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Abstract. A fundamental open problem in the area of blockchain pro-
tocols is whether the Bitcoin protocol is the only solution for building
a secure transaction ledger. A recently proposed and widely considered
alternative is the GHOST protocol which, notably, was proposed to be
at the core of Ethereum as well as other recent proposals for improved
Bitcoin-like systems. The GHOST variant is touted as offering superior
performance compared to Bitcoin (potentially offering block production
speed up by a factor of more than 40) without a security loss. Motivated
by this, in this work, we study from a provable security point of view the
GHOST protocol.

We introduce a new formal framework for the analysis of blockchain pro-
tocols that relies on trees (rather than chains) and we showcase the power
of the framework by providing a unified description of the GHOST and Bit-
coin protocols, the former of which we extract and formally describe. We
then prove that GHOST implements a “robust transaction ledger” (i.e.,
possesses liveness and persistence) and hence it is a provably secure al-
ternative to Bitcoin; moreover, our bound for the liveness parameter is
superior to that proven for the bitcoin backbone in line with the original
expectation for GHOST. Our proof follows a novel methodology for estab-
lishing that GHOST is a robust transaction ledger compared to previous
works, which may be of independent interest and can be applicable to
other blockchain variants.

Keywords: GHOST, provable security, bitcoin, blockchain protocols

1 Introduction

The popularity of Bitcoin [19] has lead to a surge in the interest about its core
protocol that maintains a distributed data structure called the “blockchain.” In
[9], the core of the Bitcoin protocol was abstracted under the moniker “Bitcoin
Backbone” and it was demonstrated to be a powerful tool for solving consensus,
[23,17], in a synchronous, anonymous and Byzantine setting where (unreliable)
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broadcast is the communication operation available to the participants, (a prob-
lem first considered in [2, 20]). In [9], it was shown that the core protocol provably
guarantees two properties: (i) persistence: if a transaction is reported as stable
by one node, then it will be also reported as such by any other honest node
of the system, (ii) liveness: all honestly generated transactions that are broad-
casted are eventually reported as stable by some honest node. This provides
a formal framework for proving the security of systems like Bitcoin, since their
security can be reduced to the persistence and liveness of the underlying transac-
tion ledger. Furthermore, it provides a way to argue formally about transaction
confirmation time since the liveness property is equipped with a delay param-
eter that specifies the maximum transaction delay that can be caused by an
adversary.

Naturally, implementing a robust transaction ledger may be achieved in var-
ious other ways, and it is a fundamental open question of the area whether the
Bitcoin protocol itself is an “optimal” implementation of a robust transaction
ledger. Indeed, many researchers have challenged various aspects of the Bitcoin
system and they have proposed modifications in its core operation. Some of the
modified systems maintain the protocol structure but modify the hard-coded
parameters (like the block generation rate) or the basic primitives, e.g., the way
proof of work is performed (a number of alternative proof of work implementa-
tions have been proposed using functions like scrypt [24], lyra2 [26] and others).
However, more radical modifications are possible that alter the actual operation
of the protocol.

One of the most notable such variants is the GHOST protocol, which was sug-
gested by Sompolinsky and Zohar in [27]. After the initial suggestion many
cryptocurrencies using variants of the GHOST rule were proposed and imple-
mented. The most popular among them, Ethereum [6] has received substantial
research attention [16, 15,4, 25,12, 21]. Ethereum is essentially a Bitcoin-like sys-
tem where transaction processing is Turing-complete and thus it can be used to
implement any public functionality in a distributed way. Bitcoin-NG [7] is an-
other popular Bitcoin-like system relying on GHOST that separates blocks in two
categories, namely key blocks and microblocks, reflecting the fact that transac-
tion serialization and leader election may be separated.

Unfortunately, the security analysis of [27] is not as general as [9] (e.g., their
attacker does not take advantage of providing conflicting information to different
honest parties), while the analysis of [9] does not carry to the setting of GHOST.
This is because the GHOST rule is a natural, albeit radical, reformulation of how
each miner determines the main chain. In GHOST, miners adopt blocks in the
structure of a tree. Note that in both Bitcoin and GHOST one can consider parties
collecting all mined blocks in a tree data structure. However, while in Bitcoin
the miners would choose the most difficult chain as the main chain, in GHOST,
they will determine the chain by greedily following the “heaviest observed sub-
tree.” This means that for the same subtree, a Bitcoin miner and a GHOST miner
may choose a completely different main chain. Furthermore, it means that the
difficulty of the main chain of honest parties does not necessarily increase mono-



tonically (it may decrease at times) and thus a fundamental argument (namely
that blockchains monotonically increase) that made the analysis of [9] possible,
does not hold anymore.

Our Results. We propose a new analysis framework for blockchain protocols
focusing on trees of blocks as opposed to chains as in [9]. Our framework enables
us to argue about random variables on the trees of blocks that are formed by
the participants. In our framework, we can express concepts like a node being
d-dominant, which means that the block corresponding to that node would
be preferred by a margin of d compared to other sibling nodes according to
a specified weight measure. This actually enables us to unify the description of
Bitcoin and GHOST by showing they obey the same rule, but simply for a different
weight measure.

Using our framework we then provide a first formal security proof of the
GHOST rule for blockchain protocols. Specifically, we prove that GHOST is a robust
transaction ledger that satisfies liveness and persistence. We achieve this result,
by a new methodology, that reduces the properties of the robust transaction
ledger to a single lemma, that we call the fresh block lemma and is informally
stated as follows.

Fresh Block Lemma. (Informally) At any point of the execution and for
any past sequence of s consecutive rounds, there exists an honest block
mined in these rounds, that is contained in the chain of any honest player
from this point on.

As we will demonstrate, the fresh block lemma is a powerful tool in the pres-
ence of an adversary: we show easily that the properties of the robust transaction
ledger reduce to it in a black-box fashion.

In more details our result is as follows. In blockchain protocols there is a predi-
cate parameterized by a security parameter k that determines when a transaction
has been stabilized in the ledger. The “stable” predicate for Bitcoin can be seen
to be true whenever the transaction is at least k£ blocks deep in the blockchain.
The stable predicate for GHOST is different and is true whenever the block that
the transaction belongs to is the root of a subtree of at least & blocks. We prove
the following.

Persistence: if in a certain round an honest player reports a transaction
tr as stable then whenever an honest party reports tx transaction as
stable tx will be in the same position in the ledger.

Liveness: if a transaction is given as input to all honest players continu-
ously for u = @(k) rounds then all of them will report it as stable.

The above properties will depend on the parameter k of the stable predi-
cate of GHOST; we prove them to hold with a probability of error which drops
exponentially in & over all executions of the protocol.

Our proof strategy for persistence and liveness utilizes the fresh block lemma
in the following (black-box) manner.



