̈U

)
with the product of

{(
R̂k
xk
, Ẑk

xk

)}
k∈[c]

and obtain a pair:(
R̂U = [r̂U ]v̂U , ẐU = [r̂U · ŵU ]v̂U+(d+1+c)v∗

)
, where

v̂U =

[
t[1] · 1 · · · t[c] · 1 (t[c+ 1] + 1) · 1 0

1 · · · 1 0 0

]
,

ŵU = ŵ · ẅU =
(
ŷȳ, β̂n · C(x), α̂ · CPRF(x), 0, · · · , 0

)
.
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4. Take the product of
(
R̂U , ẐU

)
with

(
R̃, Z̃

)
and obtain a pair:(

R̃U = [r̃U ]ṽU , Z̃U = [r̃U · w̃U ]ṽU+Dv∗

)
, where

ṽU =

[
t[1] · 1 · · · t[c] · 1 (t[c+ 1] + 1) · 1 0

1 · · · 1 1 0

]
,

w̃U = w̃ · ŵU =
(
ỹŷȳ, β̃β̂n · C(x), 0, 0, · · · , 0

)
.

5. Subtract the pair
(
R̄, Z̄

)
from

(
R̃U , Z̃U

)
and obtain the pair:(

R̄U = [r̄U ]v̄U , Z̄U = [r̄U · w̄U ]v̄U+Dv∗

)
, where

v̄U =

[
t[1] · 1 · · · t[c] · 1 (t[c+ 1] + 1) · 1 1

1 · · · 1 1 0

]
,

w̄U =
(

0, β̃β̂n · (C(x)− 1) , 0, 0, · · · , 0
)
.

6. Finally, apply zero testing on Z̄U . If isZero(params,pzt, Z̄U ) = 1 then output 1, otherwise
output 0.
As analyzed above, in an honest evaluation, Z̄U is an encoding of 0 under vzt iff C(x) = 1
with high probability over choice of β̃, β̂. Hence the correctness of the evaluation procedure
follows.

Security. We prove security of our obfuscator in the weak multilinear map model in Appendix G.
We describe the weak multilinear map model formally in Appendix F. For a detailed explanation
of how this model captures all known vulnerabilities of GGH multilinear maps, see [43].

In Section B, we describe our modification of GGH instantiation for our obfuscation scheme
that achieves the desired noise growth and hence, a poly(λ) modulus q.

B Modifying GGH to Obtain Polynomial Modulus q

In this section, we will provide two possible modifications to the sampling procedure of GGH scheme
described in Section A. We can then obtain obfuscation with low noise by instantiating our scheme
(in Section 3) with either of these modified GGH multilinear maps. The modifications are specific
to our obfuscation scheme and may not work in general.

Obtaining polynomial sized modulus from polynomial noise. First, we show that once
we have ensured that it holds for all fresh encodings as well as zero-testing parameter that the
noise is at most nO(1), we can choose the modulus q as a fixed polynomial depending on all other
parameters. Recall that the multiplicative depth of the universal circuit that is used by the obfus-
cator in Section 3 is a fixed constant and the number of additions is a fixed polynomial. Thus, we
can conclude that also the noise levels of encodings of intermediate values is also at most nO(1).
Finally, as the size of the term h in the zero-testing parameter pzt = h · zvzt/g is bounded by
O(
√
q · nO(1)), applying the zero-test to top-level encodings of zero yields elements of size at most

√
q · nO(1). It is therefore sufficient to choose q as a sufficiently large polynomial (depending on all
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other parameters) to ensure correctness of the zero-test.

Reducing the noise of encodings. Before, we describe the above modifications in detail, we
discuss what we want to achieve more formally. Recall that in sampling procedure described in
Section A, the noise term of the fresh encoding at level v is O(nO(1)‖zv‖ · ‖1/zv‖). To achieve a
construction where multilinear maps only need to support poly(λ) maximal noise, we need to ensure
that the noise in all fresh encodings as well zero-testing parameter is at most poly(λ). That is, for
a encoding level v, ‖zv‖ · ‖1/zv‖ = O(nO(1)). However, as discussed in Section A.2, in general
the noise growth depends exponentially on |v| =

∑
i,j vij . While there seems to be little hope to

improve this in the general case, the straddling sets used in the construction in Section 3 are of
a very specific form. In particular, there is only a small number of levels at which elements are
encoded, c.f. to Figure 1. Both of our approaches to obtain low noise would use this fact crucially.

Next, discuss the two possible modifications separately that ensure that for all levels v at which
we encode and also for v = vzt that ‖zv‖ · ‖1/zv‖ ≤ nO(1).

The Conservative Option. Here, we observe that if all components zij are chosen uniformly
at random in R×q , then each zv ∈ R×q from the table in Figure 1 is also distributed uniformly at
random. To see this, note that in every level v in Figure 1, one of the entries vij of v is 1, including
the zero-testing level vzt. This means that zv is of the form zij · z?, where z? is independent of
zij . Therefore zv is uniform in R×q . We can conclude by Lemma E.4 that ‖1/zv‖ ≤ n2/q, except
with probability 2/n. Also, it is easy to see that by uniformity condition ‖z‖ ≤

√
nq.

Next, we apply a union bound over all the levels at which fresh encodings are generated in
obfuscation scheme. The number of levels L at which we need to encode is upper bounded by
O(c · |Σ|), both c and Σ depend only on the circuit we obfuscate, but not on the degree n of the
ring R (or to put it differently, we choose the ring R at last). Now a union bound yields that
‖zv‖ · ‖1/zv‖ ≤ nO(1) holds for all levels v at which we encode, except with probability 2L/n. This
means that if we guarantee that n is bigger than (say) 4L, then the above holds with probability
at least 1/2. This probability can in fact be made a constant arbitrarily close to 1. This means
we need to reject our (entire) choices of the zij in expectation 2 times until we found a suitable
choice. From a security standpoint, this means that the good choices of the zij are very dense in
the space of all possible choices, meaning that we do not weaken the multilinear maps. An obvious
drawback of this option is the rather large choice of n, which depends on the size of the circuit
being obfuscated, though it is still just polynomial in the security parameter λ.

The Aggressive option. We will now discuss a more aggressive sampling procedure that avoids
the union bound above, thereby avoiding the dependence of n on the number of levels L at which
we encode.

In this approach, we partition the levels into independent and dependent levels. In a nutshell,
all levels vks , v? and ṽ (these are the matrices with only a single 1 component) will be considered
independent whereas the levels v̂ks , vc+1, v̄ and vzt will be considered dependent. Sampling the zv
for the independent levels v is easy, because they only rely zij . Also, notice that for the dependent
levels vc+1, ṽ and v̄ we can sample the zvc+1 , zṽ and zv̄ directly, since their components are never
used individually. Dealing with the dependent levels v̂ks and vzt will require more work. First
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consider the a new dependent level v̂k given by

v̂k =


(k)

0 · · · t[k] · · · 0 0
...

. . .
...

. . .
...

...
0 · · · t[k] · · · 0 0
0 · · · 1 · · · 0 0


i.e. the k-th column of v̂k is t[k] everywhere but in the last component. We can express v̂ks as
v̂ks = v̂k − t[k] · vks (again c.f. to Figure 1) and therefore

zv̂ks
= zv̂k · ([z

−1
vks

]q)
t[k],

where we compute the inversion in Rq but the product in R. If we ensure that both 1/zv̂k and
1/[z−1

vks
]q are short in K, say at most n2/q then we can conclude that 1/zv̂ks

is also short in K as

‖1/zv̂ks‖ ≤ n
t[k]+1

2 · ‖1/zv̂k‖ · ‖1/[z
−1
vks

]q‖t[k] ≤ nO(1)/qt[k]+1

where we recall that t[k] is a constant. This yields that ‖zv̂ks‖ · ‖1/zv̂ks‖ ≤ n
O(1) as desired.

Finally, notice that we can sample zv̂k directly without hurting consistency, as the zs′k term
corresponding to the last row of the k-th column is never used individually. In other words, we can
first sample zv̂k and then set

zs′k = zv̂k ·

(∏
s∈Σ

z
t[k]

vks

)−1

.

Notice that we don’t have any guarantee that 1/zs′k is short in K, but that does not pose a problem
as zs′k is never used individually by the encoding procedure. Finally, notice that we can express
zvzt as

zvzt = zv̂1 . . . zv̂c · z
t[c+1]+1
vc+1 · zṽ · zv̄ · zDv? .

