
2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

1

SecureMed: Secure Medical Computation using
GPU-Accelerated Homomorphic Encryption Scheme

Alhassan Khedr, Member, IEEE, and Glenn Gulak, Senior Member, IEEE

Abstract—Sharing the medical records of individuals among
healthcare providers and researchers around the world can
accelerate advances in medical research. While the idea seems
increasingly practical due to cloud data services, maintaining
patient privacy is of paramount importance. Standard encryption
algorithms help protect sensitive data from outside attackers but
they cannot be used to compute on this sensitive data while
being encrypted. Homomorphic Encryption (HE) presents a very
useful tool that can compute on encrypted data without the need
to decrypt it. In this work, we describe an optimized NTRU-
based implementation of the GSW homomorphic encryption
scheme. Our results show a factor of 58× improvement in
CPU performance compared to other recent work on encrypted
medical data under the same security settings. Our system is
built to be easily portable to GPUs resulting in an additional
speedup of up to a factor of 104× (and 410×) to offer an overall
speedup of 6085× (and 24011×) using a single GPU (or four
GPUs), respectively.

Index Terms—Homomorphic Encryption, FHE, NTRU, Med-
ical Applications, Relational Operations, Implementation, GPU.

I. INTRODUCTION

THE privacy of sensitive personal information is an
increasingly important topic as a result of the increased

availability of cloud services. These privacy issues arise
due to the legitimate concern of a) having a security breach
on these cloud servers or b) the leakage of this sensitive
information due to an honest but curious individual at the
cloud service provider. Standard encryption schemes try to
address the first concern by devising encryption schemes that
are harder to break, yet they don’t solve the possible misuse
of this sensitive data by the cloud service providers.

Homomorphic encryption (HE) presents a tool that can
solve both types of privacy concerns. The clients are given
the possibility of encrypting their sensitive information before
sending it to the cloud. The cloud will then compute over their
encrypted data without the need for the decryption key. By
using HE, servers guarantee to the clients that their valuable
information is never in the clear. A fully homomorphic
encryption scheme (FHE) is an encryption scheme that allows
evaluation of arbitrary functions on encrypted data.

In the era of Internet of Things (IoT), homomorphic
encryption can be used to encrypt the data measured by

Alhassan Khedr is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON, Canada.
E-mail: alhassan@ece.utoronto.ca

Glenn Gulak is with the Department of Electrical and Computer Engineer-
ing, University of Toronto, Toronto, ON, Canada.
E-mail: gulak@ece.utoronto.ca

Key Authority
System

Patient Medical Personnel

Secure
Channel

Server

Cloud

Analyst

Fig. 1: High level block diagram for the medical data/key-distribution
system.

wearable and portable medical devices prior to uploading
them to the cloud. This can be very useful to help researchers
and clinicians to conduct research or diagnose using this
secure data. These devices can store public encryption keys
produced by a centralized entity, which is also responsible
for the distribution of secret keys to the hospitals through
secure channels. The challenge here is that these portable
devices have modest computing power compared to general
purpose processors. Fortunately, these devices only need
to encrypt the measurement data. Since performance of
the encryption function is not time latency critical, these
embedded processors can encrypt sensor data within seconds
instead of milliseconds and still offer acceptable performance
to real applications.

A proposed way to handle medical data measurements,
analysis, and key distribution system is demonstrated in
Figure 1. A central medical authority, such as the Ontario
Laboratories Information System (OLIS), will be responsible
for generating secret and public keys. Public keys will then
be distributed, using the wide-area network, among medical
laboratories and downloaded to portable and wearable medical
devices. The medical data generated by the medical personnel
in laboratories and by patients using their devices will then
be encrypted by the public key and uploaded to the cloud.
All patient medical data can be stored on the cloud servers
safely as the HE scheme is provably secure against attacks.
Analysts, administrators, or clinicians can run experiments on
the encrypted medical data without having any secret keys. In
order to finally decrypt the encrypted experiment results, the
researchers will need to gain access to the secret keys from
the key authority system using a secure channel. This secure

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

2

channel can be a virtual private network (VPN), a secure
physical flash drive, or any other secure way to gain access
to the secret keys.

The first FHE scheme was proposed by Craig Gentry
[1], [2]. Since then, we have seen rapid development in
the theory and implementation of homomorphic encryption
schemes. HE schemes can now be based on a variety of
cryptographic assumptions – approximate greatest common
divisors [3], [4], learning with errors (LWE) [5], [6], [7], [8],
Ring-LWE (RLWE) [9], [10], [11], [12] and NTRU [13],
[14], [15], [16], [17]. Simple computations such as matching
entries in a database and computing on the matched items
were impossible using standard encryption schemes until the
work done in SHIELD [12] where multiple classification
functions were implemented including searching in databases
and computing on the result using a homomorphic encryption
scheme.

The main contributions of this work is the introduction
of a NTRU based version of SHIELD [12] to reduce its
computational complexity by a factor of 4.15×. Our GPU
implementation of the HE scheme acheives a ciphertext (Ctxt)
multiplication run time of 0.838 milliseconds, and the CPU
implementation requires 87.8 milliseconds (See Table V for
the design environment). Our CPU implementation acheives a
speedup of 58× over work in [18]. Our GPU implementation
gives us a further 104× (and 410×) speedup with overall
speedup of 6085× (and 24011×) over [18] using a single
GPU (and four GPUs), respectively.

This paper is organized as follows. Section II presents
related work. In Section III we introduce the improved en-
cryption scheme. Some examples of secure medical applica-
tions are introduced in Section IV. Performance results are
introduced in Section VI. Finally we conclude in Section VII.

II. RELATED WORK

NTRU is a ring-based encryption scheme first proposed
in [13]. Previous constructions of ring-based FHE schemes
including NTRU are [14], [15], [5], [6], [11]. One of the
drawbacks of these schemes is the need to maintain a
so-called “modulus chain” which increases the size of the
prime number and consequently increases the ring dimension
for the same security level [19]. They also need to perform
expensive modulus and key switching operations. In [14],
[15], their homomorphic evaluations are on plaintexts mod
2 (binary arithmetic). Furthermore, the evaluation keys used
in the Ctxt multiplication are in the GByte range which
significantly limits their performance. The work in [20] is the
closest one to our work since they also combined the NTRU
scheme with GSW scheme concepts in [7]. Yet, in [20], they
still require the flatten operation in the GSW scheme which
leads to large memory usage and more computation time.
They are also able to decrypt only a single bit from one
polynomial and discard the remaining ` − 1 polynomials.
Whereas in our implementation, we extract a single bit of

the message out of each polynomial which helps us retrieve
` bits messages. Moreover, in [20], since they use the flatten
operation and their matrices are broken down into bits, they
execute matrix multiplication using circular convolution rather
than using the NTT transform. This is reasonable in the case
of bit-wise multiplication, but when they tried to reduce the
computation and storage costs by grouping bits together, the
circular convolution became much harder without the NTT
transform.

