Fixed-Point Arithmetic in SHE Schemes

Anamaria Costache®, Nigel P. Smart!, Srinivas Vivek!, and Adrian Waller?

! University of Bristol, Bristol, UK.
2 Thales UK Research and Technology, Reading, UK.

Abstract. The purpose of this paper is to investigate fixed-point arith-
metic in ring-based Somewhat Homomorphic Encryption (SHE) schemes.
We provide three main contributions: firstly, we investigate the represen-
tation of fixed-point numbers. We analyse the two representations from
Dowlin et al, representing a fixed-point number as a large integer (en-
coded as a scaled polynomial) versus a polynomial-based fractional repre-
sentation. We show that these two are, in fact, isomorphic by presenting
an explicit isomorphism between the two that enables us to map the
parameters from one representation to another. Secondly, given a com-
putation and a bound on the fixed-point numbers used as inputs and
scalars within the computation, we achieve a way of producing lower
bounds on the plaintext modulus p and the degree of the ring d needed
to support complex homomorphic operations. Finally, as an application
of these bounds, we investigate homomorphic image processing.

1 Introduction

The efficiency of Somewhat Homomorphic Encryption (SHE) schemes has im-
proved dramatically in the seven years since their discovery by Gentry in 2009 [7].
The main effort in research now is to obtain practical schemes for a given class
of interesting functions; since practical Fully Homomorphic Encryption seems
out of reach using existing techniques.

When proposing to use SHE schemes in an application a key issue is how to
map the data types of the application to the supported data types of the SHE
scheme. Most theoretical treatments consider SHE schemes which work over
bits, and the application is assumed to be the evaluation of some binary circuit.
In practice this is likely to be very costly, and so some authors have considered
other scenarios in which the computations are performed over arithmetic circuits
or polynomial rings [6, 8, 11].

At their heart almost all SHE schemes make use of a plaintext space R,,
which is the reduction modulo p of a polynomial ring over the integers R. We
shall refer to p as the plaintext modulus, which is often selected to be a prime.
The ring is frequently selected to be the ring of integers of a cyclotomic number
field; i.e.

R =7Z[X]/®m(X).

In considering an application one has a number of factors to balance; first the
SHE multiplicative depth of the functions which can be evaluated; secondly

the plaintext modulus p and thirdly the security level required. These all im-
ply bounds on the degree of the ring one is using; and hence the efficiency of
the application®. Of importance in what follows is that an SHE scheme has a
maximum multiplicative depth limiting what can be evaluated. In practice this
consists of a number of levels, where each ciphertext is associated to a specific
level. Multiplication of ciphertexts at levels iy and i; results in a ciphertext
at level max(ig,i1) + 1; whereas scalar multiplication is equivalent to the ad-
dition of roughly half a level. Once the maximum level is obtained, no further
homomorphic operations are possible.

The first obvious method is to move away from binary circuits is to consider
plaintext moduli other than p = 2, and hence to evaluate arithmetic circuits.
Indeed the first application of SHE schemes to obtain an efficiency improvement
upon other technologies did precisely this; for example the use of large plaintext
moduli p in the SPDZ protocol [5]. However, using arithmetic circuits is also
limited. For example, suppose one wished to perform integer arithmetic. In that
case, naively increasing p to a large enough value to cope with the largest integer
the application could obtain would impose considerable performance penalties.

One can think of using a large plaintext modulus p as using a plaintext space
which is long and thin. Some authors have tried to balance the choice of p and
the degree d of the ring R to obtain more efficient representation of integers,
akin to a more short and fat plaintext space [11]. A problem overlooked by
many authors is how to select p and d to enable such a plaintext representation
of integer valued payloads; and in particular to bound p and d as a complex
homomorphic operation is performed. This is the first problem we consider in
this paper. Given a computation on integers, and a bound on the input integers,
we are able to produce lower bounds on p and d needed to support such a
homomorphic calculation. Our main general technical contribution is to derive
such lower bounds on p and d.

Given an ability to process plaintext messages consisting of large integers the
next task is to process fixed-point numbers. A number of authors have consid-
ered methodologies for this, most notably Dowlin et al [6]. Dowlin et al present
two efficient methods to represent fixed-point numbers. In the first they encode
a fixed point number as a scaled integer (which they then encode as a polyno-
mial), whilst in the second they utilize a fractional representation (also based on
polynomials). The advantage of the former method is that it is easier to analyse
and it can be applied for any polynomial plaintext ring R,. However, it also
requires complex bookkeeping of the homomorphic ciphertexts during a calcula-
tion to ensure that the fixed-point numbers are correctly scaled. The fractional
representation avoids such bookkeeping, but it appears harder to analyse so as
to derive parameters which will support the homomorphic operations. Further,
it requires R to be selected to be a cyclotomic ring Z[X]/®,,(X), where m is
a power of two. We show that the two representations are in fact isomorphic,
when used with the same power of two cyclotomic ring; we present a concrete

3 In this paper we will ignore issues such as SIMD operations obtained by selecting p
and m in a special manner, see [12, 4, 8] for details

isomorphism between the two underlying rings and hence are able to map our
parameters from the first representation to the second.

As a way of illustrating the use of our bounds, in Appendix A we analyse
a relatively complex but useful fixed-point algorithm namely the Fast Fourier
Transform (FFT). This is needed to perform applications such as homomorphic
image processing. When examining fixed point algorithms for addition and mul-
tiplication it is be immediately seen that one needs to consider the homomorphic
levels which a given calculation will consume. However, additionally, one must
also consider how much the fixed point calculation increases the demands on the
plaintext space, with repeated scalar multiplication being particularly costly.
This is particularly interesting for the FFT algorithm, since at its heart it is a
linear operation performed in a recursive manner (with an FFT of size n reduced
to two FFTs of size n/2). This recursion decreases the number of scalar multi-
plications needed, but increases the depth of the scalar multiplications needed.
The naive Fourier Transform is also a linear operation, but it consists of only
scalar multiplications of depth one. Thus one has a trade off between reducing
the number of operations against the required depth. In spite of the independent
usefulness of computing the FFT homomorphically, we underline that this is just
a minor application of our bounds, given as a purely illustrative example.