We can conclude that ‖1/zvzt‖ ≤ nO(c+t[c+1]+D)/qc+t[c+1]+D+3, and therefore ‖zvzt‖ · ‖1/zvzt‖ ≤
nO(1). This is because c, t[c+ 1], D are all constants.

Thus we modify our instance generation algorithm as follows. Instead of sampling all zij
individually, we sample the following denominators directly, under the constraint that the size of
their inverse in K is bounded by n2/q: zv̂k for k ∈ [c], zvks for s ∈ Σ and k ∈ [c], zvc+1 , zṽ, zv̄ and

zv? . We additionally impose the constraint that 1/[z−1
vks

]q is small in K, where [z−1
vks

]q is the inverse

of zvks in Rq. Imposing the two constraints ‖1/zvks‖ ≤ n
2/q and ‖1/[z−1

vks
]q‖ ≤ n2/q does not change

the rejection probability significantly: If z is uniform in the unit group R×q , then z−1 is also uniform
in R×q . For a uniform z in R×q it holds that ‖1/z‖ ≤ n2/q, except with probability 2/n (Lemma
E.4). Consequently, by a union bound we have that both ‖1/z‖ ≤ n2/q and ‖1/[z−1]q‖ ≤ n2/q,
except with probability 4/n. Concluding, we have ensured that it holds for all levels v at which we
encode and also for v = vzt that ‖zv‖ · ‖1/zv‖ ≤ nO(1).

27



C Discussion of Modifications and Cryptanalytical Perspective

In this section, we discuss our modifications of the GGH multilinear maps from a cryptanalytic
standpoint. Specifically, we make the following two changes to the GGH multilinear maps con-
structions:

1. We use generators g of composite structure rather than a prime. Furthermore, we choose
specific Lagrange Coefficients.

2. We make a modification to the sampling procedure of the asymmetric multilinear maps
(namely, the sampling of the denominators zij).

C.1 Already Known Attacks on GGH

We start by considering the already known attacks on GGH and how they are relevant to our
construction. In short, the basic cryptanalytic survey of [24] still holds in our setting. Furthermore,
our understanding of the attacks on GGH is improved by the zeroizing attacks [24, 14, 15, 33, 16]
and the annihilation attacks [43].

The most potent attacks that GGH found against their construction are the averaging at-
tacks [32, 44, 19]. To avoid these attacks, they suggested special sampling procedures (inspired
by the GPV sampling procedure). We use the same sampling procedures in our construction.
Therefore, we expect that our construction will resist averaging attacks.

No obfuscation construction provides any encoding of zero below the highest level. Therefore,
zeroizing attacks do not apply to our constructions. Note that all obfuscations constructions in the
literature use this guideline.

Furthermore, our construction is hardened against annihilation attacks via self-fortification.
Therefore, it also resists the annihilation attacks analogous to the obfuscation construction of Garg
et al. [26].

Two very recent works [3, 34] showed that GGH multilinear maps can be attacked for rather
broad choices of cyclotomic rings if the modulus q is super-polynomially larger than the length
of the error term in the encodings. Obfuscation constructions in the literature can be made to
resist these attacks by choosing the dimension of the lattice carefully. Our instantiation is resilient
against these attacks as we choose our modulus q to be only polynomially larger than the error
terms in the encodings. This is an added bonus of our construction.

C.2 Composite-Order GGH Multilinear Maps

Recall that we choose the ideal generator g as a composite (which is a product of several large
primes) instead of as a prime element in R to provide several independent slots in the plaintext
space, which are required for the [6] circuit obfuscation technique. Note that in our construction the
generator g itself (or, even a small multiple of it) is never exposed, as it immediately compromise
security, even in the case of a prime g.

Further, choosing g as a composite merely constitutes a change of the distribution from which
g is chosen. While [24] propose to choose g from a discrete gaussian distribution, there is no
supporting evidence such as a worst-to-average case reduction that this choice is favorable over
other distributions. In fact, there are no known lattice attacks that can distinguish encodings with
plaintext space generated by composite generators from encodings with plaintext space generated by
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prime generator, or attacks that utilize the specific distribution from which g is chosen. Generally,
lattice attacks (e.g. [37, 48, 32, 21]) rely only on geometric properties rather than distributional
properties and solve worst case (rather than average case problems).21

Analogous to GGH, one new line of attacks that we investigate for our scheme is when the
attacker can obtain a rather small elements in 〈gi〉 for some i, where g =

∏
i gi. This would

break our scheme. However, we do not know any methods for obtaining such small elements in our
construction.

Next, we note that our scheme (like all other obfuscation schemes in the literature) does not
hide relatively large (specifically, of size

√
q) elements in 〈h〉. Such elements can be obtained by

performing zero-testing operation at top level encodings of zero. However, such large elements in
〈h〉, or elements of this size in any 〈gi〉 are not useful for any of the attacks. In light of the above
discussion, the most potent new attacks could arise if an adversary can obtain elements in one of
the ideals 〈gi〉 depending on the circuit that is obfuscated. Such an attack would be a generalization
of the annihilation attacks by Miles et al [43].

To avoid this line of attacks, we define our weak multilinear map model to be a strengthening of
the one considered by Miles et al. [43]. In our model, we declare an attack successful if the attacker
can obtain any (small or large) element in any of the ideals 〈gi〉.

Recall that self-fortification in our composite order setting works by computing a PRF in a
separate slot. Due to our specific choice of the Lagrange basis (γi)i (see Section A.1), we can show
that computing a PRF in a single slot is sufficient to randomize the output of the zero test with
well spread entropy (see Thm G.20). However, the specific choice of Lagrange Coefficients affects
only the elements that are encoded and not the randomness chosen to encode them. Based on this
argument, we do not expect the choice of the Lagrange Coefficients to affect the security of our
construction.

To conclude, from our current understanding, any distributions which is both short and has
high entropy is a legitimate choice for the distribution of g. Furthermore, there is currently no
reason to believe that the composite structure provides any handle in either breaking the underlying
multilinear maps or distinguishing obfuscated circuits.

C.3 Modified Asymmetric Multilinear Maps

Recall that the safeguard of GGH against averaging attacks requires sampling of noise terms from
fractional ideals. Hence, to achieve low noise, it is necessary that for every level v at which we
encode and the zero-testing level that ‖zv‖ · ‖1/zv‖ ≤ nO(1). In the previous section, we provided
two techniques for sampling for zij that ensured this condition.

The conservative option, choosing ring R with sufficiently large degree n, ensures that this
condition is met with probability close to 1 if the zij are chosen uniformly at random. Thus, we do
not have to change the sampling procedure of the asymmetric GGH multilinear maps; the condition
we need holds with high probability.

The more aggressive option, choosing he degree of the ring R independent of the size of the
circuit we obfuscate, achieves better efficiency at the expense of enforcing a correlation between
the denominators zij . However, we note that there is no known distinguishing attack that can

21To the best of our knowledge, the only attacks against lattice based schemes using specific distributions are
attacks against signature schemes [44, 19], where the shape of distribution of signatures is learned. However, in this
case the distribution is exposed to the adversary, whereas in our case (as well as in the case of all lattice based
encryption schemes) the adversary does not directly obtain samples from the error distribution.
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exploit correlations among the zij ’s directly. Finally, the distribution of the zij only depends on
the straddling set, not the circuit and it is the same for two functionally equivalent circuits. The
indirect attacks could exploit a variant of the NTRU scheme that uses these correlated zij values.
However, we do not know any attacks in this setting. Note that GGH multilinear maps already use
zij that are correlated (though more weakly than our choice) and no attacks are known to benefit
from those correlations either.

D Preliminaries

Notations. The natural security parameter throughout this paper is λ, and all other quantities
are implicitly assumed to be functions of λ. We use standard big-O notation to classify the growth
of functions, and say that f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) · logc λ) for some fixed constant c. We
let poly(λ) denote an unspecified function f(λ) = O(λc) for some constant c. A negligible function,
denoted generically by negl(λ), is an f(λ) such that f(λ) = o(λ−c) for every fixed constant c. We
say that a function is overwhelming if it is 1− negl(λ).

The statistical distance between two distributions X and Y over a domain D is defined to be
1
2

∑
d∈D |Pr[X = d] − Pr[Y = d]|. We say that two ensembles of distributions {Xλ} and {Yλ} are

statistically indistinguishable if for every λ the statistical distance between Xλ and Yλ is negligible
in λ.