Based on [5], Halevi and Shoup designed a homomorphic
encryption library [21], [11], but due to the need of additional
large data structures and functions, the performance of their
library was diminished. In [10] they implemented a variant of
the RLWE FHE scheme. Our results also show considerable
speedups over their implementation. Another homomorphic
library was developed by Rohloff, Cousins, and Peikert [22].
In their paper they implement primary building blocks in
hardware to accelerate their system. Presently, there are no
performance results available with which to compare our
library. Our work is a NTRU variant of SHIELD [12] which
was based on RLWE. This resulted in a 4× reduction in the
ciphertext size and 2× speedup in performance compared
to [12]. Other researchers have proposed implementations
but they were either an incomplete implementations of an
HE scheme capable of only performing one multiplication
operation [23], or based on other cryptographic assumptions
such as approximate greatest common divisor, ideal lattices,
etc.

Some applications analyzed in this paper were primarily
inspired from [24], [18], [25]. The work in [18] exhibits
slow running time. The work in [24] on the other hand has
considerably faster running times but at the expense of having
an incomplete implementation of the HE scheme that needs
to provide the client with information about the depth of the
computation made in order to correctly decrypt the result.
The authors in [24] mentioned a slowdown by a factor of
50× when using the complete HE implementation. This may
raise security concerns from the server side due to the leakage
of some of information about the applied function. In [26]
Fujitsu laboratories used simple polynomial multiplication to
compute correlation between different biometric samples but
their performance is not representative since their function
F = C1 × C2 needs only a single ciphertext multiplication.
For a simple and general overview of homomorphic encryption
concepts the reader is encouraged to read [27], [28].

III. THE ENCRYPTION SYSTEM

Notation: For an odd prime number q we identify the ring
Z/qZ (or Zq) with the interval (−q/2, q/2) ∩ Z. The nota-
tion [x]q denotes reducing x modulo q. Our implementation
uses polynomial rings defined by the cyclotomic polynomials
R = Z[X]/Φm(X), where Φm(X) = xn+1 is the irreducible
mth cyclotomic polynomial, in which n is a power of 2 and
m = 2n. We let Rq = R/qR. Any type of multiplication
including matrix and polynomial multiplication is denoted by

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

3

the multiplication operator ’·’. Rounding up to the nearest
integer is denoted by dae. Matrices of rings are defined as
AM×N , where Aij ∈ Rq and M,N are the matrix dimensions.
I`×` represents the identity matrix of rings.

A. The Encryption Scheme

The parameters of the system are n, the degree of the
number field; q, the modulus; σk and σc, the standard
deviation of the discrete Gaussian error distribution in the
key space and ciphertext space respectively; ` ∆

= dlog qe that
governs the number of ring elements in a ciphertext. The
setting of these parameters depends on the security level
λ (e.g., λ = 80 or 128 bits) as well as the complexity of
functions we expect to evaluate on ciphertexts.

Bit Decompose Function “BD()”: The bit decompose
function BD(integer) takes an `-bit input integer, then outputs
a row vector with size ` containing the bit decomposition
of this integer. Similarly, BD(polynomial) takes an input
polynomial of size n, where each coefficient is an `-bit
integer, then outputs an `-sized row vector of polynomials
(each of size n) containing the bit decomposition of each
coefficient of the input polynomial, yielding a matrix of size
l × n. Finally, BD(Matrix of polynomials) takes an input
matrix of polynomials of size x × y (each polynomial is of
size n with integer coefficients), then outputs a matrix of
polynomials expanded by a factor ` in the column dimension,
yielding a matrix of size x × y`, where each consecutive `
elements along the row contain the bit representation of each
coefficient of each of the input polynomials. For example,
the bit decompose of the input polynomial matrix Bx×y×n
is BD(Bx×y×n) = βx×y`×n. The reader should note that
despite the fact that the polynomial coefficients of matrix
βx×y`×n are single bit values, the storage requirement of
matrix β in CPU or GPU memory is not equal to x× y`× n
bits. This is due to the fact that the smallest addressable
unit of memory is a byte (i.e., Byte Addressable). Hence,
β requires x × y` × n bytes of storage. This results in the
further observation that the storage requirement of βx×y`×n
is 8× the storage requirement of Bx×y×n.

Bit Decompose Inverse Function “BDI()”: As the name
reveals, the BDI() function is the inverse of BD(). The
BDI() function groups consecutive ` coefficients along a
row (the coefficients don’t need to be binary), and outputs
the integer corresponding to those ` bits. Mathematically,
the BDI() function can be defined as multiplying the
expanded matrix of polynomials βx×y` from the right by
the matrix αy`×y defined in (1) (polynomial dimension n
will be omitted from this point forward for clarity). Hence
Bx×y = BDI(βx×y`) = βx×y` · αy`×y.

αy`×y =

1 0 0 · · · 0
2 0 0 · · · 0
...

...
...

. . .
...

2`−1 0 0 · · · 0
0 1 0 · · · 0
0 2 0 · · · 0
...

...
...

. . .
...

0 2`−1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 2
...

...
...

. . .
...

0 0 0 · · · 2`−1

(1)

In this work, we present a NTRU variant of the encryption
scheme presented in [12] in order to reduce computational
complexity and to speedup our operations, as will be detailed
below. Our encryption system works as follows.

• Keygen(1λ): Choose two polynomials f1×1, g1×1 ←
DZn,σk

such that (a) f is invertible in the ring Rq; and
(b) f ≡ 1 (mod 2). This is done by simply sampling
the polynomial f from the distribution DZn,σk

until it
satisfies conditions (a) and (b).

The public key pk and the secret key sk can be computed
from (2).

pk = h1×1 = g1×1 · f−1
1×1 ∈ Rq sk = f1×1 ∈ Rq (2)

• Enc(pk,m): The message space of our encryption scheme
is Rq . Encrypt the plain text polynomial µ ∈ Rq by
calculating

C`×1 = µ · BDI(I`×`) + S`×1 · h1×1 + E`×1 (3)

where S`×1, E`×1 ← DR`×1
q ,σc

are sampled from a
discrete Gaussian distribution with standard deviation σc.

• Dec(sk, C): Given the ciphertext C, the plaintext
µ ∈ Rq is restored by multiplying C by the secret-
key f as follows :

C`×1 · f1×1 = (µ · BDI(I`×`)
+ S`×1 · h1×1 + E`×1) · f1×1

= µ · BDI(I`×`) · f1×1

+ S`×1 · h1×1 · f1×1 + E`×1 · f1×1

= µ · BDI(I`×`) · f1×1

+ S`×1 · g1×1 + E`×1 · f1×1

= µ · BDI(I`×`) · f1×1 + error`×1.
(4)

The decrypted Ctxt in (4) can be reformulated as in (5)
and the bit representation of each coefficient µfi of the
µf polynomial can be represented as in (6).

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

4

C`×1 · f1×1 = µf ·

1
2
...

