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Abstract. Lossy trapdoor functions (LTDFs), proposed by Peikert and
Waters (STOC’08), are known to have a number of applications in cryp-
tography. They have been constructed based on various assumptions,
which include the quadratic residuosity (QR) and decisional composite
residuosity (DCR) assumptions, which are factoring-based decision as-
sumptions. However, there is no known construction of an LTDF based
on the factoring assumption or other factoring-related search assump-
tions. In this paper, we first define a notion of adversary-dependent lossy
trapdoor functions (ad-LTDFs) that is a weaker variant of LTDFs. Then
we construct an ad-LTDF based on the hardness of factorizing RSA
moduli of a special form called semi-smooth RSA subgroup (SS) mod-
uli proposed by Groth (TCC’05). Moreover, we show that ad-LTDFs
can replace LTDFs in many applications. Especially, we obtain the first
factoring-based deterministic encryption scheme that satisfies the secu-
rity notion defined by Boldyreva et al. (CRYPTO’08) without relying
on a decision assumption. Besides direct applications of ad-LTDFs, by
a similar technique, we construct a chosen ciphertext secure public key
encryption scheme whose ciphertext overhead is the shortest among ex-
isting schemes based on the factoring assumption w.r.t. SS moduli.

1 Introduction

1.1 Background

In modern cryptography, constructing provably secure cryptographic primitives
is an important research topic. In this line of researches, Peikert and Waters [27]
proposed lossy trapdoor functions (LTDFs) and constructed a number of cryp-
tographic primitives such as a collision resistant hash function, a chosen plain-
text (CPA) and chosen ciphertext (CCA) secure public key encryption (PKE)
schemes and an oblivious transfer scheme based on LTDFs. Following the work,
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it is also shown that LTDFs can be used for constructing a deterministic encryp-
tion (DE) scheme [5] and a selective opening attack (SOA) secure PKE scheme
[3]. As seen above, LTDFs have many applications, and therefore it is important
to research concrete constructions of LTDFs.

As concrete constructions of LTDFs, Peikert and Waters [27] constructed
schemes based on the decisional Diffie-Hellman (DDH) and learning with errors
(LWE) assumptions. After that, many constructions of LTDFs have been pro-
posed thus far. Among them, LTDFs related to the factoring are based on the
quadratic residuosity (QR) [11], decisional composite residuosity (DCR) [11], Φ-
hiding [20], or general class of subgroup decision assumptions [36], all of which
are decision assumptions. On the other hand, there is no known construction
of an LTDF based on the factoring assumption or a factoring-related search
assumption. In general, search assumptions are rather weaker than decision as-
sumptions. Thus it is important to research the possibility of constructing LTDFs
based on a search assumption.

1.2 Our Result

In this paper, though we do not construct LTDFs based on the factoring assump-
tion, we construct an adversary dependent lossy trapdoor function (ad-LTDF),
which is a new notion we introduce, based on the factoring assumption w.r.t.
semi-smooth RSA subgroup (SS) moduli, which are RSA moduli of a special form
[13]. Then we show that ad-LTDFs can replace LTDFs in many applications. As
a result, we immediately obtain factoring-based cryptographic primitives includ-
ing a hash function, PKE scheme and DE scheme. Besides direct applications of
ad-LTDFs, by using similar technique, we construct CCA secure PKE scheme
with compact ciphertext based on the factoring assumption w.r.t. SS moduli.
More details are given in the following.

Adversary-dependent lossy trapdoor function. We first reconsider the
definition of LTDFs, and introduce a notion of an ad-LTDF, which is a weaker
variant of an LTDF. Intuitively, an LTDF is a computationally indistinguishable
pair of an injective and lossy functions. Here, the description of lossy functions
should be fixed by the scheme. On the other hand, for ad-LTDFs, we allow a
description of lossy function to depend on an adversary. That is, we only require
that for any efficient adversary A there exists a lossy function that A cannot
distinguish from an injective function. We observe that this significant relaxation
does not harm the security of many LTDF-based cryptographic constructions.
This is because in many LTDF-based schemes, lossy functions are used only in
security proofs and they do not appear in the real scheme. This means that even
if lossy functions depend on an adversary, we can still prove the security of the
scheme. By this observation, we can see that ad-LTDFs can replace LTDFs in
many applications.

Moreover, we construct an ad-LTDF based on the factoring assumption w.r.t.
SS moduli, which is introduced by Groth [13]. As a result, we can instantiate
many LTDF-based constructions based on the factoring assumption w.r.t. SS



moduli. The intuition of the construction of the ad-LTDF is given in Sec. 1.3.

Applications of ad-LTDFs. As stated above, ad-LTDFs can replace LTDFs in
many applications, and we give a construction of an ad-LTDF under the factoring
assumption w.r.t. SS moduli. Thus we immediately obtain new factoring-based
constructions of many cryptographic primitives such as a collision resistant hash
function, CPA secure PKE scheme and a DE scheme. Among them, the DE
scheme obtained by this way is the first factoring-based scheme that satisfies the
PRIV security for block-sources, which is defined in [5], without relying on any
decision assumption.

Table 1. Comparison among CCA secure PKE schemes based on the factoring as-
sumption: ℓN is the bit-length of an underlying composite number N , ℓMAC denotes
the bit-length of a message authentication code, Factoring SS denotes the factor-
ing assumption w.r.t. SS moduli, and we assume that an exponentiation with an
exponent of length ℓ can be computed by 1.5ℓ multiplications.

Schemes Ciphertext Public Computational cost for Assumption
overhead key size encryption decryption
(bit) (bit) (mult) (mult)

HK09 [18] 2ℓN 3ℓN 3ℓN + 3.5λ 1.5ℓN + 10.5λ Factoring
MLLJ11 [25] 2ℓN 3ℓN 18.5λ 18λ Factoring SS
Ours ℓN + ℓMAC O(λ2ℓN/ log λ) O(λℓ2N/ log λ) O(λℓ2N/ log λ) Factoring SS

CCA secure PKE with short ciphertext. Besides direct applications of ad-
LTDFs, we construct a CCA secure PKE scheme whose ciphertext overhead is
the shortest among schemes based on the factoring assumption w.r.t. SS moduli.
Table 1 shows the efficiency of CCA secure PKE schemes based on the factoring
assumption. Among existing schemes, the scheme proposed by Hofheinz and
Kiltz [18] is one of the best in regard to the ciphertext overhead, which consists
of 2 elements of Z∗N . Mei et al. [25] improved the efficiency of the Hofheinz-
Kiltz scheme [18] in regard to encryption and decryption costs by using SS
moduli. However, they did not improve the ciphertext overhead. In contrast,
the ciphertext overhead of our scheme consists of only 1 element of Z∗N and
a message authentication code (MAC), whose bit-length can be much smaller
than that of N . By giving a concrete parameter, the ciphertext overhead of
our scheme is 1360-bit for 80-bit security whereas that of [18] is 2048-bit. On
the other hand, the public key size of our scheme is much larger than that of
[18], and an encryption and decryption are much less efficient than those in
[18]. We note that the reduction from the CCA security of our scheme to the
factoring assumption w.r.t. SS moduli is quite loose, but all known CCA secure
PKE scheme based on the factoring assumption (including [18, 25]) also require
loose reductions because they require Blum-Blum-Shub pseudo-random number
generator [4].

We note that there is a strong negative result for a CCA secure PKE scheme
whose ciphertext overhead is less than 2 group elements in a prime order setting



[14]. Even in a composite order setting, there are only a few CCA secure PKE
schemes whose ciphetext overhead is less than 2 group elements, all of which rely
on a subgroup decision assumption [16, 21, 17] or an interactive assumption [19]
stronger than the factoring assumption. Ours is the first scheme to overcome this
bound based solely on the factoring assumption (though our assumption is the
factoring assumption w.r.t. SS moduli, which may not be considered standard).

1.3 Our Technique

Difficulty of constructiing LTDFs based on a search assumption. Before
explaining our technique, we first explain why it is difficult to construct LTDFs
based on a search assumption. Recall that an LTDF is a computationally indis-
tinguishable pair of injective and lossy functions. Apparently, the definition of
LTDFs itself requires the hardness of a decision problem. Thus for construct-
ing LTDFs based on a search assumption, we have to rely on some “search-to-
decision” reduction. As a general technique for such a reduction, there is the
Goldreich-Levin hardcore theorem [12], which enables us to extract “pseudoran-
domness” from hardness of any search problem. However, the Goldreich-Levin
hardcore bit destroys algebraic structures of original problems. On the other
hand, considering existing constructions of LTDFs, algebraic structures of under-
lying problems are crucial for constructing LTDFs. Thus, for constructing LTDFs
based on search assumptions, we have to establish another “search-to-decision”
reduction technique that does not hurt underlying algebraic structures. In the
context of lattice problems, this has been already done. Namely, it is shown that
search-LWE and decision-LWE assumptions are equivalent [33]. Thus LTDFs
can be constructed based on the search-LWE assumption. However, there is no
known such a reduction in the context of the factoring problem. Namely, we
have no reduction from decision assumptions such as QR, DCR, or more general
subgroup decision assumptions to the factoring assumption.

New search-to-decision reduction technique. The core of this work is to
give a new search-to-decision reduction technique in the context of factoring
w.r.t. SS moduli. Namely, we introduce a new decision assumption that we call
the adversary-dependent decisional RSA subgroup (ad-DRSA) assumption, and
reduce the ad-DRSA assumption to the factoring assumption w.r.t. SS moduli.
In the following, we explain the technique in more detail.

We say that a composite number N is an SS modulus if it can be written as
N = PQ = (2pp′+1)(2qq′+1), where P and Q are primes with the same length,
p and q are “smooth” numbers (i.e., products of distinct small primes) and p′

and q′ are relatively large primes. Then the group of quadratic residues QRN

is a cyclic group of order pqp′q′, and has many subgroups since pq is smooth.
With respect to SS moduli, Groth [13] proposed the decisional RSA subgroup
(DRSA) assumption , which claims that any PPT adversary cannot distinguish
a random element of G from that of QRN where G is the unique subgroup of
QRN of order p′q′.



Our first observation is that if there exists an algorithm that breaks the DRSA
assumption, then one can find at least one small prime that divides Φ(N). This
can be seen by the following argument: Assume that all prime factors of pq are of
ℓB-bit length. (Since pq is smooth, ℓB is relatively small. Especially, we set ℓB =
O(log λ).) Recall that the DRSA assumption claims that any PPT algorithm
cannot distinguish a random element ofG from that ofQRN . This is equivalent to
that the distributions of gp1...pM and g are indistinguishable where g

$← QRN and
p1, . . . , pM are the all ℓB-bit primes (and thus M is the number of the all ℓB-bit
primes). If there exists an algorithmA that breaks the DRSA assumption, then it
distinguishes these two distributions. Thus, by the hybrid argument, there exists
j ∈ [M ] such that A distinguishes the distribution of gp1...pj−1 from gp1,...pj . By
using A, one can find this pj by the exhaustive search since M is polynomial in
the security parameter in our parameter setting. (See Sec. 2.4 for more detail.)
For this pj , we have pj |Φ(N) (with overwhelming probability) since otherwise
pj-th power on QRN is a permutation on the group and thus distributions of
gp1...pj−1 and gp1,...pj are completely identical. The above argument proves that
if there exists an algorithm that breaks the DRSA assumption, then one can find
at least one small prime that divides Φ(N). However, this fact states nothing
about the reduction from the DRSA assumption to the factoring assumption
since even if one can find one small prime p that divides Φ(N), we do not know
how to factorize N .

Here, we relax the DRSA assumption to define the adversary-dependent deci-
sional RSA subgroup (ad-DRSA) assumption. Intuitively, the ad-DRSA assump-
tion claims that for any PPT adversary A, there exists a subgroup SA of QRN

such that A does not distinguish a random element of SA from that of QRN .
More precisely, the ad-DRSA assumption is parametrized by an integer m ≤M ,
and m-ad-DRSA assumption claims that for any PPT algorithm A, there ex-
ists at least one choice of p1, . . . pm out of all ℓB-bit primes such that A cannot
distinguish gp1...pm from g where g

$← QRN . By this definition, if there exists a
PPT algorithm A that breaks the m-ad-DRSA assumption, then A distinguishes
gp1...pm from g for all choices of p1, . . . , pm. If m is sufficiently smaller than M ,
then there exists “many” choices of p1, . . . , pm and thus one can find “many”
primes that divides Φ(N): One can find at least one such prime for each choice
of p1, . . . , pm by the similar method as in the case of the DRSA assumption.
Then the product of these primes is a large divisor of Φ(N) and thus one can
factorize N by using the Coppersmith theorem [6], which claims that if one is
given a “large” divisor of Φ(N), then one can factorize N efficiently. Thus, the
m-ad-DRSA assumption is reduced to the factoring assumption.

Remark 1 We remark that if m is so small that there exists a choice of p1, . . . , pm,
all of which are coprime to Φ(N), then the m-ad-DRSA assumption is trivial
since in that case g and gp1...pm are distributed identically. We show that there
exists a parameter choice such that m-ad-DRSA assumption is non-trivial and
it can be reduced to the factoring assumption simultaneously.