Two ensembles of distributions {Xλ} and {Yλ} are computationally indistinguishable if for every
probabilistic poly-time non-uniform (in λ) machine A, |Pr[A(1λ, Xλ) = 1] − Pr[A(1λ, Yλ) = 1]| is
negligible in λ. The definition is extended to non-uniform families of poly-sized circuits in the
standard way.

Lemma D.1 (Schwarz-Zippel Lemma). Let F be a finite field and let p ∈ F[x1, . . . , xn] be a multi-
variate polynomial of degree at most d. Further let X1, . . . , Xn be independently distributed random
variables on F such that H∞(Xi) ≥ k for all i. Then it holds that

Pr[p(X1, . . . , Xn) = 0] ≤ d

2k
,

where the probability runs over the random choices of X1, . . . , Xn.

D.1 Lattices

We denote set of complex number by C, real numbers by R, the rationals by Q and the integers
by Z. For a positive integer n, [n] denotes the set {1, . . . , n}. By convention, vectors are assumed
to be in column form and are written using bold lower-case letters, e.g. x. The ith component
of x will be denoted by xi. We will use xT to denotes the transpose of x. For a vector x in

Rn or Cn and p ∈ [1,∞], we define the `p norm as ‖x‖p =
(∑

i∈[n] |xi|p
)1/p

where p < ∞, and

‖x‖∞ = maxi∈[n] |xi| where p = ∞. Whenever p is not specified, ‖x‖ is assumed to represent the
`2 norm (also referred to as the Euclidean norm).

Matrices are written as bold capital letters, e.g. X, and the ith column vector of a matrix X is
denoted xi. Finally we will denote the transpose and the inverse (if it exists) of a matrix X with
XT and X−1 respectively.

A lattice Λ is an additive discrete sub-group of Rn, i.e., it is a subset Λ ⊂ Rn satisfying the
following properties:

30



(subgroup) Λ is closed under addition and subtraction,

(discrete) there is a real ε > 0 such that any two distinct lattice points x 6= y ∈ Λ are at distance
at least ‖x− y‖ ≥ ε.

Let B = {b1, . . . , bk} ⊂ Rn consist of k linearly independent vectors in Rn. The lattice generated
by the B is the set

L(B) = {Bz =

k∑
i=1

zibi : z ∈ Zk},

of all the integer linear combinations of the columns of B. The matrix B is called a basis for the
lattice L(B). The integers n and k are called the dimension and rank of the lattice. If n = k then
L(B) is called a full-rank lattice. We will only be concerned with full-rank lattices, hence unless
otherwise mentioned we will assume that the lattice considered is full-rank.

For lattices Λ′ ⊆ Λ, the quotient group Λ/Λ′ (also written as ΛmodΛ′) is well-defined as the
additive group of distinct cosets v+ Λ′ for v ∈ Λ, with addition of cosets defined in the usual way.

D.2 Gaussians on Lattices

Review of Gaussian measure over lattices presented here follows the development by prior works [47,
2, 42, 31, 1]. For any real s > 0, define the (spherical) Gaussian function ρs : Rn → (0, 1] with
parameter s as:

∀x ∈ Rn, ρs(x) = exp(−π〈x,x〉/s2) = exp(−π‖x‖2/s2).

For any real s > 0, any n-dimensional lattice Λ and any vector c ∈ Rn, define the (spherical)
discrete Gaussian distribution over the coset Λ + c as:

∀x ∈ Λ + c, DΛ+c,s(x) =
ρs(x)

ρs(Λ + c)
.

Klein [35] and Gentry, Peikert and Vaikuntanathan [31] provide an efficient algorithm to sample
from a discrete gaussian given a good basis. We will use a version of this algorithm due to Peikert
[46] which directly samples from a coset of a lattice.

Theorem D.2 ([46], Theorem 4.2). There exists an efficient algorithm SampleD, which given a
basis B of an n-dimensional lattice Λ and a parameter s ≥ ‖B‖ · ω(

√
log(n)) and any vector c

efficiently samples a distribution within negligible distance of DΛ+c,s.

Smoothing Parameter. Micciancio and Regev [42] introduced a lattice quantity called the
smoothing parameter, and related it other lattice parameters.

Definition D.3 (Smoothing Parameter, [42, Definition 3.1]). For an n-dimensional lattice Λ, and
positive real ε > 0, we define its smoothing parameter denoted ηε(Λ), to be the smallest s such that
ρ1/s(Λ

∗ \ {0}) ≤ ε.

Intuitively, for a small enough ε, the number ηε(Λ) is sufficiently larger than a fundamental
parallelepiped of Λ so that sampling from the corresponding Gaussian “wipes out the internal
structure” of Λ. The following Lemma D.4 formally provide this claim. Finally Lemma D.5
provides bounds on the length of a vector sampled from a Gaussian.
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Lemma D.4 ([31, Corollary 2.8]). Let Λ,Λ′ be n-dimensional lattices, with Λ′ ⊆ Λ. Then for any
ε ∈ (0, 1

2), any s ≥ ηε(Λ
′), the distribution of (DΛ,s (mod Λ′)) is within a statistical distance at

most 2ε of uniform over (Λ (mod Λ′)).

Lemma D.5 ([42, Lemma 4.4] and [9, Proposition 4.7]). For any n-dimensional lattice Λ, an
s ≥ ηε(Λ) for some negligible ε, any vector c and any constant δ > 0 we have

Pr
x←DΛ+c,s

[
(1− δ)s

√
n

2π
≤ ‖x‖ ≤ (1 + δ)s

√
n

2π

]
≥ 1− negl(n).

Invertibility of ring elements. Let R denote the 2nth cyclotomic ring and let Rq denote R/qR
for a prime q. We note that Rq is also a ring and not all elements in it are invertible. Let R×q denote
the set of elements in Rq that are invertible. We next provide a lemma of Stehlé and Steinfeld that
points out that a (large enough) random element is Rq is also in R×q with large probability.

Lemma D.6 ([49, Lemma 4.1]). Let n ≥ 8 be a power of 2 such that Xn + 1 splits into n linear
factors modulo q ≥ 5. Let σ ≥

√
n ln(2n(1 + 1/δ))/π · q1/n, for an arbitrary δ ∈ (0, 1/2). Then

Pr
f←DZn,σ

[f (mod q) /∈ R×q ] ≤ n(1/q + 2δ).

We will use the following simple lemma to lower bound the length of the shortest vector in an
ideal lattice via its norm.

Lemma D.7. Let I ⊂ R be an ideal lattice. Then it holds that λ1(I) ≥
√
n ·N(I)1/n.

Babai’s Roundoff Algorithm We will need to compute short representatives of residual classes
xmod I ∈ R/I for ideals I = 〈g〉. A simple algorithm for this task is Babai’s roundoff algorithm.
Given an x ∈ R, we can find a small representative x̂ of xmod I by computing

x̂ = x− bx · g−1e · g,

where the b·e operation round each component to the nearest integer. Clearly, it holds that x̂ ≡
xmod I and

‖x̂‖ = ‖x− bx · g−1e · g‖ = ‖(x · g−1 − bx · g−1e) · g‖

≤
√
n · ‖x · g−1 − bx · g−1e‖ · ‖g‖ ≤ n

2
· ‖g‖,

as x · g−1 − bx · g−1e ∈ K is a field element with coefficients of size at most 1/2. Therefore, if g is
short then so is x̂.

E Preliminaries for our modified GGH construction

Most parts of this section are taken verbatim from [22]. We keep this part for completeness.
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E.1 Number Fields, Ring of Integers and Ideal Lattices

A number field can be defined as field extensionK = Q(ζ) obtained by adjoining an abstract element
ζ to the field of rationals, where ζ satisfies the relation f(ζ) = 0 for some irreducible polynomial
f(X) ∈ Q[X], which is a monic (a polynomial whose leading coefficient is 1) polynomial without
loss of generality. The polynomial f(X) is called the minimal polynomial of ζ, and the degree n
of the number field is the degree of f . Because f(ζ) = 0, the number field K can be seen as an
n-dimensional vector space over Q with basis {1, ζ, . . . , ζn−1}. Associating ζ with indeterminate X
yields an isomorphism between K and Q[X]/f(X).

The ring of integers OK , of a number field K of degree n, is a free Z-module of rank n, i.e., the
set of all Z-linear combinations of some integral basis {b1, . . . , bn} ⊂ OK . Such a set is called an
integral basis, and it is also a Q-basis for K.