Thus in Appendix A we consider the homomorphic evaluation of an FFT
operation in a standard image processing pipeline. We examine the resulting
homomorphic algorithms, given bounds on the plaintext spaces derived from our
earlier analysis, and present runtimes obtained from an implementation using
the HEIib library [9]. Whilst we are not able to process large images in the
encrypted domain, one notes that processing of tiny (32 x 32 pixel) images have
found application in some domains, e.g. [13]. In addition, even when processing
large images, they are often divided into smaller patches during the processing
pipeline.

2 Integer Arithmetic

We first consider the simpler case of integer arithmetic; it will turn out that
once this is solved fixed-point arithmetic can be built on top of the integer
arithmetic. We wish to process an arithmetic circuit over the integers where the
input encrypted integers, and scalars, come from multiple ranges [—L;, ..., L;]
(L; > 0). Allowing different ranges for different inputs and scalars will result
in more accurate bounds when we come to consider the FFT algorithm later.
Clearly as the circuit is computed the bound on the size of the integers increases,
and it is this growth in size which we need to deal with if we are to be able to
cope with integers encrypted via our SHE scheme.

As a warm up we consider the simpler case where we wish to compute a
“regular” integer circuit which consists of at most A > 0 additions at each “level”
in the circuit, and then, at each level, a layer of multiplications are performed.
The multiplicative depth of the circuit will be denoted by M > 1. In addition, to
simplify this initial discussion, we assume all scalars and inputs are in the same

range, i.e. we fix L; = L for all i. Clearly the output values from such a circuit
will have absolute value bounded by

LA = (B2 a) 2 2 a2 2t (1)
As explained in the introduction, natively the SHE scheme will encrypt polyno-
mials modulo p, with degree bounded by d. The obvious natural encoding for
integers is the scalar encoding method. In this encoding method an integer is
encoded as the constant polynomial, then integer addition and multiplication
become addition and multiplication modulo p. To ensure correctness we then
require that p > 2 - L;‘,‘;é‘;{ , and hence p has to be very large indeed. This would
make the SHE scheme highly inefficient, even for very low depth circuits.

2.1 Representing Integers As Polynomials

This led some authors, e.g. [11], to introduce the following method of encoding
an integer, which we call the non-balanced base-B encoding method. We encode
integers as an integer polynomial in base B, for some base value B to be deter-
mined. The polynomial will have negative coefficients for negative integers, and
positive coefficients for positive integers. Thus we encode the integer as a poly-
nomial with coefficients in the range [—(B — 1),..., (B — 1)]. In particular this
implies an integer in the range [—L;, ..., L;] on input is encoded as a polynomial
of degree at most
dron=Bal = |log L;/log B|.

We are interested in how the infinity norm, and degree, of the polynomials
increases as we pass through the circuit. Where for a polynomial P(X) = py +
p1- X + - pa- X we have ||P||oc = max;—o, 4 |p;|. Thus for this input/scalar
integer at circuit level O the infinity norm of our polynomials is bounded by
Bpon—BaI — B-—1.
2,0

Another method, considered in [6], is the balanced base-B encoding. The
integer is now encoded as a polynomial with coefficients in the range [—(B —
1)/2,...,(B —1)/2] for an odd integer B > 3. Any polynomial can now have
both non-negative and negative coefficients. This method overcomes a limitation
of the previous method that wasted part of the plaintext space by allowing only
polynomials with coefficients of the same sign. At level 0, our integer is encoded
as a polynomial of degree at most

d® = [log(2- L; +1)/log B] — 1. (2)

The infinity norm of our input polynomials is bounded by BP3' = (B —1)/2.

In a later section we outline how to obtain bounds on the degree and infinity
norm of the polynomials as we perform a calculation via an integer circuit. It will
turn out that the optimal choice in the above two polynomial representations
is to use the balanced base B = 3 representation, so in particular we select
BES' =1 for the rest of this paper.

3 Fixed-point Arithmetic

In this section we present two encoding methods for fixed-point arithmetic, in-
troduced in [6], we then show that these two representations are isomorphic. To
illustrate the techniques, we will use the two fixed-point numbers below through-
out

172 8
y =6.370370... = o7 and y' = 2.6666666 ... = 3’

which in balanced base B = 3 representation are given by
y = 110.101 and 3 = 10.1,

where 1 = —1. The first method represents the fixed-point number as an integer,
along with a “scaling parameter”. Thus the fixed point number y is represented as
the integer 172, along with a scaling factor of —3. The integer 172 being encoded
as a polynomial via the balanced base-B encoding of the previous section.

The second encoding method takes the integer and fractional part of the
fixed point number seperately; it then encodes each part as polynomial (via
the balance base-B representation of the associated integer) and then finally
encoding the integer part in the lower plaintext coefficients, and the fractional
part in the upper plaintext coefficients.

3.1 Balanced Base-B Encoding

The first method we use to represent a fixed-point number uses two integers,
one representing the number and the one representing by which power of B one
needs to decode. Thus this method requires a level of book keeping in order to
keep track of the second integer. Let y be a real fixed-point number, and denote
by y = yT.y~ its integer and fractional parts (upto desired precision) in balanced
base-B representation. We then let I™ be one less than the number of integer
digits and I~ be equal to the number of fractional digits; thus we can write

gt =bpe B b BT T by B by,
y =b B b, -B T 4 4b B 2+b B!
where b; € [-(B —1)/2,...,(B —1)/2]. Thus we can express y as

I+
y= > bi-B"

i=—1-

We then represent y as the pair of integers (y - B! ,I7) = (¢,i). The integer
¢ can then be represented by a polynomial ¢(X), by replacing B in the above
expression by X, to obtain the final representation (g,%). Thus we have

Go(X) =brs - X7+ bpe - XTT T o by X by,
ql(X) = b_[— +b_1—+1 X—|— +b_2 'X17_2 —|—b_1 -)(17_17
a(X) = qo(X) - X'+ q1(X).

The degree of the polynomial ¢(X) above is deg(q) = I~ + I'", and to recover
the fixed-point number y from a pair (q,4) we compute y = q(B) - B~*. For our
two example fixed-point numbers above we have y = (¢,4) and ' = (¢/,4’) where
i=3and i =1 and
X)) =(X?-X)- X} + (X2 +1) =X - X"+ X2 +1,
¢(X)=X-X-1=X>-1.
Given this encoding we can now define how to perform basic arithmetic on the
encoding.