How to use the ad-DRSA assumption. As explained above, we show a
reduction from the ad-DRSA assumption, which is a certain type of a subgroup



assumption, to the factoring assumption. However, the ad-DRSA assumption is
not an ordinary subgroup decision assumption: Roughly speaking, it only claims
that for any PPT adversary A, there exists a subgroup SA ∈ QRN such that
A cannot distinguish random elements of SA from QRN . Therefore, it cannot
be used for constructions where elements of a subgroup are used in the real
descriptions of the scheme. On the other hand, if elements of a subgroup are
used only in the security proof, the ad-DRSA assumption suffices. We give two
examples of such cases.

One is ad-LTDFs. As explained in Sec. 1.2, ad-LTDFs is a relaxation of
LTDFs such that descriptions of lossy functions can depend on an adversary.
For constructing ad-LTDFs based on the ad-DRSA assumption, we simply im-
itate the construction by Xue et al. [36], who constructed LTDFs based on the
(standard) DRSA assumption. We observe that in their construction, the de-
scriptions of injective functions consist only of elements of QRN , and elements
of its subgroup are used only in the descriptions of lossy functions. Therefore even
if we replace the DRSA assumption with the ad-DRSA assumption, only lossy
functions depend on an adversary. This meets the definition of the ad-LTDFs.

The other is the hash-proof system-based CCA secure public key encryption.
Hofheniz and Kiltz [16] introduced the concept of constraind CCA (CCCA)
security, and showed efficient constructions of CCA secure public key encryption
schemes based on a hash proof system, which can be constructed from any
subgroup decision assumption [8]. Though elements of a subgroup are used in
the real protocol of their original construction, it is easy to see that even if
elements of a subgroup are replaced with those of a larger group, the scheme
is still secure because they are indistinguishable by the assumption. Thus that
scheme can be instantiated based on the ad-DRSA assumption.

1.4 Discussion

Plausibility of the factoring assumption w.r.t. SS moduli. Here, we dis-
cuss the plausibility of the assumption we used. SS moduli was first introduced
by Groth [13] in 2005 and they have been used in some works [25, 36, 37]. All of
these works assume the factoring assumption w.r.t. SS moduli (or more stronger
assumptions). On the other hand, in 2011, Coron et.al. [7] gave a cryptanalysis
against the Groth’s work [13]. However, they did not improve attacks against
SS moduli. Thus, we can say that SS moduli has attracted a certain amount
of attention in the sense of both constructions and cryptanalysis, but no fatal
attack is found thus far. Therefore we believe that the hardness of factoring SS
moduli is rather reliable.

Interpretation of our result. In this paper, we constructed a weaker variant
of LTDF (ad-LTDF) based on the factoring assumption w.r.t. SS moduli. One
may wonder how meaningful our result is since an SS modulus is not an RSA
modulus of a standard form. We believe that our result is meaningful in terms
of that we constructed an “LTDF-like primitive” (ad-LTDF), which can replace
LTDFs in many applications, based on a search assumption (factoring w.r.t. SS



moduli) rather than a decision assumption. Although the application given in
this paper is limited to the case of SS moduli, we hope that our new search-to-
decision reduction technique can be extended to other general settings.

Limitation of ad-LTDFs. Though ad-LTDFs can replace LTDFs in many
cases, there exist some LTDF-based primitives that cannot be obtained from ad-
LTDFs. A typical example is the oblivious transfer protocol proposed by Peikert
and Waters [27]. The reason why we cannot construct the scheme based on ad-
LTDFs is that in the scheme, a lossy function is explicitly required. Specifically,
a receiver sends a pair of injective and lossy functions to a sender. Since we
cannot specify a lossy function before fixing an adversary, we cannot instantiate
this scheme based on ad-LTDFs.

1.5 Related Work

Deterministic encryption. Bellare et al. [1] initiated the study of DE, defined
the security notion of DE called the PRIV security, and gave constructions of
PRIV secure DE schemes in the random oracle model. Boldyreva et al. [5] slightly
weakened the PRIV security to what they call the PRIV security for block-
sources, and constructed DE schemes with this security in the standard model
based on LTDFs. Bellare et al. [2] showed that DE scheme with a weaker security
notion (where messages are uniformly random) can be constructed from any one-
way trapdoor permutation. In this paper, we only consider the PRIV security
for block-sources as defined in [5].

Factoring based CCA secure PKE schemes. In 2009, Hofheinz and Kiltz
[18] proposed the first practical CCA secure PKE scheme under the factoring
assumption in the standard model. After that, many variants of the scheme are
proposed thus far [25, 24, 23, 37]. However, none of them improve the ciphertext
overhead of the scheme. On the other hand, the ciphretext overhead of our
proposed scheme is shorter than those of them.

2 Preliminaries

Here we review some basic notations and definitions.

2.1 Notations

We use N to denote the set of all natural numbers and [n] to denote the set

{1, . . . n} for n ∈ N. If S is a finite set, then we use x
$← S to denote that x is

chosen uniformly at random from S. If A is an algorithm, we use x ← A(y) to
denote that x is output by A whose input is y. For a finite set S, |S| denotes the
cardinality of S. For a real number x, ⌈x⌉ denotes the smallest integer not smaller
than x and ⌊x⌋ denotes the largest integer not larger than x. For a bit string a, ℓa
denotes the length of a. For a function f in λ, we often denote f to mean f(λ) for



notational simplicity. We say that a function f(·) : N→ [0, 1] is negligible if for
all polynomials p(·) and all sufficiently large λ ∈ N, we have f(λ) < |1/p(λ)|. We
say f is overwhelming if 1−f is negligible. We say that a function f(·) : N→ [0, 1]
is noticeable if there exists a polynomial p such that for all sufficiently large λ,
we have f(λ) > |1/p(λ)|. We say that an algorithm A is probabilistic polynomial
time (PPT) if there exists a polynomial p such that running time of A with input
length λ is less than p(λ). We use a|b to mean that a is a divisor of b. For a natural
number N , Φ(N) denote the number of natural numbers smaller than N that
are coprime to N . For random variables X and Y , ∆(X,Y ) denote the statistical
distance between them. We use the fact that for any (probabilistic) function f ,
∆(f(X), f(Y )) ≤ ∆(X,Y ) holds, and that ∆((X1, Z), (Y1, Z)) = EZ [∆(X1, Y1)]
where E denotes the expected value. For random variables X and Y , we define
min-entropy ofX asH∞(X) := − log(maxx Pr[X = x]) and average min-entropy
of X given Y as H̃∞(X|Y ) := − log(Σy Pr[Y = y]maxx Pr[X = x|Y = y]). We
use λ to denote the security parameter.

2.2 Syntax and Security Notions

Here, we review definitions of cryptographic primitives.

Pairwise independent hash function. We say that a family H of hash func-
tions from {0, 1}n to {0, 1}m is pairwise independent if for any x1 ̸= x2 ∈ {0, 1}n
and y1, y2 ∈ {0, 1}m, Pr[H(x1) = y1 ∧H(x2) = y2 : H

$← H] = 2−2m holds.

Collision resistant hash function. We formalize a collision resistant hash
function as a pair of PPT algorithms Π = (Gen,Eval). Gen takes the security
parameter 1λ as input and outputs a function description h. Eval is a determinis-
tic algorithm that takes a function description h and x as input and outputs h(x).
We require that for any PPT adversary A, AdvCRA,Π(λ) := Pr[h(x) = h(x′), x ̸=
x′ : h← Gen(1λ); (x, x′)← A(h)] is negligible.

Public key encryption.A PKE scheme consists of three algorithms (Gen,Enc,Dec).
Gen takes the security parameter 1λ as input and outputs (PK,SK), where PK
is a public key and SK is a secret key. Enc takes a public key PK and a mes-
sage msg as input and outputs a ciphertext C. Dec takes a secret key SK and
a ciphertext C as input and outputs a massage msg. We require that for all
(PK,SK) output by Gen, all msg and all C output by Enc(PK,msg), we have
Dec(SK,C) = msg.

For ATK ∈ {CPA,CCA}, a public key encryption scheme PKE = (Gen,Enc,Dec)
is ATK secure if for all PPT adversaries A = (A1,A2), Adv

ATK
A,PKE(λ) := |Pr[b =

b′ : (PK,SK) ← Gen(1λ); (msg0,msg1, st) ← AO1
1 (PK); b

$← {0, 1};C∗ ←
Enc(PK,msgb); b ← AO2

2 (PK,C∗, st)] − 1/2| is negligible where if ATK=CPA,
then Oi (i = 1, 2) is an oracle that always returns ⊥, and if ATK=CCA, then
Oi (i = 1, 2) is a decryption oracle that is given a ciphertext C and returns



Dec(SK,C) if i = 1 or C ̸= C∗ and otherwise ⊥.

Key encapsulation mechanism. Here, we review the definition of key en-
capsulation mechanism (KEM) and its security. It is shown that a CCA secure
PKE scheme is obtained by combining a constrained CCA (CCCA) secure KEM
and a CCA secure authenticated symmetric key encryption scheme [16]. In the
following, we recall the definitions of KEM and its CCCA security.

A KEM consists of three algorithms (Gen,Enc,Dec). Gen takes a security
parameter 1λ as input and outputs (PK,SK), where PK is a public key and
SK is a secret key. Enc takes a public key PK as input and outputs (C,K),
where C is a ciphertext and K is a symmetric key. Dec takes a secret key SK
and a ciphertext C as input and outputs a key K with length ℓK or ⊥. We
require that for all (PK,SK) output by Gen and all (C,K) output by Enc(PK),
we have Dec(SK,C) = K.

To define the CCCA security of KEM = (Gen,Enc,Dec), we consider the
following game between an adversary A and a challenger C. First, C gener-
ates (PK,SK) ← Gen(1λ) and (C∗,K) ← Enc(PK), chooses a random bit

b
$← {0, 1}, and sets K∗ := K if b = 1 and otherwise K∗

$← {0, 1}ℓK . Then
(PK,C∗,K∗) is given to the adversary A. In the game, A can query pairs of
ciphertexts and predicates any number of times. When A queries (C, pred), C
computes K ← Dec(SK,C) and returns K to A if C ̸= C∗ and pred(K) = 1,
and otherwise ⊥. Finally, A outputs a bit b′. We define the CCCA advantage
of A as AdvCCCAA,KEM(λ) := |Pr[b = b′] − 1/2|. We say that KEM is CCCA secure

if AdvCCCAA,KEM(λ) is negligible for any PPT valid adversary A, where “valid” is
defined below.

Before defining “valid” , we prepare two definitions. We say that a predicate
pred is non-trivial if Pr[pred(K) = 1 : K

$← {0, 1}ℓK ] is negligible. We say that
an algorithm C′ is an alternative challenger if it has the same syntax as the real
challenger C. We say that an adversary A is valid if for any PPT alternative
challenger C′, all predicates pred queried by A in the game between A and C′
are non-trivial.

Though the above definition of the CCCA security slightly differs from the
original definition given in [16], we can easily prove that our definition still
yields the “hybrid encryption theorem” that a CCA secure PKE scheme can be
obtained by a CCCA secure KEM and authenticated symmetric key encryption.

Deterministic encryption. A deterministic encryption scheme consists of
three algorithms (Gen,Enc,Dec). Gen takes a security parameter 1λ as input
and outputs (PK,SK), where PK is a public key and SK is a secret key. Enc is
a deterministic algorithm that takes a public key PK and a message msg as in-
put and outputs a ciphertext C. Dec takes a secret key SK and a ciphertext C as
input and outputs a message msg or ⊥. We require that for all msg, (PK,SK)
output by Gen and C output by Enc(PK,msg), we have Dec(SK,C) = msg.

We recall security notions for deterministic encryption following [5]. In [5],
the authors considered three security notions called PRIV, PRIV1 and PRIV1-



IND, and proved all of them are equivalent. Therefore we consider only the
simplest security definition PRIV1-IND in this paper. A random variable X
over {0, 1}n is called a (u, n)-source if H∞(X) ≥ u. For ATK ∈ {CPA,CCA},
a deterministic encryption scheme DE = (Gen,Enc,Dec) for ℓ-bit message is
PRIV1-IND-ATK secure for (t, n)-sources if for any (t, n)-sources M0 and M1

and all PPT adversaries A, AdvPRIV1−IND−ATKA,M0,M1,DE (λ) := |Pr[b = b′ : (PK,SK) ←
Gen(1λ); b

$← {0, 1};msg∗
$← Mb;C

∗ ← Enc(PK,msg∗); b′ ← AO(PK,C∗)] −
1/2| is negligible where if ATK=CPA, then O is an oracle that always returns
⊥, and if ATK=CCA, then O is an decryption oracle that is given a ciphertext
C and returns Dec(SK,C) if C ̸= C∗ and otherwise ⊥.

2.3 Known Lemmas

Here, we review three known lemmas used in this paper. First, we review a
simple variant of the Hoeffding inequality [15].

Lemma 1 (Hoeffding inequality) Let D1 and D2 be probability distributions over
{0, 1}. Let X1, . . . , XK be K independent random variables with the distribu-
tion D1 and Y1, . . . , YK be K independent random variables with the distribution
D2. If we define ϵ := |Pr[X = 1 : X

$← D1] − Pr[Y = 1 : Y
$← D2]|, then

Pr[| |Σ
K
k=1Xk−ΣK

i=kYk|
K − ϵ| ≥ δ] ≤ 4e−δ

2K/2 holds.

