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Abstract. Two-Server Password Authenticated Key Exchange (2PAKE) protocols apply secret shar-
ing techniques to achieve protection against server-compromise attacks. 2PAKE protocols eliminate
the need for password hashing and remain secure as long as one of the servers remains honest. This
concept has also been explored in connection with two-server password authenticated secret sharing
(2PASS) protocols for which game-based and universally composable versions have been proposed. In
contrast, universally composable PAKE protocols exist currently only in the single-server scenario and
all proposed 2PAKE protocols use game-based security definitions.
In this paper we propose the first construction of an universally composable 2PAKE protocol, alongside
with its ideal functionality. The protocol is proven UC-secure in the standard model, assuming a
common reference string which is a common assumption to many UC-secure PAKE and PASS protocols.
The proposed protocol remains secure for arbitrary password distributions. As one of the building blocks
we define and construct a new cryptographic primitive, called Trapdoor Distributed Smooth Projective
Hash Function (TD-SPHF), which could be of independent interest.

1 Introduction

Password Authenticated Key Exchange (PAKE) protocols have been extensively researched over the last
twenty years. They allow two protocol participants sharing a low-entropy secret (password) to negotiate an
authenticated secret key. Several PAKE security models are widely used such as the game-based PAKE model,
called BPR, by Bellare, Pointcheval and Rogaway [8,4] and the PAKE model in the Universal Composability
(UC) framework by Canetti [19]. PAKE protocols are often considered in a client-server scenario where the
client password is registered and stored in a protected way on the server side such that it can be used
later to authenticate the client. This approach however leads to an intrinsic weakness of single-server PAKE
protocols against server-compromise attacks. An attacker who breaks into the server can efficiently recover
client’s password and impersonate the client to the server as well as to other servers if this password is used
across many client accounts which is often the case. A number of approaches have been proposed to alleviate
this threat. For instance, verifier-based PAKE [24,38,12], also known as augmented PAKE [9], considers
an asymmetric setting in which the server uses a randomized password hash to verify a client holding the
corresponding password. The crucial weakness of VPAKE protocols is that they do not protect against offline
dictionary attacks on compromised password hashes, i.e. an attacker can still recover the password, which
can often be done efficiently with current tools like [25,34].

Two-server PAKE (2PAKE) protocols solve this problem through secret sharing techniques. The client
password is split into two shares and each server receives its own share upon registration. In order to
authenticate the client both servers take part in the protocol execution. 2PAKE security typically holds
against an active attacker who can compromise at most one server and thus learn the corresponding password
share. 2PAKE protocols can be symmetric (e.g. [13,37,29,31]) where both servers compute the same session
key and asymmetric (e.g. [29]) where each server can compute an independent session key with the client or
assist another server in the authentication process [39,28] without computing the key. A potential drawback
of symmetric protocols is that by corrupting one server the attacker may use learned key material to read



communications between the client and the other server. Existing 2PAKE protocols were analysed using
variants of the BPR model and do not offer compositional security guarantees. While 2PAKE can be seen
as a special case of Threshold PAKE (TPAKE), e.g. [36,32], that adopt t-out-of-n secret sharing, existing
TPAKE protocols do not necessarily provide solutions for 2PAKE, e.g. [36] requires t < n/3. Finally, we
note that UC-security was considered for a class of Two-Server/Threshold Password Authenticated Secret
Sharing (2/TPASS) protocols, e.g. [15,26,14], that address a different problem of sharing a chosen key across
multiple servers and its subsequent reconstruction from the password.

In this paper we propose the first UC-secure (asymmetric) 2PAKE protocol where one of the two servers
computes an independent session key with the client. We rely on a common reference string, which is a
standard assumption for UC-secure PAKE protocols. As a consequence of UC modeling our protocol offers
security for all password distributions, which is notoriously difficult to achieve in BPR-like models. One
challenge in achieving UC security is that the protocol must remain simulatable against active attackers that
play with a correctly guessed password (unlike in game-based models where simulation can be aborted). In
order to achieve simulatability we introduce a new building block, called Trapdoor Distributed Smooth Pro-
jective Hash Functions (TD-SPHF), offering distributed SPHF properties from [31] and the SPHF trapdoor
property from [10]. While traditional SPHF were used in the design of single-server PAKE protocols, the
2PAKE protocol framework from [31], a generalisation of [29] that was proven secure in the BPR-like model,
required an extension of SPHF to a distributed setting. Such distributed SPHF alone are not sufficient for
achieving the UC security. Our TD-SPHF helps to achieve simulatability for 2PAKE protocols and could be
of independent interest for other UC-secure constructions.

2 Preliminaries and Building Blocks

Our 2PAKE protocol is defined over bilinear groups G1 and G2 of prime order q with an efficiently computable
map e : G1 × G2 7→ GT . The following properties have to hold: i) If g1 is a generator of G1 and g2 is a
generator of G2, then e(g1, g2) is a generator of GT . ii) For generators g1, g2 and scalar x ∈R Zq it holds that
e(gx1 , g2) = e(g1, g

x
2 ) = e(g1, g2)x. We require further that the Symmetric External Diffie-Hellman assumption

(SXDH) ([6,5] amongst others) holds in those groups. SXDH states that the DDH problem is hard in G1 and
G2. It is believed that the SXDH assumption holds in MNT curves (named after Miyaji, Nakabayashi, and
Takano [33], denote prime-order curves with embedding degree 3, 4 or 6), and pairings could be implemented
with Tate pairings. All computations defined on a q-order group in the following are performed in G1. Let λ
denote the security parameter throughout this work.

Commitments Let C = (CSetup, Com) denote an efficient commitment scheme and C ← Com(x; r) a com-
mitment on x using randomness r, with CSetup generating parameters for C.3 A commitment scheme
C = (CSetup, Com) is efficient if CSetup(λ) and (C, d) ← Com(x; r) are computable in polynomial time,
complete if Com(d) = (C, d) for (C, d)← Com(x; r), and secure if it is

– Binding: For all PPT adversariesA there exists a negligible function εbi(·) such that for all (x, x′, r, r′, C)←
A: Pr[x 6= x′ ∧ (C, d) = Com(x; r) ∧ (C, d′) = Com(x′; r′)] ≤ εbi(λ),

– Hiding: For all PPT adversaries A there exists a negligible function εhi(·) such that for all x0, x1 with
|x0| = |x1| and b ∈R {0, 1}, (C, d)← Com(xb; r) and b′ ← A(C, x1, x2): Pr[b = b′] ≤ 1/2 + εhi(λ).

Instantiation [35] We will use perfectly hiding, computationally binding, homomorphic Pedersen commit-
ments [35] defined as follows. Let CP = (CSetup, Com) with (g, h, q, λ)← CSetup(λ) and C ← Com = (x; r) =
gxhr denote the Pedersen commitment scheme where g and h are generators of a cyclic group G of prime-order
q with bit-length in the security parameter λ and the discrete logarithm of h with respect to base g is not
known. Pedersen commitments are additively homomorph, i.e. for all (Ci, di) ← Com(xi; ri) for i ∈ 0, . . . ,m
it holds that

∏m
i=0 Ci = Com(

∑m
i=0 xi;

∑m
i=0 ri).

3 We usually omit decommitment d ouptut by Com(x; r).
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Committed Zero-Knowledge Proofs We use committed Σ-protocols for security against malicious ver-
ifiers [22,27]. Note that we do not require extractability (proof of knowledge) here, which allows us to avoid
the necessity of rewinding. A zero-knowledge proof ZKP is executed between a prover and a verifier, proving
that a word x is in a language L, using a witness w proving so.4 An interactive protocol ZKP for a language
L between prover P and verifier V is a zero knowledge proof if the following holds:

– Completeness: If x ∈ L, V accepts if P holds a witness proving so.
– Soundness: For every malicious prover P ∗(x) with x ∈ L the probability of making V accept is negligible.
– Zero-Knowledge: If x ∈ L, then there exists an efficient simulator that on input of x is able to generate

a view, indistinguishable from the view of a malicious verifier V ∗.

Let P1(x,w, r) and P2(x,w, r, c) denote the two prover steps of a Σ-protocol and H : {0, 1}∗ 7→ Zq a
collision-resistant hash function. A committed Σ-protocol is then given by the following four steps:

– The prover computes the first message Co← P1(x,w, r) and m1 ← Com(H(x, Co); r1) = gH(x,Co)hr1 , and
sends m1 to the verifier.

– The verifier chooses challenge Ch = c ∈R Zq and returns it to the prover.
– The prover computes the second message Rs← P2(x,w, r, c) and m2 ← Com(H(Rs); r2) = gH(Rs)hr2 , and

sends m2 to the verifier.
– Further, the prover opens the commitments m1 and m2 sending (x, Co, Rs, r1, r2) to the verifier.
– The verifier accepts iff both commitments are valid and if the verification of theΣ-protocol (x, Com, Ch, Rs)

is successful.

Cramer-Shoup Encryption with Labels Let C = (`,u, e, v) ← EncCS
pk (`,m; r) (on label `, message m,

and randomness r) with u = (u1, u2) = (gr1, g
r
2), e = hrgm1 and v = (cdξ)r with ξ = Hk(`,u, e) denote

a labelled Cramer-Shoup ciphertext. We assume m ∈ Zq and G is a cyclic group of prime order q with
generators g1 and g2 such that gm1 ∈ G. The CS public key is defined as pk = (p,G, g1, g2, c, d,Hk) with
c = gx1

1 gx2
2 , d = gy11 g

y2
2 , h = gz1 and hash function Hk such that τ = (x1, x2, y1, y2, z) denotes the decryption

key. Decryption is defined as gm1 = DecCS
dk (C) = e/uz1 if ux1+y1·ξ′

1 ux2+y2·ξ′
2 = v with ξ′ = Hk(`,u, e).