In the case of persistence, it is sufficient to ensure that reporting the transac-
tion as stable by any honest player implies that a sufficient amount of time has
passed so that the fresh block lemma is applicable and has produced a block that
is a descendant of the block that contains the transaction. Using the moderate
hardness of proofs of work (specifically that they are hard enough) it is easy to
translate from number of blocks in a subtree to actual running time in terms
of rounds. It follows that the fresh block lemma applies and all honest parties
will be mining on a subtree rooted at this fresh block for the remaining of the
execution. As a result, the transaction will always be reported as stable since it
belongs to the heaviest observed path for all of the honest parties.

In the case of liveness, we proceed in two steps. First, for our choice of wu,
in a time window lasting @(k) rounds, it will be ensured that the fresh block
lemma can be applied once implying that all honest parties will mine in a subtree
rooted by a common block that includes the transaction. Then, after another
O(k) rounds, the honest parties will have accumulated enough honest blocks
in this subtree to pronounce this transaction as stable. This latter statement
requires again the moderate hardness of proofs of work but from the opposite
perspective, i.e., that they are easy enough.

The above strategy provides an alternative proof methodology for establish-
ing the properties of a robust transaction ledger compared to previous works
that analyzed blockchain protocols, [9], [13] and [22] who reduced the properties
of the robust transaction ledger to three other properties called common pre-
fix, chain quality and chain growth. As such, the proof strategy itself may be
of independent interest as it could be applicable to other blockchain variants,
especially those that are using trees of blocks instead of chains of blocks as in
bitcoin in their chain selection rule.

Our results align with the original expectation that GHOST performs better
than bitcoin in terms of liveness, since our proven liveness parameter is k+ ﬁ

which is superior to the ﬁ liveness parameter for bitcoin proven in [9]. Note
that in both cases k refers to the same confirmation level in the two protocols;
in both cases k bounds the probability of the event that the number of uniquely
successful rounds exceeds the number of blocks produced by the adversary.

On the generality of the adversarial model. The adversarial model we
adopt in this work is the one proposed by Garay et al. [9]. This model is quite
general in the sense that, it can captures many attack models that were pro-
posed in the literature. For example, it captures the double spending attacker of
[19], the block withholding attacker of [8] (which can be simulated because the
adversary can change the order that messages arrive for each honest player) and
the eclipse attacker of [5] where the communication of a portion of the honest
nodes in the network is completely controlled (eclipsed) by the adversary (this
can be simulated by simply considering the eclipsed nodes to be controlled by
the adversary and having the adversary honestly execute their program while
dropping their incoming messages). For a quantitative analysis of these attacks
the reader is referred to [10].



Limitations and directions for future research. Our analysis is in the
standard Byzantine model where parties fall into two categories, those that are
honest (and follow the protocol) and those that are dishonest and may deviate
in an arbitrary (and coordinated) fashion as dictated by the adversary. It is an
interesting direction for future work to consider the rational setting where all
parties wish to optimize a certain utility function. Designing suitable incentive
mechanisms, for instance see [18] for a suggestion related to the GHOST proto-
col, or examining the requirements for setup assumptions, cf. [1], are related
important considerations. Our analysis is in the static setting, i.e., we do not
take into account the fact that parties change dynamically and that the protocol
calibrates the difficulty of the POW instances to account for that; we note that
this may open the possibility for additional attacks, say [3], and hence it is an
important point for consideration and future work. Finally, it is interesting to
consider our results in more general models such as the semi-synchronous model
of [22].

Organization. In section 2 we overview the model that we use for expressing
the protocols and the theorems regarding the security properties. In section 3
we introduce our new tree-based framework. Then, in section 4 we present our
security analysis of an abstraction of the GHOST protocol that demonstrates it is
a robust transaction ledger in the static setting.

2 Preliminaries and the GHOST Backbone protocol

2.1 Model

For our model we adopt the abstraction proposed in [9]. Specifically, in their
setting, called the ¢g-bounded setting, synchronous communication is assumed
and each party is allowed ¢ queries to a random oracle. The network supports
an anonymous message diffusion mechanism that is guaranteed to deliver mes-
sages of all honest parties in each round. The adversary is rushing and adaptive.
Rushing here means that in any given round he gets to see all honest players’
messages before deciding his own strategy. However, after seeing the messages
he is not allowed to query the hashing oracle again in this round. In addition,
he has complete control of the order that messages arrive to each player. The
model is “flat” in terms of computational power in the sense that all honest par-
ties are assumed to have the same computational power while the adversary has
computational power proportional to the number of players that it controls.

The total number of parties is n and the adversary is assumed to control
t of them (honest parties don’t know any of these parameters). Obtaining a
new block is achieved by finding a hash value that is smaller than a difficulty
parameter D. The success probability that a single hashing query produces a
solution is p = 2% where « is the length of the hash. The total hashing power
of the honest players is a = pg(n — t), the hashing power of the adversary is
B = pqt and the total hashing power is f = a + 5. A number of definitions that
will be used extensively are listed below.



Definition 1. A round is called:

— successful if at least one honest player computes a solution in this round.
— uniquely successful if exactly one honest player computes a solution in this
round.

Definition 2. In an execution blocks are called:

— honest, if mined by an honest party.
— adversarial, if mined by the adversary.

Definition 3. Some chain notation:

— By C'* we denote the chain that results by dropping the last k blocks of C.
— We will say that a chain C' extends another chain C if a non-empty prefiz of
C' is a suffiz of C.

In [9], a lower bound to the probabilities of two events, that a round is
successful or that is uniquely successful (defined bellow), was established and
denoted by 7, = a — a?. While this bound is sufficient for the setting of small f,
here we will need to use a better lower bound to the probability of those events,
denoted by ~, and with value approximately ae™® (see Appendix). Observe that

7> Yu-

2.2 The GHOST Backbone Protocol

In order to study the properties of the core Bitcoin protocol, the term Backbone
Protocol was introduced in [9]. On this level of abstraction we are only interested
on properties of the blockchain, independently from the data stored inside the
blocks. The main idea of the Bitcoin Backbone is that honest players, at every
round, receive new chains from the network and pick the longest valid one to
mine. Then, if they obtain a new block (by finding a small hash), they broadcast
their chain at the end of the round.

The same level of abstraction can also be used to express the GHOST protocol.
The GHOST Backbone protocol, as presented in [27], is based on the principle
that blocks that do not end up in the main chain, should also matter in the
chain selection process. In order to achieve this, players store a tree of all mined
blocks they have received, and then using the greedy heaviest observed subtree
(GHOST) rule, they pick which chain to mine.

At every round, players update their tree by adding valid blocks sent by other
players. The same principle as Bitcoin applies; for a block to be added to the
tree, it suffices to be a valid child of some other tree block. The adversary can
add blocks anywhere he wants in the tree, as long as they are valid. Again, as
on Bitcoin, players try to extend the chains they choose by one or more blocks.
Finally, in the main function, a tree of blocks is stored and updated at every
round. If a player updates his tree, he broadcasts it to all other players.