Addition: Suppose we have two pairs (g,7) and (¢’,47’) encoding the fixed-
point numbers y and y’, respectively. Write them as above, namely ¢(X) =
qo(X) - X' + ¢1(X) and similarly for ¢/(X). Now if i # i/, this means that
the encodings are not at the same “fixed-point level”? and thus the numbers
they represent are expressed with a different number of significant digits. Thus,
before adding two encodings we must ensure that they are at the same level, by
multiplying one by a suitable power of X. Thus if we let I = max(i,4"), we have
that (q,7) + (¢',#') = (@,), where

q+q - X177 if i >4’
@n={lra X 0 ey
(¢ +q- X711 if i > 1.
To see that this indeed corresponds to fixed-point addition, notice that, assuming
t >4, that
Q(B) 'B_I _ (q+q/'BI_il) _B—I ZQ'B_I+q/'BI_i/ 'B_I
:q.Bii_‘_q,.Biil :y+y/
For our two example numbers we have, i = 3 > ¢/ = 1, so that
Q=q+¢ X*=(X° X"+ X>+1)+(X*-1)- X*=X"+1,

and I = max(3,1) = 3. To check correctness, notice that Q(B) - B~2 = B? +
B73=9+1/27=9.037037... as required.

Multiplication: Multiplication is more straightforward, we simply perform
(Q7Z) : (q/ai/) = (q : qlai + Z/) = (Q7I)’

with correctness being obvious. For our two example fixed-point numbers we
have the product representation being given by

Q=X°-X*+X?+1)-(X2-1)
=XT-X0_X542.X4—1

and I =i+1i =3+ 1 = 4. To check the correctness we note that Q(B) - B~* =
1376/3* = 16.987654 . . . as required.

4 Not to be confused with the associated level in the SHE scheme once we encrypt the
polynomial.

The ring 9R1: We now define a ring $R; out of the above operations. We define
the underlying ring as pairs (q,i) where ¢ € Z[X]/®,(X) and i € Z/¢p(m)Z,
where ¢(-) denotes the Euler’s totient function, where in practice we will take m
to be a power of two. We define addition and multiplication as above, but now
take the resulting pair modulo @,,(X) and ¢(m).

Theorem 1. With the above definitions Ry is a ring.

Proof. The additive identity in 2R; is the pair (0,0), which corresponds to the
fixed-point number 0. The additive inverse of any element (g,i) € Ry is (—q, 7).
It is clear that these two elements sum up to (0, 0). Thus R; is an additive group;
the fact that it is abelian is immediate.

The multiplicative identity is (1, 0), corresponding to the fixed-point number
1. The associativity of the multiplication is trivially implied by associativity of
(modular) polynomial multiplication and (modular) integer addition. We show
that distributivity of multiplication over addition holds, thus completing the
proof.

Let (q1,%1), (g2,i2) and (g3, i3) be three elements of ;. Without loss of gen-
erality, assume that i3 > i3, then

(q1,11) - ((q2,2) + (gs,73)) = (q1,71) - (g2 + g3 - X277, ia)
=(q-q2+aq g3 X?7% i + i)
=(q1 q2+aq-gqs- XHTTis,
max(i1 + 42,91 +i3))
= (q1 - q2,%1 +1i2) + (q1 - g3, 91 +i3)
= (q1,71) - (g2,72) + (q1,71) - (g3, 3). o

This representation of fixed-point numbers in the ring $R3; enables us to bound
the degree of the polynomial and the coefficients, after a number of homomorphic
operations, relatively easily, using the techniques in the next section. Of course
it also implies that if we perform too many operations the degree of ¢ will
become too large and the polynomial will wrap around modulo &,,(X). Thus
the complexity of the operations one performs not only provides a lower bound on
p, i.e. an upper bound on the polynomial coefficients, but also a lower bound on
the ring degree. These bounds enable us to set parameters for the SHE scheme.
However, in performing homomorphic operations we not only need, for each pair
(g,1), to keep the ciphertext corresponding to the plaintext ¢, but we also need
to keep track (in the clear) of the value i.

3.2 Fractional Encoding

The second method we use to represent fixed-point numbers dispenses with the
need to keep the second component i of our first representation. On the other
hand it requires us to work in the cyclotomic ring R = Z[X]/(X"™ + 1), where
n is a power of two. Again we let y = yT.y~ denote the fixed-point number as

above, written in balanced base-B representation with It + 1 digits in y* and
I~ digits in y~. We again write

y+:b[+'BI++b[+_1-BI+_1+'~'—|-b1'B+b0,
y =b_; BT +b_, 4 -BT T 4b B 240, - B

where b; € [-(B—1)/2,...,(B—1)/2]. We then encode the fixed-point number
y in the ring R by the polynomial

P:ZXibi* Z X",

i<I+ 0<i<I-
= po(X) + p1(X) - X", (3)

where po(X) = >, 7+ X'b; and p1(X) = =Y g ;<;- b—i - X1 %, with 9y and
01 — 1 being the degrees of pg(X) and p1(X), respectively. Thus 09 = I is one
less than the number of digits in the integer part y* and 9; = I~ is the number
of digits in the fractional part y—.

Given a polynomial ¢(X) of this form we can recover the fixed-point number
it represents. We will need to know an upper bound for our calculation on pg(X),
which can be easily calculated from the formulae below. We then take p(X) and
split it into two polynomials pg and p; as in equation 3 (using the upper bound
on the degree of po(X) to resolve any ambiguity). We can then recover y by
setting

y =po(B) —pi(B) - B~
where we utilize the ring equation X™ + 1 = 0.

For our two example numbers y = 6.370370. .. and v’ = 2.666666 . . . we have

y represented by p, and 3y’ represented by p’, where

p=(X*-X)-(X?>41)-x"3
p=X—(-1)-x"%

In both the cases above we have that, in terms of the representation (¢ = qo
X%+ qp,i) of, say, y from Section 3.1, we have py = qo and p; = ¢;. We have
00:2,06:1,01=3and0’1:1.

Our second ring fR, is the representation above, i.e. the set of polynomials
modulo X + 1, which is trivially a ring. We now show that addition and multi-
plication in this ring corresponds to addition and multiplication of the encoded
fixed point values.