2.1 Smooth Projective Hashing (SPHF)

First, we recall definitions for classical SPHF tailored to the PAKE use-case and cyclic groups G of prime-
order q. We use languages of ciphertexts with the password as message and the randomness as witness. An
SPHF language L for a given password pw from dictionary D is given by Lpw. The public parameter of the
language is the common reference string crs containing the public key pk of the encryption scheme. By τ
we denote the crs trapdoor, the secret key to pk. Let L be the encryption scheme used to generate words
in Lpw. Unless stated otherwise we assume that L is a labelled CCA-secure encryption scheme, e.g. labelled
Cramer-Shoup scheme.

Definition 1 (Languages of Ciphertexts). Let Lpw ⊆ {(`, C,pw∗)} = C denote the language of labelled
ciphertexts under consideration with ciphertext (`, C) under pk and password pw∗ ∈ D. A ciphertext C is in
language Lpw iff there exists randomness r such that C ← EncLpk(`,pw; r).

Smooth projective hashing for languages of ciphertexts where the projection key does not depend on the
ciphertext is defined as follows (see also [30,10]).

Definition 2 (KV-SPHF). Let Lpw denote a language of ciphertexts such that C ∈ Lpw if there exists
randomness r proving so. A smooth projective hash function for ciphertext language Lpw consists of the
following four algorithms:

4 Zero-knowledge languages L are independent from the smooth projective hashing languages introduced in Section
2.1.
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– KGenH(Lpw) generates a random hashing key kh for language Lpw.
– KGenP(kh, Lpw) derives the projection key kp from hashing key kh.
– Hash(kh, Lpw, C) computes hash value h from hashing key kh and ciphertext C.
– PHash(kp, Lpw, C, r) computes hash value h from projection key kp, ciphertext C and randomness r.

A SPHF has to fulfil the following three properties:

– Correctness: If C ∈ L, with r proving so, then Hash(kh, Lpw, C) = PHash(kp, Lpw, C, r).
– Smoothness: If {(`, C,pw∗)} 3 C 6∈ Lpw, the hash value h is (statistically) indistinguishable from a

random element.
– Pseudorandomness: If C ∈ Lpw, the hash value h is (computationally) indistinguishable from a random

element.

We refer to the original work or Appendix A for more details.

2.2 Trapdoor Smooth Projective Hashing

For efficient one-round UC-secure PAKE a new SPHF flavor, called Trapdoor SPHF (T-SPHF), was intro-
duced in [10]. T-SPHF adds three additional functions to the classical SPHF definition allowing computation
of the hash value from the projection key, ciphertext and trapdoor τ ′.5

Definition 3 (Trapdoor SPHF). Let Lpw denote a language of ciphertexts such that C ∈ Lpw if there
exists randomness r proving so. A trapdoor smooth projective hash function for a ciphertext language Lpw

consists of the following seven algorithms:

– KGenH, KGenP, Hash and PHash are as given in Definition 2
– TSetup(crs) generates a second crs′ with trapdoor τ ′ on input of a crs

– VerKp(kp, Lpw) returns 1 iff kp is a valid projection key, 0 otherwise
– THash(kp, Lpw, C, τ

′) computes the hash value h of C using the projection key kp and trapdoor τ ′

We assume crs′ is, like crs, made available to all parties.

For more details on T-SPHF see the original work or Appendix B.

2.3 Distributed Smooth Projective Hashing

Another flavor, called Distributed SPHF (D-SPHF), was introduced in [31] for use in (non-composable)
2PAKE protocols such as [29] where servers hold password shares pw1 and pw2 respectively, and the client
holds pw = pw1 + pw2. For a more general description see [31]. Due to the nature of the words considered in
D-SPHF they produce two different hash values. One can think of the two hash values as h0 for C0 (from the
client) and hx for C1, C2 (from the two servers). The hash value h0 can be either computed with knowledge of
the client’s hash key kh0 or with the server’s witnesses r1, r2 that C1, C2 are in Lpwi , i ∈ {1, 2} respectively.
The hash value hx can be computed with knowledge of the server hash keys kh1, kh2 or with the client’s
witness r0 that C0 is in Lpw. The combined language is denoted by Lp̂w.

Definition 4 (Distributed SPHF). Let Lp̂w denote a language such that C = (C0, C1, C2) ∈ Lp̂w if
there exists a witness r = (r0, r1, r2) proving so, pw = pw1 + pw2 and there exists a function Dec′ such
that Dec′(C1C2) = Dec′(C0). A distributed smooth projective hash function for language Lp̂w consists of the
following six algorithms:

– KGenH(Lp̂w) generates a hashing key khi for i ∈ {0, 1, 2} and language Lp̂w.
– KGenP(khi, Lp̂w) derives projection key kpi from hashing key khi for i ∈ {0, 1, 2}.

5 Note that τ ′ is a different trapdoor than the CRS trapdoor τ .
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– Hashx(kh0, Lp̂w, C1, C2) computes hash value hx from hashing key kh0 and two server ciphertexts C1 and
C2.

– PHashx(kp0, Lp̂w, C1, C2, r1, r2) computes hash value hx from projection key kp0, two ciphertexts C1 and
C2, and witnesses r1 and r2.

– Hash0(kh1, kh2, Lp̂w, C0) computes hash value h0 from hashing keys kh1 and kh2 and ciphertext C0.
– PHash0(kp1, kp2, Lp̂w, C0, r0) computes hash value h0 from projection keys kp1 and kp2, the ciphertext C0,

and witness r0.

A distributed SPHF protocol between three participants C, S1, S2 computing hx and h0 is described by three
interactive protocols Setup, PHashDx and HashD0 . Let Π denote D-SPHF as described above.

– Setup(pw,pw1,pw2, C, S1, S2) initialises a new instance for each participant with (pw, C, S1, S2) for C,
(pw1, S1, C, S2) for S1 and (pw2, S2, C, S1) for S2. Eventually, all participants compute and broadcast
projection keys kpi and encryptions Ci ← EncLpk(`i,pwi; ri) of their password (share) pwi using Π.KGenH,
Π.KGenP and the associated encryption scheme L. Participants store incoming kpi, Ci for later use.
After receiving (kp1, C1, kp2, C2), the client computes h0 ← Π.PHash0(kp1, kp2, Lp̂w, C0, r0) and hx ←
Π.Hashx(kh0, Lp̂w, C1, C2).

– PHashDx is executed between S1 and S2. Each server Si performs PHashDx on input (kp0,pwi, C1, C2, ri)
such that S1 eventually holds hx while S2 learns nothing about hx.

– HashD0 is executed between S1 and S2. Each server Si performs HashD0 on input (pwi, khi, C0, C1, C2)
such that S1 eventually holds h0 while S2 learns nothing about h0.

We recall security and instantiation of D-SPHF in Appendix C

2.4 Ideal Functionalities

For our 2PAKE realisation we rely on some commonly used ideal functionalities within the UC framework.
First, since we work in the crs model we require the crs functionality from [18], recalled in Figure 2 in
Appendix D. We further need verified public keys on both servers. We use the ideal CA functionality FCA

from [17] for this, recalled in Figure 3 in Appendix D. Eventually, to establish unique query identifiers between
the parties in a protocol run we use the Finit functionality from [7], recalled in Figure 4 in Appendix D.

3 Trapdoor Distributed Smooth Projective Hashing

T-SPHF enabled constructions of one-round UC-secure PAKE [10] because of simulatability even in presence
of attackers who guess correct passwords. In order to use the trapdoor property for simulatability in 2PAKE
protocols T-SPHF must first be extended to the distributed setting of D-SPHF (cf. Section 2.3). We denote
this new flavor by TD-SPHF and describe it specifically for usage in our 2PAKE, i.e. using languages based
on Cramer-Shoup ciphertexts. A more general description of TD-SPHF accounting for more servers and/or
other languages can be obtained similarly to the general description of D-SPHF in [31].

Definition 5 (TD-SPHF). Let Lp̂w denote a language such that C = (C0, C1, C2) ∈ Lp̂w if there exists a
witness r = (r0, r1, r2) proving so, pw = pw1 + pw2 and there exists a function Dec′ such that Dec′(C1C2) =
Dec′(C0). A trapdoor distributed smooth projective hash function for language Lp̂w consists of the following
ten algorithms:

– (crs′, τ ′)
R← TSetup(crs) generates crs′ with trapdoor τ ′ from crs

– KGenH, KGenP, Hashx, PHashx, Hash0, PHash0 behave as for D-SPHF
– b← VerKp(kp, Lp̂w) returns b = 1 iff kp is a valid projection key and b = 0 otherwise
– hx ← THashx(kp0, Lp̂w, C1, C2, τ

′) computes hash value hx of ciphertexts C1 and C2 using projection key
kp0 and trapdoor τ ′

– h0 ← THash0(kp1, kp2, Lp̂w, C0, τ
′) computes hash value h0 of C0 using projection keys kp1 and kp2, and

trapdoor τ ′
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Security of TD-SPHF can be derived from D-SPHF security and the extensions made on SPHF for T-SPHF.
However, we do not consider security of TD-SPHF on its own but rather incorporate it in the security proof
of the 2PAKE protocol in the following section. This is due to the fact that description of TD-SPHF is done
only for this specific application such that a separate security definition is more distracting than giving any
benefit. However, we define correctness and soundness of TD-SPHF since they differ from that of D-SPHF.
In particular, correctness of TD-SPHF extends correctness of D-SPHF by the statement that for every valid
ciphertext triple (C0, C1, C2), generated by L, and honestly generated keys (kh0, kh1, kh2) and (kp0, kp1, kp2),
it holds not only that

Hash0(kh1, kh2, Lp̂w, C0) = PHash0(kp1, kp2, Lpw,pw1,pw2
, C0, r0) and

Hashx(kh0, Lp̂w, C1, C2) = PHashx(kp0, Lpw,pw1,pw2
, C1, C2, r1, r2)

but also that VerKp(kpi, Lp̂w) = 1 for i ∈ {0, 1, 2} and

Hash0(kh1, kh2, Lp̂w, C0) = THash0(kp1, kp2, Lpw,pw1,pw2
, C0, τ

′) and

Hashx(kh0, Lp̂w, C1, C2) = THashx(kp0, Lpw,pw1,pw2
, C1, C2, τ

′).