The following is the generalized leftover hash lemma [10].

Lemma 2 (Generalized leftover hash lemma) Let X ∈ {0, 1}n1 and Y be ran-
dom variables. Let H be a family of pairwise independent hash function from
{0, 1}n1 to {0, 1}n2 . Then we have ∆((H(X),H, Y ), (U,H, Y )) ≤ δ where H

$←
H as long as H̃∞(X|Y ) ≥ n2 + 2 log(1/δ).

The following is the “crooked version” of the above lemma proven by Boldyreva
et al. [5].

Lemma 3 (Generalized crooked leftover hash lemma [5, Lemma7.1]) Let X ∈
{0, 1}n and Y be random variables. Let H be a family of pairwise independent
hash function from {0, 1}n to R and f be a function from R to S. Then for

H
$← H, we have ∆((f(H(X)),H, Y ), (f(U),H, Y )) ≤ δ as long as H̃∞(X|Y ) ≥

log |S|+ 2 log(1/δ)− 2.

Finally, we review the Coppersmith theorem about bivariate integer equations.
The following lemma is a special case of [6, Theorem 3].

Lemma 4 Let p(x, y) = a+bx+cy be a polynomial over Z. For positive integers
X,Y and W = max{a, bX, cY }, if XY < 2−8 · W holds, then one can find
all solutions (x0, y0) such that p(x0, y0) = 0, |x0| < X and |y0| < Y in time
polynomial in log2 W .



2.4 Semi-smooth RSA subgroup modulus

For integers ℓB , tp and tq, We say that N = PQ = (2pp′ + 1)(2qq′ + 1) is an
(ℓB , tp, tq)-semi-smooth RSA subgroup ((ℓB , tp, tq)-SS) modulus if the following
conditions hold.

– P and Q are distinct prime numbers with the same length that satisfy
gcd(P − 1, Q− 1) = 2.

– p′ and q′ are distinct primes larger than 2ℓB .
– p and q are products of tp and tq distinct ℓB-bit primes. Here, an ℓB-bit

prime means a prime number between 2ℓB−1 and 2ℓB . We note that we have
gcd(p, q) = 1 since we have gcd(P − 1, Q− 1) = 2.

We define t := tp + tq. Let PℓB be the set of all ℓB-bit primes, and MℓB :=
|PℓB |. We define the group of quadratic residues as QRN := {u2 : u ∈ Z∗N}. This
is a subgroup of Z∗N , and a cyclic group of order pqp′q′. Then there exists unique
subgroups of order p′q′ and pq, and we denote them by G and G⊥ respectively.
Then we have QRN = G × G⊥. That is, for any element g ∈ QRN , we can
uniquely represent g = g(G)g(G⊥) by using g(G) ∈ G and g(G⊥) ∈ G⊥. More-
over, if the factorization of N is given, then we can compute g(G) and g(G⊥)
from g efficiently.

When N is an SS modulus, we cannot say that a random element g of QRN

is a generator (i.e., ord(g) = pqp′q′) with overwhelming probability. However,
we can prove that g has an order larger than a certain value with overwhelming
probability.

Lemma 5 ([13, Lemma2]) Let N be an (ℓB , tp, tq)-SS modulus. For any integer

d < t if (t21−ℓB )d+1

(1−t21−ℓB )(d+1)!
is negligible, then Pr[ord(g) ≥ p′q′2(t−d)(ℓB−1) : g

$←
QRN ] is overwhelming. Especially, Pr[ord(g(G⊥)) ≥ 2(t−d)(ℓB−1) : g

$← QRN ] is
overwhelming.

When ℓB is small, ord(G⊥) is smooth, and therefore the discrete logarithm
on the group can be solved efficiently by the Pohlig-Hellman algorithm [28].

Lemma 6 ([13]) If ℓB = O(log λ), then the discrete logarithm problem on G⊥

can be solved efficiently. More precisely, there exists a PPT algorithm that, given
an (ℓB , tp, tq)-SS modulus N , g ∈ G⊥ and gx, outputs x mod ord(g).

By combining the above lemmas, we obtain the following lemma.

Lemma 7 Let N be an (ℓB , tp, tq)-SS modulus and we assume ℓB = O(log(λ)).

If (t21−ℓB )d+1

(1−t21−ℓB )(d+1)!
is negligible and x ≤ 2(t−d)(ℓB−1) holds, then there exists a

PPT algorithm PLog that, given P ,Q, g, gx, outputs x with overwhelming prob-
ability where g

$← QRN .

Hardness assumptions. Here, we give definitions of two hardness assumptions.
Let IGen be an algorithm that is given the security parameter 1λ and outputs
an (ℓB , tp, tq)-SS modulus with its factorization. We first define the factoring
assumption.



Definition 1 We say that the factoring assumption holds with respect to IGen
if for any PPT algorithm A, Pr[A(N) ∈ {P,Q} : (N,P,Q) ← IGen(1λ)] is
negligible.

Next, we define the decisional RSA subgroup (DRSA) assumption proposed
by Groth [13]. This assumption claims that any PPT algorithm cannot distin-
guish a random element of G from that of QRN . We note that actually we do
not use this assumption in this paper. We include this only for the information
of the reader.

Definition 2 We say that the decisional RSA subgroup (DRSA) assumption
holds with respect to IGen if for any PPT algorithm A, |Pr[1 ← A(N, g) :

(N,P,Q)← IGen(1λ); g
$← QRN ]− Pr[1← A(N, g) : (N,P,Q)← IGen(1λ); g

$←
G]| is negligible.

Attacks. We review factoring attacks against SS moduli as discussed in [13]. As
shown in [13], by using Pollard’s ρ-method [30], we can factorize an SS modulus in
time Õ(min(

√
p′,
√
q′)). As another method, by using Naccache et al.’s algorithm

[26], if a divisor of P − 1 or Q − 1 larger than N1/4 is given, then N can be
factorized efficiently. Thus ℓB should be large enough so that it is difficult to guess
a significant portion of factors of p or q. In 2011, Coron et al. [7] proposed a new
factoring algorithm for a certain class of RSA moduli that includes SS moduli.
For the case of SS moduli, their algorithm work in time Õ(min(

√
p′,
√
q′)), which

matches the time complexity of Pollard’s ρ-method. As observed in [13], other
methods such as the baby-step giant-step algorithm [34], Pollard’s λ-method [31]
or Pollard’s p− 1 method [29] require O(min(p′, q′)) time.

The above attacks use the structure of SS moduli. On the other hand, there
are algorithms such as the elliptic curve method [22] or the general number field
sieve [9], which can be applied to general RSA moduli. Among these algorithms,
general number field sieve is asymptotically the most efficient and its heuristic
running time is exp((1.92 + o(1)) ln(N)1/3 ln ln(N)2/3).

Parameter settings. Here, we discuss parameter settings of SS moduli. We
have to set parameters to avoid the above attacks. We first give an asymptotic
parameter setting. We set ℓp′ = ℓq′ = O(λ), ℓB = ⌊4 log λ⌋ and tp = tq =
O(λ3/ log λ) (then we have ℓN ≈ ℓp′ + ℓq′ + tℓB = O(λ3)). In this setting, we
have MℓB = O(λ4/ log λ) by the prime number theorem and thus there exists

exponentially many choices of p and q. If we set d := ⌊t/4⌋, then (t21−ℓB )d+1

(1−t21−ℓB )(d+1)!

is negligible1. We use the fact that in this parameter setting, given N , g ∈ QRN

and p1, . . . , pm for m ≤MℓB , g
p1...pm can be computed in polynomial time in λ.

This is because we have m ≤ MℓB = O(λ4/ log(λ)) and p1 . . . pm ≤ 2ℓBMℓB =

2O(λ4), and thus p1 . . . pm-th power can be computed by O(λ4) multiplications.
We use this asymptotic parameter setting throughout the paper. As a concrete
parameter, Groth [13] proposed to set ℓ′p = ℓ′q = 160, ℓB = 15, tp = tq = 32 and
d = 7 for 80-bit security (then we have ℓN = 160 · 2+ 15 · 2 · 32 = 1280). We use

1 In fact, d can be set as d := ⌊ct⌋ for any small enough constant c.



this parameter for the construction of CCA secure PKE scheme with compact
ciphertext (Section 6). However, this parameter does not give us enough lossiness
in the construction of ad-LTDFs. Thus we propose to set ℓ′p = ℓ′q = 160, ℓB = 15,
tp = tq = 70 and d = 8 (then we have ℓN = 160 · 2 + 15 · 2 · 70 = 2420) for
80-bit security for other applications (Sec. 4 and 5). We note that the number of
ℓB = 15-bit primes is 1612. Therefore the possible choice of t = 64 or 140 primes
out of them is much larger than 280 and thus it is hard to guess the significant
portion of their factors.

3 Adversary-dependent Decisional RSA Subgroup
Assumption

In this section, we generalize the DRSA assumption. Specifically, we define the
m-adversary-dependent decisional RSA subgroup (m-ad-DRSA) assumption for
any integer m ≤ MℓB with respect to (ℓB , tp, tq)-SS moduli. Intuitively, this
assumption claims that for any PPT algorithm A, there exist distinct ℓB-bit
primes p1, . . . , pm such that A does not distinguish g from gp1...pm where g is a
random element of QRN . We prove that under a certain condition, the m-ad-
DRSA assumption holds under the factoring assumption.

First we give the precise definition of the m-ad-DRSA assumption.

Definition 3 Let IGen be a PPT algorithm that generates an (ℓB , tp, tq)-SS RSA
modulus. We say that for any integer m ≤ MℓB , the m-adversary-dependent
decisional RSA subgroup (m-ad-DRSA) assumption holds with respect to IGen if
for any noticeable function ϵ and PPT algorithm A, there exists a PPT algorithm
SA,ϵ that is given (ℓB , tp, tq)-SS RSA modulus N and outputs distinct ℓB-bit
primes p1, . . . , pm, such that the following is satisfied. If we let

P0 := Pr

[
1← A(N, g) :

(N,P,Q)← IGen(1λ)

g
$← QRN

]

P1 := Pr

1← A(N, gp1...pm) :

(N,P,Q)← IGen(1λ)

g
$← QRN

{p1, . . . , pm} ← SA,ϵ(N)


then we have |P0 − P1| ≤ ϵ(λ) for sufficiently large λ.

Remark 2 One may think that the assumption defined above cannot be used for
proving security of any cryptographic scheme since ϵ is noticeable. However, an
important remark here is that ϵ can be an arbitrary noticeable function. Thus, in
security proofs, we can set ϵ depending on an adversary A’s advantage against the
scheme that we want to prove secure, such that ϵ is smaller than the advantage
of A (for infinitely many security parameters). This can be done if A breaks
the security of the scheme since in these cases, the advantage of A should be
non-negligible. See security proofs in Sec. 5 and 6 to see this argument indeed
works.



Remark 3 In the above definition, if m is so small that there exists a choice
of p1, . . . , pm, all of which are coprime to Φ(N), then gp1...pm is distributed uni-
formly on QRN . In this case, m-ad-DRSA assumption is trivial. This occurs if
and only if we have MℓB −m ≥ t. In this paper, we set m to be relatively large
so that m-ad-DRSA assumption is non-trivial. (See Remark 4.)

The following theorem claims that the m-ad-DRSA assumption holds under
the factoring assumption if m is small enough.

Theorem 1 Let IGen be a PPT algorithm that generates an (ℓB , tp, tq)-SS RSA
modulus where ℓB = O(log λ). If the factoring assumption holds with respect to
IGen and there exists a constant c such that (MℓB −m+1)(ℓB−1) ≥ (1/2+c)ℓN
holds, then the m-ad-DRSA assumption holds with respect to IGen.

Remark 4 If we set m := ⌊MℓB + 1 − (1/2 + c)ℓN/(ℓB − 1)⌋ for sufficiently
small c, then by the above theorem, the m-ad-DRSA assumption holds under the
factoring assumption. Moreover, by setting the parameter as given in 2.4, we
have MℓB −m ≈ (1/2 + c)ℓN/(ℓB − 1) ≈ (1/2 + c)(ℓp′ + ℓq′ + tℓB)/ℓB ≤ t for
sufficiently large λ if c < 1/2 since t = O(λ3/ log λ) and ℓp′ = ℓq′ = O(λ). Thus
the m-ad-DRSA assumption is non-trivial.

Before proving the theorem, we prepare a lemma related to the Coppersmith
attack. Though a heuristic proof appeared in [26], to the best of our knowledge,
this has not been proven rigorously in the literature.

Lemma 8 Let P and Q be primes with the same length and N = PQ. Let e be
a divisor of Φ(N) = (P −1)(Q−1). If there exists a positive constant c such that
e > N1/2+c holds, then there exists a polynomial time algorithm that is given N
and e, and factorizes N .

