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Abstract

Obfuscation is challenging; we currently have practical candidates with rather vague security guaran-
tees on the one side, and theoretical constructions which have recently experienced jeopardizing attacks
against the underlying cryptographic assumptions on the other side. This motivates us to study and
present robust combiners for obfuscators, which integrate several candidate obfuscators into a single
obfuscator which is secure as long as a quorum of the candidates is indeed secure.

We give several results about building obfuscation combiners, with matching upper and lower bounds
for the precise quorum of secure candidates. Namely, we show that one can build 3-out-of-4 obfuscation
combiners where at least three of the four combiners are secure, whereas 2-out-of-3 structural combiners
(which combine the obfuscator candidates in a black-box sense) with only two secure candidates, are
impossible. Our results generalize to (2y + 1)-out-of-(3y + 1) combiners for the positive result, and to
2v-out-of-3~ results for the negative result, for any integer ~.

To reduce overhead, we define detecting combiners, where the combined obfuscator may sometimes
produce an error-indication instead of the desired output, indicating that some of the component ob-
fuscators is faulty. We present a (v + 1)-out-of-(2y + 1) detecting combiner for any integer v, bypassing
the previous lower bound. We further show that y-out-of-2v structural detecting combiners are again
impossible.

Since our approach can be used for practical obfuscators, as well as for obfuscators proven secure
(based on assumptions), we also briefly report on implementation results for some applied obfuscator
programs.

1 Introduction

Software obfuscation has a long tradition in protection against reverse engineering. For example, the first
International Obfuscated C Code Contest (www.ioccc.org) has been organized in 1984 and experienced
the 23rd event in this series in 2014. There are obfuscators for all popular programming languages today.
For example, for Java, there are several open-source projects like ProGuard, ClassEncrypt, or JavaGuard,
and an even larger number of commercial products. These approaches are usually based on heuristics
and best practices, ranging from simple renaming of function and variables names, to elaborate schemes,
e.g. [CT02]. However, these practical obfuscators do not provide verifiable, proven security guarantees.
Provably secure obfuscation, in the sense that it is based on some reasonable cryptographic assumption,
has long been a highly desirable yet hard-to-reach goal. Even worse, there have been devastating impos-
sibility results for the natural notion of virtual black-box obfuscation [BGIT12| and only limited positive
results for special cases like point functions [Can97]. A significant breakthrough came with the work by



Garg et al. [GGHT'13|, indicating that the relaxed yet useful notion of indistinguishability obfuscation may
be achievable for general circuits. This notion basically says that one cannot distinguish the obfuscated
codes of two functionally equivalent circuit programs.

It is fair to say that the underlying cryptographic assumption, on which is security of the construction
of Garg et al. [GGHT13| is based upon, is non-standard and not well analyzed (yet). This is also true for
the alternative approach to build indistinguishability obfuscators proposed by Pass et al. [PST14]. This is
complemented by yet other proposals of Gentry et al. [GLSW15] based on a more standard-like computa-
tional assumption about multilinear maps, and of Ananth and Jain [AJ15] based on compact functional
encryption. At the same time, recent attacks [CHL™ 15, [CLTT4, [GHMS14, (CGH™'15] on multilinear maps,
albeit currently not known to break the aforementioned obfuscation candidates, testify that constructions
may suddenly turn out to lack the desired security guarantees.

The above leaves us with multiple choices of candidates for building obfuscators, both in practice as well
as in theory, and it is currently difficult to determine the best choice in terms of security. For the heuristic,
practical obfuscators, it may be even harder to distinguish sound constructions from weak approaches, since
the design strategies may be vague. A straightforward idea to boost confidence in obfuscator candidates,
both in theory as well as in practice, is to interlock multiple solutions and approaches. This idea of failure-
tolerant cryptographic designs has traditionally been subsumed under the notion of robust combiners.

1.1 Robust Combiners for Obfuscation

The notion of robust combiners has been introduced by Harnik et al. [HKN™05] based on the idea of tolerant
cryptographic designs by Herzberg [Her02, [Her05, [Her09]. Such combiners take several candidates for a
cryptographic task and provide a secure solution if a quorum of the candidates is indeed secure. The idea
has been successfully applied to several cryptographic primitives, including hash functions [BB0G, Pie07,
FLO07, Pie08, Mit13] [FLP14, MP14], encryption [DKO05, HKNT05], commitments [HKN™05, Her02, [Her05],
and oblivious transfer [HKN™05, MP06, MPWQ7].

A robust combiner for obfuscation would take as input a program (abstractly in form of a circuit
or a Turing machineﬂ) and create an obfuscated version with the help of the candidate obfuscators
01,03,...,0n. As long as a sufficient number of candidate obfuscators is indeed secure, the combiner
should also provide a secure obfuscator. In order to make formal claims about the robustness of the
combiner, due to the lack of rigorous security properties for practical obfuscators, one inevitably needs to
base the notion of security for the combiner on the various models in the cryptographic literature, such as
virtual black-box obfuscation or indistinguishability obfuscationE]

What distinguishes the idea of combiners for obfuscation from the previous scenarios is that obfuscation
combiners are higher-order combiners which are closely linked to the functionality of their inputs. Consider
for instance the case of hash function combiners where it usually suffices that the combiner preserves the
security property only, enabling solutions like the concatenation combiner Comb®#2(z) = H (x)||Ho(z)
with longer output for collision resistance. Devising hash combiners with equal output size as Hi, Ho,
retaining this mild functional property, is conceivably hard [BB06, [Pie07, Pie0§|]. An obfuscation combiner,
in contrast, must provide a circuit which computes the same function as the input circuit; it cannot
implement a different function with a larger output. Indeed, note that functional preservation and input
hiding are conflicting requirements for obfuscation and one is easy to achieve without the other.

As a concrete example consider combiners in the context of virtual black-box obfuscation. Herzberg
and Shulman [HSI0] show that the cascading construction Comb®P2(.) = O5(O;(+)) of two candidate

n our presentation of our formal results we focus on circuits instead of Turing machines, since our approach applies
equally well to both settings but the state of the art of solutions is much more advanced in the circuit setting.

*There are approaches to define metrics for practical obfuscators [CTL97, IAMS™07], but mainly in terms of software
complexity. We discuss them in Section



obfuscators 01, O is robust for this notion as long as functional correctness of the candidates is guaranteed.
If this is not granted and the inner obfuscator is corrupt then (O; may implement an arbitrary function,
such that the combiner neither preserves functional correctness nor necessarily input hiding. The latter
holds as one usually does not have any security guarantees for input circuits with diverging functionalities,
even if obfuscator Oy is sound. Analogously, if the outer obfuscator is corrupt then the resulting cascade
may no longer sustain functionality.

While functional correctness of an obfuscator is usually not based on unproven cryptographic assump-
tions, unlike the obfuscation property, there are two reasons why certifying functional correctness may
still be hard. First, software implementations are error prone, and the complexity of previous theoretical
proposals for obfuscation [GGH™ 13, [PST14, [GLSWT5] seems to be inimical in this regard. Secondly, one
may have little control over, or insights into, the actual obfuscation program. This is clearly true for com-
mercial obfuscation programs; in fact, the programs of such obfuscators are often themselves obfuscated.
The creation of a corrupt obfuscator, which intentionally leaks some information, is easy; to demonstrate
this, we implemented demos of different types of corrupted-obfuscators, including obfuscators which leak
information even when used in cascade.

The concern about corrupt-obfuscators may also emerge in theoretical solutions. As an example for
the latter, in the universal-parameter generation setting [HJK™ 14| a trusted party publishes an obfuscated
program which parties can use to generate common parameters. What if we now prefer to use several
potentially untrusted authorities and combine their obfuscated programs?

1.2 Our Results

Our goal is to provide a general combiner for obfuscation. It should satisfy the formal requirements in order
to allow for sound solutions both in theory and in practice. Ideally, the combiner should tolerate a large
number of corrupt obfuscators, be very efficient, and ensure various notions of obfuscation simultaneously.
Note that, while virtual black-box obfuscation may be impossible in general, for some functions and attack
models [BR14, BGK™14] the notion may still be achievable, such that our combiner should also comply
with this notion.