2`−1

+ error`×1

=

µf
2µf

...
2`−1µf

+ error`×1

(5)

µfi =
[
(µfi)`−1 (µfi)`−2 · · · (µfi)2 (µfi)1 (µfi)0

]
(6)

The result in (5) consists of an `×1 vector of polynomials
which are in the form µf, 2µf, · · · , 2`−1µf in addition
to the error vector. Ignoring the modular reduction effect
for simplicity, which would effect only the lower bits, the
shifted versions of µf can be visualized as in (7).

µf
2µf

...
2`−2µf
2`−1µf

 =

(µf)`−1 · · · (µf)1 (µf)0

(µf)`−2 · · · (µf)0 0
...

...
. . .

...
(µf)1 (µf)0 · · · 0
(µf)0 0 · · · 0

 (7)

Note that the left most column of the result in (7) are the
individual bits of the µf polynomial. This is true for each
coefficient “i” in the polynomial µf . This way we can
successfully construct back µf , assuming that the error
is less than q/2, which can then be multiplied by f−1 to
recover µ.

Remark: In addition to the ability to recover the message
polynomial µ, the ` ring elements in the ciphertext facilitate
and manage the noise growth in homomorphic operations (in
particular, homomorphic multiplication) as we will describe
shortly.

1) Homomorphic Operations: For input ciphertexts C`×1

and D`×1 ∈ R`×1
q encrypting µ1 and µ2 respectively, homo-

morphic operations are defined as follows.
• ADD(C,D): To add the two ciphertexts C`×1 and D`×1,

simply output C`×1 + D`×1, which is an entry-wise
addition.

• MULT(C,D): To multiply the two ciphertexts C`×1 and
D`×1, output BD(C`×1) ·D`×1.

Correctness of homomorphic addition is immediate,
however correctness is not that obvious for homomorphic
multiplication. It is clear that the multiplication algorithm is
asymmetric in the input ciphertexts C and D. That is, we treat
the components of D as a whole, whereas the components of
C are broken up into their “bit-wise decompositions”. This
is a “feature” that is inherited from the work of BV [8]. It is
shown below that this multiplication method is correct and
gives a slow noise-growth rate.

The correctness of the multiplication operation is evident
from the decryption operation in (8). Matrix dimensions are
removed for clarity.

BD(C) ·D · f = BD(C) · (µ2 · BDI(I) + S2 · h+ E2) · f
= BD(C) · (µ2 · BDI(I) · f + S2 · g + E2 · f)

= µ2 · C · f + BD(C) · (S2 · g + E2 · f)

= µ2 · (µ1 · BDI(I) · f + S1 · g + E1 · f)

+ BD(C) · (S2 · g + E2 · f)

= µ2 · µ1 · BDI(I) · f + µ2 · (S1 · g + E1 · f)

+ BD(C) · (S2 · g + E2 · f)

= µ2 · µ1 · BDI(I) · f + µ2 · error1

+ BD(C) · error2

= µ2 · µ1 · BDI(I) · f + error.
(8)

Note that the last line in (8) is the encryption of µ = µ2 ·µ1 ·f .
Note also that BD(C`×1) · BDI(I`×`) = I`×` · C`×1 = C.

Noise Analysis: Correct decryption depends crucially on the
ciphertext noise being bounded. Thus, it is important to
understand how homomorphic operations increase ciphertext
noise. Let C be a fresh ciphertext. We make the following
observations, after [8].

• Homomorphic addition of v ciphertexts increases the
noise by a factor of v, in the worst case. In practice,
since the coefficients of the error polynomials follow a
Gaussian distribution, the factor is closer to O(

√
v).

• Homomorphic multiplication is significantly more inter-
esting. Multiplication of two fresh ciphertexts Z1 =
C1 × C2 where C1 = Enc(µ1) and C2 = Enc(µ2), with
the messages µi bounded by κ and error bounded by B,
increases the error (E2) to E2 = O(B ·‖κ‖1 +B ·n log q)
in the worst case, and E2 = O(B ·‖κ‖1 +B ·

√
n log q) in

practice. Here, ‖µ‖1 denotes the `1 norm of the message
polynomial µ. Multiplying by another fresh Ctxt Z2 =
Z1×C3 increases the error to E3 = E2 ·‖κ‖1+B ·n log q.
Substituting with E2

E3 = (B · ‖κ‖1 +B · n log q) · ‖κ‖1 +B · n log q

= B · ‖κ‖21 +B · ‖κ‖1 · n log q +B · n log q

= B · (‖κ‖21 + (‖κ‖1 + 1) · n log q)

(9)

Following this analysis, multiplying L sequential Ctxts
will increase the error to

EL = B · (‖κ‖L−1
1 + (‖κ‖L−2

1 + ‖κ‖L−3
1 + · · ·+ 1) · n log q)

= B · (‖κ‖L−1
1 +

1− ‖κ‖L−1
1

1− ‖κ‖1
· n log q)

(10)

How to Set Parameters: We base the security of our system
relying on the analysis in [17], [19], and [29]. Let f be the
function that we are evaluating that computes the multiplica-
tion of v ciphertexts. Let errorf (B,n, q) denote how much the
error grows when evaluating a function f on ciphertexts in Rq

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

5

with an initial error of magnitude B. For correct decryption,
we need

errorf (B,n, q) < q/2 (11)

Since error grows slower in our scheme relative to other FHE
schemes [18], [24], [25], and since there is no need for a
chain of moduli to control the noise growth, q can be set to be
correspondingly smaller for the same security level. Following
the analysis of Lindner and Peikert [19], for a security level
of λ bits, we need

n > log(q/σ)(λ+ 110)/7.2 (12)

Since our log q is smaller relative to [18], [24], [25], we can
set our n to be smaller, for the same security level λ. In
turn, since we now have a smaller n, our new errorf (B,n, q)
is smaller, leading to an even smaller q, and so on. The
optimal parameters are obtained by solving both the above
inequalities together.

We are aware that the analysis done in [19] was made by
using the older BKZ not the new, more efficient, BKZ 2.0
algorithm [30]. This is because Lindner-Peikert equations
result in more conservative parameters than the ones from
BKZ 2.0, as reported in [31], [32].

To protect our NTRU scheme against Subfield Lattice At-
tacks [29], the “perfect immunity”, as described by the authors,
can be achieved when

√
2 · σ2

k · ǹ >
√
ǹq/πe (13)

where ǹ = n/2. Fixing q and ǹ, the parameter σk should
satisfy (14).

σk >
4

√
q

2ǹπe
(14)

which results in the condition that σk should be larger than
or equal 23. The vulnerability factor1 (15) is a ratio which
represents the extent to which this NTRU scheme is vulnerable
to subfield lattice attacks. The scheme is immune when F < 1.

F =

√
ǹq/πe√
2σ2

kǹ
(15)

We set σk = 25 to achieve vulnerability factor F = 0.79.
Table I summarizes our final parameter selection.

Our encryption scheme is also immune against the recent
attack on NTRU in [33]. Using the data in [33] (Table 2, Fig-
ure 1), which use polynomials f and g sampled from [−1, 0, 1],
to extrapolate a generalized equation for the minimum log(q)
below which the algorithm in [33] fails2, results in (16).

min(log(q)) = 1.0127e0.3867 log(n) (16)

1Equation (13) only indicates sufficiency to achieve perfect immunity, but
it does not indicate to what extent the encryption scheme is vulnerable against
subfield lattice attacks. This is represented by the vulnerability factor F
in (15).