To capture soundness of TD-SPHFs we define (t, ε)-soundness, complementing the previous correctness
extension, as follows.

Definition 6 (TD-SPHF (t, ε)-soundness). Given crs, crs′ and τ , no adversary running in time at
most t can produce a projection key kp, a password pw with shares pw1 and pw2, a word (C0, C1, C2), and
valid witness (r0, r1, r2), such that (kp0, kp1, kp2) are valid, i.e. VerKp(kpi, Lp̂w) = 1 for i ∈ {0, 1, 2}, but

THashx(kp0, Lp̂w, C1, C2, τ
′) 6= PHashx(kp0, Lp̂w, C1, C2, r1, r2) or

THash0(kp1, kp2, Lp̂w, C0, τ
′) 6= PHash0(kp1, kp2, Lp̂w, C0, r0)

with probability at least ε(λ). The perfect soundness states that the property holds for any t and any ε(λ) > 0.

3.1 Cramer-Shoup TD-SPHF

In the following we present TD-SPHF for labelled Cramer-Shoup ciphertexts by extending the correspond-
ing D-SPHF from [31] with the trapdoor property from [10] in the setting of bilinear groups. Let C =
(`, u1, u2, e, v) denote a Cramer-Shoup ciphertext as defined in Section 2.

– TSetup(crs) draws a random τ ′ ∈R Zq and computes crs′ = ζ = gτ
′

2

– KGenH(Lp̂w) returns khi = (η1,i, η2,i, θi, µi, νi) ∈R Z1×5
p for i ∈ {0, 1, 2}

– KGenP(khi, Lp̂w) generates

kpi = (kp1,i = g
η1,i
1,1 g

θi
1,2h

µicνi , kp2,i = g
η2,i
1,1 d

νi , kp3,i)

with kp3,i = (χ1,1,i, χ1,2,i, χ2,i, χ3,i, χ4,i) and

χ1,1,i = ζη1,i , χ1,2,i = ζη2,i , χ2,i = ζθi , χ3,i = ζµi , χ4,i = ζνi for i ∈ {0, 1, 2}

– Hashx(kh0, Lp̂w, C1, C2) computes

h′x = (u1,1 · u1,2)η1,0+(ξ1+ξ2)η2,0(u2,1 · u2,2)θ0((e1 · e2)/gpw1,1)µ0(v1 · v2)ν0

and returns hx = e(h′x, g2)

– PHashx(kp0, Lp̂w, C1, C2, r1, r2) computes h′x = kp
r1+r2
1,0

kp
ξ1r1+ξ2r2
2,0 and outputs hx = e(h′x, g2)
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– Hash0(kh1, kh2, Lp̂w, C0) computes

h′0 = u
η1,1+η1,2+ξ0(η2,1+η2,2)
1,0 uθ1+θ22,0 (e0/g

pw
1,1)µ1+µ2vν1+ν20

and outputs h0 = e(h′0, g2)
– PHash0(kp1, kp2, Lp̂w, C0, r0) computes

h′0 = (kp1,1kp1,2)r0(kp2,1kp2,2)r0ξ0

and outputs h0 = e(h′0, g2)
– VerKp(kpi, Lp̂w) verifies that

e(kp1,i, crs
′)

?
= e(g1,1, χ1,1,i) · e(g1,2, χ2,i) · e(h, χ3,i) · e(c, χ4,i)

and

e(kp2,i, crs
′)

?
= e(g1,1, χ1,2,i) · e(d, χ4,i) for i ∈ {0, 1, 2}

– THash0(kp1, kp2, Lp̂w, C0, τ
′) computes

h0 =
[
e(u1,0, χ1,1,1χ1,1,2(χ1,2,1χ1,2,2)ξ0) · e(u2,0, χ2,1χ2,2)

·e(e0/gpw1,1, χ3,1χ3,2) · e(v0, χ4,1χ4,2)
]1/τ ′

– THashx(kp0, Lp̂w, C1, C2, τ
′) computes

hx =
[
e(u1,1u1,2, χ1,1,0χ

ξ1+ξ2
1,2,0 ) · e(u2,1u2,2, χ2,0) · e((e1e2)/gpw1,1, χ3,0)

·e(v1v2, χ4,0)
]1/τ ′

Distributed computation of PHashx and Hash0 is done as in D-SPHF with additional proofs for correctness
and adding the pairing computation at the end to lift the hash value into GT . We formalise execution of
the Cramer-Shoup TD-SPHF in the following paragraph. Necessary zero-knowledge proofs are described in
the subsequent two paragraphs and only referenced in the description of the TD-SPHF. We describe the Σ
protocol here, which we can use after transforming it to a committed Σ protocol (cf. Section 2). Note that
we merge crs and crs′ here for readability. Protocol participants are denoted C, S1 and S2 if their role is
specified, or P , Q and R otherwise. Let further 0 denote the client’s index and 1, 2 the indices of servers S1,
S2, respectively. The session ID is given by sid = C||S1||S2 and the unique query identifier qid is agreed
upon start using Finit.

All TD-SPHF participants have crs = (q, g1,1, g1,2, h, c, d,G1, g2, ζ,G2,GT , e,Hk) as common input where
τ = (x1, x2, y1, y2, z) is the crs trapdoor, i.e. the according Cramer-Shoup secret key, and τ ′ the trapdoor, i.e.
discrete logarithm to base g2, of crs′ = ζ. Each server holds an ElGamal key pair (pk1, dk1) and (pk2, dk2)
respectively such that pk1 is registered with the CA for S1 and pk2 for S2 and thus available to all parties
(using FCA). An, otherwise unspecified, protocol participant P is initiated with (NS, sid, qid, P, x). We fur-
ther define pw0 = pw.

CS TD-SPHF Computation

a) Generate TD-SPHF keys khi ∈R Z5
q and kpi = (kp1,i = g

η1,i
1,1 g

θi
1,2h

µicνi , kp2,i = g
η2,i
1,1 d

νi , χ1,1,i = ζη1,i ,

χ1,2,i = ζη2,i , χ2,i = ζθi , χ3,i = ζµi , χ4,i = ζνi). Encrypt pwi to C = (`i, u1,i, u2,i, ei, vi) ← (`, gri1,1, g
ri
1,2,

hrrg
pwi
1,1 , (cd

ξi)ri) with ξi = Hk(`i, u1,i, u2,i, ei) for `i = sid||qid||kpi and ri ∈R Zq. If P = S1, set
h0 = hx = null. Output (sid, qid, 0, P, Ci, kpi) to Q and R.
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b) When P , waiting for the initial messages, is receiving a message (sid, qid, 0, Q,C1, kp1) and (sid, qid,
0, R, C2, kp2) it proceeds as follows. P proceeds only if the projection keys kp1 and kp2 are correct, i.e.
VerKp(kp1, Lp̂w) = 1 and VerKp(kp2, Lp̂w) = 1. If the verification fails, P outputs (sid, qid,⊥,⊥) and
aborts the protocol.

i) If P = C, compute
hx = e((u1,1 · u1,2)η1,0+(ξ1+ξ2)η2,0(u2,1 · u2,2)θ0

((e1 · e2)/gpw1,1)µ0(v1 · v2)ν0 , g2) and

h0 = e
(

(kp1,1kp1,2)r0(kp2,1kp2,2)r0ξ0 , g2

)
, and outputs (sid, qid, h0, hx).

ii) If P = S2, compute hx,2 = (kp1,0 · kp
ξ2
2,0)r2 and Chx,2 = g

H(hx,2,Co1)
1,1 hrc1 with rc1 ∈R Zq and send

(sid, qid, PHashx, 0, S2, Chx,2) to S1.

iii) If P = S1, compute m0 = EncEG
pk1

(g−µ1

1,1 ; r) and c0 = EncEG
pk1

(g
pw1
1,1 ; r′) with r, r′ ∈R Zq, and send

(sid, qid, Hash0, 0, S1,m0, c0) to S2.

c) On input (sid, qid, PHashx, 0, S2, Chx,2) S1 in the correct state draws challenge c ∈R Zq and returns
(sid, qid, PHashx, 1, S1, c) to S2.

d) On input (sid, qid, PHashx, 1, S1, c) S2 in the correct state computes Cshx,2 = g
H(Rs1)
1,1 hrc2 with rc2 ∈R Zq

and sends (sid, qid, PHashx, 2, S2, Cshx,2 ) to S1. Subsequently, it sends (sid, qid, PHashx, 3, S2, hx,2, Co1,

Rs1, rc1, rc2) to S1.

e) On input (sid, qid, PHashx, 2, S2, Cshx,2 ) S1 in the correct state stores it and waits for the final PHashx
message.