Addition: Let p(X) = po(X) + p1(X) - X* 7 and p'(X) = p)(X) + pi(X) -
X" be two polynomials as described above, encoding y and 1/, respectively. To
perform addition we simply add the associated polynomials as follows, without
loss of generality, assume that 9, > 0/,

p+p = (po+pi- X ") 4 (ph+ph - X"T0)
=(po+py) + P - X" =Py4 P - X",

where Py has degree max(dg,0() and P, has degree max(d1,0]). The polynomial
Py will in fact be P, = py + p} - X°1 701,
For our two example numbers, their addition therefore has the encoding
pp = (X7 = X) = (X2 +1)- X"7%) 4 (X = (=1)- X"7)
—_ X2 o anl o Xn73 +Xn71 —_ X2 o an?),

which agrees with the numerical value of their sum.

Multiplication: Let p(X) = (X)+p1(X) X" and p! () = (X)+p1(X)~
X" be as above. We write po pl=ro+mr - X vand p)-pr =rh 44 - X0,
where deg(rg) < d) — 1, deg(r1) < 99 + 0} —d] = o, deg(ry) < 91 — 1, and
deg(r}) <0 + 01 — 01 = 0(, Then the product y -y’ is encoded by the product
of the two polynomials modulo X™ + 1,

p-p = (po+pi-X"77)- (p6+p’1 -X"_a/1>
=po - Ph+poPh - X" 4 pl e pr XU 4y ph - X2
=po-pp+pi-py- XN
+(ro4r - X01) . X" 4 (ro+rp- X%) . X"
=po-ph+pr-p) - XX
g X oy X X g X
=(po-po—r1—ry) + (—Pl pyro - XT 41 ‘Xb/1> X
= Py(X) + P (X) - X",
where deg(Py) = max(deg(po-pp), degr1, degr]) = max(d9+0, 00, 0j) = 0o+0p,
and deg(P;) < 99 = max(deg(p1-p}), 01 +degro, 0 +degr(|) = max(d; +07,9:1 +

o —1,0+0;—1) =0, +0).
For our two example numbers, we have

= (X2 = X) = (X2 4 1) X779) - (X = (=1) - X"

(XB XQ) + (X2 X) . Xn—l + (—X3 _ X) _Xn—S + (_X2 _ 1) 'X2<n—4
=X =X+ (X=X X" (X X)X R (X 1) X
(X3 X2)+ 1) Xn—Xn—X2-Xn74-|—(X2+1)-Xn74

(X
= (x3 —X+2)+ x4
=P+ P - X"—%,

where 03 = 01 + 0} = 3+ 1 = 4. To check this gives the correct value we note
that
1376

Py(3)— Pi(3)-37* 31

3.3 Relating 9’7 to R,

The ring representation of fixed-point numbers in the ring $R; allows us to bound
the resulting degree and infinity norm of the associated polynomials encoding the
fixed-point numbers (see the next section). In addition, it allows a wide choice of
underlying rings, which could enable SIMD computation of specific fixed-point
operations. However, it requires the “bookkeeping” of the base power that is
needed to map the encoded integer into a fixed-point number.

The ring R5 on the other hand requires no such bookkeeping, although lim-
ited book keeping is needed to ensure decoding after decryption works correctly.
Additionally, it requires that we work in the ring defined by polynomial arith-
metic modulo X" + 1, where n is a power of two. A major drawback seems to be
that one cannot derive obvious bounds on the degree and coefficients in the frac-
tional representation, something which is crucial in order to set parameters of
the SHE scheme. However, such bounds can be derived for the fractional repre-
sentation, since this representation is isomorphic to the representation using the
ring Ry, and the isomorphism presents a one-to-one direct relationship between
the coefficients of the polynomials in each representation.

Let ¢ be as follows (from now on),

(b{ 9%1_ — 9%2 '
M@ =q X'"+q,i) = q—q - -X"""

Theorem 2. If R is defined by Z[X]/(X™ + 1), then ¢ is a ring isomorphism.
Proof. First note that

L ¢(ln,) =0(1,0)=¢(1- X +0)=1-0-X=1=1g,.
2. Let (q,7) and (¢',¢’) in My; without loss of generality assume ¢ > i’. Then
(i) +(¢",i) = q+q - X" = (Q,i). Then

$(Q, 1)

dlq+q - X7 0)

(g0 X'+ a1+ (- X +qp)- X777 4)
((qo+ah) - X'+ (@1 + ;- XT77),4)
=(q+40) + (@1 + i - X77) X"
=qo+aq - X" +g)+qp - X"

= ¢(q,) + o(q', 7).

¢
¢

Notice that in the above, we have implicitly made use of additive property
of 9%2.
3. Let q, ¢’ be as above.
¢(q,4) - 9(¢',7') = (g0 —qu - X") - (qp — ¢1 - X"7°)
=q-q—q- ¢ X" —q-q-X""+q- g X",

where I =i+ i'. Now computing (q,4) - (¢',4") first,
r ’ I / i / i /
¢ =q 9% X +q ¢ X' +q o X" +a-q.

Now viewing this as the pair (Q = ¢ ¢ mod X" + 1,i + i mod n) =
((go-ap+a-ay - X"777) - XH)+ (qo-aqy - X' +ap a1 - X7),i+1i'), we
obtain the following.

é(q - q’,[) — ¢((q0 . q6 +q .qi ,Xn—i—i/) . xi
+(q0-q; - X' +qy-qr- X))
=g+ q-di X" (g gl X Hgpq- X)X
=@ g—qo-di X" —qh- @ X"+ qeqf - X!
= ¢(q,1) - o(d, '),
so that ¢ is indeed a homomorphism between $R; and R,.

To finish the proof, we show that ¢ is bijective. For any y = qo + q1 - X®°! in
Ro, we have that (¢,01) = (go - X°* + ¢1,01) maps to y so that the mapping
is surjective. To see that it is injective, suppose for p,p’ € R; we have that
o(p) = ¢(p)) = z € Ry. Remember that both the rings contain encoding of
fractional numbers written in balanced base B. Recall also that we recover the
integers by simply evaluating (in our case) z(B) = a € Q, and since this is well-
defined, @ is unique. Now encode a in the ring f;; the encoding operation (for
both rings) is well-defined, therefore a will have an unique image in the ring 9,
and thus p = p’. It follows that ¢ is an isomorphism. O

4 Bounds on Integer Arithmetic

Considering the balanced base B method for encoding integers as polynomials
we need to estimate, for a given calculation, a lower bound on p and d. This is
to determine parameters our SHE scheme needs to enable a given calculation to
be performed correctly. In previous works this problem was not addressed. In
this section we provide a methodology to produce tight bounds on the size of p,
for any given computation.