On the positive side we present a 3-out-of-4 combiner which can tolerate a single corrupt combiner out
of four candidates. It is depicted in Figure [I] and consists of two layers. In the first layer we insert the
input circuit C' into three combinations of three of the obfuscators each; in each combination, we output
a circuit that produces the majority of the three obfuscated circuits. We only require three of the four
combinations of picking three of four obfuscators. Each unit ensures that if at most one candidate is
corrupt then functional correctness is still preserved. In the next layer we then run each of the first-layer
majority circuits through the complementary fourth obfuscation candidate and again take the majority to
ensure correctness. Obfuscation follows as either all three candidates on the first layer are sound and thus
hide the input circuit, or the fourth candidate on the second layer ensures this.

Our combiner indeed works for different notions of obfuscation such as virtual black-box and grey box
obfuscationE] indistinguishability obfuscation, and differing-input obfuscation. In total it requires twelve
calls to obfuscators and has depth 2. The latter is important as obfuscation may cause a polynomial blow-
up in size. Remarkably, while most theoretical solutions currently induce a significant size expansion, with
a few exceptions [BV15, [AJS15], obfuscators in practice only display a mild increase in code size. Note
that devising combiners of depth 1 with a structure as above is impossible as the corrupt obfuscator may
then leak information about the input circuit via the output.

We then show an impossibility result for 2-out-of-3 combiners. There are, of course, trivial combiners in
this case, such as the combiner which simply uses the sound candidate only, and the (inefficient) combiner

3With respect to dependent auxiliary inputs [GKO05).
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Figure 1: Our 3-out-of-4 combiner. The MAJ circuit has three hardwired circuits C1, C2 and Cs with equal input and output
sizes, which also correspond to the input and output size of the MAJ circuit. For input z the MAJ circuit evaluates each of
the three circuits for = and returns the bit-wise majority of the circuit’s outputs.

for indistinguishability obfuscation that evaluates the input circuit and then outputs the lexicographic
smallest equivalent circuit. We thus focus on structural combiners that use a fixed pattern, independently
of the status of the candidates, and do not semantically interpret the input circuit. Our 3-out-of-4 combiner
is structural in this regard. We show that no 2-out-of-3 structural combiner may ensure both functional
correctness and obfuscation. This holds for the weaker notion of indistinguishability obfuscation and
therefore also for the stronger notions of black-box and grey-box obfuscation. Note that this also applies
to any l-out-of-2 combinerE]

We extend the positive result as well as the negative result to the case of (2y+1)-out-of-(3y+1) resp. 2v-
out-of-3y combiners. That is, we give a construction which can be seen as a less efficient generalization of
our basic solution if one can corrupt at most v out of 3y + 1 obfuscators. We then argue that one cannot
have structural combiners if v out of the 37 obfuscators can be corrupt. For both settings we can draw on
the the ideas and techniques from the basic cases.

The combiners above are correcting in the sense that they guarantee functional correctness if a quorum
of input obfuscator candidates is secure. One can also envision a weaker notion of combiners, which output
circuits that either compute the correct output of the input circuit, but may also output, instead, a special
error indicator L. This error indicator should be output only when one of the component obfuscator is
faulty; if all obfuscators are sound then the combiner must never output L. In particular, such combiners
cannot output false answers. We call them detecting combiners in analogy to coding theory.

For detecting combiners we achieve slightly different bounds. That is, we show that one can have
(v + 1)-out-of-(2y 4+ 1) combiners for any . For the case v = 1 and 2-out-of-3 combiners we can again
provide an optimized version similar to our original 3-out-of-4 combiner. Concerning lower bounds, we can
apply the ideas of the other combiners to show that there cannot exist structural y-out-of-2y detecting
combiners for any . The reduced overhead of detecting combiners may make them attractive option
for practical implementations, where once detection ability exists, the attack-vector of providing faulty
obfuscator appears unlikely.

While our main results follow the common approach in provably secure obfuscation, we stress that we
view our approach to be equally well suited for practice. In Section [7] we therefore evaluate performance
of our combiner when applied to practical obfuscators, and discuss the implications of our findings in this
domain.

4Every 1-out-of-2 combiner is also a 2-out-of-3 combiner if it ignores the third obfuscator.



Concurrent Work. Independently of our work, Ananth et al. [AJNT16] also discuss the idea of ob-
fuscation combiners. Their approach is fundamentally different from ours, and results in (non-structural)
obfuscation combiners which are secure as long as a single candidate is secure. However, this comes at
the cost of a significant overhead, and also requires additional cryptographic assumptions such as LWE or
DDH, and indistinguishability obfuscation against sub-exponential adversaries.

2 Preliminaries

We exclusively treat circuits here; the approach can be transfered to the case of Turing machines straight-
forwardly. When speaking of circuits C' from some class C = (C))xeny we usually mean some arbitrary
(but efficiently computable) description of the circuit. When considering specific encodings with dedicated
properties, as required for our lower bounds, we usually write (C) for the encoding of the circuit under
scheme (-). If, on the other hand, we consider the function implemented by the circuit we usually write
C(-) instead, and C(x) for the output of circuit C' on input z. When writing C(-) = C'(:) or C = C’ we
refer to functional equality of circuits C and C’, comprising input and output length, whereas C' = C’ or
(C) = (C") means equal descriptions (under the encoding in question).

2.1 Obfuscators

Barak et al. [BGIT12| defined several notions of obfuscators, with virtual black-boxr (VBB) obfuscators
being the strongest one. This notion says that the adversary cannot learn anything from an obfuscated
circuit beyond the circuit’s outputs for chosen inputs. While they also showed that this notion is in
general unachievable, for specific cases such as point functions one may be able to attain this level of
obfuscation. Below we mainly consider obfuscation of circuits, and we also consider the possibility that
the obfuscator itself may be non-uniform and work specifically for different values of A. The latter allows
corrupt (also called malicious) obfuscators to match the algorithm class of adversaries and distinguishers.
All obfuscators here, sound and corrupt ones, are nonetheless considered to be stateless.

Definition 1 (Virtual Black-Box Obfuscation). A (possibly non-uniform) PPT algorithm O is a virtual
black-box obfuscator for circuit class C = (Cy)aen if the following holds:

Functional Correctness: For any A\ € N, any circuit C € Cy, any obfuscated version O < O(1*,C) we
have C' = O.

VBB Obfuscation: For any (possibly non-uniform) PPT algorithm A there exists a (possibly non-
uniform) algorithm PPT S and a negligible function e(\) such that for all circuits C € Cy\ we
have

]Prob (A1, 001*,0)) = 1] = Prob[ $7(1%) = 1” < e(N),

where the probabilities are over the randomness of O and A resp. S.

Virtual grey-box (VGB) obfuscation [BC10] is defined analogously, only that the simulator above is
computationally unbounded but can make at most a polynomial number of queries to its oracle circuit.
Clearly, VBB obfuscation implies VGB obfuscation. A stronger notion is based on the extension to
(dependent) auziliary inputs [GKO05] where both the adversary and the simulator receive a random sample
aux as additional input, where aux may depend on any circuit C’ € C,\E] We will use this version for
proving the security of our combiners for VBB and VGB obfuscation.

5This slightly strengthens the original auxiliary input setting [GKO05] where only C’ = C is allowed.



Another meaningful relaxation, implied by both notions above in the non-uniform setting, is indistin-
guishability obfuscation |BGIT12| which basically says that the obfuscations of two functional equivalent
circuits are indistinguishable:

Definition 2 (Indistinguishability Obfuscator). A (possibly non-uniform) PPT algorithm iO is called an
indistinguishability obfuscator for a circuit class C = (Cy)aen if the following conditions hold:

Functional Correctness: For any A\ € N, any circuit C € Cy, any obfuscated version O < iO(1*,C) we
have C = O.

Indistinguishability: For any (possibly non-uniform) PPT distinguisher D, there exists a negligible func-
tion €(\) such that for all circuits Cp, C1 € Cy with Cy = Cy we have

]Prob [D(1%, o, C1,i0(1%, Co)) = 1] = Prob | D(1*, Co, C1,i0(1*, C1)) = 1” < e(N),

where the probabilities are over the randomness of 1O and D.