f) On input (sid, qid, PHashx, 3, S2, hx,2, Co1, Rs1, rc1, rc2) S1 in the correct state parses Co1 as (t1, t2) and

Rs2 as shx,2 and verifies correctness of commitments and the ZKP and computes hx = e(hx,2·(kp0,1·kp
ξ1
0,2)r1 ,

g2) if the verifications are successful, hx 6= ⊥ and h0 6= ⊥, or sets h0 = ⊥ and hx = ⊥ otherwise.

g) On input (sid, qid, Hash0, 0, S1,m0, c0) S2 in the correct state retrieves pk1 from FCA and computes

CHash0,1 = g
H(m1,m2,Co2)
1,1 hrc3 with rc3 ∈R Zq, m1 ← m

pw2
0 × c−µ2

0 × EncEG
pk1

(g
−µ2·pw2
1,1 ·uη1,2+ξ0η2,21,0 ·uθ22,0 · e

µ2

0 ·
vν20 ; r′′), and m2 ← EncEG

pk1
(g−µ2

1,1 ; r′′′) with r′′, r′′′ ∈ Zq, and sends (sid, qid, Hash0,1, S2, CHash0,1) back to
S1.

h) On input (sid, qid, Hash0,1, S2, CHash0,1) S1 in the correct state draws challenge c ∈R Zq and returns
(sid, qid, Hash0,2, S1, c) to S2.

i) On input (sid, qid, Hash0,2, S1, c) S2 in the correct state computes CRs2 = g
H(Rs2)
1,1 hrc4 with rc4 ∈R Zq and

sends (sid, qid, Hash0,3, S2, CRs2) to S1. Subsequently, it sends (sid, qid, Hash0,4, S2,m1,m2, Co2, Rs2, rc3,
rc4) to S1.

j) On input (sid, qid, Hash0,4, S2,m1,m2, Co2, Rs2, rc3, rc4) S1 in the correct state parses Co2 as (tm1, tm2,
te2, tv2, tkp12, tkp22) and Rs2 as (spw2

, sµ2, sη12, sη22, sθ2, sν2, sr2), verifies correctness of commitments and

ZKP, and computes h0 = e
(
g
−µ1·pw1
1,1 · DecEG

dk1
(m1) · uη1,1+ξ0η2,11,0 · uθ12,0 · e

µ1

0 · v
ν1
0 , g2

)
if the verifications are

successful, hx 6= ⊥ and h0 6= ⊥, or sets h0 = ⊥ and hx = ⊥.

k) Eventually S1 outputs (sid, qid, h0, hx) if h0 6= null and hx 6= null.

ZK Proof for PHashx Correctness In order to ensure correct computation of hx on S1 server S2 has to prove
correctness of his computations. To this end S2 sends, in addition to the PHashx message hx,2 the following
zero-knowledge proof.

ZKP
{

(r2) : hx,2 = (kp1,0kp
ξ2
2,0

)r2 ∧ v2 = (cdξ2)r2
}

(1)

where r2 is the randomness used to create C2, ξ2 and v2 are part of C2, kp1,0, kp2,0 are part of C’s projection
key, and c, d are from the crs. The construction of the according zero-knowledge proof is straight-forward.
The prover computes commitments

thx2 = (kp1,0kp
ξ2
2,0

)khx2 ; tv2 = (cdξ2)khx2
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with fresh randomness khx2 ∈R Zq, and response sr2 = khx2 − cr2 for verifier provided challenge c. This
allows the verifier to check

thx2
?
= hcx,2(kp1,0kp

ξ2
2,0

)shx2 ; tv2
?
= vc2(cdξ2)shx2 .

It is easy to see that this zero-knowledge proof is correct, sound and (honest-verifier) simulatable. We refer
to the messages as Co1 = (thx2, tv2), Rs1 = sr2, and Ch1 = c.

ZK Proof for Hash0 Correctness Let m1 and m2 denote the messages encrypted in m1 and m2 respectively
and m0,1 and c0,1 the second part (e) of the ElGamal ciphertext m0, c1 respectively. In order to ensure
correct computation of h0 on S1 server S2 has to prove correctness of his computations. To this end S2

sends, additionally to the Hash0 messages m1 and m2 the following zero-knowledge proof

ZKP
{

(x, η1,2, η2,2, θ2, µ2, ν2, r2) : m1 = m
pw2
0,1 c

−µ2

0,1 g−µ2x
1,1 u

η1,2+ξ0η2,2
1,0 uθ22,0e

µ2

0 vν20

∧ m2 = g−µ2

1,1 ∧ e2 = hr2g
pw2
1,1 ∧ v2 = (cdξ2)r2

∧ kp1,2 = g
η1,2
1,1 g

θ2
1,2h

µ2cν2 ∧ kp2,2 = g
η2,2
1,1 d

ν2
}
,

(2)

where r2 is the randomness used to create C2, ξ2 and v2 are part of C2, ξ0 is part of C0, (µ2, η1,2, η2,2, θ2, ν2)
is S2’s hashing key, pw2 S2’s password share, and c, d are from the crs. The construction of the according
Σ proof is straight-forward. The prover computes commitments

tm1 = m
pw2
0,1 c

kµ2
0,1 m

kx
2 u

kη12+ξ0kη22
1,0 ukθ22,0 e

−kµ2
0 vkν20 ; tm2 = g

kµ2
1,1 ; te2 = hkr2g

pw2
1,1 ;

tv2 = (cdξ2)kr2 ; tkp12 = g
kη12
1,1 gkθ21,2 h

kµ2ckν2 ; tkp22 = g
kη22
1,1 dkν2

for kpw2
, kµ2, kη12, kη22, kθ2, kν2 ∈R Zq

and responses

spw2
= kpw2

− cpw2; sµ2 = kµ2 + cµ2; sη12 = kη12 − cη1,2; sη22 = kη22 − cη2,2;

sθ2 = kθ2 − cθ2; sν2 = kν2 − cν2; sr2 = kr2 − cr2

for verifier provided challenge c. This allows the verifier to check

tm1
?
= mc

1m
spw2
0,1 c

sµ2
0,1m

spw2
2 u

sη12+ξ0sη22
1,0 usθ22,0e

sµ2
0 vsν20 ; tm2

?
= mc

2g
sµ2
1,1 ; te2

?
= ec2h

sr2g
spw2
1,1 ;

tv2
?
= vc2(cdξ2)sr2 ; tkp12

?
= kp

c
1,2
g
sη12
1,1 gsθ21,2 h

sµ2csν2 ; tkp22
?
= kp

c
2,2
g
sη22
1,1 dsν2 .

While this is mainly a standard zero-knowledge proof tm1 uses m2 instead of g1,1 as base for the third factor
and kpw2

as exponent (spw2
in the verification). This is necessary due to the fact that the exponent −µ2pw2

of the third factor in m1 is a product of two values that have to be proven correct. The ZK proof uses the
auxiliary message m2 to prove that logg1,1(m2) = −µ2 such that it is sufficient to prove logm2

(m
pw2
2 ) = pw2.

We refer to the messages as Co2 = (tm1, tm2, te2, tv2, tkp12, tkp22), Rs2 = (spw2
, sµ2, sη12, sη22, sθ2, sν2, sr2), and

Ch2 = c.

4 Universally Composable Two-Server PAKE

With TD-SPHF it is straight forward to build a 2PAKE protocol. We follow the general framework described
in [31] to build 2PAKE protocols from distributed smooth projective hash functions. However, instead of
aiming for key generation, where the client establishes a key with each of the two servers, we focus on a
protocol that establishes a single key with one server, w.l.o.g. the first server. By running the protocol twice,
keys can be exchanged between the client and the second sever. Note that UC security allows concurrent
execution of the protocol such that round complexity is not increased by establishing two keys.
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4.1 The Protocol

We obtain our 2PAKE protocol using the general 2PAKE framework from [31] yet using our TD-SPHF
instead of original D-SPHF. Client C and both servers S1 and S2 execute a TD-SPHF protocol from Section
3 which provides C and S1 with two hash values h0 and hx each. The session key is then computed by both
as a product sk = h0 · hx.

4.2 Ideal Functionality for 2PAKE

Our ideal functionality for 2PAKE with implicit client authentication, F2PAKE, is given in Figure 1. Observe
that implicit client authentication is sufficient for building UC-secure channels [20]. The ideal adversary can
take control of any server from the outset of the protocol and learn the corresponding password share. The
actual password remains hidden unless the adversary corrupts both servers. The use of static corruptions
is motivated in the following. First, as explained in [19], PAKE security against static corruptions in the
UC model implies security against adaptive corruptions in the BPR model. Second, existing single-server
PAKE protocols that are UC-secure against adaptive corruptions, e.g. [1,2,3], rely on more complex SPHF
constructions that are not translatable to the distributed setting of D-SPHF. We discuss the relation between
our new UC formalisation of 2PAKE and the known BPR-based security model in Appendix E.

Functionality F2PAKE

The functionality F2PAKE is parameterised by a security parameter λ. It interacts with an adversary,
a client C and two servers S1 and S2 via the following interfaces. Without loss of generality the key is
exchanged between C and S1.

KEX InitC : Upon input (KEXinit, sid, qid,pw) from client C, check that sid is (C, S1, S2) and
that qid is unique (entries (KEX, sid, qid, S1, α1) or (KEX, sid, qid, S2, α2) may exist) and send
(KEX, sid, qid, C) to SIM. If this is a valid request, create a fresh record (KEX, sid, qid, C,pw).