To perform our analysis, we first note that as we pass through a general
integer circuit each encrypted polynomial expression we are processing will be

of the form
M t
z(3 (5 (H)))
d=0 \d1<ds<...<dy \eij+es+--+ep=d =1

where ¢ is the number of distinet ranges [—L;, ..., L;] for input/scalar values.
Dd; .« i a polynomial of degree d; with infinity norm BES' = 1. The ¢, are
some constants and the value M is the maximal depth. Here we count scalar

multiplication as consuming one level of depth. If we wish to determine the
infinity norm of such a term we can simplify the discussion by just considering

terms of the form .

[[a+z+a+.. 4+ a%)e
i=1
Indeed we define
t

Cl(dr,e1)yes(dier)] = H H(l R xdq',)ei,

i=1

o0
In what follows, to ease discussion, the subscript indices are ordered such that
d; - e; < (di4+1 - ei+1) and in the case of equality d; < d;41.

For two terms of the form Cl(d1,e1),...,(de,ee)] and Cl(dy,e}),....(de,e})] We define

Cl(dr,e1)ses(diser)] @ Cl(dy,e}),--,(de,e})] = C(dr,er+el),...,(de,ex e})]

We can now bound the infinity norm of any polynomial P obtained in evaluating
the integer circuit by an expression of the form

Lp= Z A[(d1,e1),--,(de,e0)] " C(dr,er),...(deer)]s

and we think of this (for now) as a formal sum in the variables c(q, c,),...,(ds,e0)]-
For an input or scalar value from the range [—L;,..., L;] the infinity norm of
the polynomial Py is bounded by

where aj(q, e,),...,(ds,e;)] are constants depending on the precise polynomial P,

Lpy = €[(d1,0),..,(di-1,0), (dis1), (dig1,0),.004(de,0)]"

We can derive upper bounds on the infinity norm of the polynomials as we pass
through the integer circuit using the following rules. Given upper bounds on the
infinity norm of polynomials P and P’ in this form given by

LP = Z a[(dlﬁel)""’(dt!et)]) c[(d1761)7""(dtaet)]7

Lpr = Z A[(d1,e1),--5(de,e)] * Cl(daseq)oooo(deyeq)]

’ ’
el,....e}

we can derive upper bounds on the infinity norm of the sum and the product of
these polynomials terms via the equations

Lpipr =Lp+ Lp,

Lepr = D> (e (deen] Odre))(dre)])

’ /
€1,..43€¢,€7,...,€4

(Clldr,er)(dien)] © Cllda,e) (deel)]) -

Is it clear that the degree of the sum of two polynomials is the maximum of the
degrees, and the degree of the product is the sum of the degrees.

4-1 Bounding c[(dlyel)v“'a(dhet)]

To use these bounds we eventually obtain a formal expression for infinity norm
of the output of the circuit consisting of a linear polynomial in the terms
Cl(d1,e1),...,(ds,er)] - We thus are left with simply bounding Cl(dy,e1),...,(ds,ex)] - We
perform this bounding at the end, rather than as we go, as these leads to much
tighter bounds on the infinity norm of the output polynomial.

We first present some basic facts on the case of a single pair of terms (d, e).
Let d,e > 0 be integers, and define a; for 0 < i < d-e as

d-e
(1+m+x2+...+xd)€:Zai-xi. (4)
i=0
We then define

= maxX a;.

cd,e:H(ler+x2+...+xd)e _
o 0<i<d-e

Naively we can obtain upper and lower bounds on cg.. as follows:

(d+1)°

< cge < (d+1)°.
d'e+1_cd’ <(@+1)

The upper bound is obtained by evaluating (4) at © = 1 and the lower bound is
obtained from the upper bound by noting that there are only d-e+ 1 coefficients
a; in (4). We have the trivial bounds cqo = cq1 =1 and ¢cq2 = (d + 1).

The parameter cq . is also of interest in probability theory and bounds on its
value have been previously analysed [1,10]. The following upper bound follows
from the main theorem in [10] (see also [1] for a relation between the parameter
Cm,n and the main parameter studied in [10]).

Theorem 3. Ife#2 orde {1,2,3}, then

6

de gy @Y (5)

Cde <

The above upper bound is optimal in the following sense [10, Remark (a)].

Corollary 1. lime_ z{ffld)f = m.

Although it is unknown whether the above convergence is uniform as d varies as
well.

Given this bound on terms c4. we can now derive bounds on our terms
Cl(dy,e1),..s(dy,e0)] BS follows. Recalling our ordering of the pairs in the subscript
of d; - e; < (diy1 - ei+1) and in the case of equality, d; < d; 1. We (recursively)
use the following bound, where d is the first value of d; in the subscript for
which the associated ey, value is non-zero,

Cl(d1,e1),...,(d¢,er)] < (dk sep + 1) " Cdy,er " Cl(d1,e}),...,(ds,e})]s (6)

where e = e; except that e}, = 0.

4.2 Applying The Bounds

We can now estimate the size of p and d needed to ensure correctness when
evaluating our example balanced integer circuit that consists of M levels and A
additions per level. The infinity norm bound on our polynomials becomes

B = cqonm - 2A(2M+1_2)

)

assuming the input values are in the range [—L,..., L] and using a balanced
base-3 representation of the input values, so d = d® = [log(2-L+1)/log3] —1.
The degree bound for our circuit output value is dowt = 2 - d. From Theorem
3, a sharp upper bound on By (for M > 1,0or d >3 if M =1) is

6 oM A(2A4+172)
B ——— . (d+1 -2 .
M<\/7r-2M~d(d+2) (d+1)

To ensure correctness, when we encrypt and manipulate these polynomials ho-
momorphically, we need to ensure that our SHE scheme supports a plaintext
with p > 2 - By and deg(R) > djps. The most stringent constraint is that on p,
and we give examples in subsection 4.3 below.

Of course given a specific circuit we could derive other values of dy; and By,
the above are just examples in the case of our regular circuit with multiplicative
depth M and A additions per level. See the appendix for an application where
our more general analysis becomes applicable.