The case of Cyclotomic Number Fields. Let ζm = e2π
√
−1/m ∈ C denote a primitive m-th

root of unity. (Recall that an mth root of unity is said to be a primitive root if it is not a kth
root for some 0 < k < m.) The m-th cyclotomic polynomial, denote by Φm(X), is defined as the
product

Φm(X) =
∏
k∈Z∗m

(X − ζkm).

Observe that the values ζk run over all the primitive mth roots of unity in C, thus Φm(X) has
degree n = ϕ(m), where ϕ(m) denotes the Euler’s totient or phi function. Recall that if m is a
positive integer, then ϕ(m) is the number of integers in the set {1, 2, . . . ,m} that are relatively
prime to m.

The cyclotomic polynomial Φm(X) may be computed by (exactly) dividing Xn − 1 by the cy-
clotomic polynomials of the proper divisors of n previously computed recursively (setting, Φ1(X) =
X − 1) by the same method:

Φm(X) =
Xm − 1∏
d|m
d<m

Φd(X)
.

We will be most interested in the case when m ≥ 2 is a power of 2 in which case Φm(X) = Xm/2 +1.
The mth cyclotomic field Q(ζm) (with m > 2) is obtained by adjoining ζm to Q. The ring of integers
in Q(ζm) is Z(ζm). This ring Z(ζm) is called the cyclotomic ring.

Coefficient Embedding. There is also a coefficient embedding τ : K → Qn. As mentioned earlier,
since f(ζ) = 0, there is an isomorphism between Q[X] (mod f(X)) and K given by X → ζ. So, K
can be represented as a n-dimensional vector space over Q using the power basis {1, ζ, . . . , ζn−1},
and τ maps an element of K to its associated coefficient vector. When identifying an element a ∈ K
as a coefficient vector, i.e., τ(a) we denote it as a boldface vector a. Note that the addition of
vectors is done component-wise, while the multiplication is done as polynomials modulo f(X). We
define the coefficient norm of a as the norm of the vector a. Specifically, we define the `p coefficient

norm of a, denoted as ‖a‖p or ‖a‖p as
(∑

i∈[n] a
p
i

) 1
p

for p <∞, and as maxi∈[n] |ai| for p =∞. (As

always we assume the `2 norm when p is omitted.) We will use the following lemma.

Lemma E.1. Let K = Q[X]/(Xn + 1), for any positive integer n. ∀a, b ∈ K and c = a · b we
have that

‖c‖ ≤
√
n · ‖a‖ · ‖b‖.
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Definition E.2 (Ideal). An (integral) ideal I ⊆ OK is a nontrivial (i.e., nonempty and nonzero22)
additive subgroup that is closed under multiplication by OK – that is, r · g ∈ I for any r ∈ OK and
g ∈ I. A fractional ideal I ⊂ K is a set such that d · I is an integral ideal for some d ∈ OK . The
inverse I−1 of an ideal I is the set {a ∈ K : a · I ⊆ OK}.

Definition E.3. An ideal I is principal if I = 〈g〉 for g ∈ OK – that is, if one generator suffices.

E.2 Technical Lemmata

Lemma E.4. Let z ← Rq be chosen uniformly at random. Then it holds that ‖1/z‖ ≤ n2/q, except
with probability at most 2

n .

Proof. In order to upper-bound the L2 norm of the coefficient embedding, we will first upper-bound
the L∞ norm of the canonical embedding.

Let σ : K → Cn be the canonical embedding of K into Cn. Let (z0, . . . ,zn−1) be the coefficient
representation of z ∈ R. Each component σj(z) of σ(z) is the evaluation of z at an n-th root of
unity ξj ∈ C, i.e.

σj(z) =

n−1∑
i=0

zi · ξij .

As σj : K → C is a field homomorphism, it holds that σj(1/z) = 1/σj(z). Thus, it holds that
‖σ(1/z)‖∞ = maxj(|σj(1/z)|) = maxj(1/|σj(z)|). As we show below, in order to establish an
upper-bound on ‖1/z‖ it is sufficient to establish a lower bound on the |σj(z)|.

Note that each of z0, z1, . . . ,zn−1 are independently chosen. So we can fix z1, . . . ,zn−1 to some
worst case values and only consider the random choice of z0. It holds that

Pr[|σj(z)| < q/n2] = Pr[|z0 +

n−1∑
i=1

zi · ξij | < q/n2] ≤ max
z?∈C

Pr[|z0 + z?| < q/n2].

However, since z0 is is a uniformly random integer between −q/2 and q/2 (along the real line), it
holds for any choice of z? ∈ C that

Pr[|z0 + z?| < q/n2] ≤ 2 · q/n2

q
=

2

n2
.

A union bound yields that

Pr[∃j : |σj(z)| < q/n2] ≤
n−1∑
i=0

Pr[|σj(z)| < q/n2] ≤ 2

n
.

This in turn implies

Pr[∀j : |σj(z)| ≥ q/n2] ≥ 1− 2

n
.

Note that if for some z we have that ∀j : |σj(1/z)| ≤ n2/q, then this implies that ‖σ(1/z)‖∞ ≤ n2/q
as ‖σ(x)‖∞ = maxj |σj(x)|. For cyclotomic fields of order power-of-two it holds that ‖x‖2 =

1√
n
‖σ(x)‖2 by Parseval’s identity. Thus it holds that ‖1/z‖2 ≤ 1√

n
‖σ(1/z)‖2 ≤ ‖σ(1/z)‖∞ ≤ n2

q ,

which concludes the proof.

22Some texts also define the trivial set {0} as an ideal, but in this work it is more convenient to exclude it.
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We will need a generalization of the Schwarz Zippel Lemma to the composite modular rings
used by our graded encoding scheme.

Lemma E.5. Let R be a cyclotomic ring and let g = g1 · · · g` ∈ R be generator of an ideal as
sampled by our instance generation (i.e. the N(gi) are large primes). Let p ∈ R[x1, . . . , xm] be
an m-variate polynomial of degree d on R and let X1, . . . , Xm be independently distributed random
variables on R such that H∞(Ximod 〈gj〉) ≥ k for all i and j. Then it holds that

Pr[p(X1, . . . , Xn) /∈ (R/〈g〉)×] ≤ d`

2k
,

where the probability runs over the random choices of X1, . . . , Xn.

Proof. By Lemma D.1 it hold that Pr[p(X1, . . . , Xn) ≡ 0mod gj ] ≤ d
2k

for all i, as R/〈gj〉 is a prime
field of size N(gi). A union bound yields

Pr[p(X1, . . . , Xn) /∈ R×] = Pr[∃j : p(X1, . . . , Xn) ≡ 0mod gj ] ≤ ` ·
d

2k

Recall that, in our construction, a pseudorandom function is being computed in a specific
manner. For our proof, we need the output of this function to be uniform over mod I. We prove
that under appropriate choice of parameters this is indeed true.

Lemma E.6. Let g = g1 · · · g` be a generator sampled via our instance generation algorithm and
let X be a random variable on R such that it holds for each pair x1, x2 ∈ R in the support of X
that ‖x1 − x2‖ ≤

√
n. Then it holds for all i that H∞(X mod gi) = H∞(X).

Proof. The factors gi are sampled such that N(gi) = p for a prime p of size at least 2Ω(n). By
Lemma D.7 it holds that

λ1(I) ≥
√
nN(I)1/n =

√
np1/n =

√
n2Ω(1) >

√
n.

Let S be the support of X. It holds for all all pairs x1, x2 ∈ S that ‖x1−x2‖ ≤
√
n < λ1(I). Thus,

it holds that x1 − x2 /∈ I and therefore x1 6= x2 mod I, i.e. the map x 7→ xmod I is collision free
on S. We conclude that H∞(X mod I) = H∞(X).

Observe that it holds for each pair of elements x1, x2 from the boolean hypercube {0, 1}n ⊆ R
that ‖x1 − x2‖ ≤

√
n. Thus, any distribution X on {0, 1}n fulfills the requirements of Lemma E.6

and we can conclude the following.

Corollary E.7. Let g = g1 · · · g` be a generator sampled via our instance generation algorithm and
let X be any distribution on {0, 1}n ⊆ R. Then it holds for all i that H∞(X mod gi) = H∞(X).

F The Weak Multilinear Map Model

In this section, we will describe the weak multilinear map model put forth by Miles, Sahai and
Zhandry [43]. Our model differs slightly from theirs as it is based on composite-order GGH multi-
linear maps. In this model all parties have access to an oracleM implementing the graded encoding
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scheme. Informally, similar to [8],M will allow algebraic operations to be performed on encodings
through so-called “handles” on the encodings. However, unlike [8], it will also allow arbitrary poly-
nomial computation on the ring elements produced via “successful zero-tests,” through a second
type of handles.23

Similar to [8] we start by defining the weak multilinear map system.