KEX InitS: Upon input (KEXinit, sid, qid, αb) from server Sb, b ∈ {1, 2}, check that sid is (C, S1, S2)
and that qid is unique (entries (KEX, sid, qid, C,pw) or (KEX, sid, qid, S3−b, α3−b) may exist) and
send (KEX, sid, qid, Sb) to SIM. If this is a valid request, create a fresh record (KEX, sid, qid, Sb, αb).

TestPwd: Upon input (TP, sid, qid,pw′) from SIM check that a fresh record (KEX, sid, qid, C,pw)
exists. If this is the case, mark (KEX, sid, qid, S1, α1) as compromised and reply with “correct guess”
if pw = pw′, and mark it as interrupted and reply with “wrong guess” if pw 6= pw′.

Failed: Upon input (FA, sid, qid) from SIM check that records (KEX, sid, qid, C,pw) and
(KEX, sid, qid, S1, α1) exist that are not marked completed. If this is the case, mark both as failed.

NewKey: Upon input (NK, sid, qid, P, sk′) from SIM with P ∈ {C, S1}, check that a respective
(KEX, sid, qid, C,pw) or (KEX, sid, qid, S, α1) record exists, sid = (C, S1, S2), |sk′| = λ, then:

– If the session is compromised, or either C or S1 and S2 are corrupted, then output
(NK, sid, qid, sk′) to P ; else

– if the session is fresh and a key sk was sent to P ′ with sid = (P, P ′, S2) or sid = (P ′, P, S2)
while (KEX, sid, qid, P ′, ·) was fresh, then output (NK, sid, qid, sk) to P .

– In any other case, pick a new random key sk of length λ, and send (NK, sid, qid, sk) to P .
In any case, mark qid as completed for P .

Fig. 1: Ideal Functionality F2PAKE

2PAKE Functionality Our F2PAKE is very similar to single-server PAKE functionality but assumes two
servers from which one generates a session key. The main difference is in the modelling of participants. We
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specify two initialisation interfaces KEX Init, one for the client and one for the servers. A client is initialised
with a password pw while a server gets a password share αb. The TestPwd interface allows the ideal world
adversary to test client passwords. A tested session is marked interrupted if the guess is wrong, i.e. client
and server in this session receive randomly chosen, independent session keys, or marked as compromised if
the password guess is correct, i.e. the attacker is now allowed to set the session key. The attacker can only
test client passwords but not password shares of the servers. Without knowledge of the password or any
password share, a share is a uniformly at random chosen element and therefore not efficiently guessable. If
the adversary corrupted server S2, retrieving the second password share α1 from S1 is equivalent to guessing
the password. Complementing the TestPwd interface is a Failed interface that allows the adversary to let
sessions fail. This allows the attacker to prevent protocol participants from computing any session, i.e. failed
parties do not compute a session key. Eventually the NewKey interface generates session keys for client
C and server S1. NewKey calls for S2 are ignored. If client C or server S1 and S2 are corrupted, or the
attacker guessed the correct password, the adversary chooses the session key. If a session key was chosen for
the partnered party and the session was fresh at that time, i.e. not compromised or interrupted, the same
session key is used again. In any other case a new random session key is drawn.

Instead of using a single session identifier sid we use sid and qid. The session identifier sid is composed
of the three participants (C, S1, S2) (note that we use the client C also as “username” that identifies its
account on the servers) and therefore human memorable and unique. To handle multiple, concurrent 2PAKE
executions of one sid, we use a query identifier qid that is unique within sid and can be established with
Finit. In the multi-session extension F̂2PAKE the sid becomes ssid and sid is a globally unique identifier
for the used universe, i.e. server public keys (CA) and crs.

4.3 Security

The following theorem formalises the security of the proposed 2PAKE protocol. Note that we do not rely
on any security of the TD-SPHF. Instead we reduce the security of our 2PAKE protocol directly to the
underlying problem (SXDH). Thereby, we give an indirect security proof of the proposed TD-SPHF.

Theorem 1. The 2PAKE protocol from Section 4.1 securely realises F̂2PAKE with static corruptions in the
Fcrs-FCA-hybrid model if the DDH assumption holds in both groups G1 and G2 and if Hk is a universal
one-way hash function.

Sequence of Games We start the proof of Theorem 1 by giving a sequence of games with G1 equal
to the real-world execution with honest participants following the protocol description and the real-world
adversary A that may have control over a set of participants, and G17 equal to the ideal-world execution
where the protocol is replaced with the ideal functionality FD-SPHF acting on behalf of all honest protocol
participants and the ideal-world adversary SIM, detailed later. Let viewi denote the view of environment
Z when interacting with game Gi. Note that view is implicitly parametrised with sid and the security
parameter λ. Security then follows from showing that each viewi is computationally indistinguishable from
the subsequent viewi+1, such that we can eventually follow by an hybrid argument that view1 and view17
are computationally indistinguishable and the protocol therefore securely realises the ideal functionality
F2PAKE. All participants in the games are operated by the challenger C (receiving the participants input
from environment Z), which we modify from game to game. Every session for an sid = (C, S1, S2) is started
with a KexInit call for each participant, defining secrets, roles, and the used query identifier. Invalid messages,
i.e. messages that do not pass the usual tests such as group membership, are discarded by the challenger.
Note that we usually only give the actual payload of messages and omit additional parts such as sid, qid
etc.

G1 : Game 1 is the real-world experiment in which Z interacts with real participants that follow, if honest,
the protocol description, and the real-world adversary A controlling the corrupted parties. All participants
are honestly simulated by challenger C that knows all their inputs.
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G2 : This game is identical to G1, except that the crs is generated by C such that it knows the trapdoor
τ . Note that the second trapdoor τ ′ for ζ is not controlled by C yet as this would destroy any security.
Knowledge of τ allows C to decrypt ciphertexts Ci and retrieve the used message. This does not change
anything and is therefore perfectly indistinguishable from G1.

G3 : When C, on behalf of S1, receives first messages (C0, kp0) and (C2, kp2), it decrypts C0 to pw′ and
checks if this is the correct password, i.e. pw′ = pw. If this is not the case, pw′ 6= pw, C chooses a random
h′0 ∈R GT if the subsequent Hash0 computation with S2 is successful, i.e. all zero-knowledge proofs can be
verified, and aborts S1 otherwise. We claim that view2 is computationally indistinguishable from view3. The
probability to distinguish the two games is bounded by the negligible probability to notice that h0 is now
chosen uniformly at random. Since C = (C0, C1, C2) is not in Lpw,pw1,pw2

the computation of Hash0 between
S1 and S2 yields a uniformly at random distributed hash value h0. This can be either deduced from the
smoothness proven for the generic (not distributed) T-SPHF in [11] or by the following simplified argument.
As long as C 6∈ Lpw,pw1,pw2

the same argument as used for SPHF and D-SPHF can be used, namely that h0
is linearly independent from the adversarially known values and therefore indistinguishable from a random
one. However, this is not sufficient in this case as the attacker has the possibility to distinguish real h0
values from random ones with use of the third projection keys kp3,i. To show that this is not possible we
show how to break the DDH assumption in G2 if there exists a distinguisher that can distinguish real h0
from random ones. To this end we build a DDH triple (ζ, a, b) with crs′ = ζ = gτ

′

2 as follows. Let a = ζα

and b = gα2 , then (ζ, a, b) is obviously a DDH triple. To link this to the TD-SPHF we set α = khi,j , then

a = kp3,i,j = ζkhi,j such that b = g
khi,j
2 . To build a non-DDH triple (ζ, a, b) we choose random α and set

a = kp3,i,j = ζkhi,j and b = g
αj
2 . To guarantee correctness we have to choose α such that αj = khj,i + βj

for β ∈ ker

(
g1,1 1 g1,2 h c
1 g1,1 1 1 d

)
for j ∈ [1, 5]. Note that this is possible because we know τ , which contains

the secret Cramer-Shoup key. If we can build a distinguisher on h0, we can now decide whether (ζ, a, b) is a
valid DDH triple or not.

G4 : In this game we choose sk ∈R GT at random in case we choose h0 at random (the setting described in
G3) and computation of sk on S1 is successful. Since h0 on S1 is uniformly at random already and sk = h0hx,
view4 is perfectly indistinguishable from view3.

G5 : Receiving an adversarially generated or modified C1 or C2 on behalf of client C, challenger C chooses
hx ∈R GT uniformly at random instead of computing it with Hashx if C1 or C2 do not encrypt the correct
password share pw1 or pw2 respectively. We claim that view5 is computationally indistinguishable from
view4. In this case we have (C0, C1, C1) 6∈ Lp̂w with overwhelming probability. The claim therefore follows
by a similar argument as in Game 3, i.e. from the DDH assumption in G2.

G6 : In this game we choose sk ∈R GT at random in case we choose hx at random (the setting described
in G5) and computation of sk on C is successful (projection keys kp1 and kp2 are correct). Since hx on C is
uniformly at random already and sk = h0hx, view6 is perfectly indistinguishable from view5.

G7 : In this game we replace computation of hash values h0 and hx with a lookup table with index
(kh1, kh2, Lpw,pw2,pw2

, C0) for h0 and (kh0, Lpw,pw2,pw2
, C1, C2) for hx. If no such value exists, it is com-

puted with the appropriate Hash or PHash function and stored in the lookup table. Due to the correctness
of the used Cramer-Shoup TD-SPHF view7 is perfectly indistinguishable from view6.