4.3 Lower Bounds On p For Regular Circuits

Tables 2, 3, 4 list the size in bits of the smallest prime satisfying the above
b:unds and also the degree bound dj; = 2™ - dy for small values of A and M
for balanced base encoding with B = 3, 5 and 7 and L = 2'°. For the sake of
comparison, we give also give Table 1 that suggests the size of the primes for
the non-balanced base encoding for B = 2 and L = 2'9. Tt is evident that using
balanced base encoding with B = 3 yields the smallest primes, although large
multiplicative depth is hard to support in any method.

It should be noted that with current SHE schemes a ciphertext modulus
over 256 bits in length seems currently infeasible for moderately sized circuits
to be evaluated. Thus it is clear that if anything but small values of M are
to be considered one needs a different way of encoding fixed-point numbers.
One such possibility is via multiple encryptions using different plaintext moduli,
and then to use the Chinese Remainder Theorem to recover the final plaintext
polynomial.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO and by the European Union’s H2020 Programme under grant

(M [1[2[3[4[5] 6] 7 8] 9 [10]
A=0 6 [14| 31 | 65 | 133 | 271 | 547 | 1100 | 2206 | 4418
A=1 8 20| 45 | 95 | 195 | 397 | 801 | 1610 | 3228 | 6464
A=2 10126 | 59 | 125 | 257 | 523 | 1055 | 2120 | 4250 | 8510
A=3 12132 | 73 | 155 | 319 | 649 | 1309 | 2630 | 5272 | 10556
A=14 14| 38| 87 | 185 | 381 | 775 | 1563 | 3140 | 6294 | 12602
A=5 16 | 44 | 101 | 215 | 443 | 901 | 1817 | 3650 | 7316 | 14648
A=6 18 | 50 | 115 | 245 | 505 | 1027 | 2071 | 4160 | 8338 | 16694
A=T7 20 | 56 | 129 | 275 | 567 | 1153 | 2325 | 4670 | 9360 | 18740
A=38 22| 62| 143 | 305 | 629 | 1279 | 2579 | 5180 | 10382 | 20786
A=9 24 1 68 | 157 | 335 | 691 | 1405 | 2833 | 5690 | 11404 | 22832
A=10 26 | 74 | 171 | 365 | 753 | 1531 | 3087 | 6200 | 12426 | 24878

IS

3876] 152304 [608 [1216 | 2432 [4864 [9728 | 19456

M

Table 1. Size (in bits) of the smallest p and the degree bounds for non-balanced
encoding with B =2 and L =29 .

=
=~

[1]12]38[4[5[] 6 [7 8] 9 [10]
5 12| 26 | 55 | 114 | 232 | 468 | 942 | 1888 | 3783
7 | 18| 40 | 8 | 176 | 358 | 722 | 1452 | 2910 | 5829
9 | 24| 54 | 115 | 238 | 484 | 976 | 1962 | 3932 | 7875
11| 30| 68 | 145 | 300 | 610 | 1230 | 2472 | 4954 | 9921
13|36 | 82 | 175 | 362 | 736 | 1484 | 2982 | 5976 | 11967
15 42| 96 | 205 | 424 | 862 | 1738 | 3492 | 6998 | 14013
17| 48| 110 | 235 | 486 | 988 | 1992 | 4002 | 8020 | 16059
19 | 54 | 124 | 265 | 548 | 1114 | 2246 | 4512 | 9042 | 18105
21|60 | 138 | 295 | 610 | 1240 | 2500 | 5022 | 10064 | 20151
23 | 66 | 152 | 325 | 672 | 1366 | 2754 | 5532 | 11086 | 22197
25 | 72| 166 | 355 | 734 | 1492 | 3008 | 6042 | 12108 | 24243

24 48] 96 [192] 384 768 | 1536 | 3072 | 6144 | 12288 |

ESESESENENESESESESENES
Il
=l oloo| oo |w| o —lo

o

U
=
=

Table 2. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B =3 and L = 2" .

(v [1]2]3]4[5] 6] 7 [8] 9 | 10]
A=0 7 [14] 31 [64 [130] 263 [529 [1062 | 2129 [4264
A=1 9 20| 45 [94 [192 389 | 783 [1572 | 3151 | 6310
A=2 1126 59 | 124254 515 | 1037 [2082 [4173 | 8356
A=3 1332 73 | 154316 | 641 | 1291 | 2592 | 5195 | 10402
A=4 15[38 | 87 | 184|378 | 767 | 1545 | 3102 | 6217 | 12448
A=5 1744 [101 [214 [440 | 893 [1799 | 3612 [7239 | 14494
A=6 19 [50 | 115 | 244 [502 | 1019 | 2053 | 4122 | 8261 | 16540
A=1 21|56 | 129 | 274 | 564 | 1145 | 2307 | 4632 | 9283 | 18586
A=38 23|62 | 143 [304 | 626 | 1271 | 2561 | 5142 | 10305 | 20632
A=9 25 | 68 | 157 [334 | 688 | 1397 | 2815 | 5652 | 11327 | 22678
A=10 27|74 [171364 | 750 | 1523 | 3069 | 6162 | 12349 | 24724
[dum [16]32] 64 [128]256 [512 [1024 [2048 [4096 [8192]

Table 3. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B =5 and L =2 .

=
=~

[1[2][3[4[5] 6[7 [8] 9 [10]
8 [16| 34 | 70 | 143 | 289 | 582 | 1169 | 2342 | 4689
10| 22| 48 | 100 | 205 | 415 | 836 | 1679 | 3364 | 6735
12128 | 62 | 130 | 267 | 541 | 1090 | 2189 | 4386 | 8781
14 1 34| 76 | 160 | 329 | 667 | 1344 | 2699 | 5408 | 10827
16 | 40| 90 | 190 | 391 | 793 | 1598 | 3209 | 6430 | 12873
18 1 46 | 104 | 220 | 453 | 919 | 1852 | 3719 | 7452 | 14919
20 | 52 | 118 | 250 | 515 | 1045 | 2106 | 4229 | 8474 | 16965
22 | 58 | 132 | 280 | 577 | 1171 | 2360 | 4739 | 9496 | 19011
24 | 64 | 146 | 310 | 639 | 1297 | 2614 | 5249 | 10518 | 21057
26 | 70 | 160 | 340 | 701 | 1423 | 2868 | 5759 | 11540 | 23103
28 | 76 | 174 | 370 | 763 | 1549 | 3122 | 6269 | 12562 | 25149

14]28] 56 [112]224] 448 [896 [1792] 3584 | 7168 |

ESESESENENESESESESENES
Il
=l o|oo| oo | w| || o

o

U
=
=

Table 4. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B =7 and L =2 .

agreement number ICT-644209 (HEAT). The authors would like to thank Carl
Ek for input on image processing algorithms and Daniel P. Martin for valuable
inputs throughout.