Definition F.1 (Weak Multilinear Map System). Let R = Z[X]/Xn + 1 be the 2n-th cyclotomic
ring of integers and g1, g2, . . . gt ∈ R be “short” elements in the ring such that |R/〈gi〉| is a prime
of size ω(poly(λ)) for all i ∈ [t]. Denote the ideal generated by each gi by Ii = 〈gi〉 and by the
product g =

∏
i∈[t] gi by I = 〈g〉. Let vzt be the zero testing level. Then an encoding e of an element

t ∈ R at the level v is denoted as e = LtMv. For any such encoding e = LtMv, the corresponding ring
element t is called its representation and the set v its level. We define the following operations over
the encodings.

Addition: Given two encodings e1 = Lt1Mv1 and e2 = Lt2Mv2 where v1 = v2, e1 + e2 is defined to
be the encoding given by Lt1 + t2Mv1. Similarly, e1 − e2 is defined to be the encoding given by
Lt1 − t2Mv1.

Multiplication: Given two encodings e1 = Lt1Mv1 and e2 = Lt2Mv2, e1 · e2 is defined to be the
element given by Lt1 · t2Mv1+v2.

Ring Multiplication: Given a ring element a ∈ R and an encoding e = LtMv, the ring multipli-
cation a · e is defined to be the encoding given by e′ = La · tMv.24

Zero Testing: For any encoding e = LtMvzt, it returns 1 if and only if:

t (mod I) = 0

We now proceed to describe the weak multilinear map model. Similar to [8] we consider a
stateful oracle M mapping encodings to “generic” representations called handles. There are two
types of handles thatM generates: encoding handles that are corresponding to encodings and ring
handles that are corresponding to the elements in the ring R (obtained after successful zero-tests).
The handles are denoted by HEnc (e) for an encoding e and HRng (a) for any ring element a ∈ R. We
do not specify how the handles are generated. However, we require that the value of the handles,
HEnc (e) ,HRng (a) are independent of the corresponding encoding e and the corresponding ring
element a respectively. The oracle maintains two tables Lenc and Lrng where Lenc stores encoding-
handle pairs (e,HEnc (e)) and similarly Lrng stores pairs of the form (a,HRng (a)) where HRng (a)
is a ring handle corresponding to ring element a ∈ R. M provides the user with the following
interfaces.

• Initialization. The oracle M is initialized with the parameters of the weak multilinear
map system. Additionally, it is initialized with the encoding-handle table Lenc of initial
encodings-handles pair and the ring-handle table Lrng with ∅. After M has been initialized,
all subsequent calls to the initialization interfaces fail.

• Algebraic operations. Depending on the type of query it executes the following steps.

23A reader familiar with [43] can note that this step is analogous to the type-2 query in that model.
24Note that we abuse the notation “·” to denote both ring multiplication and multiplication between encodings.
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– Both are encoding handles: Given two encoding handles HEnc (e1) ,HEnc (e2) and an op-
eration ◦ ∈ {+,−, ·}, M first locates the relevant encodings e1 = Lt1Mv1 , e2 = Lt2Mv2

in the handle table Lenc. If any of the input handles does not appear in the table Lenc

(that is, if the handle was not previously generated by M) the call to M fails. If the
expression e1 ◦ e2 is undefined (i.e., v1 6= v2 for ◦ ∈ {+,−} or v1 + v2 � vzt for ◦ = ·)
the call fails. Otherwise, M generates a new encoding handle HEnc (e′) for e′ = e1 ◦ e2.
It appends the pair (e′,HEnc (e′)) into the table Lenc and returns HEnc (e′).

– An encoding handle and a ring element: Given a ring element a ∈ R, an encoding
handle HEnc (e) and a multiplication operation · first it checks if the encoding handle
already exists in the corresponding table Lenc.

25 If it does not exist then this call fails.
Otherwise, it computes the new encoding e′ = a · e via ring multiplication and generates
the new handle HEnc (e′). It appends the entry (e′,HEnc (e′)) into the table Lenc and
outputs HEnc (e′).

• Zero testing. Given a encoding-handle HEnc (e) as input, M first locates the corresponding
encoding e = LtMv in Lenc. If it is not found then (that is, if HEnc (e) was not previously
generated by M) then call to M fails. Otherwise, it performs zero-test on e. If the zero
test fails, then this call fails. If it passes (i.e. returns 1) then recall from Definition F.1 that
t = 0 mod g which, in turn implies that t must be of the form t = a′g. So it computes the
ring element a′ = t/g, generates the corresponding ring handle HRng (a′), appends the pair
(a′,HRng (a′)) into the table Lrng and outputs HRng (a′).

• Post-zeroizing computation. Given a non-zero polynomial p of bounded degree and a
sequence of ring handles HRng (a1) , · · · ,HRng (av),M first locates the corresponding elements
a1, · · · ,av in the table Lrng. If any of them is not found in Lrng (that is not generated by
the above zero-test query) then call to M fails. Otherwise, M evaluates the polynomial
â := p(a1, · · · ,av). Then it checks if ∃ i ∈ [t], for which â = 0 (mod Ii).26 If the check fails,
it returns 0. Otherwise, it returns 1. Furthermore, in this case M reveals its entire state
including both lists Lenc and Lrng and the secrets g1, . . . , gt.

27

Note that the construction does not need access to the post-zeroing computation. Only the
attacker gets access to these queries.

Remark F.2. We note that one natural restriction that is implicitly placed on the attacker is that
the attacker is not allowed to use the ring elements stored in the handle-table Lrng in multiplying with
the encodings itself. This is a reasonable restriction because all ring elements generated after zero-
test (the ones with corresponding handles in Lrng) are “large” and multiplying it with any encoding
makes the numerator in that encoding large enough such that no zero-test can be performed on it.

25Note that the only operation we allow is the multiplication. Moreover, for GGH construction (and for its
modification that we consider) addition of a ring element to an encoding is not well-defined.

26Note that here the model is slightly stronger than the model of [43] as an exactly equivalent model here would
have checked if the value is 0 in each slot, instead of checking at least one slot.

27Intuitively, if the adversary is able to query such a polynomial then it wins. Formally, this is captured in the
model by making the oracle to output the entire state of the oracle.
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F.1 iO in the Weak Multilinear Map Model

We now define the indistinguishability obfuscation property in an idealized model where all algo-
rithms have access to an oracleM. Later we will prove that our construction achieves this definition
in the weak multilinear map model in which M is an oracle as described above. As mentioned
earlier, our construction doesn’t need the post-zeroing computation and these queries are meant to
provide the attacker with additional power.

Definition F.3 (iO in an M-idealized model [8]). For a (possibly randomized) oracle M, and
a circuit class {C`}`∈N, we say that a uniform PPT oracle machine O is a Indistinguishability
Obfuscator for {C`}`∈N in the M-idealized model, if the following conditions are satisfied:

• Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for every possible coins
for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|),

where the probability is over the coins of O.

• Polynomial Slowdown: there exist a polynomial poly such that for every ` ∈ N and every

C ∈ C`, we have that |OM(C)| ≤ poly(|C|).

• Unbounded Simulation for every PPT adversary A there exist a possibly unbounded simulator
S, and a negligible function µ such that for all PPT distinguishers D, for every ` ∈ N and
every C ∈ C`:

|Pr[D(AM(OM(C))) = 1]− Pr[D(SC(1|C|)) = 1]| ≤ µ(|C|) ,

where the probabilities are over the coins of D, A, S, O and M.

G Security Proof

Before we give a formal proof of security of our construction in the weak multilinear map model,
we give some definitions and tools that would be useful in the security proof. These properties are
similar to the ones needed in [6, 38]. Parts of this section have been taken verbatim from [6, 38].

G.1 Useful Definitions for Security Proof

We use the same distributions on rings as in [6, 38] and we define it below.

Definition G.1. An ensemble of probability distributions {Nk} is k-admissible if Nk samples a
poly(k)-bit integer with the property that the min-entropy of every prime factor of Nk is at least
Ω(k). An ensemble of probability distributions over rings {Rk} is k-admissible if Rk ∼= ZN and the
random variable N is k-admissible.