2We use the points in Table 2 / Figure 1 in [33] with log(r) = 1 and 2 to
get the worst case min(log(q)).

Table I: Parameter Selection and Keys/Ctxt Sizes.

Parameter NTRU (This work)
λ 173
n 1024
` 31
σk 25
σc 10

SK size n× ` = 3.968 KBytes
PK size n× ` = 3.968 KBytes
Ctxt size `× n× ` = 123.008 KBytes

Substituting log(n) = 10 in (16) results in min(log(q)) =
48 bits which offers a safe margin from the log(q) = 31 bits
used in this work. In addition, we sample the polynomials f
and g from a Gaussian distribution with standard deviation
σk = 25, not from [−1, 0, 1]. This improves our security level
since it is directly proportional to σ, as can be deduced from
(12) and (15).

IV. CANDIDATE APPLICATIONS

We chose to outline some candidate applications, first
outlined in [24], [18], [25], in order to be able to compare
the performance of our method.

A. Relational Operations

Originally, homomorphic addition and multiplication were
the only available operations that can be applied on encrypted
data. Afterwards, [12], [25] implemented a homomorphic
equality operation through comparing individual bits of the
encrypted data. Homomorphic relational operations > and
< can enable new applications. The idea was originally
presented in [34] where they introduced the idea of conditional
gates. Later in [25] they applied this idea to homomorphic
encryption. The relational operations a > b results in one bit
only, which is equal to 1 if a > b, and 0, otherwise. Individual
bits of each input a and b are encrypted and denote them as
ai and bi, respectively. Assume we have k-bit numbers, we
start with the least significant bit and the output is given by
zk, where

z0 = 0 zi+1 = (1− (ai − bi)2)zi + ai(1− bi). (17)

if any of the two inputs were not encrypted, the complexity of
(17) can be greatly reduced. For example, if b is not encrypted,
the resulting equations will be

z0 = 0, zi+1 =

{
(1− ai)zi + ai if bi = 0

aizi if bi = 1
(18)

Blood Pressure Test: As a proof of concept of the benefits
of the homomorphic relational operations, a secure blood
pressure application was built. The application simply accepts
the encrypted systolic and diastolic pressures and returns the
blood pressure classification according to Table II.

To implement this blood pressure example, we compare
the input blood pressure to multiple ranges to decide the

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

6

Table II: Blood Pressure Classification

Category Systolic mm Hg Diastolic mm Hg
Hypotension < 90 < 60

Desired 90− 119 60− 79
Prehypertension 120− 139 80− 89

Stage 1 hypertension 140–159 90–99
Stage 2 hypertension 160–179 100–109

Hypertensive emergency ≥ 180 ≥ 110

Function 1: Secure Blood Pressure Classification
Input: Encrypted Blood Pressure Sys Enc, Dia Enc
Output: Blood Pressure Classification

Sys Ref = [90, 120, 140, 160, 180]
Dia Ref = [60, 80, 90, 100, 110]
For each number “i” in the reference lists {

Res Sys += Check Greater(Sys Enc, Sys Ref[i]);
Res Dia += Check Greater(Dia Enc, Dia Ref[i]);

}
Return Res Sys and Res Dia

blood pressure classification. This can be simply done using
Function 1. The Res Sys and Res Dia parameters in Function
1 will each contain an encrypted number ranging from 0 to
5 indicating the classification of the input encrypted blood
pressure measurements compared to the blood pressure range
in the systolic Sys Ref and diastolic Dia Ref reference lists,
respectively.

It is worth mentioning that the relational operation
applications are numerous. The blood pressure example is
just an illustrative example of its usefulness and power.
For example, calculating the CHADS2 Score for Atrial
Fibrillation Stroke Risk is straightforward [35] in a similar
manner.

Framingham Coronary Heart Disease Risk Score (FCRS):
The FCRS is an algorithm used to estimate the 10-year
cardiovascular risk of a person. For more information about
this algorithm, the reader is referred to [36], [37]. The
algorithm is based on several factors, including sex, age,
cigarette smoking, total cholesterol, high-density lipoprotein
(HDL) cholesterol, and systolic blood pressure. Each variable
is compared against a range of numbers and a score is
assigned for each range and added to the overall Framingham
score. For example, if a man’s age was ≥50 years, 6 points
are added to the total score.

To implement this algorithm, the relational operations
described in Section IV-A are not sufficient because it gives
a “1” if the input is larger than a certain number and “0”
otherwise. If we have an input “b” compared against “a”
as a lower bound and “c” as an upper bound, we need to
implement a < b < c function which gives only a “1” if “b”
is within this range and “0” otherwise.

The straight-forward way to implement a < b < c, is to
implement it in two steps, namely a < b and then b < c

and multiply the results. The only downside to this approach
is that in our encryption scheme, in fact all GSW derived
schemes in general, the homomorphic multiplication is
asymmetric preventing the possibility of multiplying two
non-fresh Ctxts. We mean by non-fresh Ctxts the Ctxts that
contain results of Ctxt multiplications. In order to overcome
this challenge, we reformulated the equations for a < b < c
such that they always multiply fresh Ctxts by an accumulator.

“a < b < c” Reformulated: As mentioned, to implement
such a function we could multiply the results of individual
relational operations. We used this idea to re-format the
equations needed to implement this function. For a k-bit input
“b” with encrypted bits [b0, b1, · · · , bk−1] compared against
“a” and “c” (encrypted or unencrypted) we can implement
the function a < b < c as follows: First we define for bit “0”

x0 = b0(1− a0) y0 = c0(1− b0) z0 = 0. (19)

and then for each bit “i”

xi+1 =(1− (bi − ai)2)xi + bi(1− ai)
yi+1 =(1− (ci − bi)2)yi + ci(1− bi)
zi+1 =(1− (bi − ai)2)(1− (ci − bi)2)zi

+ (1− (bi − ai)2)ci(1− bi)xi
+ (1− (ci − bi)2)bi(1− ai)yi (20)

where xi, yi, zi are accumulators, bi is encrypted bit i of
input b, and ai, ci are the bits of the lower and upper bounds,
respectively. zk will contain the result of the relational
operation. In the case that ai and ci are plaintexts, equations
(20) can be further simplified as in (18).

It is worth mentioning that the number of Ctxt multiplica-
tions needed for this circuit, in the case of plaintext a and
c, are 8 multiplications per bit, compared to only 2 Ctxts
multiplications per bit for other HE schemes that supports
multiplying two non-fresh Ctxts.

B. Encrypted Genomic Data

In [24] the authors described statistical algorithms used
in genomic association studies. In this paper, we briefly
summarize some of their algorithms namely the Pearson
Goodness-of-Fit test and the Cochran-Armitage test for Trend
(CATT). For more information about equation derivations we
refer the reader to [24].