There are several variations of the above definitions. For one, we can allow for a negligible error in the
functional correctness (over the random choices of the obfuscator). Both our positive and our negative
result are robust with respect to such a change. That is, our 3-out-of-4-combiners uses a constant number
of obfuscator calls such that the error would remain negligible; obfuscation would still hold, because the
leakage due to incorrect obfuscator outputs has negligible probability. Similarly, our impossibility result
about 2-out-of-3 combiners would still hold, even if the starting combiners would have perfect functional
correctness, but the (fixed-size structural) combiner could have a negligible error. Alternatively, one may
use the recent approach in [BV] to eliminate the error first.

Finally, yet another version of obfuscation, called differing-inputs obfuscation [BGIT12|, demands
indistinguishability of two obfuscated circuits, but only if the input circuits Cy, C7 can be sampled such
that finding inputs where Cy and C; differ, is infeasible. More formally, we assume that there is a PPT
algorithm Sampler associated to the circuit family C such that for any PPT algorithm A there exists a
negligible function e(\) such that the probability that Cy(x) # C1(x), where (Cy, C1, aux) <— Sampler(1*)
and z + A(1*,Cp, C1, aux), is at most €(\). Note that we assume that Sampler(1*) only outputs circuits
Cy, C1 € Cy,

A differing-inputs obfuscator diQ for C and Sampler is now defined analogously to an indistinguisha-
bility obfuscator, only that it is infeasible to distinguish outputs diO(1*, Cp) and diO(1*, Cy) for sampled
(Co, C1,aux) + Sampler(1*), even if given aux as additional input. While the notion is also quite useful for
the design of protocols [ABGT 13|, Garg et al. [GGHW14] argue that the notion may be hard to achieve.

2.2 Combiners for Obfuscators

Roughly, a combiner for obfuscators is a procedure which uses a set of obfuscators O1,Os,... to turn an
input circuit C' into an obfuscated one, with the guarantee that if an (unspecified) quorum of the underlying
obfuscators is secure, then so is the combiner. In the definition below we abstractly speak of o-obfuscators,
leaving open which obfuscation category o € {VBB,VGB,indistinguishability, differing-inputs} we refer to.

For combiners of primitives with multiple properties, such as functional correctness and obfuscation
here, there are varying levels of combiners, called weak, mild, and strong [FLOS8,[FLP14]. A strong combiner
preserves security “property-wise”, i.e., for each property individually if sufficiently many candidates have
this property then so does the combiner. A weak combiner only preserves all properties if there are
enough candidates which are secure and thus have all properties simultaneously. The mild notion is in
between where the candidates must somehow cover all properties but for each property possibly by different
candidates. In [FLOS8, [FLP14] it has been discussed that strong robustness implies mild robustness which



in turn implies weak robustness, and that the implications are strict in case of hash functions for some
properties.

Definition 3 (Robust Combiner for o-Obfuscation). Let Comb be a PPT oracle algorithm and let Oy, . ..,On
be o-obfuscators candidates. Then Comb is called a

o strongly robust t-out-of-N combiner if for each of functional correctness and o-obfuscation, if at least
t of the N candidates have this property, then so does the combiner Comb®1»ON .

o mildly robust t-out-of-N combiner if, whenever functional correctness and o-obfuscation are each
satisfied by at least t of the N candidates, then the combiner too has both properties;

o weakly robust t-out-of-IN combiner if the combiner is a functional correct o-obfuscator if there are at
least t out of N candidates which are simultaneously functionally correct and o-obfuscators.

The definition assumes that the obfuscators and combiner all work for the same class C of obfuscatable
circuits. This neglects an important aspect, though: If the combiner calls obfuscators recursively then
the candidates need to be able to handle obfuscated circuits, too. We assume that this is indeed the case
—and discuss it more explicitly for our structural combiners below— making the implicit assumption that
the candidates also allow for a superclass C*°™ of circuits which is rich enough tor capture intermediate
circuits created by the specific combiner. Still, the task for the combiner is to obfuscate the “core” class
C of circuits.

input of input of
circuit unit circuit unit
unit ‘ ‘ unit ‘ ‘
circuit #1 > O > circuit #1 » O [=——>
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gates gates
circuit #2 B O3 | circuit #3 » O3 |—p

circuits created circuits created
output of

S output of PP
upon initialization L upon initialization R
circuit unit circuit unit

Figure 2: Example of a unit (with pass-through version on the right-hand side).

As usual for combiners in general, there is always a secure obfuscation combiner, namely, the one which
“obliviously” uses the secure obfuscator O; and ignores the other ones in order to obfuscate the input
circuit. However, this only provides an existential proof and says nothing about how to design an actual
solution. Even worse, for indistinguishability obfuscation there is a trivial (non-efficient) combiner for
obfuscators which can be described effectively [BGIT12]. The combiner takes as input (the description of)
a circuit C' and finds the (lexicographically) minimal circuit Chyi, which computes the same functionality
as C' and outputs this circuit Cp,. Then any two circuits C,C’ with the same functionality yield the
same obfuscated circuit Cl,i,. This combiner ignores the candidate obfuscators and already constitutes an
unconditionally secure obfuscator itself. It is even efficient relative to a 35 oracle. Hence, any lower bound
for combiners would need to bypass this result and therefore need to implicitly show that X5 # P.

One option to circumvent the first problem is to require to have an effective mean to turn attacks against
the combiner into attacks for the candidate obfuscators. This option of so-called black-box combiners has
been used for other lower bounds such as for hash function combiners [BB06, [Pie07, [Pie08]. Still, in our
setting such black-box combiners would have to deal with the problem of the inefficient combiner.



An alternative path, which we also take here, is therefore to restrict the way how the combiner works.
Whereas the above unconditional combiner approaches the circuit semantically by plotting its behavior,
we look into what we call structural combiners here. Basically, these are combiners which have a prescribed
structure with place-holder gates for the obfuscators, and they merely plug in the input circuit and derive
the output circuit according to this fixed structure, without evaluating the circuits. It turns out that our
3-out-of-4 combiner is in fact structural.

2.3 Structural Combiners

A structural combiner for obfuscators is a circuit consisting of NAND gates and of obfuscator gates,
where each one of the latter is labeled with one of the obfuscators ;. The layout is independent of the
actual obfuscators and should thus work with any concrete obfuscator candidates, i.e., be black-box. The
combiner is structured in so-called units. A wunit is a sub circuit which takes as input the descriptions of
circuits and itself describes a circuit. The unit first inserts the input circuits into some of the obfuscators,
where we allow multiple appearances of obfuscators in a unit, and then processes the output circuits by a
circuit consisting of NAND gates only. An example is given in the left part of Figure[2l If the input circuit
is given to obfuscators ij,ia,... then we call this an {ij,i9,... }-unit for the multiset {i1,i2,...}. The
example in Figure [2| describes a {1, 3}-unit. Furthermore, we can even let some input circuit be passed to
the NAND-circuit completely, saying that the unit is pass-through in this case. Since it is irrelevant for
our lower bound which circuit is passed through, we do not need to specify the identifier. The right hand
side of Figure [2| shows a pass-through version of a {1, 3}-unit.

The output of a unit can itself serve again as the input for another unit. We can therefore nest units
in a tree-like structure as in Figure[3] In particular, we can analogously to the notion of depths of circuits
define the depth of a unit, starting with level-1 units, as well as paths from the input circuit to the final
unit. We call the path of units form level-1 units to the final unit a full path. A unit which is level-1 always
receive the combiner’s input circuit as inputs, but potentially also other unit circuits if it is simultaneously
a higher level unit. Every unit has at least one input circuit, and a unit can of course serve as multiple
inputs to other units.