The protocol is also parameterized by three external functions V(-), I(-), R(+)
which are called: the input validation predicate, the input contribution function,



Algorithm 1 The chain selection algorithm. The input is a block tree 7. The
| - | operator corresponds to the number of nodes of a tree. By C1||Cy we denote
the concatenation of chains Cy, Cs.

1: function GHOST(T)

2 B+ root(T)

3 if childrens(B) = () then

4: return B

5: else

6: B <« argmax prcchitdrens (B)|subtreer (B')]
7 return B||GHOST(subtreer(B))

8 end if

9: end function

and the chain reading function, respectively. V() dictates the structure of the
information stored in each block, I(-) determines the data that players put in the
block they mine, R(-) specifies how the data in the blocks should be interpreted
depending on the application.

Algorithm 2 The GHOST backbone protocol, parameterized by the input con-
tribution function I(-) and the reading function R(-). x¢ is the vector of inputs
of all block in chain C.

1: T < GenesisBlock > T is a tree.
2: state ¢

3: round < 0

4: while TrRUE do

5: Trnew < update(T, blocks found in RECEIVE())

6:  C < GHOST(Tnew)

7 (state, ) + I(state,C,round, INPUT(), RECEIVE())
8: Crew < pow(z,C)

9:  if C # Coew Or T # Trew then
10: T < update(Tnew, head(Crew))
11: BRroADCAST(head(Cnew))
12: end if
13: round < round + 1
14: if INpUT() contains READ then
15: write R(x¢) to OuTPUT()
16: end if

17: end while

Next, for completeness we present the remaining procedures of the GHOST
backbone protocol. Function pow (see Figure 3), which has to do with block
mining and is the same as the one defined in the Bitcoin Backbone and function
update (see Figure 4) which refers to the way the block tree is updated.



Algorithm 3 The proof of work function, parameterized by ¢, D and hash
functions H(-), G(-). The input is (z,C).

1: function pow(z,C)

2 if C = ¢ then > Determine proof of work instance
3 s+ 0

4: else

5: (s',a’, ctr')y < head(C)
6: s Hctr',G(s',2"))
7 end if

8: clr + 1

9: B¢

10: h + G(s, )

11: while (ctr < ¢) do

12: if (H(ctr,h) < D) then

13: B« (s, z,ctr)

14: break

15: end if

16: ctr < ctr + 1

17: end while

18: C+«+CB > Extend chain

19: return C
20: end function

2.3 Security Properties

In [9, Definitions 2&3| two crucial security properties of the Bitcoin backbone
protocol were considered, the common prefix and the chain quality property. The
common prefix property ensures that two honest players have the same view of
the blockchain if they prune a small number of blocks from the tail. On the
other hand the chain quality property ensures that honest players chains’ do
not contain long sequences of adversarial blocks. These properties are defined as
predicates over the random variable formed by the concatenation of all parties
views’ denoted by VIEWgy(X’Z(K, q, 7).

Definition 4 (Common Prefix Property). The common prefiz property Qcp
with parameter k € N states that for any pair of honest players Py, P, maintain-

ing the chains C1,Cy in VIEWgy(XVZ(n,q, z), it holds that

clF <¢c, andclf <cy.

Definition 5 (Chain Quality Property). The chain quality property Qq
with parameters p € R and ¢ € N states that for any honest party P with



Algorithm 4 The tree update function, parameterized by ¢, D and hash func-
tions H(-), G(+). The inputs are a block tree T and an array of blocks.

1: function update(7,B)

2 foreach (s,z,ctr) in T

3: foreach (s’,z’,ctr’) in B

4 if ((s' = H(ctr,G(s,z))) A (H(ctr',G(2,ctr’)) < D)) then

5 childrent({s,z,ctr)) = childrent({s,z,ctr)) U(s',2’,ctr'y > Add to the
tree.

6 end if

T return 7

8: end function

chain C in VIEWIF{(X,Z(&, q, z), it holds that for any £ consecutive blocks of C the
ratio of adversarial blocks is at most .

These two properties were shown to hold for the Bitcoin backbone protocol.
Formally, in [9, Theorems 9&10] the following were proved:

Theorem 1. Assume f < 1 and v, > (1 + §)A3, for some real 6 € (0,1) and
A > 1 such that A2 — fA—1 > 0. Let S be the set of the chains of the honest
parties at a given round of the backbone protocol. Then the probability that S does
not satisfy the common-prefix property with parameter k is at most e~ k),
Theorem 2. Assume f < 1 and v, > (1 + §)A\B for some § € (0,1). Suppose
C belongs to an honest party and consider any ¢ consecutive blocks of C. The
probability that the adversary has contributed more than (1 — g)%é of these blocks
is less than e=2(%0),
Robust public transaction ledger. In [9] the robust public transaction ledger
primitive was presented. It tries to capture the notion of a book where trans-
actions are recorded, and it is used to implement Byzantine Agreement in the
honest majority setting.

A public transaction ledger is defined with respect to a set of valid ledgers
L and a set of valid transactions 7T, each one possessing an efficient member-
ship test. A ledger x € L is a vector of sequences of transactions tx € 7. Each
transaction tx may be associated with one or more accounts, denoted ay,as, ...
Ledgers correspond to chains in the backbone protocols. An oracle Txgen is al-
lowed in the protocol execution that generates valid transactions (this represents
transactions that are issued by honest parties). For more details we refer to [9].

We slightly alter the definitions of persistence and liveness so that they are
relative to the way parties verify transactions. For example, in Bitcoin a transac-
tion is ‘stable’ with parameter k if it is at least k£ blocks deep in the chain. On the



other hand, in GHOST the subtree formed by the block containing a transaction
must be of size at least k in order for this transaction to be considered ‘stable’.
Whenever we talk about the persistence or liveness of Bitcoin or GHOST from
now on, we will imply the parameterized versions with the respective definitions
of stability that we just mentioned.

Definition 6. A protocol 11 implements a robust public transaction ledger in
the g-bounded synchronous setting if it satisfies the following two properties:

— Persistence: Parameterized by k € N (the “depth” parameter), if in a certain
round an honest player reports a transaction tr as ‘stable’ with parameter
k, then whenever an honest party reports it as stable, tx will be in the same
position in the ledger.

— Liveness: Parameterized by u, k € N (the “wait time” and “depth” parameters,
resp. ), provided that a transaction either (i) issued by Txgen, or (ii) neutral,
is given as input to all honest players continuously for u consecutive rounds,
then all honest parties will report it as ‘stable’ with parameter k from this
round on.