In order to implement the algorithms presented in [24],
genotypes and phenotypes are encoded and encrypted as
follows:

Genotype Encoding: As in [24], a table containing genotype
information is constructed in which each row corresponds
to genotype information about a single person. For bi-allelic
genes, each person’s gene is encoded using three ciphertexts
cAA, cAa, caa. These ciphertexts will encrypt a “1” only in the
case that the equality statement in (21) is satisfied, otherwise

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

7

they encrypt “0”. For the case that the person’s genotype at
the specified locus is not known, all Ctxts will encrypt “0”.

cAA = Enc(gene == AA)

cAa = Enc(gene == Aa)

caa = Enc(gene == aa)

(21)

Genotype/Phenotype Correlation Encoding: We modified
the phenotype encoding compared to [24] in order to reduce
pre-computation time and to have less noise in the final
encrypted result. This will allow us to further compute on
the resulting ciphertext if needed. We generate a correlation
matrix between genotypes {AA, Aa, aa} and phenotypes
{affected, unaffected} to generate a 3 × 2 correlation matrix
with Ctxts encrypting a “1” at a single location corresponding
to this person’s genotype/phenotype condition, “0” otherwise,
as shown in Table III. If the genotype or phenotype of this
person is unknown, then all Ctxts will be encrypting a “0”.

Table III: Genotype/Phenotype Correlation Matrix

AA Aa aa

Unaffected z00 z01 z02
Affected z10 z11 z12

Pearson Goodness-of-Fit Test: This test is used to check if
a gene is in Hardy-Weinberg Equilibrium (HWE). The HWE
is responsible for testing if the gene allele frequencies are
independent. Assume A and a are two alleles in a given gene,
and that NAA, NAa, and Naa are the corresponding number
of genotypes AA, Aa, and aa, respectively, as in (23). Let
N = NAA + NAa + Naa be the total number of genotypes.
Since homomorphic division is expensive to perform, in [24]
they simplified the computations needed and computed the
following parameters homomorphically

α = (4NAANaa −N2
Aa)2 β1 = 2(2NAA +NAa)2

β2 = (2NAA +NAa)(2Naa +NAa) β3 = 2(2Naa +NAa)2

(22)

where Nij can be computed as

NAA =
∑
i

c
(i)
AA NAa =

∑
i

c
(i)
Aa Naa =

∑
i

c(i)aa (23)

these parameters are then sent to the client to compute the
final deviation test statistic

X2 =
α

2N

(
1

β1
+

1

β2
+

1

β3

)
(24)

Cochran-Armitage Test for Trend (CATT): This study is
used to determine if an allel is associated to a disease or not.
The test can be computed as

X2 =
α

β
(25)

where

α = N

(2∑
i=0

wi(N0iR1 −N1iR0)

)2

(26)

β = R0R1

(2∑
i=0

w2
iCi(N − Ci)− 2w1w2C1C2

)
(27)

Nxy =
∑
i

z(i)
xy , where x ∈ {0, 1}, y ∈ {0, 1, 2} (28)

where wi are predetermined weights ∈ {0, 1, 2} as described
in [24], Nij represents the number of individuals who are
affected/unaffected with a certain disease and have genotype
ij as in (28). The parameters Nij , Ri, Ci are described in
Table IV.

Table IV: Affected/Unaffected Genes Statistics

AA Aa aa Sum
Unaffected N00 N01 N02 R0

Affected N10 N11 N12 R1

Sum C0 C1 C2 N

C. Predictive Analysis

Predictive equations can be used to check for different
diseases. In order to compute the predictive equation, pa-
tients’ information must be used. To protect such informa-
tion, homomorphic encryption can be used to encrypt these
data and privately compute the regression equations [18]. To
demonstrate the logistic regression analysis, in [18] they used
a model that predicts the likelihood of having a heart attack
in an unspecified period. The predictive model is given by the
following logistic regression function

P (x) =
ex

ex − 1
(29)

where x is represented as

x =0.072 · a+ 0.013 · sys− 0.029 · dia+ 0.008 · chol
− 0.053 · ht+ 0.021 · wt (30)

where a is the age, sys is the systolic blood pressure, dia is
the diastolic blood pressure, chol is the cholesterol level, ht
is the height, wt is the weight.

To implement the exponential expression in (29), a Taylor
series can be used up to an acceptable order to result in a
sufficient accuracy. In [18] they represented (29) up to degree
7

P (x) =
ex

ex − 1
=

1

2
+

1

4
x− 1

48
x3+

1

480
x5− 17

80640
x7+O(x9)

(31)
Since homomorphic encryption relies on integer arithmetic,

(30) and (31) can be normalized with appropriate accuracy to
the following

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

8

Table V: Design Environment.

Item Specification
CPU Intel Core-i7 5930K

of CPU Cores 4
of Threads 8

CPU Frequency 3.5 GHz
Cache Size 15 MB

System Memory 32 GB DDR4
Operating System Windows 8.1 64-bits
Programming IDE Visual Studio 2012 Ultimate edition

GPU NVIDIA GeForce GTX980
Maxwell Version GM204

of CUDA Cores 2048
GPU Core Frequency 1126 MHz

GPU Memory 4 GB
GPU L2 Cache 2 MB

z = 72 ·a+13 ·sys−29 ·dia+8 ·chol−53 ·ht+21 ·wt (32)

F (z) = 40320 + 20160z − 1680z3 + 168z5 − 17z7 (33)

Inputs to (32) and (33) are represented as integer numbers
and encoded in binary format in adjacent polynomial slots.
When these binary polynomials are multiplied together, they
result in a correct output as was described in [18]. Multiplica-
tion by constants in (32) were implemented through sequential
additions. To compute the correct output, the result of (32) is
sent back to the client to be re-encrypted and applied to (33)
to compute the final result. Again, for more details, refer to
[18].

V. SECURITY AGAINST ATTACKS

Our homomorphic encryption scheme and algorithms, and
indeed all known FHE schemes, are proven secure in the
IND-CPA sense (i.e., under a chosen plaintext attack). This
is the standard notion of security for FHE schemes as in [1],
[2], [6]. The algorithms in Section IV are secure against
external attackers. They are also secure against an honest but
curious server that wants to learn the underlying encrypted
data without trying to actively change it. It is trivial that any
homomorphic encryption scheme can be broken by CCA2
(i.e., if the adversary can make decryption queries after the
challenge). It can also be broken by CCA1 attacks [38] (i.e.,
if the adversary can make decryption queries, but only before
the challenge). The correctness of any FHE algorithm relies
on the honesty of the server that it will execute the exact
algorithm.

VI. PERFORMANCE RESULTS

Design Environment: A summary of the specifications of
the system used to implement our work for the purpose of
benchmarking is found in Table V.