Proof. We define e1 and e2 such that e = e1e2, e1|P −1 and e2|Q−1. (Note that
we cannot always compute e1 and e2 from e.) Then we can write P = e1k1 + 1
and Q = e2k2+1 by using integers k1 and k2. Then we have N = PQ = (e1k1+
1)(e2k2+1) = ek1k2+e1k1+e2k2+1. Therefore if we define p(x, y) = N+ex+y,
then p(x, y) = 0 has a solution (x0, y0) = (−k1k2,−(e1k1 + e2k2 + 1)). Let
X := N1/2−c, Y := 3N1/2 and W := max(N, eX, Y ). One can see that |x0| < X,
|y0| < Y and XY = 3N1−c < 2−8 ·N ≤ 2−8 ·W hold (for sufficiently large N).
Therefore one can compute the solution (x0, y0) = (−k1k2,−(e1k1 + e2k2 + 1))
in polynomial time in logN by Lemma 4. Then one can compute P + Q =
e1k1 + e2k2 + 2 = −y0 + 1 and factorize N . ⊓⊔

Intuition for the proof of Theorem 1. Here, we give an intuition for the
proof of Theorem 1. We remark that the following argument is not a rigorous
one. What we have to do is to construct a PPT algorithm SA,ϵ that is given N
and outputs {p1, . . . , pm} such that A’s advantage to distinguish g from gp1...pm

is smaller than ϵ where g
$← QRN . Let list L := PℓB , which is the set of all ℓB-bit

primes. First, SA,ϵ randomly chooses m distinct primes {p1, . . . , pm} from L and
test whether A’s advantage to distinguish g from gp1...pm is smaller than ϵ or not.



More precisely, SA,ϵ approximates A’s advantage by iterating the execution of

A(g) and A(gp1...pm) for independently random g
$← QRN a number of times and

counting the number that each of them outputs 1. We denote the approximated
advantage by ϵ′. Due to the Hoeffding inequality [15], the approximation error
can be made smaller than ϵ/4 by polynomial times iterations since ϵ is noticeable.
If ϵ′ < ϵ/2, then A’s real advantage is smaller than 3ϵ/4 < ϵ and thus SA,ϵ

outputs {p1, . . . , pm} and halts. Otherwise, A’s advantage to distinguish g from
gp1...pm is larger than ϵ/4. Then there exists pj such that A’s advantage to
distinguish gp1...pj−1 from gp1...pj is larger than ϵ/(4m) by the hybrid argument.
SA,ϵ can find this pj in polynomial time since ϵ/(4m) is noticeable. We remark
that we have pj |Φ(N). This is because, otherwise A’s advantage to distinguish
gp1...pj−1 from gp1...pj is 0 since their distributions are completely identical and
thus ϵ′ should be smaller than ϵ/2. Then SA,ϵ removes pj from L. Then it
randomly chooses m distinct primes {p1, . . . , pm} from L again, and do the
same as the above. Then it outputs {p1, . . . , pm} and halts if approximated
A’s advantage to distinguish g from gp1...pm is smaller than ϵ/2, or otherwise
removes some pj′ |Φ(N) from L. SA,ϵ repeat this procedure many times. Assume
that SA,ϵ does not halts by the time it cannot choose m distinct primes from
L. By that time, MℓB − m + 1 distinct ℓB-bit primes that divide Φ(N) are
removed from L. Let e be the product of them. Then we have e|Φ(N) and
e ≥ 2(ℓB−1)(MℓB

−m+1) ≥ N1/2+c. Therefore if e is given, then we can factorize
N efficiently by Lemma 8. Thus under the factoring assumption, SA,ϵ must
output some {p1, . . . , pm} before |L| becomes smaller than m with overwhelming
probability, and A’s advantage to distinguish g from gp1...pm is smaller than
3ϵ/4 < ϵ.

Now we give the full proof of Theorem 1

Proof. (of Theorem 1) First, we prove the following two claims.

Claim 1 For any PPT algorithm A and a noticeable function δ, there exists
a PPT algorithm ApproxA,δ that satisfies the following. Let D1 and D2 be de-
scriptions of distributions that are samplable in polynomial time in λ, and ϵ :=
|Pr[1← A(X) : X

$← D1]−Pr[1← A(X) : X
$← D2]|. Then ApproxA,δ(1

λ,D1,D2)
outputs ϵ′ such that |ϵ′ − ϵ| ≤ δ(λ) with overwhelming probability. (We say that
ApproxA,δ succeeds if it outputs such ϵ′.)

Proof. The construction of ApproxA,δ is as follows.

ApproxA,δ(1
λ,D1,D2) : For i = 1 to K where K := λ/δ(λ)2, choose Xi and Yi

according to D1 and D2, respectively, and run A(Xi) and A(Yi) for each
i. Let k1 be the number of the event that A(Xi) outputs 1 and k2 be the
number of the event that A(Yi) outputs 1. Output |k1 − k2|/K.

Since δ is noticeable, K is polynomial in λ and therefore ApproxA,δ is a PPT
algorithm. It can be seen by Lemma 1 that ApproxA,δ satisfies the desired prop-
erty. ⊓⊔



Claim 2 For any PPT algorithm A and a noticeable function ϵ, there exists a
PPT algorithm FindA,ϵ that satisfies the following. For any (ℓB , tp, tq)-SS RSA
modulus N and a set I = {p1, . . . , pm} of distinct ℓB-bit primes, if |Pr[1 ←
A(N, g) : g

$← QRN ] − Pr[1 ← A(N, gp1...pm) : g
$← QRN ]| > ϵ(λ) holds, then

FindA,ϵ(N, I) outputs pj ∈ I that divides Φ(N) with overwhelming probability.
(We say that FindA,ϵ succeeds if it outputs such pj or the inequality assumed is
false.)

Proof. The construction of FindA,ϵ is as follows.

FindA,ϵ(N, I = {p1, . . . , pm}): Define distributions D0 := {(N, g) : g
$← QRN}

and Dj := {(N, gp1...pj ) : g
$← QRN} (j = 1, . . . ,m). For j := 1 to m, repeat

the following.
Compute ϵ′ ← ApproxA,ϵ/(2m)(1

λ,Dj−1,Dj).
If ϵ′ > ϵ/(2m), then output pj and halt.

If it does not halt by the time the above loop is finished, then output ⊥.

First, we show FindA,ϵ is a PPT algorithm. Sincem ≤MℓB is polynomial in λ and
thus ϵ/(2m) is noticeable, ApproxA,ϵ/(2m) is a PPT algorithm. Therefore FindA,ϵ

is a PPT algorithm. We prove that FindA,ϵ satisfies the desired property. First,
we assume that all executions of ApproxA,ϵ/(2m) called by FindA,ϵ succeed. The
probability that this assumption is satisfied is overwhelming since the number
of executions of ApproxA,ϵ/(2m) is polynomial in λ and each execution succeeds
with overwhelming probability. First, we prove that FindA,ϵ outputs any prime

pj ∈ I if we have |Pr[1 ← A(N, g) : g
$← QRN ] − Pr[1 ← A(N, gp1...pm) : g

$←
QRN ]| > ϵ. By the hybrid argument, there exists j ∈ [m] such that |Pr[1 ←
A(X) : X

$← Dj−1] − Pr[1 ← A(X) : X
$← Dj ]| > ϵ/m holds. For such j, if we

let ϵ′ := ApproxA,ϵ/(2m)(Dj−1,Dj), then we have ϵ′ > ϵ/m − ϵ/(2m) = ϵ/(2m)
and thus pj is output. Then we prove that if pj is output by FindA,ϵ, then
pj |Φ(N) holds. If pj does not divide Φ(N), then pj is coprime to ord(QRN ), and
especially pj-th power is a permutation on the group {gp1...pj−1 : g ∈ QRN}.
Therefore Dj−1 and Dj are completely the identical distributions. Therefore we

have |Pr[1 ← A(X) : X
$← Dj−1] − Pr[1 ← A(X) : X

$← Dj ]| = 0. Thus if we
let ϵ′ := ApproxA,ϵ/(2m)(Dj−1,Dj), then we have ϵ′ < ϵ/(2m), and thus such pj
cannot be output. ⊓⊔

Then we go back to the proof of Theorem 1. For any PPT algorithm A
and a noticeable function ϵ, we construct a PPT algorithm SA,ϵ such that

Pr[1 ← A(N, g) : (N,P,Q) ← IGen(1λ); g
$← QRN ] − Pr[1 ← A(N, gp1...pm) :

(N,P,Q) ← IGen(1λ); g
$← QRN ; {p1, . . . , pm} ← SA,ϵ(N)] ≤ ϵ(λ) holds for

sufficiently large λ. The construction of SA,ϵ is as follows.

SA,ϵ(N) : Let L := PℓB . (Recall that PℓB is the set of all ℓB-bit primes.)
While |L| ≥ m, repeat the following.

Choose distinct ℓB-bit primes p1, . . . , pm from L randomly, and let I :=
{p1, p2, . . . , pm}, D0 := {(N, g) : g

$← QRN} and Dm := {(N, gp1...pm) :



g
$← QRN}. Compute ϵ′ ← ApproxA,ϵ/4(1

λ,D0,Dm). If ϵ′ < ϵ/2, then
output I and halts. Otherwise run p̃ ← FindA,ϵ/4(N, I). If p̃ ∈ L then
remove p̃ from L, otherwise remove a random element from L.

If it does not halt by the time the above loop finishes, then it outputs ⊥.

First, we prove that SA,ϵ(N) is a PPT algorithm. Since ϵ is noticeable, ApproxA,ϵ/4

and FindA,ϵ/4 are PPT algorithms. Moreover the number of repeat is at most
MℓB − m + 1 ≤ MℓB , which is polynomial in λ. Therefore SA,ϵ(N) is a PPT
algorithm.

Then we prove that SA,ϵ(N) satisfies the desired property. In the following,
we assume that all executions of ApproxA,ϵ/4 and FindA,ϵ/4 called by SA,ϵ(N)
succeed. The probability that the above assumption holds is overwhelming since
the number of executions is polynomial and each execution succeeds with over-
whelming probability. If SA,ϵ outputs some I = {p1, . . . , pm}, then we have

Pr[1 ← A(N, g) : g
$← QRN ]− Pr[1 ← A(N, gp1...pm) : g

$← QRN ]| < ϵ′ + ϵ/4 <
ϵ/2 + ϵ/4 = 3ϵ/4. Next, we prove that for overwhelming fraction of N gener-
ated by IGen, the probability that SA,ϵ(N) outputs ⊥ is negligible. First, we
prove that in each repeat, p̃ that is removed from L divides Φ(N). We let
ϵ′ ← ApproxA,ϵ/4(1

λ,D0,Dm). If ϵ′ ≥ ϵ/2, then we have |Pr[1 ← A(N, g) :

g
$← QRN ] − Pr[1 ← A(N, gp1...pm) : g

$← QRN ]| > ϵ′ − ϵ/4 ≥ ϵ/2 − ϵ/4 = ϵ/4.
Therefore FindA,ϵ/4(N, I) outputs pj ∈ I that divides Φ(N) since it succeeds.
Thus if SA,ϵ(N) outputs ⊥, then one ℓB-bit prime factor of Φ(N) is removed
from L in each repeat, and the repeat is done MℓB − m + 1 times. Therefore
throughout the execution of SA,ϵ(N), MℓB −m+1 distinct ℓB-bit prime factors
of Φ(N) are removed from L. If we let e be the product of these primes, then
we have e > (2ℓB−1)MℓB

−m+1 ≥ 2(1/2+c)ℓN > N1/2+c and e|Φ(N). By Lemma
8, we can factorize N efficiently by using e. Therefore for overwhelming fraction
of N generated by IGen, the probability that SA,ϵ(N) outputs ⊥ is negligible
under the factoring assumption. Therefore for overwhelming fraction of N gen-
erated by IGen, we have Pr[1 ← A(N, g) : g

$← QRN ] − Pr[1 ← A(N, gp1...pm) :

{p1, . . . , pm} ← SA,ϵ(N); g
$← QRN ]| < 3ϵ/4 with overwhelming probability

over the randomness of SA,ϵ. Since ϵ is noticeable, by the averaging argument,

Pr[1 ← A(N, g) : (N,P,Q) ← IGen(1λ); g
$← QRN ] − Pr[1 ← A(N, gp1...pm) :

(N,P,Q) ← IGen(1λ); g
$← QRN ; {p1, . . . , pm} ← SA,ϵ(N)] ≤ ϵ(λ) holds for

sufficiently large λ.

4 Adversary-dependent Lossy Trapdoor Function

In this section, we define ad-LTDFs. Then we give a construction of an ad-LTDF
based on the m-ad-DRSA assumption, which can be reduced to the factoring
assumption by Theorem 1.

4.1 Definition

Here we define ad-LTDFs. Intuitively, ad-LTDFs are defined by weakening LTDFs
so that descriptions of lossy functions that cannot be distinguished from those



of injective functions may depend on a specific distinguisher. Namely, the al-
gorithm that generates lossy functions takes a “lossy function index” I as well
as a public parameter as input, and we require that for any PPT algorithm
A, there exists at least one I such that A does not distinguish lossy functions
generated with index I from injective functions. Moreover, we require that such
I can be efficiently computed given A. The precise definition is as follows. For
integers n and k such that 0 < k < n, an (n, k)-ad LTDF consists of 5 algo-
rithms (ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) with a family
{I(λ)}λ∈N of lossy function index sets.

ParamsGen(1λ)→ (PP, SP ) : It takes a security parameter 1λ as input, and out-
puts a public parameter PP and a secret parameter SP .