These two properties were shown to hold for the ledger protocol Ilp_ build
on top of the Bitcoin Backbone protocol and appropriate instantiation of the
functions V, R and I. Formally, in [9, Lemma 15&16] the following were proved:

Lemma 1 (Persistence). Suppose f < 1 and v, > (1 + §)\B, for some real

5 €(0,1) and X > 1 such that \> — fA\—1 > 0. Protocol Ilp_ satisfies Persistence

with probability 1 — 6’9(5%), where k is the depth parameter.

Lemma 2 (Liveness). Assume f < 1 and v, > (1 + §)AG, for some § €
(0,1), A € [1,00) and let k € N. Further, assume oracle Txgen is unambiguous.
Then protocol Tp. satisfies Liveness with wait time u = 2k/(1 — 0)7y, and depth

parameter k with probability at least 1 — e~ 205%k),

3 A unified description of Bitcoin and GHOST backbone

Next, we introduce our new analysis framework for backbone protocols that is
focusing on trees of blocks and we show how the description of the Bitcoin and
GHOST can be unified. In this model, every player stores all blocks he receives on
a tree, starting from a pre-shared block called the Genesis (or v,40¢) block. This
is the model where GHOST was initially described. Bitcoin, and other possible
backbone variants, can also be seen in this model and thus a unified language
can be built. We first define block trees (or just trees) that capture the knowledge
of honest players (regarding the block tree on different moments at every round).

Definition 7. We denote by T,0 (resp. T,) the tree that is formed from the
blocks that player P (resp. at least one honest player) has received up to round
r. Similarly, T, is the tree that contains T, and also includes all blocks mined by
honest players at round r. For any tree T and block b € T, we denote by T(b)
the subtree of T rooted on b.

10



Notice that, due to the fact that broadcasts of honest players always succeed,
blocks in 7, are always in 7;]_11. Thus for every honest player P it holds that:

TP CT. CT. CTh,

Intuitively, heavier trees represent more proof of work. However, there is more
than one way to define the weight of a tree. For example, in Bitcoin the heaviest
tree is the longest one. On the other hand, for GHOST a heavy tree is one with
many nodes. To capture this abstraction we condition our definitions on a norm
w that assigns weights on trees. This norm will be responsible for deciding which
tree has more proof of work, and thus which tree is favored by the chain selection
rule. We choose to omit w from the notation since it will always be clear from
the context which norm we use.

Definition 8. Let w be a norm defined on trees. For any tree T let siblings(v)
denote the set of nodes in T that share the same parent with v. Then node v is
d-dominant in T (denoted by Domy(v,d)) iff

w(T (v)) > d AV € siblings(v) : w(T (v)) > w(T@)) +d

The chain selection rule in the Bitcoin protocol can be described using the
notion of the d-dominant node. Let w(7) be the height of some tree 7. Each
player P, starting from the root of his 7,7 tree, greedily decides on which block
to add on the chain by choosing one of its 0-dominant children and continuing
recursively! (ties are broken based on time-stamp, or based on which block was
received first). Interestingly, the GHOST selection rule can also be described in
exactly the same way by setting w to be the number of nodes of the tree. Thus
we have a unified way for describing the chain selection rule in both protocols.
Building upon this formalism we can describe the paths that fully informed
honest players may choose to mine at round r (denoted by HonestPaths(r)) in
a quite robust way, thus showcasing the power of our notation.

HonestPaths(r) = {p = vroot¥1 - - - Ug|p is a root-leaf path in 7, and
Vi € {1,..,k} Domy (v;,0)}

We conclude this section by presenting two crucial properties that both the
Bitcoin and GHOST backbones satisfy. The first property states that by broad-
casting k blocks the adversary can decrease the dominance of some block at
most by k. Intuitively, it tells us if the adversary’s ability to mine new blocks
is limited, then his influence over the block tree is also limited. On the other
hand, the second property states that uniquely successful rounds increase the
dominance only of nodes in the path from the root to the new block.

We will use the term node and block interchangeably from now on.

Proposition 1. For the Bitcoin and GHOST backbone protocols it holds that:

! This is exactly algorithm 1 with a minor modification. At line 6 the subtree 7 that
is chosen maximizes w(T).

11



— if the adversary broadcast k < d blocks at round v — 1 then for every block
v e T,_y it holds that Domy  (v,d) implies Dom, (v,d — k).

— if v is a uniquely successful round and the newly mined block extends a path
in HonestPaths(r), then for any block v in T, it holds that: Domy (v, d)
implies Doms (v,d+ 1) if and only if v is in the path from V.ot to the new
block.

Proof. The lemma stems from the fact that adding only one block in the tree
reduces or increases the dominance of some block by at most 1. For the first
bullet, adding k& blocks one by one, implies that the dominance of any node will
reduce or increase by at most k. For the second bullet, notice that dominance
increases only for blocks that get heavier. The only blocks that get heavier in
this case are the ones in the path from the root to the newly mined block.
Since these blocks are in HonestPaths(r), they are at least 0-dominant and so
their dominance will further increase. Furthermore, the newly mined block is

1-dominant since it does not have any siblings.
O

O
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Fig. 1: An example of the change in dominance after a uniquely successful round.
The only nodes which increase their dominanceare the ones in the path from the
root to the newly mined block as stated in Proposition 1.
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4 Security Analysis and Applications

Next, we prove that the GHOST backbone protocol is sufficient to construct a
robust transaction ledger. From now on we assume that w(7') is the total number
of nodes of tree 7'

4.1 The Fresh Block Lemma

In [9], it was shown that the Bitcoin Backbone satisfies two main properties: com-
mon prefix and chain quality. However, another fundamental property needed
for their proof, is that the chains of honest players grow at least at the rate of
successful rounds. This does not hold for GHOST. The reason is that, if an honest
player receives a chain that is heavier than the one he currently has, he will
select it, even if it is shorter. To reflect these facts, we develop an argument that
is a lot more involved and leads to a power lemma that we call the “fresh block
lemma”.

First, we introduce a new notion, that of a path that all of its nodes are
dominant up to a certain value. Intuitively, the more dominant a path is, the
harder it gets for the adversary to stop honest players from choosing it.

Definition 9. (pdom(r,d)) Ford > 0, paom(r, d) is the longest path p = vpootv7 - - .

in T, s.t.
P # Vroot AVi € {1,...,k} : Domy (uv;,d)
If no such path exists pgom(r,d) = L.

Note that the dominant path pgom(r,d), if it is not L, will be unique (this
stems from the requirement that d > 0).

In the next lemma, we show that unless the number of blocks the adversary
broadcasts in a round interval is at least as big as the number of uniquely suc-
cessful rounds that have occurred, an honest block mined in one of these rounds
will be deep enough in the chains of honest players. More specifically, for any se-
quence of m (not necessarily consecutive) uniquely successful rounds starting at
some round 7/, no matter the strategy of the adversary, at round r there will be
at least one honest block in pgem(r, m — k) where k is the number of adversarial
blocks that have been released during rounds [’ — 1,7 — 1].