To complete the description of a structural combiner we need to specify the output of our combiner
for some input circuit C, once the obfuscator candidates are determined. We call this the initialization
of the combiner with C. Basically the output is again a circuit and it is derived by stepwise replacing
the obfuscator gates in units (starting with level-1 units which receive C' as input) with samples of the
output of the corresponding obfuscator. Note that the structure of the combiner circuit remains, only the
obfuscator gates are now filled in with concrete circuits. In case of pass-through units we additionally
place the code of the unit’s input circuit inside the new circuit at the corresponding position. Once a
unit has been initialized we can use it as input to a higher-level unit and initialize that unit, till we have
eventually initialized the final unit. Instructively, the reader may think of this as a left-to-right pass in
Figure 3| to compute the final output circuit, denoted as as Combol’OQ"”(C). Note that this is a random
variable, depending on the randomness of the obfuscators. A sample of this random variable can then be
fed with inputs x to produce some output .

The above assumes that the class of obfuscatable circuits for structural circuits is closed under recursive
constructions of units. We note that for concrete constructions such as our 3-out-of-4 combiner in the next
section it suffices that we can also obfuscate level-1 units of the original input circuits. Given a circuit
class C = (Cy)aen, some fixed structural combiner Comb, and fixed obfuscators O1, O, ... we denote by
ceomb — ( Eomb) aen the class of circuits which, besides all circuits C' € Cy, for any C also includes all
possible initializations of all units of the combiner (except for the final unit) for the given obfuscators. It
is understood that, when considering a specific combiner Comb, all candidate obfuscators Oy, Os, ... must
be able to handle the class C*°™P, whereas the combiner only works for the “inner” class C. Instructively,
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Figure 3: Combiner circuit consisting of units.

one may think of C as the class one would like to obfuscate, although the candidate obfuscators allow for
broader classes.

3 Robust 3-out-of-4 Combiner for Obfuscators

In this section we present a 3-out-of-4 (structural) combiner for obfuscation, depicted in Figurel|on Page

3.1 Construction

The idea is to first obfuscate the input circuit C by all combinations of 3 out of the 4 given obfuscators
O1,...,04 and for each combination taking the majority of the output of the three obfuscated circuits.
Note that since at least 2 of the 3 obfuscators in such a combination work properly, the majority decision
provides a functionally correct output. Formally, for the majority circuit MAJ combining three input
circuits by evaluating each one for a given input z and taking the bit-wise majority of the outputs, we
thus build the circuits

02'171'2,1'3 «— MAJ(OH (C), Oiz (C)a 02'3 (C)), 1<i <ig<ig<4

for all possible 4 combinations of i1, i2,43. Since we merely need an arbitrary 3 of these 4 circuits for the
next stage, we take the combinations leaving out obfuscators 1,2 and 3 (in this order).

Of course, a corrupt obfuscator among O;,, O;,,O;, in the majority combination could still reveal
information about the input circuit C. We hence add another layer where we now combine three of
the majority combinations as before, by running each combination O;, ;, s, through the complementary
obfuscator O;, and taking the majority of these circuits again. Put differently, we now build the circuit

MAJ(01(0233.4), 02(013.4), 03(01,2,4))-

Functional correctness of our combiner is guaranteed because each of the input circuits O2 3 4, 0134, O1,2.4
computes the correct function and at least two of the level-2 obfuscators O1, 09, O3 are correct. The ob-
fuscation property holds because if one of the level-2 obfuscators, say, O7F, is malicious, then the level-1
obfuscators generating O34 already hide the input circuit. Furthermore, the malicious obfuscator O7F
cannot bias the functional correctness of the circuits O1 34 and O1 24 in the other branches, such that the
sound second-layer obfuscators O2, O3 also hide O; 34 and O124 and thus the input circuit C, even if OF
on the first level reveals information about C.



3.2 Security

We start by showing that the combiner is (strongly) robust for indistinguishability obfuscation. Recall that
strong robustness refers to the fact that each property, functional correctness and obfuscation, is preserved
individually. Note that for our combiner (and also the security proof) it suffices that the parties merely
have black-box access to all obfuscators.

Theorem 1. The combiner in Figure |1] is a strongly robust 3-out-of-4 combiner for indistinguishability
obfuscation.

Proof. Functional correctness is straightforward, given that for each unit at least two obfuscators are
functionally correct and since we apply the majority of the outputs.

We next show indistinguishability. Take an arbitrary distinguisher D against our combiner. We need
to show that there exists a negligible function e such that for an arbitrary pair Cy, C1 € Cy, of circuits, the
distinguishing advantage of D is smaller than €(\). The idea is to show that one can gradually replace
the input circuits Cy to the obfuscators in the combiner by circuit C, taking some care with the single
corrupt obfuscator.

For the gradual replacement fix the order of the nine level-1 obfuscators Oy, O3, Oy, ..., 01, 0s, Oy
according to their appearance in Figure [I] from top to down, with one exception: for a parameter k €
{1,2,3,4}, a reminiscent for the index of the corrupt obfuscator O}, we move all occurrences of this obfusca-
tor to the very end of the list. For instance, for k = 2 we would have the order Oz, Oy, O1,...,04,05,05.
Let K = K(k) € {7,8} be the first index of O} in that list. Define now the random hybrid variables
HEF(Coy, Cy) for i =0,1,...,9 as the output of our combiner if we pass circuit Cy for the first i obfuscators
(according to our order) and Cj for the remaining 9 — 4 ones. Then, clearly HE(Co,C1) corresponds to
the distribution of our combiner for input Cy, and HE(Cp, C1) to the one of our combiner for C;. It hence
suffices to show for any ¢ that D’s probability of distinguishing adjacent H{il, HZ“ is negligible.

To bound the advantage of D for each pair (HF |, HF) we will wrap the algorithm into a sequence of
distinguishers Df for i = 1,2,...,9. The distinguisher Df works in two modes, depending on the status
of the i-th obfuscator in our sequence:

e If i is such that the i-th obfuscator is not corrupt, i.e., i < K(k), then Df expects as input a pair
Cy, Cy and an obfuscated circuit O" generated by the i-th obfuscator in our order for Cj, b € {0, 1}.
Algorithm DF computes the output of our combiner (with the given obfuscators) but inserts C; as
input in the first 7 — 1 level-1 obfuscators, O" as the output of the i-th level-1 obfuscator, and Cy as
input in the final 9 — ¢ slots. It completes the output O of the combiner for these data and lets D
run on Cp,C7 and O. Algorithm Df returns whatever D outputs.

e If the i-th obfuscator is corrupt, i.e., ¢ > K(k), then Df expects as extra auxiliary input a pair Cy, C
and a sample O’ of one of the sound obfuscator candidates. Here the obfuscator O; producing O’ is
determined by looking at the level-1 unit u in which the i-th (corrupt) obfuscator Oj appears. For
this unit, and its three obfuscators, there exists the fourth, complementing obfuscator O; to which
the unit’s output is fed to on the level-2 unit. For instance, if kK = 2, K = 8, and ¢ = 8, then the
corresponding level-1 unit u is the top one in Figure [I} and the complementing obfuscator is O;.

The input to the complementing obfuscator O; for deriving O’ is either a sample of the level-1 unit
where all honest obfuscators are initialized with Cy and the corrupt one with C7, or all of them are
initialized with Cy. By assumption, both samples are in the class C§°mb such that the sample can be
passed to O;. Algorithm Df now evaluates our combiner, by replacing inputs to obfuscators up to
index i by C4, for subsequent indices giving input Cy, and replacing the output of the complementing
obfuscator O; in unit u when evaluating our combiner by O’. Return D’s output bit on input Cy, Cy

and the combiner’s output O.
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Assume ¢ is such that the i-th obfuscator in order is still different from O}, i.e., i < K. Then if O’ is
the obfuscation of Cy, then Df runs D exactly on the distribution of the hybrid variable Hz'k_1(00, Cy). In
particular, for ¢ = 1 algorithm Df runs D on a sample of our combiner’s output for Cy. Analogously, for
1 = 9 and O’ stemming from the complementing obfuscator for a sample of the level-1 unit with all Cy
inputs, the input to D is distributed like a sample of our combiner for Cy (and thus of Hg(Co, Ch)).