SampleInj(PP )→ σ : It takes a public parameter PP as input, and outputs
a function description σ, which specifies an injective function fσ over the
domain {0, 1}n.

SampleLossy(PP, I)→ σ: It takes a public parameter PP and a lossy function
index I ∈ I(λ) as input, and outputs a function index σ, which specifies a
“lossy” function fσ over the domain {0, 1}n.

Evaluation(PP, σ, x)→ fσ(x): It takes a public parameter PP , function descrip-
tion σ and x ∈ {0, 1}n as input, and outputs fσ(x)

Inversion(SP, σ, y)→ f−1σ (y): It takes a secret parameter SP , a function descrip-
tion σ and y and outputs f−1σ (y).

We require ad-LTDFs to satisfy the following three properties.
Correctness: For all x ∈ {0, 1}n, we have Inversion(SP, σ,Evaluation(PP, σ, x)) =
x with overwhelming probability where (PP, SP ) ← ParamsGen(1λ) and σ ←
SampleInj(PP ).

Lossiness: For all λ ∈ N, (PP, SP ) ← ParamsGen(1λ), I ∈ I(λ) and σ ←
SampleLossy(PP, I), the image of fσ has size at most 2n−k.

Indistinguishability between injective and lossy functions. Intuitively,
we require that for any PPT adversary A, there exists at least one lossy function
index I ∈ I(λ) such that A cannot distinguish an injective function from a lossy
function with the lossy function index I.

The more precise definition is as follows. For any PPT adversary A and
noticeable function ϵ(λ), there exists a PPT algorithm SA,ϵ that takes a public
parameter PP as input and outputs I ∈ I(λ) such that the following is satisfied.
If we let

Pinj := Pr

[
1← A(PP, σ) :

(PP, SP )← ParamsGen(1λ)
σ ← SampleInj(PP )

]

Plossy := Pr

1← A(PP, σ) :
(PP, SP )← ParamsGen(1λ)

I ← SA,ϵ(PP )
σ ← SampleLossy(PP, I)





then we have |Pinj − Plossy| ≤ ϵ(λ) for sufficiently large λ.

As mentioned in Remark 2, though ϵ must be noticeable in the above defini-
tion, ad-LTDFs can be used for many cryptographic applications. This is because
ϵ can be set depending on the advantage of an adversary in security reductions.

Remark 5 Besides what is explained above, there is a minor difference between
the definition of ad-LTDFs and that of LTDFs. In the definition of ad-LTDFs,
ParamsGen is explicitly separated from SampleInj or SampleLossy, whereas there
is no separation between them in the definition of LTDFs [27]. This is only for
simplifying the presentation, and there is no significant difference here.

4.2 Construction

We construct an ad-LTDF based on the m-ad-DRSA assumption. Let IGen be
an algorithm that generates an ℓN -bit (ℓB , tp, tq)-SS RSA modulus with the
parameter given in Sec. 2.4 and n := (t− d)(ℓB − 1).

Definition of I(λ): I(λ) is defined as the set of allm-tuple of distinct primes of
length ℓB . That is, we define I(λ) := {{p1, . . . , pm} : p1, . . . , pm are distinct
ℓB bit primes}.

ParamsGen(1λ)→ (PP, SP ): Generate (N,P,Q)← IGen(1λ), set PP := N and
SP := (P,Q), and output (PP, SP ).

SampleInj(PP = N)→ σ: Choose g
$← QRN and output σ := g.

SampleLossy(PP = N, I = {p1, . . . , pm})→ σ: Choose g
$← QRN and output

σ := gp1...pm .
Evaluation(PP = N, σ = g, x ∈ {0, 1}n)→ fσ(x): Interpret x as an element of

[2n] and output gx.
Inversion(SP = (P,Q), σ = g, y)→ f−1σ (y): Compute x = PLog(P,Q, g, y) and

output x where PLog is the algorithm given in Lemma 7.

Theorem 2 If the m-ad-DRSA assumption holds with respect to IGen, then the
above scheme is an (n, n− (ℓp′ + ℓq′ + (MℓB −m)ℓB))-ad-LTDF.

Then the following corollary follows by combining the above theorem and The-
orem 1.

Corollary 1 If the factoring assumption holds with respect to IGen for the pa-
rameter setting given in Sec. 2.4, then there exists an ad-LTDF.

Proof. (of Corollary 1.) Recall that we set ℓp′ = ℓq′ = O(λ), ℓB = ⌊4 log λ⌋,
tp = tq = O(λ3/ log λ) (then we have ℓN ≈ ℓp′ + ℓq′ + tℓB = O(λ3)) and
d := t/4. We let m := ⌊MℓB + 1 − (1/2 + c) ℓN

(ℓB−1)⌋ for a constant c < 1/4.

Then we have (MℓB −m + 1)(ℓB − 1) ≥ (1/2 + c)ℓN and therefore the m-ad-
DRSA assumption holds under the factoring assumption by Theorem 1. Then
we prove that the above ad-LTDF for this m is non-trivial, i.e., we have n −



(ℓp′ + ℓq′ + (MℓB −m)ℓB) > 0. Since we have m ≈ MℓB − (1/2 + c) ℓN
(ℓB−1) , we

have n− (ℓp′ + ℓq′ + (MℓB −m)ℓB) ≈ (t− d)ℓB − (ℓp′ + ℓq′ + (1/2+ c) ℓN ℓB
(ℓB−1) ) ≈

(1/4− c)tℓB − (3/2 + c)(ℓp′ + ℓq′) > 0 for sufficiently large λ since tℓB = O(λ3)
and ℓp′ + ℓq′ = O(λ). Thus the obtained ad-LTDF for this m is non-trivial.

Remark 6 If we set ℓp′ = ℓq′ = 160, ℓB = 15, t = 64, d = 7 and ℓN = 2420 as
given in Sec. 2.4, and c = 1/20 then by setting m := ⌊MℓB +1−(1/2+c) ℓN

(ℓB−1)⌋,
the obtained scheme is a (1848, 103)-ad-LTDF. If better lossiness is required, then
one may set t larger (as long as factorizing N is hard).

Then we prove Theorem 2.

Proof. (of Theorem 2)
Correctness. If g is generated by SampleInj, then it is a random element of
QRN . Thus Inversion((P,Q), g,Evaluation(N, σ, x)) = Inversion((P,Q), g, gx) = x
holds by the correctness of PLog given in Lemma 7.

Lossiness. Next, we prove that the above construction satisfies (n, n − (ℓp′ +
ℓq′ + (MℓB − m)ℓB))-lossiness. Let σ be a function description generated by
SampleLossy(N, I = {p1, . . . , pm}). What we should prove is that the image size
of fσ is at most 2ℓp′+ℓq′+(MℓB

−m)ℓB . There exists g ∈ QRN such that σ =
gp1...pm , and thus any output of fσ is an element of the group S := {hp1...pm :
h ∈ QRN}. We consider the order of S. S is a subgroup of QRN = G × G⊥

and p1 . . . pm is coprime to ord(G) = p′q′. Therefore there exists a subgroup
S⊥ of G⊥ such that S = G × S⊥. We can see that ord(S⊥) is the product of
some distinct ℓB-bit primes and coprime to p1 . . . pm by the definition. Therefore
that is the product of at most MℓB −m such primes, and can be bounded by
2(MℓB

−m)ℓB . Therefore the order of S is at most 2ℓp′+ℓq′+(MℓB
−m)ℓB .

Indistinguishability between injective and lossy functions. This immedi-
ately follows from the m-ad-DRSA assumption. Indeed, clearly we have Pinj = P0

and Plossy = P1 where P0 and P1 are defined in Def. 3, and the m-ad-DRSA as-
sumption requires |P0 − P1| < ϵ(λ) for sufficiently large λ.

As an analogue of all-but-one lossy trapdoor function defined in [27], we can
define adversary-dependent all-but-one lossy trapdoor functions (ad-ABO). The
definition and constructions are given in Appendix B.

5 Applications

Here we discuss applications of ad-LTDFs. As mentioned before, ad-LTDFs can
replace LTDFs in many applications. Informally, ad-LTDFs can replace LTDFs
if a lossy function is used only in the security proof and not used in the real
protocol. In such cases, a lossy function may depend on an adversary that tries
to distinguish it from an injective function since an adversary is firstly fixed in
security proofs. As a result, we can immediately obtain a collision resistant hash



function [27], a CPA secure PKE scheme [27] and a DE scheme [5] based on
ad-LTDFs by simply replacing LTDFs by ad-LTDFs. Among them, by using our
ad-LTDF based on the factoring assumption given in Sec. 4, we obtain the first
DE scheme that satisfies the PRIV security for block-sources defined in [5] under
the factoring assumption.

5.1 Collision Resistant Hash Function

Here, we give an analogue of the collision resistant hash function in [27] based
on ad-LTDFs. In fact, our scheme is obtained by simply replacing LTDFs in
the scheme in [27] by ad-LTDFs. The concrete construction is as follows. Let
(ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) be an (n, k)-ad-LTDF
andH be a family of pairwise independent hash functions from {0, 1}k to {0, 1}κn
where κ := 2ρ+ δ, ρ < 1/2 is a constant that satisfies n− k ≤ ρn and δ is some
constant in (0, 1− 2ρ),

Gencrh(1
λ): Run (PP, SP ) ← ParamsGen(1λ) and σ ← SampleInj(PP ), and

choose H
$← H. Output a function description h := (H,PP, σ).

Evalcrh((H,PP, σ), x): Compute H(Evaluation(PP, σ, x)) and output it.

Theorem 3 The above hash function is collision resistant.

We omit the proof since this can be proven by modifying the proof in [27] in a
similar way as in Sec. 5.3.

5.2 CPA Secure Public Key Encryption

Here, we give an analogue of the CPA secure PKE scheme in [27] based on
ad-LTDFs. In fact, our scheme is obtained by simply replacing LTDFs in the
scheme in [27] by LTDFs. The concrete construction is as follows.

Let (ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) be an (n, k)-ad-
LTDF and H be a family of pairwise independent hash functions from {0, 1}n to
{0, 1}ℓ, where ℓ ≤ k − 2 log(1/δ) for some negligible δ. The construction of our
scheme PKE = (Gen,Enc,Dec) is as follows.

Key generation : Gen(1λ) generates (PP, SP ) ← ParamsGen(1λ) and σ ←
SampleInj(PP ). It also chooses a hash function H

$← H. It outputs a public
key PK = (PP, σ,H) and a secret key SK = (SP,H).

Encryption : Enc takes as input a public key PK = (PP, σ,H) and a message

msg ∈ {0, 1}ℓ. It chooses x
$← {0, 1}n, sets C1 := Evaluation(PP, σ, x) and

C2 := msg ⊕H(x) and outputs C = (C1, C2)
Decryption : Dec takes as input a secret key SK = (SP,H) and a ciphertext

C = (C1, C2), computes x := Inversion(SP, σ,C1) and msg := C2 ⊕ H(x),
and outputs msg.

Theorem 4 The above scheme is CPA secure.



This can be proven by modifying the proof in [27] in a similar way as in Sec.
5.3. The proof is given in the Appendix A.1.

Remark 7 If we use ad-ABO given in the full version, we can construct CCA
secure PKE scheme similarly as in [27].

5.3 Deterministic Encryption

Here, we construct a DE scheme based on ad-LTDFs. The construction is a sim-
ple analogue of the scheme in [5] based on LTDFs. Indeed, our scheme is obtained
by simply replacing LTDFs by ad-LTDFs in their scheme. The concrete construc-
tion is as follows. Let (ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion)
be an (n, k)-ad-LTDF and H be a family of pairwise independent permutations
on {0, 1}n, where u ≥ n − k + 2 log(1/δ) − 2 holds for some negligible δ. The
construction of our scheme DE = (Gen,Enc,Dec) is as follows.

Gen(1λ): Generate (PP, SP ) ← ParamsGen(1λ) and σ ← SampleInj(PP ) and

choose H
$← H. Output a public key PK = (PP, σ,H) and a secret key

SK = (SP, σ).
Enc(PK = (PP, σ,H),msg): Compute C ← Evaluation(PP, σ,H(msg)) and out-

put C.
Dec(SK,C): Compute msg′ ← Inversion(SP, σ,C) and msg := H−1(msg′) and

output msg.

Theorem 5 The above scheme is PRIV1-IND-CPA secure deterministic en-
cryption for (u, n)-sources.

Proof. Assume that the above scheme is not PRIV1-IND-CPA secure. There ex-
ists (u, n)-sources M0,M1 and a PPT adversary A such that AdvPRIV−IND−CPAA,DE (λ)
is non-negligible. Then there exist a polynomial poly such that for infinitely many
λ, AdvPRIV−IND−CPAA,DE (λ) > 1/poly(λ) holds. We consider the following sequence of
games.

Game 1 : This game is the original PRIV1-IND-CPA game with respect to M0,
M1 and A. That is, a challenger computes (PP, SP )← ParamsGen(1λ) and

σ ← SampleInj(PP ), chooses H ← H, sets PK := (PP, σ,H), chooses b
$←

{0, 1}, msg∗
$← Mb and computes C∗ ← Evaluation(PP, σ,H(msg∗)). A is

given (PK,C∗) and outputs b′.
Game 2 : This game is the same as the previous game except that σ is generated

by SampleLossy(PP, I), where intuitively, I is an index such that “it is dif-
ficult to distinguish an injective function from a lossy function with index I
for A”. To describe this precisely, we consider the following PPT algorithm
B.
B(PP, σ) : Choose H

$← H, b $← {0, 1}, msg∗
$←Mb, set PK := (PP, σ,H),

compute C∗ ← Evaluation(PP, σ,H(msg∗)), run b′ ← A(PK,C∗) and
output 1 if b = b′, and otherwise 0.