G8 : Instead of computing Hash0 for S1 in case pw′ decrypted from C0 is the same as pw, C draws a random
h0 ∈R GT . That is, in this game h0 for S1 is always chosen uniformly at random instead of computing
it with Hash0. We claim that view8 is computationally indistinguishable from view7. The claim follows
from the CCA-security of the labelled Cramer-Shoup encryption and the same argument as in Game 3,
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i.e. from SXDH. In particular, we define G′7 and G′′7 with computationally indistinguishable views from G7
as intermediate games before G8 such that the claim follows. Note that the following games modify the
experiment only in the previously defined case. In G′7 challenger C computes C1 for S1 on a random value
pw′1 ∈R Zq, pw′1 6= pw1. The CCA-security of the encryption scheme ensure that view7′ is computationally
indistinguishable from view7. In G′′7 we choose a random h0 ∈R GT instead of using the distributed Hash0
computation (the protocol is still performed but the values are not used). Using the same argument as in
G3, view7′′ is computationally indistinguishable from view7′ . The only difference between G′′7 and G8 now
is that C encrypts a random value instead of pw1 in C1 in G′′7 . The claim now follows by observing again
that view7′′ and view8 are computationally indistinguishable considering the CCA-security of the labelled
Cramer-Shoup encryption scheme.

G9 : In this game we choose sk ∈R GT at random in case we choose h0 at random (the setting described in
G8) and computation of sk on S1 is successful. Since h0 on S1 is uniformly at random and sk = h0hx, view9
is perfectly indistinguishable from view8.

G10 : Receiving correct C1 or C2, i.e. encrypting pw1 and pw2 respectively, on behalf of client C, challenger
C chooses hx ∈R GT uniformly at random instead of computing it with Hashx. We claim that view10 is
computationally indistinguishable from view9. Since we have (C0, C1, C1) ∈ Lp̂w in this case, the claim
follows by a similar argument as in Game 8, i.e. from the SXDH assumption.

G11 : In this game we choose sk ∈R GT at random in case we choose h0 at random (the setting described
in G10) and computation of sk on C is successful (projection keys kp1 and kp2 are correct). Since hx on C is
uniformly at random already and sk = h0hx, view11 is perfectly indistinguishable from view10.

G12 : The entire crs including ζ is chosen by challenger C in this experiment. The view12 is perfectly
indistinguishable from view11 since this does not change anything else.

G13 : Upon receiving C1 and C2, encrypting correct password shares, C uses THash0 to compute h0 on client
C instead of PHash0. This is possible because C now knows trapdoor τ ′. Due to TD-SPHF soundness, view13
is perfectly indistinguishable from view12.

G14 : Upon receiving C0, encrypting correct password, C uses THashx to compute hx on server S1 instead
of PHashx. This is again possible because C now knows trapdoor τ ′. Due to TD-SPHF soundness, view14 is
perfectly indistinguishable from view13.

G15 : Instead of encrypting the correct password pw in C0 on behalf of client C, C encrypts 0 (which is not
a valid password). We claim that view15 is computationally indistinguishable from view14 under the DDH
assumption in G1, i.e. the CCA-security of the Cramer-Shoup encryption. Note that encryption randomness
r is not used in the computation of h0 anymore such that the claim follows from the Cramer-Shoup CCA-
security.

G16 : Instead of encrypting the correct password share pwi in Ci on behalf of server Si with i ∈ [1, 2], C
encrypts a random element pw′i ∈R Zq. We claim that view16 is computationally indistinguishable from
view15 under the DDH assumption in G1, i.e. the CCA-security of the Cramer-Shoup encryption. Note that
the probability for pw′i = pwi is negligible such that the claim follows from the Cramer-Shoup CCA-security.

G17 : Instead of the challenger C simulating the protocol execution the ideal functionality F2PAKE is used
to interact with the ideal-world adversary SIM. While this game is structurally different from G16 their
executions are indistinguishable. This combined with the following description of the ideal world adversary
SIM concludes the proof.
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Simulator We now describe the simulator SIM that is used in the last experiment and acts as an attacker in
the ideal world against the ideal functionality F2PAKE, interacting with the real world adversary A. It uses a
real-world adversary A in a way that the environment Z cannot distinguish whether it is interacting with A
and honest protocol participants in the real world, or with SIM and dummy protocol participants (simulated
by F2PAKE) in the ideal world. We describe SIM for a single session sid = (C, S1, S2). The security then
follows from the UC composition theorem [16], covering multiple sessions of the protocol, and joint-state
UC composition theorem [21], covering the fact that FCA and Fcrs create a joint state for all sessions and
participants. As before, we assume that 0 is not a valid password.

First, SIM generates crs = (q, g1,1, g1,2, h, c, d,G1, g2, ζ,G2,GT , e,Hk) with Cramer-Shoup secret key as

trapdoor τ = (x1, x2, y1, y2, z) and second trapdoor τ ′ for ζ = gτ
′

2 to answer all Fcrs queries with crs.
Further, SIM generates ElGamal key pairs (gz1 , z1) and (gz2 , z2), and responds to Retrieve(Si) queries to
FCA from Si with (Retrieve, Si, (g

zi , zi)) for i ∈ {1, 2} and with (Retrieve, Si, g
zi) to all other request.

We describe different scenarios in which the simulator operates. First we describe simulation of the initial
KEXInit call before showing the way SIM handles different input messages and the key generation. The
simulator essentially has to ensure that the functionality chooses random, correct session keys if the execution
is correct and random, independent ones in case of an error during the execution.

When receiving (KEX, sid, qid, P ) with sid = (C, S1, S2) and P ∈ {C, S1, S2} from F2PAKE, SIM starts
simulation of the protocol for protocol participant P by computing ciphertext, projection key pair Mi =
(Ci, kpi) for i ∈ {0, 1, 2}, encrypting a dummy value (0 for P = C and a random value α′i ∈R Zq for P = Si,
i ∈ {1, 2}). SIM outputs the computed (Ci, kpi) to A. The first round of messages is handled as follows.

i) When any party receives an adversarially generated but well formed first message Mi, i ∈ {1, 2} from
uncorrupted Si, i.e. VerKp on the projection key kpi is 1, SIM queries (FA, sid, qid), which marks the
session failed for the receiving party and thus ensures that the party receives an independent, random
session key (if any) on a NewKey query.

ii) When any party receives an adversarially generated but well formed first message M2 from a corrupted
S2 while S1 is not corrupted, SIM decrypts C2 to α′2. If this value is not correct, α′2 6= α2 (the party
is corrupted such that SIM knows the correct value), SIM queries (FA, sid, qid) to ensure independent
session keys on NewKey queries.

iii) When client C receives an adversarially generated but well formed first message M1 from a corrupted
S1 while S2 is not corrupted, SIM decrypts C1 to α′1. If this value is not correct, α′1 6= α1, SIM queries
(FA, sid, qid) to ensure independent session keys on NewKey queries.

iv) When any party receives adversarially generated but well formed first messages M1,M2 from corrupted
S1, S2, SIM decrypts C1 and C2 to α′1, α′2 respectively, and verifies their correctness against α1 and
α2. If they are correct, SIM computes h0 ← THash0(kp1, kp2, Lpw,pw1,pw2

, C0, τ
′), hx ← Hashx(kp0, Lp̂w,

C1, C2), and skC = h0 · hx. Otherwise choose a random skC ∈ GT .

v) When an honest S1 or S2 receives an adversarially generated but well formed first message M0, i.e. VerKp
on kp0 is true, SIM extracts pw′ from C0 and sends (TP, sid, qid, C,pw′) to F2PAKE. If the functionality
replies with “correct guess”, SIM uses pw′, crs and τ ′ to compute hx ← THashx(kp0, Lp̂w, C1, C2, τ

′),
h0 ← Hash0(kh1, kh2, Lpw,pw1,pw2

, C0), and skS = h0 · hx.

vi) If verification of any kpi fails at a recipient, SIM aborts the session for the receiving participant.

If a party does not abort, it proceeds as follows. After C received all ciphertext, projection key pair messages
and the previously described checks were performed SIM sends (NK, sid, qid, C, skC) to F2PAKE if an skC for
this session exists, or (NK, sid, qid, C,⊥) otherwise. After S1 and S2 received all ciphertext, projection key
pair messages and the previously described checks were performed, SIM simulates all further messages for
honest parties, i.e. PHashx and Hash0 computation between S1 and S2, with random elements and simulated
zero-knowledge proofs. If all messages received by S1 are oracle generated, send (NK, sid, qid, S1, skS) to
F2PAKE if this session is compromised and (NK, sid, qid, S1,⊥) if not. If any PHashx or Hash0 message
received by S1 can not be verified, i.e. validation of the zero-knowledge proof fails, SIM does nothing and
aborts the session for S1.
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5 Conclusion

This paper proposed the first UC-secure 2PAKE and introduced Trapdoor Distributed Smooth Projective
Hashing (TD-SPHF) as its building block. The proposed 2PAKE protocol uses a common reference string
and the SXDH assumption on bilinear groups and is efficient thanks to the simulatability of TD-SPHF.
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A Smooth Projective Hashing

In a nutshell, smoothness ensures that the hash value always looks random in G when computed on an element
not in the language, while pseudorandomness ensures that it looks random in G when computed on an element
in the language. Note again that we are only concerned with KV-SPHF that have word-independent keys and
offer adaptive smoothness (first proposed in [30]). The corresponding notion of adaptive smoothness with
word-independent keys is defined as follows. For any function f : G 7→ C \ Lpw the following distributions
are statistically ε-close:

{(kp, h) | kh
R← KGenH(Lpw); kp ← KGenP(kh, Lpw);h← Hash(kh, Lpw, f(kp))}

ε
= {(kp, h) | kh

R← KGenH(Lpw); kp ← KGenP(kh, Lpw);h ∈R G}

Gennaro and Lindell [23] introduced pseudorandomness of SPHFs to show that Hash and PHash are the only
way to compute the hash value even though the adversary knows some tuples (kp, C, Hash(kh, Lpw, C)) for
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C ∈ Lpw. An SPHF is pseudorandom if the hash values produced by Hash and PHash are indistinguishable
from random without the knowledge of the uniformly chosen hash key kh or a witness w, i.e. for all C ∈ Lpw

the following distributions are computationally ε-close:

{(kp, C, h) | kh
R← KGenH(Lpw); kp ← KGenP(kh, Lpw);h← Hash(kh, Lpw, C)}

ε
= {(kp, C, h) | kh

R← KGenH(Lpw); kp ← KGenP(kh, Lpw);h ∈R G}

The property of pseudorandomness from [30] is expected to hold even if hashing keys and ciphertexts are
re-used.