Lemma 3. Let r1,..,7,, be uniquely successful rounds from round r’ until round
r. If the adversary broadcasts k < m blocks from round r' — 1 until round r — 1,
then there exists an honest block b, mined in one of the rounds r1,..,7, such
that b is in paom (r,m — k).

Proof sketch. The proof is based on two observations. Firstly, if the adversary
does not broadcast a block in the round before a uniquely successful round s, then
the newly mined honest block will be in pgom(s,1). Secondly, if the adversary
broadcasts £ < d blocks in the round before a uniquely successful round s, all

13

Uk



blocks in pgom(s — 1,d) at round s — 1 will also be in pgom(s,d + 1 — k). It
follows that for each uniquely successful round, unless the adversary broadcasts
a block, an honest block will be introduced in the dominant path and will be
maintained there unless the adversary broadcasts more blocks than the number
of uniquely successful rounds that follow. As a result, in the period from round r’
until round r, our assumption that the adversary broadcasts strictly less than m
blocks, implies that at least one block will be maintained in pgom(r,m — k). O

The fresh block lemma is stated next. Informally, it states that at any point
in time, in any past sequence of s consecutive rounds, at least one honest block
was mined and is permanently inserted in the chain that every honest player
adopts, with overwhelming probability on s.

Lemma 4. (Fresh Block Lemma) Assume v > (1 4 0)3, for some real
0 € (0,1) and f < 1. Then, for all s € N and r > s it holds that there exists a
block mined by an honest player on and after® round r — s, that is contained in

the chain;uhich any honest player adopts on and after round r with probability
1— 6—9(6 s)'

Proof sketch. The difficulty of proving this lemma stems from the fact that in
GHOST, the chains of honest players are not always strictly increasing. That is,
honest players may switch from a longer to a shorter chain. Monotonicity allows
us to prove many useful things; for example that the adversary cannot use very
old blocks in order to maintain a fork as in [9].

To overcome this difficulty, we first show that whenever the adversary forces
honest players to work on a different branch of the block tree, he has to broadcast
as many blocks as the ones that where mined on uniquely successful rounds
on this branch of the tree. Hence, it is hard for the adversary to force honest
players to change branches all the time, and moreover, after s rounds this will
be impossible due to the fact that v > (14 §)5. But if all honest players stay on
one branch, the blocks near the root of the branch will permanently enter their
chains. We show that at least one of these blocks will be mined by an honest
player. By applying this idea in an iterative manner, the lemma follows. O

For the full proof of the lemma we refer to the Appendix.

4.2 A robust public transaction ledger

In [9] it is shown how to instantiate the functions V, R, I so that the resulting
protocol, denoted by IlIp, built on top of the Bitcoin backbone, implements a
robust transaction ledger. In this section we show how we can achieve the same
goal, using exactly the same instantiation of V,R.I, but on top of the GHOST
backbone. We call the resulting protocol, IT$?ST.

Having established that every s rounds a fresh and honest block is inserted
permanently in the chain of all players, we are in a position to prove the main

2 Throughout this work, we only consider executions that run for a polynomial number
of rounds in the security parameter x.
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properties of a robust transaction ledger. Liveness stems from the fact that after
s rounds from the time a transaction was issued, an honest block that contains
this transaction will stabilize in the chain. Thus, by waiting for at most s/«
more rounds, the honest parties will mine enough block so that this transaction
becomes ‘stable’ with parameter s. Persistence is implied by the fact that when
a player reports a transaction as stable for the first time, enough time has passed
from the time the block containing the transaction was mined, and thus there
exists an honest block descending it that has been permanently added to the
chain of all honest parties.

Lemma 5 (Liveness). Assume v > (1 + 0)8, for some 6 € (0,1) and f < 1.
Further, assume oracle Txgen is unambiguous. Then for all k € N protocol TIF0ST
satisfies Liveness with wait time v =k + ﬁ rounds and depth parameter k
with probability at least 1 — e~ 205%k),

Proof. We prove that assuming all honest players receive as input the transaction
tx for at least w rounds, any honest party at round r with chain C will report
tx as ‘stable’. By Lemma 4 it follows that with probability 1 — e~ 2(5°k) there
exists an honest block mined during rounds [r —u, r —u+ k], such that all honest
players have this block in the chains they mine from round r —u+ & and onward.
Without loss of generality this block contains ¢z. All blocks that honest players
mine during the remaining ﬁ rounds will be descendants of this block. By

an application of the Chernoff bound, with probability 1 — e~?(©%)_ the honest
parties will mine at least k blocks in this round interval and thus the lemma
follows with the desired probability.

O

Lemma 6 (Persistence). Supposey > (149)5 and (1+6)f <1, for some real
d € (0,1). Then for all k € N protocol IIFT satisfies Persistence with probability

1-— 6_9(52k), where k is the depth parameter.

Proof. Let B be the block that contains transaction tx that the honest party P
reported as stable at round r. We will argue that B must have been computed
before round r — k, and thus by Lemma 4 all honest players will report it in the
same position in their chains.

Let E; be the event where B is computed after round r—k/((14+9) f) < r—k.
The number of descendants of B cannot be greater than the number of solutions
Y obtained from the oracle in this amount of rounds. By the Chernoff bound,

k
(1+6)f

Since tx is reported as stable, B must have k descendants and thus F; implies
that Y must be greater or equal to k. Hence, Pr[F1] < Pr[Y > k] < e=0*fs/3,
Let E> be the event where Lemma 4 does not hold for round r. This hap-
pens with probability at most e~?(°%). By the union bound, the event E; V E,
happens with probability at most e~?(@°%). Assuming that E; V B does not

PrlY > (1+4)f | =Pr[Y > k] <e 9 f/3,
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occur, it follows that there exists an honest block B’ mined on and after round
r — k that will be in the chains of all honest players from round r and onward.
Hence, B must be an ancestor of B’ and all honest players will report B and
tx at the same position as P from round r and onward. Persistence follows with
the desired probability. O

Theorem 3. Assuming v > (1+6)8 and (149)f < 1, for some real § € (0,1),

the protocol TIZOST implements a robust transaction ledger.

As a final note, Lemma 4 is sufficient to prove Persistence and Liveness in
a black-box way. Compared to the approach of [9], that was further expanded
in [13] and [22], only one property, instead of three, of the underlying “backbone”
protocol suffices in order to get a robust public transaction ledger in a black-
box manner. On the other hand, the three properties described in these works,
common-prefix, chain quality and chain growth, also serve as metrics of the
efficiency of the underlying mechanism and provide more information than the
fresh block lemma.
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A Probability of uniquely successful rounds

In this section we demonstrate a lower bound on the probability of uniquely
successful rounds. This bound allows us to argue about the security of GHOST
even when f is larger than 1.