It is not hard to see that every small fixed integer x is likely to be co-prime to y
$←− Nk. Using

this, [6] proved the following useful lemma.
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Lemma G.2 ([6], Corollary 5.7). Let L ∈ N and let L ⊆ Z \ {0} be a list of L integers such that
all x ∈ L, |x| ≤ 2poly(λ). Let R ∼= ZN be a ring where N is chosen from some (logL + ω(log λ))-
admissible distribution. Then, the probability that there exists x ∈ L which is not a unit in R is
negl(λ).

Level respecting adversaries. Here, we define the level function as well as the level respecting
adversaries. At a high level, a level-respecting adversary is an algebraic adversary, that is, one who
performs only legal operations.

Definition G.3 (Partial order of vectors). For an integer τ ∈ N, we view vectors in Nτ as multisets
over the universe [τ ]. We define a partial ordering on vectors Nτ as follows. We say that v ≤ w if
for all i ∈ [τ ] it holds that v[i] ≤ w[i]. If there exists a coordinate i for which the above does not
hold, we say that v 6≤ w.

Definition G.4 (The level function). For an arithmetic circuit C and a sequence of vectors
{v1, · · · , v`}, we define an assignment of levels to every wire w in C via the following recursive
process:

• If w is the ith input wire, label it with level vi.

• If w is the output wire of a multiplication gate in C with input wires u1 and u2 with levels
v1 6= ⊥ and v2 6= ⊥ separately, then label it with level v1 + v2.

• If w is the output wire of an addition/subtraction gate in C with input wires u1 and u2 with
levels v1 6= ⊥ and v2 6= ⊥ separately, then label it with level v1 if v1 = v2; ⊥ otherwise.

Definition G.5 (Level-respecting arithmetic circuits). We say that an arithmetic circuit C is
((v1, · · · , v`) , vzt)-respecting if the output wire w of C has level vw 6= ⊥ such that vw ≤ vzt. We
simply write vzt-respecting when (v1, · · · , v`) is clear from context.

Next we give a bound on the size of the coefficients of a polynomial computed by an arithmetic
circuit of bounded size and bounded degree.

Lemma G.6. Let C be a arithmetic circuit of size s and degree d. Then the polynomial PC has
bounded norm |PC |1 ≤ 2sd (where the norm refers to the `1 norm of the coefficient vector of PC).

Proof. We prove by induction. If the output gate of C is a multiplication gate, then consider the
two circuits representing the input wires to this gate. These circuits have size ≤ (s−1) and degrees
d1, d2 such that d1 +d2 ≤ d. By inductive hypothesis |PC |1 ≤ 2(s−1)d1 ·2(s−1)d2 ≤ 2sd. If the output
gate of C is an addition/subtraction gate, then the input wires have size s− 1 and degrees at most
d, hence |PC |1 ≤ 2(s−1)d + 2(s−1)d ≤ 2sd.

Definition G.7. Let P (X1, · · · , Xn) be a polynomial. We say that P is Xi-free if all monomials
that contain Xi take zero coefficient. We extend this notion to monomials and say that P is(∏

Xdi
i

)
-free if all monomials that are divisible by

(∏
Xdi
i

)
take zero coefficient. For a set of

monomials {M1, · · · ,Mk} we say that P is {M1, · · · ,Mk}-free if it is Mj-free for all j ∈ [k].
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G.2 Other Useful Tools from [38]

As mentioned in the iO construction (see Section 3), we would compute the circuit as well as a
PRF on the same input jointly in order to argue security against post-zeroizing attacks. Hence, we
need to argue that we can compute a PRF on polynomial sized domain (same as inputs for seed
class circuits) using constant input types and constant type degree. For this, we note that the seed
class of circuits in [38] internally compute a puncturable PRF (PPRF) and hence, it proves that
given a suitable PRG, the class of PPRF required has constant degree, constant input types and
constant type degree. We state the claims from [38] below.

The special purpose circuits require a PPRF function with input domain {0, . . . , T}, key domain
{0, 1}λ, and range {0, 1}L(λ) for L(λ) long enough to supply the random coins for one-bit output
functional encryption scheme bFE and randomized encodings RE; hence L(λ) = poly(λ, n, log T ).
The following lemma provides such a PPRF in constant degree.

Lemma G.8 ([38], Lemma 4). Assume the existence of a degree-d PRG with λ1+ε-stretch for some
constant d ∈ N and ε > 0. For every polynomial D and L, there is a degree deg ′ PPRF scheme
with input domain {0, . . . , D(λ)}, key domain {0, 1}λ, and range {0, 1}L(λ), where deg ′ ∈ N is some
constant depending on d, ε, D and L. Furthermore, if the underlying PRG is subexponentially
secure, then so is the PPRF.

Lemma G.9 ([38], Claim 4). If PRG has degree d(λ), then all output bits of PPRF in the special
purpose circuits have type degree poly(d(λ)) over same input types as special purpose circuits.

G.3 Unbounded Simulation Security

To prove security, we need to show that for any PPT adversary A, for any circuit C, there exists
an unbounded time simulator S that simulates the view of the adversary. Since we are in the
weak multilinear map model, the obfuscation that is given to A consists of handles to various
encodings depending on the circuit C. Note that the levels (v1, . . . ,v`) at which these encodings
are generated are independent of the actual circuit being obfuscated. Hence, since the encodings are
just a collection of random handles, S emulates them by sampling a collection of random handles
{HEnc (ei)} on its own and records (?,vi,HEnc (ei)). It then gives {HEnc (ei)} to A.

Now, the simulator needs to simulate the zero-test queries as well as the post-zeroizing com-
putation as part of weak multilinear map model. We describe these below. First note that since
we are in the oracle model, it suffices to consider only those polynomials for zero-testing that are
level-respecting or algebraic. Before we provide our simulator, we make some structural claims on
the polynomials being zero-tested.

Bounding the number of semi-monomials. Fix a circuit C and polynomial P that is vzt-
respecting. We can re-write P as a sum of terms in the form of M(r) · Q(w), where M is a
monomial and Q is a polynomial. Namely P =

∑
iMi(r) · Qi(w). Each term in the summation

has distinct M(r) and is referred to as a “semi-monomial”. There are at most L = 2poly(λ) terms
in the summation, for the following reason.

Lemma G.10. There are at most L = 2poly(λ) distinct M(r) monomials.

Proof. Since P is vzt-respecting, it is easy to see that the degree of P is bounded by |vzt|1, and so
is the degree of any monomial M(r) in P . Therefore, the number of distinct monomials is bounded
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by L = |r||vzt|1 where |r| is the number of r variables. In the iO construction both |r| and |vzt|1
are bounded by poly(λ). Therefore L = 2poly(λ).

In our construction R will be chosen randomly such that R ∼= ZN where N is chosen from some
(logL + ω(log λ))-admissible distribution (see Definition G.1 for admissible distributions). This
setting is chosen so that by Lemmas G.2, G.6, G.10, the coefficient of the monomials are units in
R. This would be used in proving successful simulation of zero-test queries.

Structural Analysis on the Polynomials. For each semi-monomial M(r) ·Q(w) we have the
following lemma:

Lemma G.11. There exists a constant a and w̄-free polynomial Q′(w) such that

Q(w) = a · w̄ −Q′(w).

Proof. First of all, we note that the structure of our sets prevents w̄ from being multiplied by any
of the other w variables for the following reason. w̄ is encoded at level ≥ Dv∗, and the other w
variables are encoded at level ≥ v∗. Any product of w̄ and another w variable will be at level
≥ (D + 1)v∗. Since (D + 1)v∗ 6≤ vzt, contradiction follows.

Lemma G.12. For every k ∈ [c], the polynomial Q (and hence also the polynomial Q′ from

Lemma G.11) is
(
ŵk
)2

-free.

Proof. ŵk is encoded at level v̂ks + v∗ for some s ∈ Σ, thus
(
ŵk
)2

is encoded at level ≥ v̂ks1 + v̂ks2
for some s1, s2 ∈ Σ. Since v̂ks1 + v̂ks2 6≤ vzt, contradiction follows.

The three main cases. We distinguish between the following three exhaustive cases of semi-
monomials.

• Invalid I: It holds that ŵ - Q′(w).

• Invalid II: It holds that ŵ | Q′(w), namely (by Lemma G.12) there exists Q′′(w) which is
{ŵ1, · · · , ŵc}-free such that Q′(w) = ŵ ·Q′′(w). However,

Q′′(w) 6= a · w̃ ·
n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

))
for every possible input x ∈ Σc.