Definition 7 (Pseudorandomness). An SPHF Π offers pseudorandomness if for all PPT algorithms A
and polynomials l there exists a negligible function ε(·) such that

AdvPr
Π,A =

∣∣∣∣Pr[ExpPr
Π,A(λ) = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

ExpPr
Π,A(λ) : Choose b ∈R {0, 1}, call b′ ← AΩ

L
pk(·),Dec

L
π (·)(λ, kp1, . . . , kpl) with kpi ← KGenP(khi, Lpw, C) and

khi ← KGenH(Lpw) for all i ∈ 1, . . . , l. Return b = b′.

ΩLpk(`,pw) returns elements C ∈ Laux with C ← EncLpk(`,pw; r) using encryption algorithm L and label `. It
additionally returns Hash(khi, Lpw, C) if b = 0 or hi ∈R G if b = 1 for all i ∈ 1, . . . , l.

DecLπ (`, C) decrypts the ciphertext C with label ` if (`, C) was not obtained from ΩLpk.

A.1 SPHF on Cramer-Shoup Ciphertexts

Benhamouda et al. propose a new perfectly smooth SPHF for labelled Cramer-Shoup encryptions in [10].
The SPHF is defined as follows:

– KGenH(Lpw) return kh = (η1, η2, θ, µ, ν) ∈R Z1×5
q

– KGenP(kh, Lpw) returns kp = (kp1 = gη11 g
θ
2h

µcν , kp2 = gη21 d
ν)

– Hash(kh, Lpw, C) computes h = uη1+ξη21 uθ2(e/gpw1 )µvν

– PHash(kp, Lpw, C, r) computes h = (kp1kp
ξ
2)r

B Trapdoor Smooth Projective Hashing

Correctness of T-SPHFs extends correctness of SPHFs by the statement that for every valid ciphertext C,
generated by L, and honestly generated keys kh and kp, it holds that VerKp(kp, Lpw) = 1 and Hash(kh, Lpw, C) =
THash(kp, Lpw, C, τ

′). To capture soundness of T-SPHFs [10] introduces (t, ε)-soundness, complementing the
previous correctness extension.

Definition 8 ((t, ε)-soundness). Given crs, crs′ and τ , no adversary running in time at most t can
produce a projection key kp, a password pw, a word C, and valid witness r such that kp is valid, i.e.
VerKp(kp, Lpw) = 1, but THash(kp, Lpw, C, τ

′) 6= PHash(kp, Lpw, C, r) with probability at least ε(λ). Perfect
soundness states that the property holds for any t and any ε(λ) > 0.

As statistical smoothness is impossible for T-SPHF, [10] introduces the notion computational smoothness,
which is similar to the definition of pseudorandomness for SPHFs.

Definition 9 (Computational Smoothness [10]). An SPHF is (t, ε)-smooth if for all adversaries A
running in time at most t

Advsmooth−bΠ,A =
∣∣Pr[Expsmooth−1SPHF,A (λ) = 1]− Pr[Expsmooth−0SPHF,A (λ) = 1]

∣∣ ≤ ε(λ).
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Expsmooth−bSPHF,A (λ) : Generate (crs′, τ ′)
R← TSetup(crs). The adversary, given crs, crs′ and τ , is then allowed

to query OKGenP(·) and OHashb(·) once before returning a bit b′. Return b = b′.

On input pw the OKGenP oracle draws a new hash key kh for T-SPHF on Lpw, computes the according pro-
jection key kp using KGenP, and returns it to the adversary. The OHash oracle returns h ← Hash honestly
computed on input ciphertext C if b = 0 or C ∈ Lpw, and h ∈R G if b = 1.

B.1 T-SPHF on Cramer-Shoup Ciphertexts

Benhamouda et al. propose a T-SPHF for labelled CS ciphertexts in [10] under the SXDH assumption. The
T-SPHF is a straight-forward extension of the previously described SPHF in labelled CS ciphertexts. Let
(q,G1,G2,GT , e) denote a bilinear group and replace G from the previous SPHF with G1 and g1, g2 by
g1,1, g1,2, generators for G1. All other previous parameters are in G1 instead of G and g2 is generator of G2.
The additional algorithms for T-SPHF and changes to the hash functions are defined as follows.

– TSetup(crs) draws a random τ ′ ∈R Zq and sets crs′ = ζ = gτ
′

2 .
– KGenP(kh, Lpw) generates kp = (kp1 = gη11 g

θ
2h

µcν , kp2 = gη21 d
ν , kp3) with kp3 = (χ1,1, χ1,2, χ2, χ3, χ4) for

χ1,1 = ζη1 , χ1,2 = ζη2 , χ2 = ζθ, χ3 = ζµ, χ4 = ζν

– Hash(kh, Lpw, C) computes h′ = uη1+ξη21 uθ2(e/gpw1 )µvν as before and outputs h = e(h′, g2)

– PHash(kp, Lpw, C, r) computes h′ = (kp1kp
ξ
2)r as before and outputs h = e(h′, g2)

– VerKp(kp, Lpw) verifies that e(kp1, crs
′)

?
= e(g1,1, χ1,1) · e(g1,2, χ2) · e(h1, χ3) · e(c, χ4) and e(kp2, crs

′)
?
=

e(g1,1, χ1,2) · e(d, χ4)

– THash(kp, Lpw, C, τ
′) computes

[
e(u1, χ1,1χ

ξ
1,2) · e(u2, χ2) · e(e/gpw1,1, χ3) · e(v, χ4)

]1/τ ′

C Distributed Smooth Projective Hashing

The idea of D-SPHF security is to combine smoothness and pseudorandomness in one security experiment
where the attacker, with access to one server, tries to distinguish between real and random hash values.
Let {(Cj , Sk,1, Sl,2)}Cj∈C,Sk,1,Sl,2∈S denote all tuples (Cj , Sk,1, Sl,2) such that client Cj ∈ C knows pw and
server Sk,1, Sl,2 ∈ S each know according pw1 and pw2 respectively. We say C is registered with (S1, S2).
The additional indices j, k, l denote the instance of the respective participant. Parties without specified role
are denoted Pa and Pb.

Definition 10 (D-SPHF Security). A D-SPHF protocol Π is secure if for all PPT adversaries A there
exists a negligible function ε(·) such that :

AdvSPHFx

Π,A (λ) =

∣∣∣∣Pr[ExpSPHFx

Π,A (λ) = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

ExpSPHFx

Π,A (λ) : Choose b ∈R {0, 1}, call b′ ← ASetup(·),Send(·),Test(·)(λ,pw2,L, crs) and return b = b′.

– Setup(C, S1, S2) initialises new instances with (pw, S1, S2) for C registered with (S1, S2), i.e. (pw1, S1, C, S2)
for S1 and (pw2, S2, C, S1) for S2, and returns ((kp0, C0), (kp1, C1)) with C0 ← EncLpk(`,pw; r0), C1 ←
EncLpk(`,pw1; r1) and kpi ← Π.KGenP(khi, Lp̂w) for khi ← Π.KGenH(Lp̂w).

– Send(Pa, Pb,m) sends message m with alleged originator Pb to Pa and returns Pa’s resulting message m′

if any.
– Test(Pi,j) returns two hash values (h0, hx) if Pi,j is from C or plays the role of S1. If the global bit b is

0, the hash values are chosen uniformly at random, otherwise the hash values are computed according to
protocol specification Π.
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C.1 Cramer-Shoup D-SPHF

As before for SPHF and T-SPHF we give an instantiation of D-SPHF over the language of Cramer-Shoup
ciphertexts C. The ciphertexts are created as Ci = (u1,i, u2,i, ei, vi) ← EncCS

pk (`i,pwi; ri) for i = 0, 1, 2,
pw = pw0 and pw = pw1 + pw2, where `i consists of participating parties and the party’s projection key. We
define modified decryption as Dec′(C) = e0 · u−z1,0 and use the homomorphic property of u1 and e of the CS
ciphertext such that Dec′(C) = (e1 · e2) · (u1,1 · u1,2)−z. The Cramer-Shoup D-SPHF can now be described
as:

– KGenH(Lp̂w) returns kh = (η1, η2, θ, µ, ν) ∈R Z1×5
p

– KGenP(kh, Lp̂w) returns kp = (kp1 = gη11 g
θ
2h

µcν , kp2 = gη21 d
ν)

– Hashx(kh0, Lp̂w, C1, C2) computes

hx = (u1,1 · u1,2)η1,0+(ξ1+ξ2)η2,0(u2,1 · u2,2)θ0((e1 · e2)/gpw1 )µ0(v1 · v2)ν0

– PHashx(kp0, Lp̂w, C1, C2, r1, r2) computes

hx = kp
r1+r2
1,0

kp
ξ1r1+ξ2r2
2,0

– Hash0(kh1, kh2, Lp̂w, C0) computes

h0 = u
η1,1+η1,2+ξ0(η2,1+η2,2)
1,0 uθ1+θ22,0 (e0/g

pw
1 )µ1+µ2vν1+µ2

– PHash0(kp1, kp2, Lp̂w, C0, r0) computes h0 = (kp1,1kp1,2)r0(kp2,1kp2,2)r0ξ0

Distributed computation of D-SPHF is defined in the following PHashDx and HashD0 protocols. It uses ElGamal
encryption to secure communication between the two servers. Let C = (u, e) ← EncEG

pk (m; r) with u = gr

and e = hrgm denote an El-Gamal ciphertext. Note that we assume m ∈ Zq and G is a cyclic group of prime
order q with generator g such that gm ∈ G. The ElGamal public key is defined as pk = (q,G, g, h) with
h = gz such that dk = z denotes the decryption key. Decryption is given by gm = DecEG

dk (C) = e/uz. Let ×
denote element wise multiplication, e.g., C1 = (u1, e1), C2 = (u2, e2), C1 × C2 is defined as (u1u2, e1e2).