Let SB,1/(2poly) be the algorithm that is assumed to exists in the definition
of ad-LTDFs. (Note that B is a PPT algorithm and 1/(2poly) is noticeable.)
In this game, we let I ← SB,1/(2poly)(PP ) and σ ← SampleLossy(PP, I).

Game 3 : This game is the same as the previous game except that a challenge
ciphertext is set as C∗ ← Evaluation(PP, σ,H(U)) where U ∈ {0, 1}n is a
uniformly random string.

Let Ti be the event that b = b′ in Game i. Clearly we have |Pr[T1] − 1/2| =
AdvPRIV−IND−CPAA,DE (λ). Then we prove the following lemmas.

Lemma 9 For sufficiently large any λ, we have |Pr[T2]−Pr[T1]| ≤ 1/(2poly(λ)).

Proof. By the definition of an adversary-dependent lossy trapdoor function, if
we let

Pinj := Pr

[
1← B(PP, σ) :

(PP, SP )← ParamsGen(1λ)
σ ← SampleInj(PP )

]

Plossy := Pr

1← B(PP, σ) :
(PP, SP )← ParamsGen(1λ)

I ← SB,1/(2poly)(PP )
σ ← SampleLossy(PP, I)


then we have |Pinj − Plossy| ≤ 1/(2poly) for sufficiently large λ. It is clear that
Pinj = Pr[T1] and Plossy = Pr[T2] holds. Therefore the lemma follows.

Lemma 10 We have |Pr[T3]− Pr[T2]| ≤ δ.

In Lemma 3, we let f := Evaluation(PP, σ, ·),X := msg∗ and Y := (PP, σ). Then
by the lossiness, |S| ≤ 2n−k holds where S is the range of f . By the definition
of (u, n)-sources, we have H̃∞(X|Y ) ≥ u and u ≥ n − k + 2 log(1/δ) − 2 ≥
|S|+2 log(1/δ)−2. By Lemma 3, the statistical distance between (C∗,H, (PP, σ))
in Game 2 and that in Game 3 is at most δ. Thus the lemma follows.

Lemma 11 We have Pr[T3] = 1/2.

Proof. In Game 3, A is given no information about b. Therefore the probability
that A can correctly guess b is 1/2.

By combining these lemmas, for all sufficiently large λ, we have |Pr[T1]−1/2| ≤
1/(2poly(λ)) + δ, equivalently, AdvPRIV−IND−CPAA,DE (λ) ≤ 1/(2poly(λ)) + δ. On the

other hand, we assumed, AdvPRIV−IND−CPAA,DE (λ) > 1/poly(λ) for infinitely many λ.
Combining these two inequalities, we have 1/(2poly(λ)) < δ for infinitely many
λ, which contradicts to that δ is negligible. Therefore there does not exist a PPT
adversary that breaks the scheme.

Remark 8 If we use ad-ABO given in the full version, we can construct PRIV1-
IND-CCA secure DE scheme similarly as in [5].



6 CCA Secure PKE with Short Ciphertext

In this section, we construct a CCCA secure KEM under the m-ad-DRSA as-
sumption. By Theorem 1, under certain condition, this scheme is CCCA secure
under the factoring assumption w.r.t. SS moduli. By setting a parameter appro-
priately, we obtain a PKE scheme whose ciphertext overhead is minimum among
schemes that are CCA secure under the factoring assumption by combining our
KEM and an authenticated symmetric key encryption scheme.

6.1 Construction

Idea of our construction. Since the m-ad-DRSA assumption is a type of sub-
group decision assumptions, we can consider an “adversary-dependent version”
of hash proof systems as in [8], where it is shown that a hash proof system can
be constructed based on any subgroup decision assumption. Then we construct
a KEM similarly as in [16], where the authors constructed a CCCA secure KEM
based on a hash proof system. Though our construction is based on the above
idea, for clarity, we give a direct construction of our KEM rather than defining
the “adversary-dependent version” of hash proof systems.

The construction of our scheme KEMCCCA is as follows. Let IGen be a PPT
algorithm that generates (ℓB , tp, tq)-SS RSA modulus, H be a family of pairwise

independent hash functions from (Z∗N )n to {0, 1}λ where n := ⌈ (2ℓN+1)λ
ℓB−1 ⌉, and

h : G → {0, 1}λ be a target collision resistant hash function. For simplicity, we
assume that the KEM key length is equal to the security parameter λ.

Gen(1λ) : Generate (N,P,Q) ← IGen(1λ). Choose H
$← H, g

$← QRN and

x
(k)
i,j

$← [(N − 1)/4] and set X
(k)
i,j := gx

(k)
i,j for i = 1, . . . , λ, j = 1, . . . , n

and k = 0, 1. Output PK := (N,h,H, {X(k)
i,j }i∈[λ],j∈[n],k∈{0,1}) and SK :=

({x(k)
i,j }i∈[λ],j∈[n],k∈{0,1}, PK).

Enc(PK) : Choose r
$← [(N − 1)/4], compute C := gr, t := h(C) and K :=

H((
∏λ

i=1 X
(ti)
i,1 )r, . . . , (

∏λ
i=1 X

(ti)
i,n )r) where ti denotes the i-th bit of t. Out-

put (C,K).

Dec(SK,C) : Compute t := h(C) and K := H(C
∑λ

i=1 x
(ti)

i,1 , . . . , C
∑λ

i=1 x
(ti)

i,n )
where ti denotes the i-th bit of t, and output K.

6.2 Security

Theorem 6 If m-ad-DRSA assumption holds with respect to IGen and (ℓB −
1)(tp + tq +m−MℓB ) ≥ λ holds, then KEMCCCA is CCCA secure.

Corollary 2 If the factoring assumption holds with respect to IGen for the pa-
rameter setting given in 2.4, then KEMCCCA is CCCA secure for n = O(λ4/ log(λ)).



Proof. (of Corollary 2) Let m := ⌊MℓB + 1 − (1/2 + c) ℓN
(ℓB−1)⌋ for a constant

c < 1/4. Then we have (MℓB −m+ 1)(ℓB − 1) ≥ (1/2 + c)ℓN and therefore the
m-ad-DRSA assumption holds under the factoring assumption by Theorem 1.
Moreover, we have (ℓB − 1)(tp+ tq +m−MℓB ) = O(λ3) if we use the parameter
setting given in Sec. 2.4. Thus the obtained scheme is CCCA secure under the
factoring assumption. ⊓⊔

Theorem 6 can be proven almost similarly as the security of the CCCA
secure KEM based on a hash proof system in [16]. However, for a technical
reason, we need the following variant of the leftover hash lemma unlike in [16].
Specifically, in the leftover hash lemma (Lemma 2), a random variable X should
be independent from H. On the other hand, in our proof, we need a variant in
which a random variable X may depend on H. The following lemma states that
this is possible with the loss of the number of possible random variables X. We
note that this idea is already used in some existing works [35, 32]. This lemma
is necessary because in our proof, we set X to be a decryption query, which
is chosen by an adversary after seeing a public key which includes a pairwise
independent hash function H.

Lemma 12 Let X be a set of random variables X on {0, 1}n1 such that H∞(X) ≥
n2 + 2 log(1/δ), and H be a family of pairwise independent hash functions from
{0, 1}n1 to {0, 1}n2 . Then for any computationally unbounded algorithm F , which
is given H ∈ H and outputs a description of a distribution X ∈ X , we have
∆((H(X),H), (U,H)) ≤ |X |δ where H

$← H and X ← F(H).

The proof is given in the full version.
Then we give the proof of Theorem 6.

Proof. (of Theorem 6) Assume that there exists a valid PPT adversary A that
breaks the CCCA security of the above scheme. Then there exists a polynomial
poly such that AdvCCCAA,KEMCCCA

(λ) > 1/poly(λ) for infinitely many λ. We consider
the following sequence of games.

Game 1 : This game is the original CCCA game of KEMCCCA for A. That is, a
challenger C generates (N,P,Q)← IGen(1λ), choosesH

$← H, g $← QRN and

x
(k)
i,j

$← [(N − 1)/4] and sets X
(k)
i,j := gx

(k)
i,j for i = 1, . . . , λ, j = 1, . . . , n and

k = 0, 1 and sets PK := (N,h,H, {X(k)
i,j }i∈[λ],j∈[n],k∈{0,1}). Then it chooses

b
$← {0, 1} and r∗

$← [(N − 1)/4], and computes C∗ := gr
∗
, t∗ := h(C∗)

and K∗ := H((
∏λ

i=1 X
(t∗i )
i,1 )r

∗
, . . . , (

∏λ
i=1 X

(t∗i )
i,n )r

∗
) where t∗i denotes the i-th

bit of t∗ if b = 1 and K∗
$← {0, 1}λ otherwise. Then it gives (PK,C∗,K∗)

to A. In the game, A can query pairs of ciphertexts and predicates to an
oracle ODec. When A queries (C, pred), ODec computes K ← Dec(SK,C)
and returns K to A if C ̸= C∗ and pred(K) = 1, and otherwise ⊥. Finally,
A outputs a bit b′.

Game 2 : This game is the same as the previous game except that K∗ is

set differently if b = 1. Specifically, it is set as K∗ := H(C∗
∑λ

i=1 x
(t∗i )

i,1 ,

. . . , C∗
∑λ

i=1 x
(t∗i )

i,n ) if b = 1.



Game 3 : This game is the same as the previous game except that C∗ is set
differently. Specifically, it is uniformly chosen from QRN .

Game 4 : This game is the same as the previous game except that g is uniformly
chosen from a subgroup S of QRN , which is defined as follows. First, we
define a PPT algorithm B as follows.

B(N, g): ChooseH
$← H, x(k)

i,j
$← [(N−1)/4] and setX

(k)
i,j := gx

(k)
i,j for i ∈ [λ],

j ∈ [n] and k = 0, 1 and PK := (N,h,H, {X(k)
i,j }i∈[λ],j∈[n],k∈{0,1}),

choose C∗
$← QRN and b

$← {0, 1}, and set K∗ := H(C∗
∑λ

i=1 x
(t∗i )

i,1 ,

. . . , C∗
∑λ

i=1 x
(t∗i )

i,n ) where t∗ := h(C∗) and t∗i is the i-th bit of t∗ if b = 1,

and K∗
$← {0, 1}ℓ otherwise. Run b′ ← AODec(PK,C∗,K∗) and out-

put b′. We note that B can simulate ODec for A since it knows SK =

({x(k)
i,j }i∈[λ],j∈[n],k∈{0,1}, PK).

Let SB,poly/2 be the algorithm that is assumed to exist in the definition of
m-ad-DRSA assumption. Note that this algorithm actually exists since B is
a PPT algorithm and poly/2 is noticeable. Then we define the subgroup S
as follows: We run {p1, . . . , pm} ← SB,poly/2 and define S := {hp1,...,pm : h ∈
QRN}.

Game 5 : This game is the same as the previous game except that the decryp-
tion oracle ODec is replaced with an alternative decryption oracle ODec′ that
works as follows: ODec′ , given C and pred, computes t := h(C) and returns

⊥ if t = t∗. Otherwise it computes K := H(C
∑λ

i=1 x
(ti)

i,1 , . . . , C
∑λ

i=1 x
(ti)

i,n ) and
outputs K if pred(K) = 1, and otherwise ⊥.

Game 6 : This game is the same as the previous game except that x
(k)
i,j is set

differently. Specifically, it is uniformly chosen from ord(QRN ) instead of from
[(N − 1)/4] for i = 1, . . . , λ, j = 1, . . . , n and k = 0, 1.

Game 7 : This game is the same as the previous game except that the de-
cryption oracle ODec′ is replaced with an alternative decryption oracle ODec′′

that works as follows: ODec′′ , given C and pred, computes t := h(C) and
returns ⊥ if t = t∗ or C /∈ S, where S is the group defined in Game 4.

Otherwise it computes K := H(C
∑λ

i=1 x
(ti)

i,1 , . . . , C
∑λ

i=1 x
(ti)

i,n )and outputs K
if pred(K) = 1, and otherwise ⊥.

Game 8 : This game is the same as the previous game except that K∗ is always
an independently random string.

Let Ti be the event that b = b∗ holds in Game i. Then clearly we have AdvCCCAA,PKECCCA
=

|Pr[T1] − 1/2|. First, we prove that the group S defined in Game 4 is a proper
subgroup of QRN . Moreover, we prove that ord(S)/ord(QRN ) ≤ 2−λ holds.
By the definition of SS moduli, ord(QRN ) has tp + tq distinct prime factors
p′1, . . . , p

′
tp+tq of ℓB-bit. Since the number of the all ℓB-bit primes is MℓB , there

exist at least tp+tq+m−MℓB distinct primes contained in both {p′1, . . . , p′tp+tq}
and {p1, . . . , pm}. We denote those primes by p′′1 , . . . p

′′
tp+tq+m−MℓB

. Those primes

cannot be a factor of ord(S) since S = {hp1...pm : h ∈ QRN} by the definition
whereas they are a factor of ord(QRN ). Thus ord(S)/ord(QRN ) ≤ 1

p′′
1 ...p

′′
tp+tq+m−MℓB

≤ 2−(tp+tq+m−MℓB
)(ℓB−1) ≤ 2−λ. Then we prove the following lemmas.