Table VI summarizes the sets of parameters used for our
library compared to [12], [24], [18]. We mean by the Effective

Security Level that we substitute the reported parameters
of each encryption scheme in Equation (12) and get the
resulting λ. The following is a further explanation of why
our parameters are smaller than the others despite the fact
that we all derived our parameters from [19]. Our work and
SHIELD [12] have the same n and log q because they are
both based on [7]. The difference in the Ctxt and key sizes
are due to the translation from the RLWE to the NTRU
schemes. On the other hand, the work in [18] and [24] are
both based on [31]. In [31], log q increases with the circuit
depth as well as with the number of least significant bits
reserved for the plaintext log t (the condition for correctness
is q > 2 · t · error). In our scheme, log q increases only with
the circuit depth, as we encode our plaintext in the most
significant bit of each of the log q polynomials (the condition
for correctness is q > 2 · error). Also since we use the
asymmetric property of the Ctxt multiplication in our favor,
our noise growth, as well as our parameters, are smaller for
the same circuit depth. We would like to point out that in
[24], they did not use the 512MB evaluation key as in [18] to
speedup their ctxt operations. This came at the expense that
they generate a different secret decryption key for different
circuits with different circuit depth. Also, the large log q used
in [18], [24] along with the very small distribution used in
the key generation, χkey = {−1, 0, 1}, make these schemes
very vulnerable to the subfield lattice attacks in [29].

Table VII summarizes the performance results of the
homomorphic operations for our library compared to the
[12], [24], [18]. It can be seen from this table that we have
a 58× speedup for the multiplication operation of our CPU
implementation compared to work in [18]. By additionally
exploiting the parallelizable properties that our HE library
has, we get another 104× speedup by distributing the HE
computations on the GPU cores. This resulted in an overall
6085× speedup for the multiplication operation compared to
work in [18] and a 286× compared to [24].

Scalability: After exploring the parallelism in our system, we
further explored the ability for its scalability across multiple
GPU instances. Experiments were made using four GPUs
cards connected to the same CPU to measure the loss in
performance due to cross GPU communication. By partition-
ing large problems into small ones, we managed to schedule
the work among all four GPUs to get a speedup of 3.946×,
which indicates that we managed to hide almost all the
communication overhead.

A. Candidate Applications Performance
The performance results of the Pearson Goodness-of-fit test

and the CAAT test described in Section IV-B, the predictive
analysis described in Section IV-C, and the relational opera-
tions and blood pressure application described in Section IV-A
are summarized in Table VIII. We would like to point out that
the reported results for the work in [25] corresponds to the
ring Z14, this is because in our blood pressure example we
need to add more than two numbers to get the final correct
result.

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

9

Table VI: Comparison between the parameters in this work and in [12], [18], [24].

Parameter This Work SHIELD [12] [18] [24]

Base Scheme NTRU RLWE NTRU NTRU
Polynomial Dimension “n” 1024 1024 16384 8192
Modulus Bit Width “log q” 31 31 512 384

Plaintext Modulus 230 230 240 2n+1

Key Standard Deviation “σkey” 25 10 1 1
Effective Security Level “λ” (12) 173 157 120 44

Vulnerability Factor “F” (15) 0.79 N/A 3× 1074 2.3× 1055

Ctxt Size n · log2 q = 123KB 4 · n · log2 q = 492KB n · log q = 1024KB n · log q = 384KB
Key Size n · log q = 3.9KB 2 · n · log q = 7.9KB n · log q = 1024KB n · log q = 384KB

Evaluation Key N/A N/A n · log2 q = 512MB Required but not used
Need to Disclose Circuit Depth? No No No Yes

Table VII: Performance comparison between this work and the work in [12], [18], [24]. The tuple (n, log q) is written below each scheme.

Operation

This Work
(1024, 31)

(CPU)
(msec)

This Work
(1024, 31)

(GPU)
(msec)

SHIELD [12]
(1024, 31)

(GPU)
(msec)

GPU
Speedup

over
SHIELD

Work in [18]
(16384, 512)

(CPU)
(sec)

GPU
Speedup

over
[18]

Work in [24]
(8192, 384)

(CPU)
(sec)

GPU
Speedup

over
[24]

Encrypt 23 0.16 23 143× 0.58 3625× 0.78 4875×
Decrypt 5 1 5 5× 0.55 550× 0.74 740×

Add 0.25 0.07 0.2 2.85× 0.001 14.29× 0.003 42.86×
Multiply 87.8 0.838 3.477 4.15× 5.1 6085.92× 0.24 286.4×

Table VIII: Candidate applications performance in milliseconds. The parameter k in the relational operation application represents the
number of bits used to represent the numbers being compared. The tuple (n, log q) is written below each scheme.

Application This Work
(1024, 31)

Work in [24]
(8192, 384)

Speedup
over [24]

Work in [18]
(16384, 512)

Speedup
over [18] Work in [25] Speedup

over [25]
Pearson Goodness-of-fit Test 8.452 1360 160.9× NA NA NA NA

CAAT 22.28 3630 162.9× NA NA NA NA

Predictive Analysis (32) 0.77 NA NA 196 254.5× NA NA

Predictive Analysis (33) 13.69 NA NA 80, 000 5834.7× NA NA

Relational Operation t1 = 2.514× k NA NA NA NA t2 = 30.75× k 12.2×
Blood Pressure 6× t1 NA NA NA NA 6× t2 12.2×

VII. CONCLUSION

We formulated, optimized, and implemented an NTRU-
based variant of the HE scheme of [12], [7], [8] which achieves
much slower growth of noise, and thus much better parameters
than previous HE schemes. Compared to the work in [18], our
GPU implementation (GM204 Maxwell architecture) acheives
a speedup of 6085× in Ctxt multiplication, which represents
the bottleneck for most HE schemes. Representative med-
ical applications, namely Pearson Goodness-of-fit test [24],
Cochran-Armitage test for trend (CATT) [24], predictive anal-
ysis [18], and relational operations [25] were implemented
and scored speedups of 160.9×, 162.9×, 80000×, and 12.2×,
respectively.

ACKNOWLEDGMENT

We would like to thank the authors of [29] Martin Albrecht,
Shi Bai, and Léo Ducasthe for their insightful replies to our

questions that helped us tune the parameters of our work to
protect it against subfield lattice attacks. Financial support by
NSERC is greatly acknowledged.

REFERENCES

[1] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,”
in Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, ser. STOC ’09, New York, NY, USA, 2009, pp. 169–178.
[Online]. Available: doi.acm.org/10.1145/1536414.1536440

[2] ——, “A fully homomorphic encryption scheme,” Ph.D. dissertation,
Stanford University, 2009, crypto.stanford.edu/craig.