• Valid: There exists x ∈ Σc such that

Q(w) = a ·

(
w̄ − ŵ · w̃ ·

n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

)))
.

Our Simulator S for Zero-Testing and Post-Zeroizing Computation.
Fix a circuit C and polynomial P which is vzt-respecting,

• Simulating zero testing:
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1. Decomposition: S first “decomposes” P as a sum of terms in the form M(r) ·Q(w),
where M is a monomial and Q is a polynomial. There are at most L = 2poly(λ) of them
by Lemma G.10.

2. Zero-testing each monomial: For each term M(r) · Q(w), S distinguishes between
the following cases:

– In cases Invalid I and Invalid II, S determines that Q is non-zero.

– In case Valid, S queries its oracle C on input x and obtains y. It determines that
Q is zero if and only if y = 1.

3. Summarizing: If for every term M(r) ·Q(w) the output of Q is determined to be zero,
then S outputs 1 (meaning that the output of P is zero) and gives a random handle
HRng (rng) to A. Otherwise, S outputs 0.

• Simulating post-zeroizing computation: S always outputs 0 (meaning that the post-
zeroing computation fails).

The simulator will produce a list L = 2poly(λ) of L integers of absolute value at most 2poly(λ).
In particular, this list would be a subset of the coefficients of the polynomial P computed by the
adversary. Since P is computable by a purely arithmetic circuit of size poly(λ) and degree at
most ||vzt||1, the bounds follow from Lemmas G.6 and G.10. We will show that as long as all the
elements of L are units in R, the simulation is successful. This happens with high probability by
Lemma G.2.

Remark G.13. Note that above we allow for zero-testing at levels lower than vzt as well and prove
what is referred to as the Strong Algebraic Security in [38]. In fact, we would prove that any
polynomial at a level v < vzt is not a zero with high probability over the randomness of encodings.
This would be crucial in proving security against post-zerozing computations in our scenario. For
security, we want that the adversary cannot come up with any polynomial that results in a zero over
encondings {HRng (rngi)}.

G.4 Correctness of Simulating Zero Test

Theorem G.14. The output of S in the zero test is correct with probability 1− negl(λ).

Proof. For each term M(r)Q(w), by lemmas G.15, G.17, G.18 (will be proved in the following), in

any of the three cases the emulation of S is correct except with probability negl(λ)
L . There are at

most L terms, by union bound the output of S in the zero test is correct except with probability
negl(λ).

Conditioned on this happening, if all of Q evaluates to 0, simulation is correct. In the other
case, polynomial P can be seen as a polynomial over variables r’s and the coefficient as Q(w). Since
one of the Q(w) evaluates to non-zero, this polynomial is not identically 0. Hence, by Lemma E.5
when values r’s are randomly chosen then the probability that P evaluates to 0 is at most negl(λ).
By union bound over all the polynomials queried by the adversary, error probability is at most
negl(λ).

Next, we prove that the simulation of each of the semi-monomials is correct. In this section, by
aJkK we denote the component of a in subring Rk for k ∈ [c+ 3].
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Lemma G.15 (Invalid I). If ŵ - Q′(w), then Pr[Q(w) = 0] = negl(λ)
L , where the probability is taken

over the randomness of R and w variables.

Proof. Recall that ŵ =
∏c
k=1 ŵ

k. Below we prove that if there is a k ∈ [c] such that ŵk - Q′, then
Q outputs zero with small probability.

Recall that Q(w) = a · w̄ − Q′(w). Consider the evaluation of Q over the (k + 3)rd sub-
ring, Q(w)Jk + 3K. Since w̄Jk + 3K = 0, it holds that Q(w)Jk + 3K = Q′(w)Jk + 3K. Recall that
Q′(w)Jk + 3K = Q′Jk + 3K(wJk + 3K) (i.e., the evaluation of Q′Jk + 3K over wJk + 3K).

Since ŵk - Q′, there exists a polynomial Q′1(w) and a ŵk-free polynomial Q′2(w) such that
Q′2(w) is not identically zero and that Q′(w) = ŵkQ′1(w) +Q′2(w). Since ŵkJk + 3K = 0, it holds
that Q′(w)Jk + 3K = Q′2(w)Jk + 3K. Note that Q′2(w) contains at least one non-zero monomial,
with coefficient α. By Lemma G.6, α has bounded `1 norm. Therefore by Lemma G.2, with
overwhelming probability α is a unit, and thus αJk + 3K is non-zero. Hence Q′2Jk + 3K (and also
Q′Jk + 3K) is not identically zero.

Recall that all w variables, except ŵk, contain random ρ elements (in particular,
{
ρk
′
s,j,k

}
s∈Σ,j∈[`],k′∈[c]

,{
ρc+1
t,j,k

}
t∈[n],j∈[m+1]

,
{
ρ̂k
′
k

}
k′ 6=k

, ρ̃k) in the (k + 3)rd slot. By Lemma E.5, the probability that

Q′Jk + 3K evaluates to zero over randomly chosen ρ variables in the (k + 3)rd sub-ring Rk+3 is
negl(λ)
L (by using the fact that the degree of Q′ is polynomial and that R is (logL + ω(log λ))-

admissible).

Lemma G.16. If ŵ | Q′(w), then there exists an input x = x1, · · · , xc such that Q′ is free of

variables
{
wks,j

}
k∈[c],s 6=xk,j∈[`]

.

Proof. Assume for the purpose of contradiction that there exists k ∈ [c], j1, j2 ∈ [`] and s1, s2 ∈ Σ
such that s1 6= s2 and that Q′ is neither wks1,j1-free nor wks2,j2-free. wks1,j1 and wks2,j2 are encoded at

levels vks1 + v∗ and vks2 + v∗ respectively. Since ŵ | Q′(w) and ŵk | Q′(w), there exists s′ ∈ Σ such

that Q′ is at level ≥ v̂ks′ . Thus Q′(w) is encoded at level ≥ vks1 +vks2 +v̂ks′ . Since vks1 +vks2 +v̂ks′ 6≤ vzt,
contradiction follows.

Lemma G.17 (Invalid II). If ŵ | Q′(w), namely there exists Q′′(w) which is {ŵ1, · · · , ŵc}-free
such that Q′(w) = ŵ ·Q′′(w). However,

Q′′(w) 6= a · w̃ ·
n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

))

for every possible input x ∈ Σc, then Pr[Q(w) = 0] = negl(λ)
L .

Proof. Consider the x from Lemma G.16, Q′′(w) is a polynomial over
{
wk
xk,j

}
k∈[c],j∈[`]

,
{
wc+1
t,j

}
t∈[n],j∈[m+1]

,

w̃. Consider Q′′(w)J1K (= Q′′J1K(wJ1K)), since all these w variables contain random y values

(=
{
ykj

}
k∈[c],j∈[`]

,
{
yc+1
t,j

}
t∈[n],j∈[m+1]

, ỹ) in the first slot, we have

Q′′J1K (wJ1K) 6= aJ1K · ỹ ·
n∑
t=1

(
yc+1
t,m+1 · U

({
y1
j

}
j∈[`]

, · · · ,
{
ycj
}
j∈[`]

,
{
yc+1
t,j

}
j∈[m]

))
.
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Consider the evaluation of Q in the first sub-ring:

Q(w)J1K =
∏
k∈[c]

ŷk·

(
aJ1K · ỹ ·

n∑
t=1

(
yc+1
t,m+1 · U

({
y1
j

}
j∈[`]

, · · · ,
{
ycj
}
j∈[`]

,
{
yc+1
t,j

}
j∈[m]

))
−Q′′J1K (wJ1K)

)
is not identically zero. By Lemma E.5, the probability that QJ1K evaluates to zero over randomly

chosen y variables in the first sub-ring R1 is negl(λ)
L (by using the fact that the degree of Q is

polynomial and that R is (logL+ ω(log λ))-admissible).

Lemma G.18 (Valid). If there exists x ∈ Σc such that

Q(w) = a ·

(
w̄ − ŵ · w̃ ·

n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

)))
,

then, if C(x) = 1 then Pr[Q = 0] = 1; if C(x) = 0 then Pr[Q = 0] = negl(λ)
L .

Proof. In this case, Q′(w) = ŵ ·Q′′(w). Consider the x from Lemma G.16, it holds that

Q′′(w) = a · w̃ ·
n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

))
.

First notice that a must be non-zero, or else Q is identically zero. Then by Lemma G.2, a is a
unit in R except with probability negl(λ)

L .
By definition Q(w) evaluates to zero on all sub-rings except the second. Therefore it suffices to

test whether Q(w)J2K is zero or not.