Lemma 13 Pr[T2] = Pr[T1] holds. ⊓⊔

Proof. The modification between Game 1 and 2 is only conceptual. ⊓⊔

Lemma 14 |Pr[T3]− Pr[T2]| is negligible.

Proof. This follows from the fact that the statistical distance between the uni-
form distributions on [(N − 1/4)] and [ord(QRN )] are negligible. ⊓⊔

Lemma 15 We have |Pr[T4]− Pr[T3]| ≤ 1/(2poly) for sufficiently large λ.

Proof. This follows immediately from the definition of m-ad-DRSA assumption.
⊓⊔

Lemma 16 If h is collision resistant, then |Pr[T5]− Pr[T4]| is negligible.

Proof. From the view of A, Game 4 and 5 may differ only if A makes a query
(C, pred) such that h(C) = t∗. If A makes such a query, then this means that it
finds a collision of h. ⊓⊔

Lemma 17 |Pr[T6]− Pr[T5]| is negligible.

Proof. This follows from the fact that the statistical distance between the uni-
form distributions on [(N − 1/4)] and [ord(QRN )] are negligible. ⊓⊔

Lemma 18 |Pr[T7]− Pr[T6]| is negligible.

Proof. Let q be an upper bound of the number of decryption queriesAmakes. We
consider hybrids H0, . . . ,Hq that are defined as follows. A hybrid Hℓ is the same
as Game 6 except that the oracle to which A accesses works similarly as ODec′′

for the first ℓ queries, and similarly as ODec′ for the rest of queries. Let T6,ℓ be
the event that b = b′ holds in the hybrid Hℓ. Clearly, We have Pr[T6,0] = Pr[T6]
and Pr[T6,ℓ] = Pr[T7]. Let Fℓ be the event that ODec′′ returns ⊥ for A’s ℓ-th
query (Cℓ, predℓ) but ODec′ does not return ⊥ for it. That is, Fℓ is the event

that Cℓ ∈ QRN \ S, t ̸= t∗ and pred(Kℓ) = 1 hold where Kℓ := H(C
∑λ

i=1 x
(ti)

i,1

ℓ ,

. . . , C
∑λ

i=1 x
(ti)

i,n

ℓ ), t := h(Cℓ) and ti denotes the i-th bit of t. Unless Fℓ occurs,
hybrids Hℓ and Hℓ−1 are exactly the same from the view of A. Therefore we have
|Pr[T6,ℓ]− Pr[T6,ℓ−1]| ≤ Pr[Fℓ]. Let viewℓ be the view from A before it is given
the response for its ℓ-th query. That is, viewℓ consists of PK, C∗, K∗, Cℓ and
decryption queries and responses for them before the ℓ-th query. We prove the
following claim.

Claim 3 If Cℓ ∈ QRN \ S and t ̸= t∗, then Kℓ is distributed almost uniformly
on {0, 1}λ from the view of A in the hybrids Hℓ−1 and Hℓ. More precisely, we

have ∆((Kℓ, viewℓ), (U, viewℓ)) ≤ 2−λ where U
$← {0, 1}λ.

Assume this claim is true. Then we prove that Pr[Fℓ] is negligible for any
ℓ ∈ [q]. Since A is valid, pred is non-trivial. That is, for independently uniform
U , Pr[predi(U) = 1] is negligible. By Claim 3, if Cℓ ∈ QRN \ S and t ̸= t∗,

then we have ∆((Kℓ, view), (U, view)) ≤ 2−λ where U
$← {0, 1}λ. Therefore

Pr[pred(Kℓ) = 1] is negligible and thus Pr[Fℓ] is negligible. Thus |Pr[T7]−Pr[T6]|
is negligible by the hybrid argument. What is left is to prove Claim 3.



Proof. (of Claim 3) Since we assumed t ̸= t∗, there exists i ∈ [λ] such that ti ̸= t∗i .
We denote minimum such i by i∗. Since C ∈ QRN \S and S is a proper subgroup
of QRN , there exists an ℓB-bit prime p̄ that divides ord(C) but does not divide
ord(S). Here, we claim that the decryption oracle before ℓ-th query can be simu-

lated by using {x(k)
i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1} and PK. This can be seen by

that the oracle immediately returns ⊥ for a query (C, pred) such that C /∈ S. If

we define view′ℓ := (PK,C∗,K∗, Cℓ, {x(k)
i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1}) where

PK denotes a public key except H, then we have ∆((Kℓ, viewℓ), (U, viewℓ)) ≤
∆((Kℓ,H, view′ℓ), (U,H, view′ℓ)). Thus it suffices to show that conditioned on any
fixed value of view′ℓ, ∆((Kℓ,H), (Uℓ,H)) ≤ 2−λ holds. One can see that view′ℓ
does not depend on (x

(ti∗ )
i∗,j mod p̄) at all for j ∈ [n]: PK does not depend on

(x
(ti∗ )
i∗,j mod p̄) since g ∈ S by the modification from Game 3 to 4. (C∗,K∗) does

not depend on (x
(ti∗ )
i∗,j mod p̄) since we assumed ti∗ ̸= t∗i∗ and thus x

(ti∗ )
i∗,j is not

used for generating K∗. {x(k)
i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1} does not depend on

(x
(ti∗ )
i∗,j mod p̄) since ord(S) is coprime to p̄. Thus conditioned on any value of

view′ℓ, (x
(ti∗ )
i∗,j mod p̄) is distributed uniformly for all j ∈ [n]. Therefore we have

H∞(C
∑λ

i=1 x
(ti)

i,1

ℓ , . . . , C
∑λ

i=1 x
(ti)

i,n

ℓ |view′ℓ) ≥ n log p̄ ≥ n(ℓB − 1) ≥ λ + 2ℓNλ. Here,
we use Lemma 12: We set X := {XC}C∈QRN\S where XC denotes a random

variable that is distributed as (C
∑λ

i=1 x
(ti)

i,1 , . . . , C
∑λ

i=1 x
(ti)

i,n ) conditioned on view′ℓ,
δ := 2−ℓNλ, and F as an algorithm that simulates the game between A and the
challenger and outputs XCℓ

where Cℓ is A’s ℓ-th decryption query. Then we have

∆((Kℓ,H), (U,H)) ≤ |QRN \ S|2−ℓNλ ≤ 2−λ where U
$← {0, 1}λ, conditioned

on any fixed value of view′ℓ. Thus the proof of Claim 3 is completed. ⊓⊔
This concludes the proof of Lemma 18. ⊓⊔
Lemma 19 |Pr[T8]− Pr[T7]| is negligible.

Proof. Since we have Pr[C∗ ∈ S : C∗
$← QRN ] ≤ 2−λ, in the following, we

assume C∗ /∈ S. Then there exists p̄ that divides ord(C∗) but does not di-
vide ord(S). Let view be the view from A in Game 8 except K∗, and view′ :=

{PK,C∗, {x(k)
i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1}}. By a similar argument as in the

proof of Claim 3, we have∆((K∗, view), (U, view)) ≤ ∆((K∗,H, view′), (U,H, view′))

and H̃∞(C∗
∑λ

i=1 x
(ti)

i,1 , . . . , C∗
∑λ

i=1 x
(ti)

i,n |view′) ≥ n log p̄ ≥ n(ℓB−1) ≥ (2ℓN +1)λ.

If we let X := (C∗
∑λ

i=1 x
(ti)

i,1 , . . . , C∗
∑λ

i=1 x
(ti)

i,n ), Y := view and δ := 2−ℓNλ in
Lemma 2, then we have ∆((K∗,H, view′), (U,H, view′)) ≤ 2−ℓNλ where K∗ =

H(C∗x1+t∗y1 , . . . , C∗xn+t∗yn) and U
$← {0, 1}k. Thus the lemma follows. ⊓⊔

By the above lemmas, we have AdvCCCAA,KEMCCCA
(λ) = |Pr[T1]− Pr[T8]| ≤ negl(λ) +

1/(2poly(λ)) for sufficiently large λ where negl is some negligible function. On the
other hand, we assumed that there are infinitely many λ such that AdvCCCAA,KEMCCCA

(λ)
> 1/poly(λ). Therefore for infinitely many λ, we have 1/(2poly(λ)) < negl(λ),
which contradicts to that negl(λ) is negligible. Thus there does not exist a valid
PPT adversary that breaks the CCCA security of the scheme. ⊓⊔



Discussion. Here, we discuss the efficiency of the CCA secure PKE scheme
that is obtained by combining the above KEM and an authenticated symmetric
key encryption scheme. Table 1 shows the efficiency and hardness assumption of
CCA secure PKE schemes based on the factoring in the standard model. Among
existing schemes, the scheme proposed by Hofheinz and Kiltz [18] is one of the
best in regard to the ciphertext overhead, which consists of 2 elements of Z∗N .
In contrast, the ciphertext overhead of our scheme consists of only 1 element
of Z∗N plus a MAC. By giving a concrete parameter (ℓ′p = ℓ′q = 160, ℓB = 15,
tp = tq = 32 and ℓN = 1280), the ciphertext overhead of our scheme is 1360-bit
for 80-bit security whereas that of [18] is 2048-bit. On the other hand, the public
key size of our scheme is much larger than that of [18], and an encryption and
decryption are much less efficient than those in [18].
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A Omitted Proofs

A.1 Proof of Theorem 4

Proof. Assume that the scheme is not CPA secure. Then there exists a PPT
adversary A = (A1,A2) such that AdvCPAA,PKE(λ) is non-negligible. Then there

exists a polynomial poly such that for infinitely many λ, AdvCPAA,PKE(λ) > 1/poly(λ)
holds. We consider the following sequence of games.

Game 1 This is the original CPA game between A and the challenger C. That
is, C generates (PP, SP ) ← ParamsGen(1λ) and σ ← SampleInj(PP ), and

choosesH
$← H. Then C gives PK := (PP, σ,H), andA1 outputs (msg0,msg1, st).

Then C chooses b $← {0, 1} and x
$← {0, 1}n, computes C1 ← Evaluation(PP, σ, x)

and C2 := msgb⊕H(x) and gives C := (C1, C2) to A2. Then A2(C, st) out-
puts b′.

Game 2 This game is the same as the previous game except that σ is generated
by SampleLossy(PP, I), where intuitively, I is an index such that “it is dif-
ficult to distinguish an injective function from a lossy function with index I
for A”. To describe this precisely, we consider the following PPT algorithm
B.
B(PP, σ): Choose H

$← H, run (msg0,msg1, st) ← A1(PP, σ,H), choose

b
$← {0, 1} and x

$← {0, 1}n, compute C1 ← Evaluation(PP, σ, x) and
C2 := msgb ⊕H(x), run b′ ← A2((C1, C2), st). If b = b′, then output 1,
and otherwise 0.



Let SB,1/(2poly) be the algorithm that is assumed to exist in the definition of
ad-LTDFs. (Note that B is a PPT algorithm and 1/(2poly) is noticeable.) In
this game, we let I ← SB,1/(2poly)(PP ) and σ ← SampleLossy(PP, I).

Game 3 This game is the same as the previous game except that C2 is set as
C2 ← msgb ⊕ U where U

$← {0, 1}ℓ.
Game 4 This game is the same as the previous game except that C2 is set as

C2
$← {0, 1}ℓ.

Let Ti be the event that b = b′ holds in Game i. By the definition, we have
|Pr[T1]− 1/2| = AdvCPAA,PKE(λ). Then we prove the following lemmas.

Lemma 20 For sufficiently large any λ, we have |Pr[T2]−Pr[T1]| ≤ 1/(2poly(λ)).

Proof. By the definition of ad-LTDFs, if we let

Pinj := Pr

[
1← B(PP, σ) :

(PP, SP )← ParamsGen(1λ)
σ ← SampleInj(PP )

]

Plossy := Pr

1← B(PP, σ) :
(PP, SP )← ParamsGen(1λ)

I ← SB,1/(2poly)(PP )
σ ← SampleLossy(PP, I)


then we have |Pinj−Plossy| ≤ 1/(2poly(λ)) for sufficiently large λ. It is clear that
Pinj = Pr[T1] and Plossy = Pr[T2] hold. Therefore the lemma follows.

Lemma 21 We have |Pr[T3]− Pr[T2]| ≤ δ.

In Lemma 2, we let X := x and Y := (PP, σ, fσ(X)). Then we have H̃∞(X|Y ) ≥
H̃∞(X|PP, σ) − (n − k) = k ≥ ℓ + 2 log(1/δ) since the size of the image of fσ
is at most 2n−k. Then by Lemma 2, we have ∆((H(X),H, Y ), (U,H, Y )) ≤ δ

where U
$← {0, 1}ℓ. Thus the lemma follows.

Lemma 22 We have Pr[T4] = Pr[T3].

Proof. This is clear since U is independently random string.

Lemma 23 We have Pr[T4] = 1/2.