References

1. Heceéne Belbachir. Determining the mode for convolution powers of discrete uniform
distribution. Probability in the Engineering and Informational Sciences, 25:469—
475, 10 2011.

2. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. Comparison of different FFT
implementations in the encrypted domain. In 2008 16th European Signal Processing
Conference, EUSIPCO 2008, Lausanne, Switzerland, August 25-29, 2008, pages 1—
5. IEEE, 2008.

3. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. On the implementation of
the discrete fourier transform in the encrypted domain. IEEE Transactions on
Information Forensics and Security, 4(1):86-97, 2009.

4. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS,
pages 309-325. ACM, 2012.

5. Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 643—-662. Springer, 2012.

6. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Manual for using homomorphic encryption for bioinformatics,
2015. Available at http://research.microsoft.com/pubs/258435/ManualHEv2.pdf.
Last accessed on May 05, 2016 at 23:00.

7. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. Available at crypto.stanford.edu/craig. Last accessed on May
05, 2016 at 23:00.

8. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the
AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology — CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 850-867. Springer, 2012.

9. Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology - CRYPTO 201/ - 34th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 17-21, 201/, Proceedings, Part
I, volume 8616 of Lecture Notes in Computer Science, pages 554-571. Springer,
2014.

10. Lutz Mattner and Bero Roos. Maximal probabilities of convolution powers of
discrete uniform distributions. Statistics & Probability Letters, 78(17):2992 — 2996,
2008.

11. Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Christian Cachin and Thomas Ristenpart, editors,
Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011,
Chicago, IL, USA, October 21, 2011, pages 113-124. ACM, 2011.

12. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations.
Des. Codes Cryptography, 71(1):57-81, 2014.

13. Antonio Torralba, Robert Fergus, and William T. Freeman. 80 million tiny images:
A large data set for nonparametric object and scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 30(11):1958-1970, 2008.

A Homomorphic Image Processing via the Fourier
Transform

A standard image processing pipeline is to take an image (consisting of n pixels),
pass it into the frequency domain by applying the Fourier transform, apply an
operation in the Fourier domain, and then map back to the image space by
applying the inverse Fourier transform. The operation in the Fourier domain in
its simplest form could be the Hadamard component wise multiplication of the
data by a fixed matrix. For example this is used when applying Gabor filters,
which feature prominently in applications that are motivated by biological vision.
In this section we examine the application of our fixed-point analysis to the
case of image processing in which both the initial image and the Hadamard
transformation data are encrypted using a SHE scheme. It is well known that
the Fourier transform is a linear operation, and hence only requires (in theory)
an additively homomorphic encryption scheme to obtain an encrypted version.
However, our requirement that the processing in the frequency domain is also
unknown to the evaluator implies that our overall operation is non-linear.
Previous authors have examined homomorphic evaluation of the Fourier
transform [2, 3]. Indeed by exploiting the linear nature of the calculation they uti-
lized an encoding of fixed-point numbers via scaled integers. Then they used the
additively homomorphic Paillier encryption algorithm to perform the homomor-
phic evaluation of the Fourier transform. This has a number of disadvantages.
Firstly by encoding in a purely integer manner the Paillier plaintext modulus
space N increases dramatically if one is to perform an FFT, followed by a lin-

ear map, followed by an inverse FFT. In addition it requires all homomorphic
operations in an application to be linear.

For means of comparison of parameters with prior work [2,3], which used
Paillier encryption and only processed a single FFT operation, we also provide
a comparison of parameters in that case.

A.1 The Mixed Fourier Transform Algorithm

The standard method to apply the (radix-2) Fourier transform® is to use the
Fast Fourier Transform (FFT) which is a recursive algorithm requiring O(logn)
depth of scalar multiplications and a total of O(n-logn) scalar multiplications in
total. As we have seen the need to perform a large depth of scalar multiplications
will imply a large plaintext modulus for our SHE scheme. The naive method of
performing the Fourier transform is to simply apply a matrix-vector product.
This requires only depth one of scalar multiplications but on the other hand
requires O(n?) scalar multiplications. We will refer to this method as the Naive
Fourier Transform (NFT).

There is an obvious balance to be struck here, which we present in Figure
1. This is an algorithm, which we dub the Mixed Fourier Transform (MFT)
algorithm. It executes standard recursive FFT algorithm down to a given depth
|log,(B)], and then at this lower level executes the naive Fourier transform
method.

MFT(x,n,B)
if n < B then
for 0 <k<n-1do
Vi Z?:_OI xj-exp(—2-m-y/—1-j-k/n).

end for
else
m < n/2.
20,y Zpja—1 < MFT((x0, 2,24, ..., 2Zn_2),m,B).
Znj2s s an — MFT((x1,23,25,...,Tn-1),m,B).

for 0 <k<n/2-1do
s<exp(—2-m-v/—=1-k/n) zipn/2.
t <+ 2.
Ve < t+s.
Yi4n/2 < t—s.
end for
end if
return y

Fig. 1. The Mixed Fourier Transform algorithm

5 Other FFT’s, e.g. the radix-4 method, can be analysed using similar techniques to
those in this paper.

When we execute M FT(x,n,1) we perform the full traditional Fast Fourier
Transform method, while when we execute M FT(x,n,n) we perform the Naive
Fourier Transform method. All values of B in between execute a hybrid ap-
proach. By varying 8 we can trade a reduced depth of scalar multiplications
for an increased total number of multiplications. It is obvious that the depth of
scalar multiplications required is given by

depth(n, B) = logy(n) — log,(B) + 1.

Computing the total number of scalar multiplications requires a little more
thought. For n = 2V and B = 28, the first level of the FFT operation has

mults(n, B) = 2 - mults(n/2,B) + 2V 1
multiplications. Doing FF'T until we reach ‘B gives
mults(n, B) = 2V 78 - mults(B,B) + (N — B) - 2N 1.
Solving this yields

mults(n,B) = n - B + (logy(n) — log,(B)) - %

as the number of multiplications performed in a MFT circuit.