– PHashDx is executed between S1 and S2. S2 computes hx,2 = (kp0[1]·kpξ20,2)r2 and sends it to S1. Eventually,

S1 holds hx = kp
r1+r2
0,1

· kpξ1·r1+ξ2·r20,2 . Note that S1 always performs checks that kp0 ∈ G and G 3 hx2 6= 0.

– HashD0 is executed between S1 and S2 such that S1 eventually holds h0. Let Si for i ∈ {1, 2} denote the
participating party knowing (pwi, ski, khi = (η1,i, η2,i, θi, µi, νi), pk1, pk2, C0 = (u1,0, u2,0, e0, v0, ξ0)).
• S1 computes m0 ← EncEG

pk1
(g−µ1

1 ; r) and c′1 ← EncEG
pk1

(g
pw1
1 ; r′), and sends (m0, c

′
1) to S2.

• Receiving (m0, c
′
1) from S1, S2 computes

m1 ← (m0)pw2 × (c′1)−µ2 × EncEG
pk1

(g
−µ2·pw2
1 · uη1,2+ξ0η2,21,0 · uθ22,0 · e

µ2

0 · v
ν2
0 ; r′′)

and sends it to S1.
• Receiving m1, S1 computes the hash value

h0 = g
−µ·pw1
1 · DecEG

dk1
(m1) · uη1,1+ξ0η2,11,0 · uθ12,0 · e

µ1

0 · v
ν1
0 .

D UC Functionalities
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Functionality Fcrs

Fcrs is parametrised by a distribution D and proceeds as follows:

NewValue: Upon input (NV, sid) choose a value d ∈R D, send d back to the activating party and store
the value if this is the first invocation. In any other case return the value d to the activating party.

Fig. 2: Ideal Functionality Fcrs

Functionality FCA

Registration: Upon receiving the first message (Register, sid, v) from party P, send
(Registered, sid, v) to the adversary; upon receiving ok from the adversary, and if sid = P and
this is the first request from P, then record the pair (P, v).

Retrieve: Upon receiving a message (Retrieve, sid) from party P ′, send (Retrieve, sid,P ′) to the
adversary, and wait for an ok from the adversary. Then, if there is a recorded pair (sid, v) output
(Retrieve, sid, v) to P ′. Otherwise output (Retrieve, sid,⊥) to P ′.

Fig. 3: Ideal Functionality FCA

Functionality Finit

Finit, with fixed session identifier 0, runs in the universe with parties U and adversary S. When called
the first time, it sets Hist = ∅.

Init: Upon receiving (init, 0, 〈Pi,P,F〉) from Pi, where P ⊆ U , execute the following:
1. Send (init, 0, 〈Pi,P,F〉) to S.
2. Upon receiving back (setId, 0, 〈sid′, Pi,P,F〉) from S, do the following:

(a) If sid′ ∈ Hist, choose an arbitrary sid 6∈ Hist.
(b) If sid′ 6∈ Hist, set sid← sid′.
(c) Update Hist← Hist ∪ {sid}.
(d) Send (invoke, 0, 〈sid, Pi,P,F〉) to S.

3. Upon receiving a message (sendoutput, 0, 〈sid, Pi,P,F〉) from S:
(a) If Pj ∈ P and it has not yet been sent to the invoke message with 〈sid, Pi,P,F〉), send it

(invoke, 0, 〈sid, Pi,P,F〉).

Fig. 4: Ideal Functionality Finit
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Functionality FPAKE

The functionality FPAKE is parametrized by a security parameter λ. It interacts with an adversary SIM

and a set of parties via the following queries:

NewSession: Upon input (NS, sid, Pi, Pj ,pw, role) from Pi, check that Pj is legit and send
(NS, sid, Pi, Pj , role) to SIM. If this is the first NewSession query, or if this is the second NewSes-
sion query and there is a record (sid, Pj , Pi,pw′), then record (sid, Pi, Pj ,pw) and mark this record
fresh.

TestPwd: Upon input (TP, sid, Pi,pw′) from SIM, check that a fresh record (sid, Pi, Pj ,pw) exists,
then do: If pw = pw′, mark the record as compromised and reply to SIM with “correct guess”. If
pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

NewKey: Upon input (NK, sid, Pi, sk) from SIM, check that a record (sid, Pi, Pj ,pw) exists, |sk| = λ
and this is the first NewKey query for Pi, then:

– If the record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to Pi.
– If the record is fresh, and there is a record (sid, Pj , Pi,pw′) with pw′ = pw, and a key sk′ was

sent to Pj and (sid, Pj , Pi,pw) was fresh at the time, then output (sid, sk′) to Pi.
– In any other case, pick a new random key sk′ of length λ and send (sid, sk′) to Pi.

Either way, mark the record (sid, Pi, Pj ,pw) as completed.

Fig. 5: Ideal Functionality FPAKE

E F2PAKE Discussion

In this section we discuss some additional points of the F2PAKE functionality and investigate relations to
other 2PAKE security models and UC models in the password setting.

E.1 F2PAKE and the BPR 2PAKE Model

While other security models for 2PAKE protocols where proposed [37], the BPR-like security model from [29]
is the most comprehensible and (in its two-party version) established model. We therefore discuss relation
between the proposed 2PAKE UC-security using F2PAKE and the BPR-like security model from [29]. To
compare security of a 2PAKE protocol Π in a game-based and UC setting we have to ensure that it supports
session ids (necessary in the UC framework). We therefore assume that Π already uses UC compliant session
ids. Note that it is easy to transform any 2PAKE protocol into a 2PAKE protocol with such session ids.
Before looking into relation between the full game-based model for 2PAKE and F2PAKE we want to point
out that Π, securely realising F2PAKE, offers “forward secrecy”, i.e. even an adversary that knows the correct
password is not able to attack an execution of Π without actively taking part in the execution. With this
in mind it is easy to see that Π, securely realising F2PAKE, is secure in the BPR-like model from [29]. This
is because the attacker is either passive, which is covered by the previous observation, or is active and is
therefore able tests one password. Those password tests (TestPwd in F2PAKE and Send in the game based
model) give the attacker a success probability of q/|D|, with q the number of active sessions and |D| the
dictionary size, when considering a uniform distribution of passwords inside the dictionary D. Note that
while the attacker may have knowledge of a password share, this does not increase this probability. Security
on the model from [29] follows.

E.2 F2PAKE and FPAKE

While FPAKE and F2PAKE are very similar they contain some significant difference we want to point out
here. First, the key-exchange is performed between all three participants, but only C and, w.l.o.g., S1 agree
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on a common session key. The role is a technical necessity in FPAKE for correct execution. Since we have
explicit roles in F2PAKE this is not necessary here. Due to the asymmetry in F2PAKE (a client negotiates
with two servers) we assume that the client is always the invoking party. While this is the case in FPAKE

as well when considering a real world scenario, the roles might be different there such that any of the two
participating parties can start the protocol execution. The asymmetric setting in F2PAKE further restricts
TestPwd queries to the client since the servers hold high entropy password shares. While it is enough for the
attacker to corrupt one party in FPAKE to control the session key, in F2PAKE he has to either corrupt or
compromise the client, or corrupt both servers. As long as only one server is corrupted, the adversary has
no control over the session keys and the parties receive uniformly at random chosen session keys In F2PAKE

session ids are human memorisable, consisting of all three involved parties (C, S1, S2), and unique query
identifier is used to distinguish between different (possibly concurrent) protocol runs of one account (sid).
This is a rather technical difference to FPAKE that uses only session identifiers.

E.3 Corruptions

The two-server extension of the BPR 2PAKE model used in [29] does not consider corruptions at all. While
parties can be malicious in the model (static corruption), the attacker is not allowed to query a corrupt
oracle to retrieve passwords or internal state of participants. In our model the attacker is allowed to corrupt
parties before execution. This however implies security in the model from [29] even if the attacker is allowed
to corrupt clients to retrieve their passwords. This is because the environment can provide the BPR attacker
with the password. However, this does not increase his success probability. Dynamic corruptions in F2PAKE

on the other hand are much more intricate. While UC-secure two party PAKE protocols with dynamic
corruptions exist their approaches are not translatable to the 2PAKE setting. The challenge of dynamic
corruptions is that the simulation has to be correct even if the attacker corrupts one party after the protocol
execution has started. This is left open for future work.
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