Assume that the k-th obfuscator is indeed corrupt. For i < K it follows from the indistinguishability
obfuscation of the sound obfuscators that there exist negligible functions €;(\) such that for any Cp, C1,
the advantage of Df in distinguishing the two input cases is at most €;(\). For ¢ > K this follows as the
input circuits to the two sound obfuscators in unit u are already Cj, such that the majority computation
of the unit ensures that in both cases the unit circuit computes the function Cy(-). It follows that both
input circuits to the complementing obfuscator O; compute the same function and we can again conclude
from the security of the obfuscator that the advantage must be bounded by some function €;(A). Note that
here we take advantage of the fact that indistinguishability holds for all circuits and therefore in paticular
also for our partly combiner samples.

It therefore also holds for any ¢ that the advantage of D in distinguishing H;_1(Cp, C1) and H;(Cyp, C1)
for any Cp, C} is at most €;()), too. Hence, the overall advantage of D is at most e(\) := 9_; ¢;(\) and
thus negligibleﬁ O

The claim carries over to the case of differing-inputs obfuscation. Recall that the main difference to
indistinguishability obfuscation is that, for the differing-inputs case, the circuits in question are generated
by an algorithm Sampler such that the circuits may compute different functions, but Sampler ensures that
finding differing inputs is infeasible. We can basically apply the same hybrid argument in this case as
above. However, for the step ¢ > K, when using the obfuscation of our level-1 unit, we need to specify
sampler Sampler), with oracle access to O1,...,O4 to generate the input circuit for the complementing
obfuscator. Algorithm Sampler), first runs Sampler to get (Cp, C1, aux), then generates two samples of the
level-1 unit (one time using Cp for the honest obfuscators and Cy for O, and the other time using Cy
everywhere), and finally outputs these two samples and aux’ = (Cp, C1, aux) as auxiliary data. Note that
finding an input x where the two level-1 unit samples differ is impossible, as both implement the same
function.

We next show that the claim remains true with respect to virtual black-box and grey-box obfuscation.
For this we assume that the adversary and the simulator receive some circuit-dependent auxiliary input
aux as additional input, as explained in Section [2]

Proposition 1. The combiner in Figure 1| is a strongly robust 3-out-of-4 combiner for virtual black-box
and grey-box obfuscation with respect to dependent auziliary input.

Proof. Functional correctness follows as in the case of indistinguishability obfuscation. We only discuss
the VBB property here; the VGB property follows analogously.

Consider an adversary Ay against VBB obfuscation. This adversary receives an output sample O’ of our
combiner as input and some auxiliary input aux[0] = aux[0](C'). Let k be again the index of the malicious
obfuscator and this time define L = L(k) € {3,5} as follows. For k& = 4 we would have the malicious
obfuscator O} only on first-level units and we only need to look at the L = 3 second-level obfuscators. For
k € {1,2,3}, on the other hand, the malicious combiner appears in a second-level unit and we thus consider
the L = 5 sound obfuscators, consisting of the 3 obfuscators leading to the second-level appearance of O}
and the remaining 2 honest level-two obfuscators.

Assume now that we change the auxiliary input to include the obfuscator results of our combiner for all
L sound obfuscators defined above. Denote these intermediate results, ordered according to the obfuscator

5Note that we do not need to know the index k of the obfuscator; unlike the construction it suffices that the proof provides
an existential result.
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application, by O[1..L] = (O;,, O;,,Ois,...,0;, ), and let O[1..i] denote the first ¢ entries in O[1..L]. Let
aux[0..7] denote the sample given by a sample of first ¢ obfuscator outputs, together with the (independent)
sample aux[0] of Ay.

Instead of considering Ag(1*, 0’, aux[0]) we construct an algorithm A; which receives 1* and aux|[0..L]
as input, assembles a combiner output O’ from aux[1..L] by possibly evaluating the (level-2) malicious
obfuscator, and runs adversary Agy(1*, 0, aux[0]). Then, clearly, the output distribution of both algorithms
are identical. We can now view A; as an algorithm which receives aux[0..L — 1] as auxiliary input, and
the obfuscated circuit aux[L] together with 1* as regular inputm For this algorithm A;, by assumption
about the security of O;, producing O, , there exists a simulator S¢' (1%, aux[0..L — 1]) with negligibly close
output distribution.

Given S; we construct an adversary A which receives auxiliary input aux[0..L — 2], and 1* and
aux[L — 1] as regular input. It runs S;(1*, aux[0..L — 2]) and uses aux|[L — 1] to answer oracle calls. Note
that, by the functional correctness of O;, ,, using aux[L — 1] to simulate the oracle C' of S is sound
as both circuits compute the same function. We can set this argument forth to eventually obtain a
simulator S¢' (1%, aux[0]), producing some output distribution which is negligibly close to the one of our
initial adversary Ag(1*,0’, aux[0]). This shows VBB obfuscation. O

4 Lower Bounds for Combiners

To illustrate how we use the two required security properties, function preservation and indistinguishability,
against each other to derive our general result, it is useful to demonstrate our technique for some toy exam-
ples. In the examples we use an unspecified notion of indistinguishability of the obfuscators as we merely
highlight the issues; the reader may think for sake of concreteness of the notion of indistinguishability
obfuscation.

4.1 Simple Attempts That Fail

The first attempt to build a secure combiner consists of a single unit and is given in the left hand part of
Figure 4l It uses three obfuscators O, Oy, O3 and runs the input circuit through each of them. Then it
combines the three obfuscated circuits by a majority circuit. Note that this means that this part takes the
circuits and has some input wires for the input z, and it evaluates each circuit on z and outputs y as the
bit-wise majority of the answers. While we cannot break the functional correctness of the combiner with
a single corrupt obfuscator O], we can easily break the indistinguishability property. To this end we take
control of obfuscator O] and let it simply output the input circuit in clear. Note that this means that the
unit, after having been initialized, reveals the input circuit in clear as well, and this easy to distinguish.

In our second example we have two obfuscators O, Os, let the output of them be combined arbitrarily,
and then input the derived circuit into obfuscator O3. Note that in this case it is unclear how to break
the indistinguishability property by corrupting a single obfuscator only. If it is O3 then the obfuscators
of the first unit already hide the input circuit; if we corrupt one of the obfuscators Oy, Oy then the final
obfuscation hides the actual circuit.

We can, nonetheless, in the second example break the functional preservation property. Namely, assume
that both O; and O3 are secure and that there are two potential input circuits Dy, D1 computing different
functions for the same input and output length. If we control O1, then we let it on any input circuit rather
obfuscate D;p. Vice versa, if we control Oy then we let it always obfuscate Dy, independently of the actual
input. It follows that the initialized combiners for Dy (with our malicious Of and with genuine O3) and

"By construction, if we shift the input of a level-2 obfuscator then this is a sample of a level-1 unit, whereas the other
auxiliary inputs are based on the original and functional equivalent circuit C.
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Figure 4: Examples of (insecure) structural combiners

for Dy (with genuine O; and our malicious O%) have the same distribution. For at least one of the two
cases the computed function must then be incorrect, as the initialization samples for both input circuits
Dy, Dy have the same distributions in both cases.

4.2 The General Case of 2-out-of-3 Combiners

The attacks in the simple case show the path for our general impossibility result for 2-out-of-3 structural
combiners. If one of the three obfuscators appears in all units on the path from some level-1 unit to the
final unit, then it can pass on information about the input circuit C' to the final unit. This is done by
forwarding some information about the input circuit in the output of the obfuscator. This would clearly
violate the indistinguishability property. Hence, on all paths there must be a unit which only uses (at
most) the same two obfuscators. But then we can “confuse” the combiner as we did in the second example
above. The argument, however, requires some care to deal with the fact that we have many paths. Note
also that the confusion strategy fails in our 3-out-of-4 construction because the majority of the three
combiners yields the correct function.

For sake of concreteness we use the notion of indistinguishability obfuscation for the obfuscators and
the combiners. Recall that this means that for any functionally equivalent circuits Cy, C; from class C
the combiners initialization with these two circuits must be computationally indistinguishable. To avoid
trivial cases we assume that the class C contains at least two distinct but functionally equivalent circuits
Ey, E1, and that it also contains two circuits Dy, D1 computing different functions. We call such classes
non-trivial.