Lemma 7. For p < 0.1 and a € (p,2k) : e~ %0 < (1 —p)» * < e—athp
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Proof. The second inequality is well studied and holds for p > 0. For the first
inequality by solving for a we get a < kli"(;p) which holds for p < 0.1 and

In(1—p)
P

a € (p,2k). O

Let v be a lower bound on the probability of a uniquely successful round
(a round where only one block is found). From the event where (n — t) players
throw ¢ coins each and exactly one coin toss comes head, the probability of a
uniquely successful rounds is at least:

(n—t)gp(1 —p)? D=1 > aem*hr

We set v = ae~ % *P_ for the minimum k that satisfies the relation a € (p, 2k).
This is a substantially better bound that -, and is also a lower bound for the
event that at a round is successful. The relation of the two bounds is depicted
in Figure 2.

0.4 T T T

T
new bound ss-ssse-

0.35 - e GKL bound i

025/ .

0.2 i

Probability

015 | 4

0.05 Tt

Hashing power of the honest players

Fig. 2: Comparison of the lower bounds on the probability of a uniquely successful
round, v and =, used respectively in this work and [9]. Notice that ~ allows as
to argue about security when f is greater than 1.
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B Proofs

B.1 Proof of Lemma 3

Proof. We are first going to prove two preliminary claims that show the effect
of a uniquely successful round to pgom- The first claim shows that if a uniquely
successful round s is not compensated accordingly by the adversary, a newly
mined block will be forced into pgom(s, 1).

Claim 1. Let round s be a uniquely successful round and b be the honest block
mined at round s. If the adversary does not broadcast any block at round s — 1
then b € paom(s, 1).

Proof of Claim. First, notice that since the adversary does not broadcast any
block it holds that for any honest player P, T is equal to 7.”. Therefore, all nodes
in the path from v,.0t to the parent of b are at least O-dominant in 7, and thus
this path is in HonestPaths(s). Since s is uniquely successful, all conditions of the
second bullet of Proposition 1 are met, and thus it is implied that all nodes up to
the newly mined block in 7. are 1-dominant. It follows that b € Pdom(s,1). -

The second claim shows the effect of a uniquely successful round s to an
existing pgom (s — 1, d) path. Notice that if the adversary broadcasts less than d
blocks the same nodes continue to be at least 1-dominant in the following round.

Claim 2. Let round s be a uniquely successful round, b be the honest block mined
at round s and paom(s — 1,d) # L. If the adversary broadcasts (i) k < d blocks
at round s — 1 then pgom(s — 1,d) C pdom(s,d + 1 — k), (ii) k¥ = d blocks at
round s — 1 then either b € paom(s,1) or Paom(s — 1,d) C Pdom(s,1) and b is a
descendant of the last node in pgom(s — 1, d).

Proof of Claim. There are two cases. In the first case suppose the adversary
broadcasts k < d blocks. Then, according to the first bullet of Proposition 1, the
adversary can lower the dominance in 74 of nodes in pgom(s — 1,d) by at most
k. Thus pdom(s — 1,d) will be a prefix of all the chains in HonestPaths(s). But
because s is a uniquely successful round, the dominance in 7, of all nodes in
Pdom (s — 1, d) will increase by one. Therefore paom (s —1,d) C paom(s,d+1—k)
and b will be a descendant of the last node in pgom(s — 1,d).

In the second case suppose the adversary broadcasts k = d blocks. If he
does not broadcast all of these blocks to reduce the dominance in 7T, of the
nodes in pgom(s — 1,d), then pgom(s — 1,d) will be a prefix of all the chains in
HonestPaths(s) and as in the previous case, paom (s — 1,d) C paom(s,d + 1 — k)
and b will be a descendant of the last node in pgom(s — 1, d).

Otherwise the adversary will reduce the dominance in T of at least one node
in pgom(s — 1,d) to zero. If b is a descendant of the last node in pgom(s — 1, d),
then all nodes in pgom(s — 1,d) will be 1-dominant in 7. and Pdom(s — 1,d) C
Pdom(8,1) = Pdom(s,d + 1 — d). If b is not a descendant of the last node in
Pdom (5 —1,d), then for the player P that mined this block it holds that 7 = T,
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because he would have not mined a chain that does not contain pgom(s — 1, d)
at round s otherwise. Therefore, P at round s was mining a chain that belonged
to HonestPaths(s, vy001) and thus all nodes in the chain are at least 0-dominant
in 7,. But because s is a uniquely successful round the dominance of all nodes
in the chain that b belongs to will increase by one and thus b € pgom(s,1).

Let b; denote the honest block mined at round r;. Let us assume that r = r,,.
We are going to prove the lemma using induction on the number of uniquely
successful rounds m.

For the base case suppose m = 1. The adversary does not broadcast any
block until round 71 — 1 and from the first claim b; € pgom (71, 1). Thus the base
case is proved. Suppose the lemma holds for m — 1 uniquely successful rounds
and let k£ be the number of blocks that the adversary broadcasts in the round
interval [’ — 1,7,,—1 — 1]. We have two cases.

(First case) k1 = m — 1 and the adversary broadcasts no blocks in the rest
of the rounds. From the first claim it follows that b,, € paom (rm,1)-

(Second case) k1 < m — 1 and from the induction hypothesis there exist
blocks b}, ...,b, _;_ %, mined by honest players at the uniquely successful rounds
T1, .y Tm—1 where b, € Paom(rm—1,¢). Let ko be the number of blocks that the
adversary broadcasts until round r,,, — 2 and k3 the number of blocks he broad-
casts at round r,,, — 1. If ko = m —1 then again from the first claim it follows that
bm € Pdom (Tm, 1)- If ko < m — 1 then if k3 + ks = m — 1 then from the second
claim either b,, € Paom(rm,1) or b, | 4 € Pdom(Tm,1). If k3 +ky < m —1
then again from the second claim at round 7, b, € paom(rm — 1,4) for i in
{ks + ks +1,...,m — 1 — ky} and either b§€2+k3 is in paom (fm,1) or by, is in
Pdom (T'm, 1). This completes the induction proof.

We proved that if k4 < m is the number of blocks the adversary broadcasts
until round r,, — 1, then there exists honest blocks b},..,0), , s.t. b} is in
Pdom ("m,?). Now in the case r > r,,, let ks < m—k4 be the number of blocks the
adversary broadcasts in the remaining rounds. The lemma follows easily from
the second claim.

Remark 1. Let r1,..,7, be uniquely successful rounds up to round r and the
honest block mined at round 71 be in pgom(r1,1). If the adversary broadcasts
k < m blocks from round 7; until round r — 1, then there exists an honest block
b mined in one of the rounds rq, .., r, such that b in pgom (r, m — k). (to see why
the remark holds notice that that blocks that the adversary broadcasts before
round r; affect only the dominant path at round r;, and not at the following
rounds)

O

B.2 Proof of Lemma 4

Proof. Let random variable Zg, s, (resp. Z% ) denote the number of blocks the

$1,82
adversary computes (resp. broadcasts) from round s; until round s5, and random
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variable X, 5, denote the number of rounds that are uniquely successful in the
same interval.