Proof. In Game 3, A is given any information about b. Therefore the probability
that A can correctly guess b is 1/2.

By combining these lemmas, for all sufficiently large λ, we have |Pr[T1]−1/2| ≤
1/(2poly(λ)) + δ. That is, we have AdvCPAA,PKE(λ) ≤ 1/(2poly(λ)) + δ. Since we

assumed for infinitely many λ, AdvCPAA,PKE(λ) > 1/poly(λ), for infinitely many λ,
we have 1/(2poly(λ)) < δ. This contradicts to that δ is negligible. Therefore
there does not exist a PPT adversary that breaks the scheme.



A.2 Proof of Lemma 12

Proof. We have

∆
H

$←H,X←F(H)
((H(X),H), (U,H))

= E
H

$←H
[∆X←F(H)(H(X), U)]

≤ E
H

$←H
[
∑
X∈X

∆(H(X), U)]

=
∑
X∈X

E
H

$←H
[∆(H(X), U)]

=
∑
X∈X

∆
H

$←H
((H(X),H), (U,H)) ≤ |X |δ

where the last inequality follows from Lemma 2. ⊓⊔

B Adversary-dependent All-but-one Lossy Trapdoor
Function.

In this section, we define adversary-dependent all-but-one lossy trapdoor func-
tions (ad-ABO) and construct it based on ad-LTDFs. Moreover we give more
efficient construction of ad-ABO based on the ad-DRSA assumption.

B.1 Definition

For integers n and k such that 0 < k < n, an (n, k)-adversary-dependent all-but-
one lossy trapdoor function (ad-ABO) consists of 5 algorithms (ParamsGen,SampleInj,
SampleABO,Evaluation, Inversion) and a family {I(λ)}λ∈N of lossy function index
sets.

ParamsGen(1λ)→ (PP, SP ) : It takes a security parameter 1λ as input, and out-
puts a public parameter PP and a secret parameter SP .

SampleInj(PP )→ σ : It takes a public parameter PP as input, and outputs
a function description σ, which specifies an injective function fσ over the
domain {0, 1}n × {0, 1}ℓb .

SampleABO(PP, b∗, I)→ σ: It takes a public parameter PP , a lossy branch b ∈
{0, 1}ℓb and an all-but-one function index I ∈ I(λ) as input, and outputs a
function index σ, which specifies a “all-but-one” function fσ over the domain
{0, 1}n × {0, 1}ℓb .

Evaluation(PP, σ, b, x)→ fσ(x, b): It takes a public parameter PP , function de-
scription σ, a branch b and x ∈ {0, 1}n as input, and outputs fσ(x, b)

Inversion(SP, σ, b∗, b, y)→ x: It takes a secret parameter SP , a function descrip-
tion σ,, b∗ ∈ {0, 1}ℓb ∪ ⊥, b and y and outputs the “inversion” x.

We require ad-LTDFs to satisfy the following three properties.
Correctness:



1. For all x ∈ {0, 1}n and b ∈ {0, 1}ℓb , we have Inversion(SP, σ,⊥, b,Evaluation(PP,
σ, b, x)) = x with overwhelming probability where (PP, SP )← ParamsGen(1λ)
and σ ← SampleInj(PP ).

2. For all x ∈ {0, 1}n, b∗, b ∈ {0, 1}ℓb with b ̸= b∗ and I ∈ I(λ), we have
Inversion(SP, σ, b∗, b,Evaluation(PP, σ, b, x)) = x with overwhelming proba-
bility where (PP, SP )← ParamsGen(1λ) and σ ← SampleABO(PP, b∗, I).

All-but-one lossiness: For all λ ∈ N, (PP, SP )← ParamsGen(1λ), b∗ ∈ B(λ),
I ∈ I(λ) and σ ← SampleABO(PP, b∗, I), the image of fσ(·, b∗) has size at most
2n−k.

Indistinguishability between injective and ABO functions. Intuitively,
we require that for any PPT adversary A, there exists at least one lossy function
index I ∈ I(λ) such that for all b∗ ∈ B(λ), A cannot distinguish an injective
function from an ABO function with the lossy branch b∗ and the lossy function
index I.

The more precise definition is as follows. For any PPT adversary A and
noticeable function ϵ(λ), there exists a PPT algorithm SaboA,ϵ that takes a public
parameter PP and a lossy branch b∗ as input and outputs I ∈ I(λ) such that
the following is satisfied. For all b∗ ∈ B(λ), if we let

Pinj := Pr

[
1← B(PP, σ) :

(PP, SP )← ParamsGen(1λ)
σ ← SampleInj(PP )

]

Plossy := Pr

1← B(PP, σ) :
(PP, SP )← ParamsGen(1λ)

I ← SB,1/(2poly)(PP )
σ ← SampleLossy(PP, I)


Pinj := Pr

[
1← A(PP, σ) :

(PP, SP )← ParamsGen(1λ)
σ ← SampleInj(PP )

]

Plossy,b∗ := Pr

1← A(PP, σ) :
(PP, SP )← ParamsGen(1λ)
I ← SaboA,ϵ(PP, b∗)

σ ← SampleABO(PP, b∗, I)


then we have |Pinj − Plossy,b∗ | ≤ ϵ(λ) for sufficiently large λ.

B.2 Generic Construction

Here, We construct an ad-ABO based on an ad-LTDF. Let (ParamsGengltdf ,SampleInjgltdf ,
SampleLossygltdf ,Evaluationgltdf , Inversiongltdf) be an (n, k)- ad-LTDF

Definition of I(λ): I(λ) is the same as that of the underlying ad-LTDF.
ParamsGengabo(1

λ)→ (PP, SP ): Run (PP, SP ) ← ParamsGengltdf(1
λ) and out-

put (PP, SP ).



SampleInjgabo(PP )→ σ: For all i ∈ [ℓb], generate σi,0, σi,1 ← SampleInjgltdf(PP ),
and output σ := {σi,j}i∈[ℓb],j∈{0,1}.

SampleABOgabo(PP, b∗, I)→ σ: For all i ∈ [ℓb], generate σi,b∗i
← SampleLossygltdf

(PP, I) and σi,1−b∗i ← SampleInjgltdf(PP ), and output σ := {σi,j}i∈[ℓb],j∈{0,1}.
Evaluationgabo(PP, σ, b, x)→ fσ(x, b): For all i ∈ [ℓb], compute yi := Evaluationgltdf

(PP, σi,bi , x), and output y := {yi}i∈[ℓb].
Inversiongabo(SP, σ, b

∗, b, y)→ f−1σ (y): Find i ∈ [ℓb] such that b∗i ̸= bi, compute
x := Inversionltdf(SP, σi,bi , yi) and output x.

Theorem 7 If the underlying scheme is an (n, n− r)-ad-LTDF, then the above
scheme is an (n, n− rℓB)-ad-ABO.

The proof is almost the same as the proof of generic construction of all-but-one
lossy trapdoor function from a lossy trapdoor function in [27]. Therefore we omit
it.

B.3 Direct Construction

Here, we construct an ad-ABO based on the m-ad-DRSA assumption directly.
Let IGen be an algorithm that generates an ℓN -bit (ℓB , tp, tq)-SS RSA modulus

with the parameter given in Sec. 2.4 and n := (t−d)(ℓB−1)−ℓb
2 .

Definition of I(λ): I(λ) is defined as the set of allm-tuple of distinct primes of
length ℓB . That is, we define I(λ) := {{p1, . . . , pm} : p1, . . . , pm are distinct
ℓB bit primes}.

ParamsGen(1λ)→ (PP, SP ): Generate (N,P,Q)← IGen(1λ), set PP := N and
SP := (P,Q), and output (PP, SP ).

SampleInj(PP = N)→ σ: Choose g, h
$← QRN and output σ := (g, h).

SampleABO(PP = N, b∗, I = {p1, . . . , pm})→ σ: Choose g, g′
$← QRN , set h :=

g−b
∗
g′p1...pm and output σ := (g, h).

Evaluation(PP = N, σ = (g, h), b, x ∈ {0, 1}n)→ fσ(x): Interpret x as an element
of [2n] and output (gbh)x.

Inversion(SP = (P,Q), σ = (g, h), b∗, by)→ f−1σ (y): Compute x = PLog(P,Q, gbh, y)
and output x where PLog is the algorithm given in Lemma 7.

Theorem 8 If the m-ad-DRSA assumption holds with respect to IGen, then the
above scheme is an (n, n− (ℓp′ + ℓq′ + (MℓB −m)ℓB))-ad-ABO.

Proof.
Correctness.

1. If σ = (g, h) is generated by SampleInj, then they are independently uni-
form elements of QRN . In particular, for any b ∈ {0, 1}ℓb , gbh is a uniform
element of QRN . Thus Inversion((P,Q), (g, h),⊥, b,Evaluation(N, σ, b, x)) =
Inversion((P,Q), gbh, (gbh)x) = x holds by the correctness of PLog given in
Lemma 7.



2. Let (N, (P,Q)) ← ParamsGen and σ = (g, h) ← SampleABO(N, b∗, I =
{p1, . . . , pm}) for some b∗ ∈ {0, 1}ℓb . Then g is a uniform element of QRN

and h = g−b
∗
g′p1...pm for g′

$← QRN . Then for any b ̸= b∗, we have gbh =
gb−b

∗
g′p1...pm . By Lemma 5, ord(g) has at least t − d distinct ℓb-bit prime

divisors. The number of these prime divisors that are not coprime to b− b∗

is at most log2ℓB−1(b − b∗) ≤ ℓb/(ℓB − 1). We write p′1, . . . , p
′
s to denote

the all ℓb-bit divisors of ord(g) that are coprime to b − b∗. Then we have
s ≥ t−d−ℓb/(ℓB−1). For each p′i, the probability that ord(gbh) is comprime
to p′i is 1/p′i ≤ 2−ℓB+1 and they are all independent. Then one can see
that there exists more than s/2 p′i such that p′i|ord(gbh) by similar analysis
as in [13, Lemma3]. Therefore one can recover x from (gbh)x as long as

x ≤ 2
(t−d)(ℓB−1)−ℓb

2 ≤ (2ℓB−1)s/2.

All-but-one lossiness. Next, we prove that the above construction satisfies the
all-but-one lossiness property. Let σ = (g, h) be a function description generated
by SampleLossy(N, I = {p1, . . . , pm}). Then there exists g′ ∈ QRN such that
h = g−b

∗
g′p1...pm . In particular, we have gb

∗
h = g′p1...pm . Then any output of

fσ(·, b∗) is an element of the group S := {h′p1...pm : h′ ∈ QRN}. We consider
the order of S. S is a subgroup of QRN = G × G⊥ and p1 . . . pm is coprime to
ord(G) = p′q′. Therefore there exists a subgroup S⊥ ofG⊥ such that S = G×S⊥.
We can see that ord(S⊥) is the product of some distinct ℓB-bit primes and
coprime to p1 . . . pm by the definition. Therefore that is the product of at most
MℓB −m such primes, and can be bounded by 2(MℓB

−m)ℓB . Therefore the order
of S is at most 2(ℓp′+ℓq′ )(MℓB

−m)ℓB .

Indistinguishability between injective and all-but-one lossy functions.
This follows from the m-ad-DRSA assumption. Actually, for any PPT adversary
A′ that tries to distinguish these functions and any b∗ ∈ {0, 1}ℓb , we consider
the following adversary A′b∗ against the ad-DRSA assumption.

A′b∗(N, ḡ): Generate g
$← QRN , set h := gb

∗
ḡ, run A(N, (g, h)) and output as

A outputs.

For any noticeable ϵ, let SgdrsaAb∗ ,ϵ
be the algorithm that is assumed to exist in

Definition 3. If we let

P0 := Pr

[
1← A(N, g) :

(N,P,Q)← IGen(1λ)

g
$← QRN

]

P1 := Pr

1← A(N, gp1...pm) :

(N,P,Q)← IGen(1λ)

g
$← QRN

{p1, . . . , pm} ← SgdrsaAb∗ ,ϵ
(N)


then we have |P0 − P1| ≤ ϵ(λ) for sufficiently large λ by the definition of the
ad-DRSA assumption.



We let SaboA,ϵ,b∗ := SgdrsaA∗
b ,ϵ

. In the following, we show that it works well. If ḡ

is a uniform element of QRN , then h is a uniform on QRN and independent of
g. Thus in this case, A′b∗ simulates the environment for A where it is given an
injective function. On the other hand, if ḡ is generated as ḡ := ḡ′p1...pm where
{p1, . . . , pm} ← SgdrsaA∗

b ,ϵ
, then A′b∗ simulates the environment for A where it is

given an all-but-one function with lossy branch b∗ and index I := {p1, . . . , pm}.
Therefore if we let

Pinj := Pr

[
1← A(PP, σ) :

(PP, SP )← ParamsGen(1λ)
σ ← SampleInj(PP )

]

Pabo,b∗ := Pr

1← A(PP, σ) :
(PP, SP )← ParamsGen(1λ)
I ← SA,ϵ(PP )
σ ← SampleABO(PP, b∗, I)


then we have Pinj = P0 and Pabo,b∗ = P1. Therefore we have |Pinj−Plossy,b∗ | ≤ ϵ(λ)
for sufficiently large λ as required.