Since we pass on circuits as inputs we need to fix some encoding. Let (-) denote such a function
mapping circuits from the class C to strings. We assume that the encoding is such that given an encoding
of a unit (after initialization) one can reconstruct the circuits output by the obfuscators. That is, there
exists an efficient algorithm reconstruct such that given any initialization V' «+ U(C;,C5,Cs,...) of a
unit U, including obfuscated circuits O; <+ (’)ij (C;) and possibly pass-through circuits O; = C;, we have
reconstruct((V)) = ((O1),(O2),(03) ,...). Furthermore, we assume that the encoding of no unit coincides
with the encoding of our equivalent circuits Ey or Ej such that it is clear if each (O;) is the result of a
unit initialization or rather one of the circuits Ey or E;. We call such encodings () admissible. Note that
this means that the combiner itself cannot apply any obfuscation techniques beyond the ones provided by
the obfuscators placed inside the unit.

We first show that on any full path (from level-1 units to the final unit) each of the three combiners
does not appear in a unit (and that a unit in which it does not appear is not pass-through). This holds for
any structural combiner, independently of the total number of obfuscators and the number of malicious
ones:
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Lemma 1. Let Comb®102ON be g structural combiner for a non-trivial circuit class C with admissible
encoding (-). Then for any full path of units of the combiner and for any i € {1,2,...,N} there must
be a unit which is not pass-through and which is not an {i,...}-unit, or else the combiner cannot be an
indistinguishable obfuscator.

Proof. Assume that there exists a full path of units and an i € {1,2,..., N} such that each unit on the
path is an {i, ... }-unit or that it is pass-through (or both). Then we show how to break indistinguishability
obfuscation as follows. Let Ey, E1 be some functional equivalent circuits in the class with distinct encodings
under (-). We corrupt obfuscator O; and for each input circuit let it, for each call, simply output the input
circuit in clear, by duplicating the input description.

Since each unit on the pass includes the i-th obfuscator (or is pass through) a distinguisher can
distinguish between a combiner obfuscation of Ey and F; as follows. The distinguisher receives as input
the initialization of the final unit U, and runs reconstruct((U)) to recover all (obfuscated or pass-through)
input circuits O1, Oo, . ... Since the distinguisher knows the layout of the combiner it can recursively apply
the reconstruction algorithm to outputs of the i-th combiner resp. to passed circuits; both are initialized
units. Following the full path in question, the distinguisher eventually obtains either Ey or F; as the input
circuit, and can thus distinguish the two cases easily. O O

We next show that, given that each full path contains a unit in which, say, obfuscator O3 does not
appear, we can confuse the combiner. This time, the claim only holds for 2-out-of-3 combiners:

Lemma 2. Let Comb®v©293 be a structural combiner for a non-trivial circuit class C with admissible

encoding (). Then the combiner cannot be perfectly correct.

In particular, if u denotes the number of units in the structural combiner and m the maximal number
of obfuscator gates in a unit, then with probability at least 27%(mu)™"" (over the random choices of the
obfuscators) the combiner’s function is different from the one of the input circuit. If u and m are constant,
for instance, this means a constant error in functional preservation.

Proof. By Lemma [I] for each path from level-1 units to the final unit there exists a unit which does not
contain, say, the obfuscator O3 and which is neither pass-through. Put differently, such a unit contains
(at most) the obfuscators O1, O, each one possibly multiple times Let Uy, Us,... be the corresponding
units which we call confusion units. In the example in Figure 5| the confusion units on the three paths are
marked by dotted lines.

Figure 5: Confusion units in this example are marked by dotted lines.

We consider two cases, one time corrupting obfuscator Oy, the other time corrupting obfuscator Os. Let
us first consider the case that we corrupt obfuscator Oy. Our version Of of the obfuscator will internally
hold, and formally attributed to the non-uniformity, an initialization sample of Combol’OQ’OB(Dl) with
the genuine obfuscators for input circuit D;. In particular, for each confusion unit U; it will include the
j < 'm circuit codes of Of. [D1] which the original obfuscator @; output in unit U; in this sample. In order
to make our obfuscator state-free we will guess the right insertion positions and injected circuits. That is,
for each call (about some input circuit) our malicious obfuscator OF tosses a coin. If it comes out as head,
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then the obfuscator proceeds as the genuine obfuscator would. If it is tail, then it picks one of the at most
mu circuits O7[D;] at random, and returns this circuit. An example of a run with good guesses is given
in the left part of Figure [f

For the other case we corrupt Oy and now include a sample of Combol’02’03(D0) of the genuine
obfuscators, this time for input circuit Dy. Analogously to the other case denote the output of Oy in the
confusion unit U; by Og [Dp]. When called, the malicious obfuscator O3 also generates an honest answer
with probability %, and inserts one of the pre-sampled circuits Og [Dy], the choice made at random, in the
other case.

Figure 6: Confusion strategy with malicious obfuscator O7 injecting parts of the upper D; initialization sample into the lower
Dy initialization (left), and malicious obfuscator O3 injecting parts of the upper Dg initialization sample into the lower D
initialization (right).

For the analysis we start with the case of a malicious obfuscator O]. Note that, if we let u denote
the number of units in the combiner, then with probability 2% we overwrite the obfuscator’s behavior
exactly for the confusion units, since we predict the status of each unit (confusion or not) exactly with
probability % If so, then we also inject the hardwired circuits O} [D;] “correctly” in confusion unit U; with
probability at least (mu)~™", since we have at most u units with at most m obfuscator gates and need to
guess for each unit correctly among the at most mu possibilities among all O/ [D1]’s. If this happens, and
the combiner receives circuit Dy as input, then in the confusion units we have consistent samples for Oy
gates (if present), as if the combiners input had been D;. See the left part of Figure [6] for an example.
Simultaneously, in the same unit, we have consistent samples for Oy gates (if present), as if the overall
input had been circuit Dy.

By symmetry, the same is true if we control obfuscator O3 and the combiner’s input is D;. Hence, with
probability at least 27%(mu)~™" either case creates the same output distribution. If this happens, then
on each path to the final unit the corresponding confusion unit produces the same distribution upon the
single initialization in both cases. It follows that the combiner must implement an incorrect function in
one of the cases, showing that functional preservation is not satisfied. It follows that the combiner cannot
be perfectly correct. O

Noting that the combiner cannot work even if 2 of the 3 obfuscators both have both properties si-
multaneously, the previous lemmas imply that there are not even weakly robust 2-out-of-3 combiners for
indistinguishability obfuscation. It follows that there cannot exist stronger forms of structural combiners
either, such as 1-out-of-2 combiners, strong combiner, or virtual grey-box combiners.

Theorem 2. For any o € { VBB, VGB, indistinguishability, differing-inputs} there is no structural weakly
robust 2-out-of-3 o-obfuscation combiner Comb®C293 for non-trivial circuit classes C with admissible
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encoding ().

5 The General Case of (2v[+1])-out-of-(37[+1]) Combiners

In this section we present a generalization of our 3-out-of-4 combiner to the case of (27 + 1)-out-of-(3y+1)
combiners for any fixed integer . In fact, our combiner for v = 1 in Section [3] can be seen as a special
parallelized version of the general approach here. We then discuss that our lower bound for 2-out-of-3
structural combiners also carries over to the more general case of 2y-out-of-3vy combiners, showing that
our general combiner here is optimal in this regard.

5.1 Robust (27 + 1)-out-of-(3vy + 1) Combiners

Consider all sets I of subsets of {1,2,...,3y+ 1} of size 2y + 1. For each such set I form the unit which,
similar to our 3-out-of-4 case, first in parallel obfuscates the input circuit with each obfuscator O; for i € I,
and then compute the majority circuit over all these 2y 4+ 1 obfuscated circuits. We write

O1(-) = MAJ{O,(") | i € I}

for this unit. To obfuscate a circuit C' compose each of these units for all the I’s sequentially, in arbitrary
order. Let us denote this process by

(100 =01,(-+- O (00 (-))--)
I

for constant ¢ = (;’11}) Call this the sequential-subset combiner for ~.