We are first going to prove two preliminary claims. We show that as long
as from some round r and afterwards the adversary broadcasts less blocks than
the total number of uniquely successful rounds, the chain that any honest player
adopts after round r extends pgom (7, X1,» — Z1,»). More generally we can prove
the following claim.

Claim 3. Consider any execution such that for all s, > s; it holds that Z; 5, <
X1,s,- Then, the chain that any honest player adopts after round s; extends
pdom(517X1,51 - Zl,sl)-

Proof of Claim. Since X1 5, > Z1 5, from Lemma 3 if follows that p = paom (51, X1,5, —
Z1,s,—1) # L. As long as the number of blocks that the adversary broadcasts at
round s, are less than the dominance of the nodes in p in 7;2_1, all honest players
at round s, will adopt chains containing p. Thus uniquely successful rounds will
increase the dominance of these nodes. But since from the assumptions made,
Z1 s, < X1,s,,in all rounds after round s;, the nodes in p are at least 1-dominant
in every 7;1; where P is an honest player; the claim follows. —

Next we will show that if successive u.s. rounds occur such that the blocks
mined are on different branches, then the adversary must broadcast an adequate
number of blocks, as specified below.

Claim 4. Consider any execution where s; < so < ... < s, are u.s. rounds and
Sk is the first u.s. round such that the honest block mined in this round is not
a descendant of the honest block mined in round s;_1, for k € {2,..,m}. Then
either Z§f7175m71 > X, s,u—1 O ngfl,smfl = X, s,,—1 and the honest block
mined at round s,, will be in paom(Sm, 1)-

Proof of Claim. Let by, .., b,, denote the honest blocks mined at rounds s1, .., Sy,
respectively. We are going to prove the claim for m = 2. Suppose, for the sake
of contradiction, that Z2% | | | < X, s,—1. By the definition of s;, the honest
blocks mined on all u.s. rounds until round s, — 1 are descendants of b;. From
Lemma 3 at least one honest block b computed in one of the u.s. rounds in
[s1,52—1] will be in paom (s2—1, X5, s,—1— 227 ,, ). Since from our hypothesis
the adversary will broadcast less than 225_1752_1 < Xy s59—1— ng—1752—2 blocks
at round sy — 1, it is impossible for b not to be a descendant of b and thus
of by which is a contradiction. Hence, 227 | | | > X, o, 1. If 204 | | >
Xs,,s,—1 the base case follows. Otherwise, Zsbfl—l,SQ—1 = X, ,s,—1 and we have
two cases. In the first case, X, 5,—1 = Z2% | ., _, and at round round s, — 1 the
adversary does not broadcast any block. From Claim B.1 of Lemma 3, by will be
in paom(s2, 1). In the second case, it holds that the adversary broadcasts exactly
Xsy,59—1 — Zﬁfﬁl’srg blocks at round s — 1. From Claim B.1 of Lemma 3,
since by cannot be a descendant of the last node of paom(s2 — 1, 1), b2 will be in

Pdom (82, 1). Hence, the base case follows.
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Suppose the lemma holds until round s,,. By the inductive hypothesis we

have two cases. In the first case ng_l,sm_l > Xy, s,,—1 Which implies Zgld—l,sm—l >
Xs,,s,,- If no u.s. round happens during rounds s,, +1,...,sy,41 — 1 then from

Claim B.1 in the proof of Lemma 3 the claim follows. Otherwise, a u.s. round
s’ happens during these rounds, where the honest block mined is a descendant
of b,,. Then we can make the same argument as for the base case starting
from round s" and get that either Z* | | > X ror ZY =
X smi1—1 and the honest block mined at round s,,, 41 will be in pgom (Sm+1,1)-
Since Z4', | .~ b o1 and Xoo 0 = X 41,1, by the
inequality of the inductive hypothesis the claim follows.

In the second case 2°? , , | = X, s,,—1 and the honest block by, mined at
round s, will be in pgom(S$m, 1). From Remark 1 of the proof of claim Lemma 3,
for an application of this Lemma from rounds s,, until s,,11 — 1 we can count

the adversarial blocks starting from round s,,. Thus from the same argument

s/7sm,+

as for the base case starting from round s,, we get that either Z% . | >
Xopsma1—1 OF Zgiﬁsmﬂfl = X, sms1—1 and the honest block mined at round

$m will be in paom (Sm, 1). By the equality of the inductive hypothesis the claim
follows. 4

Next, we observe that Lemma 3 as well as Claim B.2 and B.2 can be applied
on a subtree of the block tree, if all honest blocks mined after the round the root
of the subtree was mined are on this subtree.

Observation 1. Let b be an honest block computed at round si that is in the
chains adopted by all honest players after round ss. Also, suppose that all blocks
mined at u.s. rounds after round s1 are descendants of b. Then the following
hold:

1. Regarding applications of Lemma 3 and Claim B.2 on the subtree of the block
tree rooted on b after round s1, we can ignore all blocks that the adversary
has mined up to round s;.

2. Regarding applications of Claim B.2 after round ss, we can ignore all blocks
that the adversary has mined up to round s;.

To see why the observation holds consider the following. Since the adversary
receives block b for the first time at round s; + 1, all blocks that the adversary
mines before round s; + 1 cannot be descendants of b. Regarding the first point,
blocks that are not descendants of b do not affect the validity of Lemma 3 and
Claim B.2 on the subtree of the block tree rooted on b; this is because blocks
that are not descendants of b, do not affect the dominance of the nodes of the
subtree rooted at b. Regarding the second point, consider the dominant path at
round s3 > s in the subtree that is rooted on b. Then, this path can be extended
up to the root node, since, by our assumption, b is in the chains adopted by all
honest players after round ss.

We are now ready to prove the lemma. First, we are going to define a set of
bad events which we will show that hold with probability exponentially small
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in s. Assuming these events don’t occur we will then show that our lemma is
implied, and thus the lemma will follow with overwhelming probability.