Q(w)J2K = aJ2K · β̂β̃ ·

(
n−

n∑
t=1

U (x, C)

)
.

If U (x, C) = 1 (i.e., C(x) = 1), then Q(w)J2K equals zero with probability 1 and so does Q(w).
Otherwise, in the case C(x) = 0, Q(w)J2K is a non-zero polynomial (with a non-zero coefficient

aJ2K) over random β̃ and
{
β̂k
}
k∈[c]

. By Lemma E.5, QJ2K (and hence Q) is non-zero except with

probability negl(λ)
L (by using the fact that the degree of Q is polynomial and that R is (logL +

ω(log λ))-admissible).

G.5 Correctness of Simulating Post-Zeroizing Computation

We first prove the following claim about the encoding that results in a successful zero-test.

Lemma G.19. If S outputs 1 for the zero test on a polynomial P , then P =
∑d

i=1Mi(r) ·Qi(w)
and with probability 1− negl(λ) it holds that d is polynomial in λ. In fact, d ≤ |Σ|c.
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Proof. Recall that if S outputs 1 for the zero test, then with probability 1 − negl(λ) every term
Mi(r) ·Qi(w) is in the valid case. For each Mi(r) ·Qi(w) term, by Lemmas G.16 and G.18 there
is a unique x ∈ Σc such that

Qi(w) = a ·

(
w̄ − ŵ · w̃ ·

n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

)))
.

By an induction on the circuit evaluation, we conclude that every Qi(w) term corresponds to a
unique level, which in turn corresponds to a unique Mi(r) term.

In other words, every Mi(r) is defined by a unique x ∈ Σc, and every x ∈ Σc can define at most
one Mi(r) term. Since the number of possible inputs is at most |Σ|c, the lemma follows.

Theorem G.20. If
{
et
}
t∈[n]

in the construction are set as follows:

et = Xt ∈ R,

where R is the ring corresponding to the composite-order GGH defined in Section A and if zero-test
of [M(r) ·Q(w)]v returns 1 (v is the level of M(r) ·Q(w)), then with overwhelming probability the
following statements are true:

• v = vzt.

• There exists x ∈ Σc such that

Q(w) = a ·

(
w̄ − ŵ · w̃ ·

n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

)))
.

• C(x) = 1.

• The corresponding encoding LaMv := [M(r) ·Q(w)]v has the property that

a =
(
α · CPRF(x) + dx

)
· g = a′ · g,

where α is a unit in R, and dx ∈ R. Recall that CPRF(x) =
∑

t∈[n] e
tCPRFt(x) =

∑
t∈[n]X

tCPRFt(x).

Proof. The first three statements follow from Lemmas G.15, G.17, G.18 and guarantee the evalua-
tion is done correctly. Recall that for ∀i ∈ [c+ 3], let γi ∈ R be such that γi ·

∏
j 6=i gj = 1(mod Ii).
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These correspond to CRT reconstruction. Since

ŵU =ŵ ·
n∑
t=1

(
wc+1
t,m+1 · U

({
w1
x1,j

}
j∈[`]

, · · · ,
{
wcxc,j

}
j∈[`]

,
{
wc+1
t,j

}
j∈[m]

))
=
(
ŷȳ, β̂n, α̂ · CPRF(x), 0, · · · , 0

)
=ŷȳ · γ1 ·

∏
j 6=1

gj + β̂n · γ2 ·
∏
j 6=2

gj + α̂ · CPRF(x) · γ3 ·
∏
j 6=3

gj ,

w̃ =
(
ỹ, β̃, 0, ρ̃1, · · · , ρ̃c

)
=ỹ · γ1 ·

∏
j 6=1

gj + β̃ · γ2 ·
∏
j 6=2

gj +
∑
k∈[c]

ρ̃k · γk+3 ·
∏

j 6=k+3

gj

 ,

w̄ =
(
ỹŷȳ, β̃β̂n, 0, 0, · · · , 0

)
=ỹŷȳ · γ1 ·

∏
j 6=1

gj + β̃β̂n · γ2 ·
∏
j 6=2

gj ,

we have

LaMv =
(
R̄, Z̄

)
−
(
R̃U , Z̃U

)
= Z̄ × R̃U − Z̃U × R̄, and

a =

r̄ ·
ỹŷȳ · γ1 ·

∏
j 6=1

gj + β̃β̂n · γ2 ·
∏
j 6=2

gj

+ d̄g

 · [r̂U · r̃ + d̃RUg
]

−

r̂U ·
ŷȳ · γ1 ·

∏
j 6=1

gj + β̂n · γ2 ·
∏
j 6=2

gj + α̂ · CPRF(x) · γ3 ·
∏
j 6=3

gj

+ d̂Ug


·

r̃ ·
ỹ · γ1 ·

∏
j 6=1

gj + β̃ · γ2 ·
∏
j 6=2

gj +
∑
k∈[c]

ρ̃k · γk+3 ·
∏

j 6=k+3

gj

+ d̃g

 · [r̄ + d̄Rg
]

=

dx − r̂U α̂γ3CPRF(x)

r̃r̄
ỹ · γ1 ·

∏
j 6=1,3

gj + β̃ · γ2 ·
∏
j 6=2,3

gj +
∑
k∈[c]

ρ̃k · γk+3 ·
∏

j 6=3,k+3

gj


+ d̃r̄

∏
j 6=3

gj

 g,
where all the d terms come from the encoding procedure, and dx depends on the input x.

Now we need to prove that the multiplicative term with CPRF(x) denoted by α in the theorem
statement is a unit in R with high probability. We will prove this by proving that α is a unit in all
sub-rings w.h.p.

Let us consider the first sub-ring R1. First of all, γ3 is an inverse in R, and r̂U α̂ is a unit in R
except with negligible probability, and so are r̃r̄ and d̃r̄. Then consider the polynomial

r̃r̄

ỹ · γ1 ·
∏
j 6=1,3

gj + β̃ · γ2 ·
∏
j 6=2,3

gj +
∑
k∈[c]

ρ̃k · γk+3 ·
∏

j 6=3,k+3

gj

+ d̃r̄
∏
j 6=3

gj .
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In the first sub-ring R1, it is r̃r̄ỹγ1 ·
∏
j 6=1,3 gj , which is a unit except with negligible probability.

A similar argument works for all sub-rings except R3. Now we will argue that αJ3K is a unit.
Notice that γ1

∏
j 6=1,3 gj , γ2

∏
j 6=2,3 gj , γk+3

∏
j 6=3,k+3 gj ,

∏
j 6=3 gj are all units in the third sub-

ring, and that ỹ, β̃, ρ̃k, d̃, r̃, r̄ are all uniformly random, hence the entire polynomial is also a unit
in the third sub-ring except with negligible probability.

This concludes that α is a unit in R with all but negligible probability.

Theorem G.21. The probability that the adversary succeeds in post-zeroizing queries is negl(λ).

Proof. Let a′i be as defined in above theorem for the Mi(r) ·Qi(w). Then, if a polynomial P given
by the adversary in encodings results in a zero, then the adversary gets a handle to a ring element
rng =

∑d
i=1 a

′
i, where d is polynomial in λ by Lemma G.19. Now, by the security of the PRF and

using the fact that P has a polynomial number of semi-monomials, we can replace the output of each
of the bit-PRFs with a uniform bit. Recall that above a′i = αi · CPRF(x) + dx,i, where CPRF(x) =∑

t∈[n]X
tCPRFt(x). That is, through a hybrid argument, we can get a′i = αiY (x) + dx,i where

Y (x) =
∑

t∈[n]X
t · bx,t where bx,t

$←− {0, 1}. Note that H∞(Y (x)) ≥ n. Hence, by Corollary E.7,

H∞(Y (x)mod 〈gi〉) = H∞(Y (x)) = H∞(a′i), where 〈gi〉 is used to define the ring Ri. In particular,
Ri = Rmod 〈gi〉.

Since αi is a unit in R by Theorem G.20 with all but negligible probability,

H∞(rngmod 〈gi〉) = H∞((

d∑
i=1

a′i)mod 〈gi〉) ≥ n.

Now, given handles to many ring elements rng1, . . . , rngk after successful zero-tests, any bounded
degree polynomial p provided by the adversary on these ring elements will be non-zero in all sub-
rings with overwhelming probability by Lemma E.5. Hence, post-zeroizing simulation is correct.
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