[3] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully
Homomorphic Encryption over the Integers with Shorter Public
Keys,” in Advances in Cryptology – CRYPTO 2011, ser. Lecture
Notes in Computer Science, P. Rogaway, Ed. Springer Berlin
Heidelberg, 2011, vol. 6841, pp. 487–504. [Online]. Available:
dx.doi.org/10.1007/978-3-642-22792-9 28

[4] M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
Homomorphic Encryption over the Integers,” in Advances in Cryptology
– EUROCRYPT 2010, ser. Lecture Notes in Computer Science,

doi.acm.org/10.1145/1536414.1536440
crypto.stanford.edu/craig
dx.doi.org/10.1007/978-3-642-22792-9_28

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

10

H. Gilbert, Ed. Springer Berlin Heidelberg, 2010, vol. 6110, pp.
24–43. [Online]. Available: dx.doi.org/10.1007/978-3-642-13190-5 2

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully
Homomorphic Encryption Without Bootstrapping,” in Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference,
ser. ITCS ’12, New York, NY, USA, 2012, pp. 309–325. [Online].
Available: doi.acm.org/10.1145/2090236.2090262

[6] Z. Brakerski and V. Vaikuntanathan, “Efficient Fully Homomorphic
Encryption from (Standard) LWE,” in Foundations of Computer Science
(FOCS), 2011 IEEE 52nd Annual Symposium on, 2011, pp. 97–106.

[7] C. Gentry, A. Sahai, and B. Waters, “Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based,” in Advances in Cryptology – CRYPTO 2013, ser.
Lecture Notes in Computer Science, R. Canetti and J. Garay, Eds.
Springer Berlin Heidelberg, 2013, vol. 8042, pp. 75–92. [Online].
Available: dx.doi.org/10.1007/978-3-642-40041-4 5

[8] Z. Brakerski and V. Vaikuntanathan, “Lattice-based FHE As Secure
As PKE,” in Proceedings of the 5th Conference on Innovations in
Theoretical Computer Science, ser. ITCS ’14, New York, NY, USA,
2014, pp. 1–12. [Online]. Available: doi.acm.org/10.1145/2554797.
2554799

[9] ——, “Fully Homomorphic Encryption from Ring-LWE and Security
for Key Dependent Messages,” in Advances in Cryptology – CRYPTO
2011, ser. Lecture Notes in Computer Science, P. Rogaway, Ed.
Springer Berlin Heidelberg, 2011, vol. 6841, pp. 505–524. [Online].
Available: dx.doi.org/10.1007/978-3-642-22792-9 29

[10] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can Homomorphic
Encryption Be Practical?,” in Proceedings of the 3rd ACM Workshop
on Cloud Computing Security Workshop, ser. CCSW ’11, New York,
NY, USA, 2011, pp. 113–124. [Online]. Available: doi.acm.org/10.
1145/2046660.2046682

[11] C. Gentry, S. Halevi, and N. Smart, “Homomorphic Evaluation of the
AES Circuit,” in Advances in Cryptology – CRYPTO 2012, ser. Lecture
Notes in Computer Science, R. Safavi-Naini and R. Canetti, Eds.
Springer Berlin Heidelberg, 2012, vol. 7417, pp. 850–867. [Online].
Available: dx.doi.org/10.1007/978-3-642-32009-5 49

[12] A. Khedr, G. Gulak, and V. Vaikuntanathan, “SHIELD: Scalable Homo-
morphic Implementation of Encrypted Data-Classifiers,” IEEE Transac-
tions on Computers, vol. 65, no. 9, pp. 2848–2858, Sept 2016.

[13] J. Hoffstein, J. Pipher, and J. Silverman, “NTRU: A ring-based
public key cryptosystem,” in Algorithmic Number Theory, ser.
Lecture Notes in Computer Science, J. Buhler, Ed. Springer Berlin
Heidelberg, 1998, vol. 1423, pp. 267–288. [Online]. Available:
http://dx.doi.org/10.1007/BFb0054868

[14] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating fully
homomorphic encryption using GPU,” in High Performance Extreme
Computing (HPEC), 2012 IEEE Conference on, 2012, pp. 1–5.

[15] Y. Doroz, Y. Hu, and B. Sunar, “Homomorphic AES Evaluation
using NTRU,” Cryptology ePrint Archive, Report 2014/039, 2014,
http://eprint.iacr.org/.

[16] Y. Doroz, B. Sunar, and G. Hammouri, “Bandwidth Efficient PIR from
NTRU,” in Cryptology ePrint Archive, 2014, pp. 1–12.

[17] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly Multiparty
Computation on the Cloud via Multikey Fully Homomorphic
Encryption,” in Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing, ser. STOC ’12. New
York, NY, USA: ACM, 2012, pp. 1219–1234. [Online]. Available:
http://doi.acm.org/10.1145/2213977.2214086

[18] J. W. Bos, K. Lauter, and M. Naehrig, “Private predictive analysis
on encrypted medical data.,” in Journal of biomedical informatics.
Elsevier Inc., 2014, pp. 234–243. [Online]. Available: http://www.ncbi.
nlm.nih.gov/pubmed/24835616

[19] R. Lindner and C. Peikert, “Better Key Sizes (and Attacks) for
LWE-based Encryption,” in Proceedings of the 11th International
Conference on Topics in Cryptology: CT-RSA 2011, ser. CT-RSA’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 319–339. [Online].
Available: http://dl.acm.org/citation.cfm?id=1964621.1964651

[20] Y. Doröz and B. Sunar, “Flattening NTRU for Evaluation Key Free Ho-
momorphic Encryption,” Cryptology ePrint Archive, Report 2016/315,
2016, http://eprint.iacr.org/.

[21] S. Halevi and V. Shoup. (2013) Design and Implementation of a
Homomorphic-Encryption Library. researcher.ibm.com/researcher/files/
us-shaih/he-library.pdf.

[22] D. Cousins, K. Rohloff, C. Peikert, and R. Schantz, “An update on
SIPHER (Scalable Implementation of Primitives for Homomorphic
EncRyption) ; FPGA implementation using Simulink,” in High Perfor-

mance Extreme Computing (HPEC), 2012 IEEE Conference on, 2012,
pp. 1–5.

[23] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“Secure pattern matching using somewhat homomorphic encryption,” in
Proceedings of the 2013 ACM Workshop on Cloud Computing Security
Workshop, ser. CCSW ’13, New York, NY, USA, 2013, pp. 65–76.
[Online]. Available: http://doi.acm.org/10.1145/2517488.2517497

[24] K. Lauter, A. Lopez-Alt, and M. Naehrig, “Private Computation on
Encrypted Genomic Data,” Tech. Rep. MSR-TR-2014-93, June 2014,
http://research.microsoft.com/apps/pubs/default.aspx?id=219979.

[25] J. H. Cheon, M. Kim, and M. Kim, “Search-and-compute on encrypted
data,” in Financial Cryptography and Data Security: FC 2015
International Workshops, BITCOIN, WAHC, and Wearable, San Juan,
Puerto Rico, January 30, 2015, Revised Selected Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 142–159. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-48051-9 11

[26] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“Packed Homomorphic Encryption Based on Ideal Lattices and Its
Application to Biometrics,” in Security Engineering and Intelligence
Informatics, ser. Lecture Notes in Computer Science, A. Cuzzocrea,
C. Kittl, D. Simos, E. Weippl, and L. Xu, Eds. Springer
Berlin Heidelberg, 2013, vol. 8128, pp. 55–74. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40588-4 5

[27] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey,
“Recent Advances in Homomorphic Encryption: A Possible Future
for Signal Processing in the Encrypted Domain,” Signal Processing
Magazine, IEEE, vol. 30, no. 2, pp. 108–117, 2013.