Let BAD(s1,s2) be the event that X, 5, < Zs, s, In [9, Lemma 5], by an
application of the Chernoff bounds it was proved that assuming that v > (149)8
for some ¢ € (0, 1), then with probability at least (1 —6_%525/)(1 e >
1 — e~ (min(355,35)8"5' ~1n(2) for any 1/ > 0,5’ > s:

]
Xr’,'r"Jrs/fl > (]— + §)Zr’,r’+s’71 (1)

Thus, there exists an appropriate constant € = §2 min(%, 135 ), independent
of r, such that it holds that for any ' > 0,s" > s, BAD(r',7' + s’ — 1) occurs
with probability at most e~<°¥+n2_ From an application of the union bound,
we get that for the function g(s) = €§%s — In2 + In(1 — e‘E‘Sz), the probability
that \/,,~, BAD(s; +1,s1 + ') happens is:

2./
Pr \/ BAD(s1 + 1,51 +7")] < Z e HIn2
r'2s r'>s
2 ./
§61n2 Z 6—65 r
r'>s
—ed%s
In2 €
N
<e=9(s)

Until now we have assumed that the execution we are studying is collision-
free; no two queries in the oracle return the same value for different inputs. Let
COL denote the event where a collision occurs in our execution. The probability
of COL in a polynomial number of rounds, is exponentially small on k.

Pr[COL] < (fk%)?/25F! = =20 < =)

Let BAD(s1) denote the event where \/ ,o BAD(s1 + 1,51 +1') or COL hap-
pens. From the union bound the probability that BAD(s;) happens, for any s;
is negligible.

Pr[BAD(s1)] < e79() 4 ¢7(8) < = 20)

We are going to show next that, conditioning on the negation of this event the
statement of the lemma follows.

We will use the convention that block b; is mined at round r;. Let b; be
the most recent honest block that is in the chains that all honest players have
adopted on and after round r, such that the blocks mined at all u.s. rounds after
round 71 are descendants of b;. This block is well defined, since in the worst case
it is the genesis block. If r; is greater or equal to r — s, then the lemma follows
for block b, with probability 1.
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Suppose round r; is before round r — s and that BAD(r;) does not happen.
The negation of BAD(r1) implies that X, 11 ,—14¢ > Zp 41,r—14¢, for ¢ > 0.
By Lemma 3 and Claim B.2 there exists at least one honest block by, mined in
a u.s. round and contained in the chains of all honest players on and after round
r. W.l.o.g. let bs be the most recently mined such block. By the definition of
b1, bo is a descendant of by. If ry is greater or equal to 7 — s then the lemma
follows, since b is an honest block mined on and after round r — s that satisfies
the conditions of the lemma.

Suppose round 7y is before round r — s. Let r3 be the earliest u.s. round,
such that b3 and the blocks mined at all u.s. rounds afterwards are descendants
of by. Since by will be in the chains of all honest players after round 7, round
r3 is well defined. Also let s1 < ... < s, < ... be the sequence of u.s. rounds
after round r; that satisfy the conditions of Claim B.2. That is, sj is the first
u.s. round such that the honest block mined in this round is not a descendant
of the honest block mined in round s;_1, for k& € {2,..,m}. The first u.s. round
after round ry corresponds to s.

We will argue that rj3 is equal to some s; > s; in the aforementioned sequence.
Suppose, for the sake of contradiction that it does not. This implies that the
honest block mined at round r3 (denoted by b3) is a descendant of the honest
block mined at some round s; of the sequence. W.l.o.g. suppose that s; is the
largest such round that is before round r3. There are three cases. In the first
case, 7y < s; < r3. By the definition of s; and r3, the block mined at round s; is
an ancestor of b3 and also a descendant of by. Hence, s; satisfies the definition
of r3 which is a contradiction (there is an earlier round than r3 with the same
property). In the second case, s; = r4, where by is a descendant of by and either
by = by or by is an ancestor of by. Then by is a block that satisfies the definition of
by, and is more recent, which is a contradiction. In the third case, v < s; < ro
and the block mined at round s; is not an ancestor of b;. By the definition
of s;, the honest block mined at round s; is an ancestor of b3, that has been
mined before round 7. But this is contradictory, since no honest block can be
an ancestor of bz, mined before round 75, but not be an ancestor of bs.

Since we proved that r3 is equal to some s; we can apply Claim B.2 from
round 71 + 1 until round r3. Again, from Observation 1, regarding applications
of Claim B.2 after round r; we can ignore blocks that were mined before round
r1 + 1. Then either Z, 11,,-1 > foldﬂ’rrl > Xpi41r5—1 OF Zpiqipg—1 2
Z,lfldﬂ,ra_l = X, +1,r,—1 and the honest block mined at round r3 will be in
pdom(rﬁ’n ]-)

Suppose, for the sake of contradiction, that round rj3 is after round 79 + s.
Then (r3—1)—(r1+1) > sand Z,, 41,1 > Xy, +1,r5—1. This is a contradiction,
since in this case ~BAD(r1) implies Z,, 11 p,—1 < Xy 4+1,r5—1. Therefore, rg <
ro + s < r. In addition, notice that “BAD(r1) also implies

X7'1+1,7'2+s > Zr1+1,7'2+s (2)

We are going to apply Lemma 3 and Observation 1 from round r3 until round
ro + s in the subtree rooted at bs. According to the analysis we made previously
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there are two cases. In the first case, Zl%, | . | > X, 41,,-1 or equivalently
Z,lffﬂ’rrl > Xy, 41,r5- Suppose, for the sake of contradiction, that rs = ry + s.

Then Z,,+1,ry45-1 > Xy 41,o+s- But this is a contradiction, since ~BAD(rq)
implies Inequality 2. Therefore, r3 < ro + s. From Inequality 2:

bd bd
XT3+1,T2+8 > XT1+1,T2+S - XT’1+1,7"3 > ZT1+1,T1C+S - Zr1+1,r371 > ng,r2+s

The last inequality, stems from two facts: that we can ignore blocks that were
mined before round r; + 1 regarding applications of Lemma 3 and also that the
blocks that the adversary broadcasts at distinct rounds are different (adversaries
that broadcast the same block multiple times can be ignored without loss of
generality).

In the second case, Zfld+1,r3—1 = X;,+1,r5—1 and the honest block mined at
round r3 will be in pgom(rs,1). Again from Inequality 2:

_ bd bd
X7"377”2+s = X7"1+1,7”2+S - X?”1+1,7"3—1 > ZT1+LT‘k+S - Zrl—',-l,rg—l > ng,r2+s

The same analysis holds for all rounds after 7o + s. By an application of
Claim B.2, an honest block b, computed in one of the u.s. rounds after round 75
and before round r, will be in the chains that honest players adopt on and after
round 7. Since by is the most recently mined block, before round r — s, included
in the chain of all honest players, b must have been mined on and after round
r — s (since 73 > 12). Let A be the event that there exists a block mined by an
honest player on and after round r — s, that is contained in the chain which any
honest player adopts after round r. We have proved that (wBAD(ry)) implies
A. Then:

Pr[A] =Pr[AAN BAD(r1)] + Pr[AA-BAD(r1)]
>Pr[AAN-BAD(r)]
=Pr[A|=BAD(r1)|Pr[~BAD(r)]
=Pr[—~BAD(r1)]
>1— e 9

Hence, the lemma holds with probability at least 1 — e=9(5), O
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