Intuitively, the sequential-subset combiner guarantees robustness as there exists a subset I such that
this subset only uses the 2y + 1 uncorrupt obfuscators. At the same time each circuit O; computes the
correct function as the majority of the 2y 4 1 obfuscators faithfully computes the correct function.

Theorem 3. For any constant v the sequential-subset combiner is a strongly robust (2 + 1)-out-of-
(3y+1) combiner for indistinguishability obfuscation, for differing-inputs obfuscation, for virtual black-box
obfuscation, and for grey-box obfuscation, the latter ones for dependent auxiliary inputs.

The proof is similar to our 3-out-of-4 combiner. Functionally correctness follows from the fact that the
majority computation in each Oj, ensures that the at most -y corrupt obfuscators cannot bias the outcome.
Obfuscation follows as before because there must exist one set I which exclusively contains non-malicious
obfuscators.

5.2 Impossibility for 2v-out-of-3v Combiners

In this section we discuss that our lower bound for 2-out-of-3 structural combiners carries over to the more
general case of 2v-out-of-3y combiners.

027”'7

Theorem 4. There is no structural weakly robust 2v-out-of-3y combiner Comb®r 37 for non-trivial

circuit classes C with admissible encoding -).

Proof. Recall the proof for the 2-out-of-3 case. There, in the first step we have shown that on each path
from a level-1 unit to the output unit there must be a unit in which obfuscator O3 does not appear and
which is not pass-through. We called these units confusion units.

The same argument now applies here as well for the v obfuscators with indices 2y +1,...,3~. Else, if
there was a path in which one of these obfuscators appears in each unit (or if the unit is pass-through),
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then we could easily corrupt these obfuscators and forward information about the input circuit through
the admissible encoding (). Hence, in the case here there must be a confusion unit on each path, which
only uses circuits with indices 1, 2,...,2y and which are not pass-through.

In the second step of the proof for the 2-out-of-3 case we then show that in the confusion units with
obfuscators @7 and Oy we can confuse the combiner. One time we corrupt @7 and let it insert samples of
circuit Dy, and the other time we corrupt Oy and insert samples for Dy, where Dy, D1 compute different
functions. Then the combiner’s view when run on input Dy in the first case, and on D1 in the second case,
has the same distribution and the combiner cannot provide functional correctness.

We apply the same argument here, one time corrupting the first v obfuscators with indices 1,...,~ and
inserting a sample for D1, and the other time corrupting obfuscators with indices between v + 1,...,2vy
and using a sample for Dy. Then the combiner’s views in both cases (for input circuit Dy in the first case,
and for D; in the second case) are identical again such that it cannot provide a correct combiner.

As in the 2-out-of-3 case the malicious obfuscators above insert the confusion samples at random
positions, such that it only achieves confusion with the same bound as in the previous case. Note also that
we took advantage of the fact that corrupt combiners are coordinated centrally by the adversary. O

6 Detecting Combiners

The combiners in the previous section were correcting in the sense that they guaranteed functionality
correctness if a quorum if obfuscator candidates is secure. Here we consider combiners which should create
circuits which either output the correct value, but may give some error output L. We call them detecting
combiners.

For detecting combiners we require a weaker correctness property, namely that for any circuit C € C,
for any O < Comb®1:92(C) we have that O(z) € {C(z), L} for all z € {0,1}* in the domain of C. This
means that the combiner may sometimes fail to compute the correct function value but then it signals this
by outputting a special symbol L. To prevent trivial solutions like the combiner which outputs the circuit
that always returns L we assume that C' = O if all obfuscators are secure. Note that our assumption about
the obfuscators Oy, Os, ... being able to deal with (intermediate) combiner outputs in C*°™ implies that
the obfuscators may now also receive circuits which occasionally output L.

6.1 Robust (v + 1)-out-of-(2v + 1) Detecting Combiners

To build our (v + 1)-out-of-(2y + 1) combiner we follow the approach of our sequential-subset combiner.
We can also straightforwardly give the optimized version for the case of a 1-out-of-3 combiner, akin to our
1-out-of-4 combiner, but omit this step here. To build the sequential-subset combiner consider here all
sets I of subsets of {1,2,...,2v+ 1} of size 7 + 1. For each such set I we first obfuscate the input circuit
with each obfuscator O; for ¢ € I. But now instead of completing the computation by adding a majority
sub circuit, we now use the detecting version which (a) either outputs the string on which all circuits agree
upon as output (even if it is L), or (b) returns L is there is no such unanimous decision. Let

O1(-) = UNAN{O;() |ie I}

denote this unit with the unanimity circuit at the end. For obfuscation of C' now compute the sequential-
subset combiner

(ITON() = O, (-+- O, (O, (01, (-))) - +)
I

2’y+1).

as before for constant ¢ = (V o
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Theorem 5. For any constant vy the sequential-subset combiner is a strongly robust (74 1)-out-of-(2y+1)
detecting combiner for indistinguishability obfuscation, for differing-inputs obfuscation, for virtual black-box
obfuscation, and for grey-box obfuscation, the latter ones for dependent auxiliary inputs.

The proof is similar to the case of correcting combiners, except that we only guarantee the weaker
functional correctness. This property is given since in each unit for index set I there is at least one honest
obfuscator among the v+ 1 ones, the unanimity circuit either outputs the function value computed by the
honest obfuscator (if all other circuits agree), which may either be the correct function value for some z
or L, or it returns the error message L. It follows that the overall output of the combiner circuit can only
comply with the circuit’s output, or returns 1. The obfuscation properties follow as before noting that
the obfuscators are able to handle input circuits with output L, and that there must exist an index set [
which only contains good obfuscators.

6.2 Impossibility of v-out-of-2y Detecting Combiners

The idea for the lower bound for correcting combiners carries over to detecting combiners, with

pO1:02;..5

Theorem 6. There is no structural weakly robust y-out-of-2y combiner Com O2y for non-trivial

circuit classes C with admissible encoding (-).

Proof. As in the case of 2-out-of-3 combiners and 2v-out-of-3y combiners, here, there must be also (non-
pass-through) confusion units in each path from input units to the final unit, where none of the obfuscators
with indices v+ 1,...,2vy appears. Assume now that we corrupt the obfuscators with indices 1,...,~ and
let these obfuscators insert intermediate samples of a circuit Dy of the combiner’s obfuscation in the
confusion units, independently of the input. If the insertions happen at the right position with significant
probability, then the combiner must output an obfuscated circuit as if the combiner has been run on Dy
for honest obfuscators. In particular, the combiner’s circuit must then compute the function Dy on every
input. This holds even if the original input circuit was D, computing a different function than Dy, i.e.,
Dy(z) # Di(z) for some string z. But then the combiner’s circuit produces a false output Dy(z) # L for
input z and cannot be detecting. O

7 Implementation and Evaluation

Our formal results have been stated in terms of the common notion of circuit obfuscation. In practice, how-
ever, programs are usually considered to be better modeled for Turing machines. We stress that our results,
especially for the majority-based combiner, hold for such Turing machine programs as well. Namely, our
3-out-of-4 combiner would then output the program implementing the nested majority implementations.

Concerning provably secure instantiations for Turing machine obfuscation, we note that if the running
time and the input length of the Turing machine are bounded then one can in principle transform such
machines into corresponding circuits, albeit at the cost of increasing the complexity significantly. A more
efficient solution is to use obfuscation techniques for Turing machines directly. Given the current state of
constructions this is possible if the input length can be bounded [KLW15] and, for other constructions, if
the space is also bounded beforehand [CHIVTH, BGL™15].