[28] B. Hayes, “Alice and Bob in Cipherspace,” ser. American Scientist,
2012, vol. 100, no. 5, pp. 362–367.

[29] L. D. Martin Albrecht, Shi Bai, “A subfield lattice attack on over-
stretched NTRU assumptions: Cryptanalysis of some FHE and Graded
Encoding Schemes,” Cryptology ePrint Archive, Report 2016/127, 2016,
http://eprint.iacr.org/2016/127.

[30] Y. Chen and P. Q. Nguyen, BKZ 2.0: Better Lattice Security Estimates.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–20.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-25385-0 1

[31] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved Security
for a Ring-Based Fully Homomorphic Encryption Scheme,” Cryptology
ePrint Archive, Report 2013/075, 2013, http://eprint.iacr.org/.

[32] T. Lepoint and M. Naehrig, A Comparison of the Homomorphic
Encryption Schemes FV and YASHE. Springer International Publishing,
2014, pp. 318–335. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-06734-6 20

[33] P. Kirchner and P.-A. Fouque, “Comparison between Subfield and
Straightforward Attacks on NTRU,” Cryptology ePrint Archive, Report
2016/717, 2016, http://eprint.iacr.org/2016/717.

[34] B. Schoenmakers and P. Tuyls, “Practical Two-Party Computation
Based on the Conditional Gate,” in Advances in Cryptology -
ASIACRYPT 2004, ser. Lecture Notes in Computer Science, P. Lee, Ed.
Springer Berlin Heidelberg, 2004, vol. 3329, pp. 119–136. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-30539-2 10

[35] B. F. Gage, C. van Walraven, L. Pearce, R. G. Hart, P. J. Koudstaal,
B. Boode, and P. Petersen, “Selecting Patients With Atrial Fibrillation
for Anticoagulation: Stroke Risk Stratification in Patients Taking
Aspirin,” Circulation, vol. 110, no. 16, pp. 2287–2292, 2004. [Online].
Available: http://circ.ahajournals.org/content/110/16/2287.abstract

[36] P. W. F. Wilson, R. B. D’Agostino, D. Levy, A. M. Belanger,
H. Silbershatz, and W. B. Kannel, “Prediction of Coronary Heart
Disease Using Risk Factor Categories,” Circulation, vol. 97, no. 18,
pp. 1837–1847, 1998. [Online]. Available: http://circ.ahajournals.org/
content/97/18/1837.abstract

[37] R. B. D’Agostino, R. S. Vasan, M. J. Pencina, P. A. Wolf, M. Cobain,
J. M. Massaro, and W. B. Kannel, “General Cardiovascular Risk
Profile for Use in Primary Care: The Framingham Heart Study,”
Circulation, vol. 117, no. 6, pp. 743–753, 2008. [Online]. Available:
http://circ.ahajournals.org/content/117/6/743.abstract

[38] M. Chenal and Q. Tang, “On Key Recovery Attacks against
Existing Somewhat Homomorphic Encryption Schemes,” in The third
International Conference on Cryptology and Information Security in
Latin America, Latincrypt 2014, 2014, pp. 1–28. [Online]. Available:
https://orbilu.uni.lu/handle/10993/18106

dx.doi.org/10.1007/978-3-642-13190-5_2
doi.acm.org/10.1145/2090236.2090262
dx.doi.org/10.1007/978-3-642-40041-4_5
doi.acm.org/10.1145/2554797.2554799
doi.acm.org/10.1145/2554797.2554799
dx.doi.org/10.1007/978-3-642-22792-9_29
doi.acm.org/10.1145/2046660.2046682
doi.acm.org/10.1145/2046660.2046682
dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/BFb0054868
http://eprint.iacr.org/
http://doi.acm.org/10.1145/2213977.2214086
http://www.ncbi.nlm.nih.gov/pubmed/24835616
http://www.ncbi.nlm.nih.gov/pubmed/24835616
http://dl.acm.org/citation.cfm?id=1964621.1964651
http://eprint.iacr.org/
researcher.ibm.com/researcher/files/us-shaih/he-library.pdf
researcher.ibm.com/researcher/files/us-shaih/he-library.pdf
http://doi.acm.org/10.1145/2517488.2517497
http://research.microsoft.com/apps/pubs/default.aspx?id=219979
http://dx.doi.org/10.1007/978-3-662-48051-9_11
http://dx.doi.org/10.1007/978-3-642-40588-4_5
http://eprint.iacr.org/2016/127
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-06734-6_20
http://dx.doi.org/10.1007/978-3-319-06734-6_20
http://eprint.iacr.org/2016/717
http://dx.doi.org/10.1007/978-3-540-30539-2_10
http://circ.ahajournals.org/content/110/16/2287.abstract
http://circ.ahajournals.org/content/97/18/1837.abstract
http://circ.ahajournals.org/content/97/18/1837.abstract
http://circ.ahajournals.org/content/117/6/743.abstract
https://orbilu.uni.lu/handle/10993/18106

2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2657458, IEEE Journal of
Biomedical and Health Informatics

11

Alhassan Khedr received his M.Sc and B.Sc de-
grees from Electronics and Electrical Communica-
tions Engineering Department, Faculty of Engineer-
ing, Cairo University, Cairo, Egypt in 2008 and 2011
respectively. After graduation, he was appointed as
a Teaching Assistant in Cairo University and Amer-
ican University of Cairo for 3 years. He received
numerous awards for his excellence as a student
and as a teaching assistant. He was among the team
responsible for developing and fabricating CUS-
PARC the first fully developed Egyptian embedded

processor. Alhassan joined Electronics and Computer Engineering Department
at University of Toronto to pursue his PhD degree in 2011. Alhassan main
research interests include algorithm optimization and VLSI implementation of
high performance algorithms. He is also interested in parallel and multi/many
core processor architecture design and computer arithmetic.

Dr. Glenn Gulak is a Professor in the Department
of Electrical and Computer Engineering at the Uni-
versity of Toronto. He is a Senior Member of the
IEEE and a registered Professional Engineer in the
Province of Ontario. His present research interests
are in the areas of algorithms, circuits, and CMOS
implementations of high-performance baseband dig-
ital communication systems. He has authored or
co-authored more than 150 publications in refereed
journals and refereed conference proceedings. In
addition, he has received numerous teaching awards

for undergraduate courses taught in both the Department of Computer Science
and the Department of Electrical and Computer Engineering at the University
of Toronto. From Jan. 1985 to Jan. 1988 he was a Research Associate in
the Information Systems Laboratory and the Computer Systems Laboratory at
Stanford University. He has served on the ISSCC Signal Processing Technical
Subcommittee from 1990 to 1999, ISSCC Technical Vice-Chair in 2000 and
served as the Technical Program Chair for ISSCC 2001. He served on the
Technology Directions Subcommittee for ISSCC from 2005 to 2008. He
currently serves as the Vice-President of the Publications Committee for the
IEEE Solid-State Circuits Society and a member of the IEEE PSPB.