To evaluate the suggested combiners for typical obfuscation programs in practice we implemented
the PyObf python package [Binl6] that can be used to wrap existing obfuscators and to implement
new combiners. Even though the conceptual construction of a combiner is not related to the concrete
implementation of the underlying obfuscators, implementations for different programming languages might
differ, since some constructions introduce new run-time parts (e.g., as the MAJ circuit in our case) to
the program. We chose to use JavaScript as the implementation programming language because of the
relatively high number of available obfuscators.
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7.1 Performance Evaluation

For performance evaluation we used Yahoo!’s YUICompressor v2.4.8[§] as (01, a slightly randomized version
of it as Oz, Google’s Closure Compiler V20151015ﬂ as Os, and jsPacker.pl Vl.OObET] as Oy4. Note that
there is no essential difference between O and Os, especially in terms of obfuscation overhead, since the
latter only uses different and randomized symbol selection routine. Security of combiners usually relies on
somewhat independent components but since we are mainly interested in performance evaluation here we
opted for using the related choice. The evaluated combiners are:

C1(.) = 04(03(02(01(1))))
Ca(.) = 02(01(04(03(.))))
C3(.) = MAJ(01(023,4), 02(01,3,4), 03(01,2,4))
Cy(.) = MAJ(03(04,1,2), 04(031,2), 01(034,2))

The evaluated programs (with varying input size, ranging from a few thousand bytes to a roughly million
bytes) are Cookies.js v1.2.9'| (6,637 bytes), Highlight.js v9.0.0"%[ (22, 604 bytes), jCarousel v0.3.4"°| (46, 007
bytes), Backbone.js v1.2. (71,415 bytes), Chart.js v1.0. (109,612 bytes), Epoch v0.8. (115,940
bytes), Swig V1.4.ﬂ (143,975 bytes), PhysicsJS V0.7.qT_g] (171, 847 bytes), jQuery v1.6.4[1—_g] (238,166 bytes),
Raphaél v2.1.47 (304, 254 bytes), Dojo v1.10.4%T (629,481 bytes), Video.js v5.4.4%% (675,527 bytes) and
AngularJS v1.4.5%| (1,052,336 bytes).

Note that the above circuit model describes a program as a function with input and output, in contrast
to the common software design of JavaScript libraries that heavily depends on the JavaScript context (e.g.,
the window object). But this difference is irrelevant to performance evaluation.

Figure [7] gives the effectiveness of the obfuscators in terms of obfuscation time and of output-bloat
ratio. Here we show the figures in relation of the sizes of the various programs (from 6,637 bytes to
1,052,336 bytes) given as input to the obfuscators. Note that the results may depend heavily on the
specific input programs such that we cannot expect perfectly monotonic behavior in the graphs. Also, as
mentioned before, many practical obfuscators come with techniques for code size reduction such that the
output bloat ratio can be—and often is—smaller than 1. Next, we compare these figures to the results of
the suggested combiners, first to the cascade combiners in Figure [§ and then to the 3-out-of-4 combiners
in Figure [9]

In summary, the proposed obfuscation combiners do not add significant run time overhead compared
to a single obfuscator. The factor is roughly proportional to the number of invoked instances, with some
gains presumably due to the intermediate code optimization. Due to the advanced compression techniques

Shttps://github.com/yui/yuicompressor
“https://github.com/google/closure-compiler
Ohttp://dean.edwards.name/download/
"https://github.com/ScottHamper/Cookies
2https://highlightjs.org
3http://sorgalla.com/jcarousel/
“http://backbonejs.org/
http://www.chartjs.org/
Yhttp://epochjs.github.io/epoch/
"http://paularmstrong.github.io/swig/
®http://wellcaffeinated.net/PhysicsJS/
Yhttps://jquery.com/
2Onttps://github.com/DmitryBaranovskiy/raphael
2"https://dojotoolkit.org/
Znttp://videojs.com/
2’nttps://angularjs.org/
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Figure 7: Overhead of individual obfuscators (time and output bloat ratio) for the various programs (in relation to their input
sizes for the obfuscator). Note that we do not display obfuscator Oz here as its performance is essentially identical to the one
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Figure 8: Overhead of cascaded combiner (time and output bloat ration).

the code size of our cascaded combiners is in the same order as the individual obfuscators. For the 3-
out-of-4 combiner we of course get an increased output size because of the tripling for each majority step,
potentially also hampering some code reductions.

7.2 Security Evaluation

Due to the unclear situation about security properties of practical obfuscators we have proven robustness
of our combiners with respect to the common theoretical notions of obfuscation in the literature. There
are approaches to define metrics for practical obfuscators, though. A first approach is by Collberg at
al. [CTLI7] who define notions for potency (the incomprehensibility of the transformed program for hu-
mans), resilience (the hardness of undoing the transformation through the joint effort of engineers and
deobfuscation techniques), and cost (the overhead caused by the obfuscator). The measure of quality of
an obfuscator is then given by a vector of these three metrics.

While the notion of cost in [CTLI7| even distinguishes the full range between exponential and constant
overhead in execution resources, the metrics for potency and resilience in [CTL97| are less rigorous. They
are accompanied by suitable software complexity measures such as program length or cyclomatic complex-
ity [McC76]. Anckaert et al. [AMS™07] later used software complexity measures, too, for establishing a
benchmarking system for obfuscators for binary executables.

While it is beyond the scope of our work here, it may be interesting to benchmark our obfuscation
combiners according to the metrics in JAMST07]. Note that their metrics focus on resilience and somewhat
neglect the overhead. Since our combiners in principle increase the software complexity at the cost of
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Figure 9: Overhead of 3-out-of-4 combiner (time and output bloat ration).

incurring additional steps, one should expect that combinations of benchmarked obfuscators yield better
values in this regard.

It should be noted, however, that the theoretical notions also supply some form of guarantees for the
usual security requirements for practical obfuscators. Take for example the obfuscation of variable names
(sometimes called lexicographic obfuscation) or of loop structures (also called control flow obfuscation),
which is typically aspired by such obfuscators. One can either view this as some property 7(C) of the
program C, and then VBB and VGB obfuscation even guarantee that any predicate 7(C) is infeasible
to compute —this is an equivalent formulation to the given one here— or, taking the viewpoint of indis-
tinguishability obfuscation, one may argue that different starting variable names or equivalent structures
cannot be distinguished after obfuscation anymore, also supplying some form of hiding.

7.3 Experiments with Malicious Obfuscators

In order to evaluate the proposed combiners in terms of practical leakage, some malicious obfuscators
needed to be tested. The only demand from a malicious obfuscator is that its output will leak some
information about the original program, we call this information the leak object. In our evaluations the
leak object was chosen to be the encrypted original program along with the wrapped encryption key. There
are several leakage methods that can be considered:

In-code leakage: The in-code leakage method simply embeds the leak object in the obfuscator’s output
in some way the adversary can detect later. This leakage method is for example prevented by the
cascade combiner.

Run-time leakage: This method adds a leaking code stub to the obfuscator’s output. The stub outputs
the leak object if some “magic” input values are in place. This leakage method is not prevented by
the cascade combiner but is prevented for instance by the 3-out-of-4 combiners.

External leakage: In contrast to the previous methods, with this method the leak object is leaked
using an external output mechanism. As before, this leakage method is prevented by the 3-out-of-4
combiners with the restriction of disabling of external interfaces.

Side-channel leakage This leakage method can use some side-channel (e.g. computation time, power) to
leak the leak object. At first, it seems that timing side-channel can be prevented by fixing a constant
computation time but fixing a limit to the computation time might introduce a new, distinguishable,
error flow. This error flow can be abused by the adversary to leak the information by choosing
whether to delay the computation above the limit or not. Also, it seems that the power side-channel
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cannot be prevented easily. Indeed, such side-channel attacks are due to imperfections of running
over practical computers; in particular, such attacks are not relevant for the circuits model.

We have implemented the in-code, runtime and external leakage methods for YUICompressor as part
of PyObf and confirmed the expected results. The cascade combiner only mitigates the in-code leakage
method whereas the 3-out-of-4 combiner is able to protect the source code from run-time leakage as well.
These (simple) implementations demonstrate the challenges of combining obfuscators. (A reference will
be added in non-anonymized version.)

8 Conclusion

Our positive results about combiners, and also our lower bounds, indicate how to proceed both in theory
and practice. If you only have two available candidates then the best solution appears to be the sequential
composition Oz(O1()), if one can somehow guarantee that the inner obfuscator provides functional cor-
rectness. For three candidates (out of which at least two are sound) then our 2-out-of-3 detecting combiner
should be the primary choice. To ensure correct output, our 3-out-of-4 combiner provides a secure solution.
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