A.2 Comparison With Prior Work

In [2,3] the authors present work on implementing a radix-2 FFT in the en-
crypted domain using the Paillier encryption algorithm. As a means of compar-
ison of their work with ours we examine how their Paillier parameters would
compare to our Ring-LWE parameters in their setting. The first key aspect is
the precision of the input values, the roots of unity and the output precision.
Both [2, 3] and ourselves use a fixed-point encoding in which precision is never
lost. But if one implemented FFT on a machine with b bits of floating point
precision one would loose precision as the calculation proceeds. This means that
to obtain the same output as running in the clear on a standard machine using
floating point arithmetic, we can adapt the precision of the roots of unity.

In particular, we let b; denote the bits of precision in the input data (which is
typically eight), by denote the bits of precision in the roots of unity and b denote
the bits of equivalent output bits of precision in an in-the-clear implementation.
Then [2, 3] show that for a single iteration of the FFT algorithm on data of size

2", one can take
v 1
b= b= 2 +5]
2 273
Using this they are able to implement the FFT in the encrypted domain using
a Paillier modulus of bit size

np>v+a-by+ by +4,

where o = 1 for the Naive Fourier Transform, and o = v — 2 for the full FFT;
they do not consider a Mixed Fourier Transform.

As a means of comparison we look at the same situation using our polyno-
mial encoding for use in the Ring-LWE system. The degrees of the associated
polynomials to encode the input data and the roots of unity, in balanced base-3
encoding, are

d; = [log(2-2% +1)/log3] — 1.

Applying the analysis from Section 4 to a single Fourier Transform execution,
we can obtain formulae for the infinity norm of the resulting polynomials via a
computer algebra system in the form of a linear sum of terms the following form

c[(dl’l)r(d%e?)} ’

where 0 < e5 < depth(n,B). Note that e; = 1 as we are only executing a single
FFT operation.

Then using (5) and (6) and the fact that ¢4; = 1 we can give an upper bound
on this quantity

Cl(dy,1),(d2,e2)] <c- (d1 + 1) . (dg + 1)62,

6
C_\/T("d2~62'(d2—|—2).

Hence, we can upper bound the linear sum and so lower bound the plaintext
modulus p needed for the SHE scheme to ensure correctness. A similar method
allows us to upper bound the degree of the resulting polynomials. This itself leads
to a lower bound on the ring dimension deg(R) needed for the SHE scheme. We
summarize the results in Table 5 for emulating b = 32 bits of floating point
precision and b; = 8 bit inputs.

where

FFT NFT
log, p|deg(1)| n. |log, p|deg(R)|nr
n |bs||di|do > > > > > >

64 [30]/5 (19][35 | 138 [138] 11 | 24 |48
256 [20]| 5 18| 45 | 167 |194]| 13 | 23 |49
102428 5 (18| 56 | 203 |246| 15 | 23 |50

Table 5. Comparing Paillier vs Ring-LWE encoding parameters for a single NFT/FFT
execution for b = 32

A.3 FFT-Hadamard-iFFT Pipeline

We now turn to investigating the FFT-Hadamard-iFFT standard image process-
ing pipeline. Since we apply two Fourier transforms the precision of the roots of

unity we take to be
1
by = [b w4t 5] ,
in order to retain the same precision as b bits of floating point precision on a
standard machine.

Applying the analysis from Section 4 again, we obtain formulae for the infinity
norm of the resulting polynomials in the form of a linear sum of terms of the
following form

c[(dl 12)#(d2 762)} ’

where 0 < es < depth(n,). Then using equations 5 and 6, and the fact that
¢d2 = (d+ 1) we now upper bound this quantity via

_[36 Ifey=1,
62,0021 = . (2.541)- (54 1) - (10+ 1) Otherwise,

6
= { \/ 7 10-e2-(1072) If e > 2,

where

1 Otherwise.

Hence, we can upper bound the linear sum and so lower bound the plaintext
modulus p needed for the SHE scheme to ensure correctness. This results in the
parameters given in Table 6.

FFTB =1 B=yn |NFTB=n

log, p|deg(R) ||log, p|deg(R)||log, p|deg(R)
n |balldide)| > | > | > > || >]| >
16 [29][5 18] 54 | 190 || 37 | 118 || 25 | 46
64 |27||5|17|| 74 | 248 || 49 | 146 | 29 | 44
256 25|/ 5 16| 93 | 298 || 61 | 170 || 33 | 42
1024[23|/ 5 [15]| 112 | 340 | 72 | 190 || 37 | 40

Table 6. Parameters for the FFT-Hadamard-iFFT pipeline

We then took these bounds and instantiated an SHE system to evaluate the
pipeline using the HElib library [9]. The HElib library implements the BGV
[4,8] Somewhat Homomorphic Encryption scheme, but restricts the plaintext
modulus to be at most 64 bits in length. Hence, our experiments are limited to
this reduced size of plaintext space.

In this scheme a plaintext m € R, is encrypted as a pair of elements in
(co,c1) € R2, such that

co—st-ci=m+p-e (mod gq),

where st is the secret key (a short element in R,) and € is a short “noise” element
in R;. As homomorphic operations progress the value g of the ciphertext is

reduced, until it can be reduced no more. At this point, operations cease to be
possible. The reduction in ¢ enables the noise value to be controlled, and each
reduction in ¢ is said to consume a homomorphic “level”. Note, that the HElib
library due to its choice of moduli for each level actually consumes multiple
“internal levels” for each of these “external levels”.

In Table 7 we present our implementation results using the HEIlib. In each
case we used the plaintext modulus size derived from the Table 6. We note that in
all cases HEIib selects a ring dimension for security reasons which is much larger
than we need for our application. This last fact means that by careful choice of
the plaintext modulus one can process many such operations in parallel using
standard SIMD tricks; with the amortization constant being (roughly) the actual
degree of R divided by the lower bound from 6. We note that we cannot obtain
results for the larger plaintext spaces as HElib has a restriction of 60 bits on the
plaintext modulus. In future work we aim to remove this restriction by utilizing
a different SHE library. All run times measure the time in seconds to evaluate
the FFT-Hadamard-iFFT pipeline in the homomorphic domain, and they are
obtained on a machine with six Intel Xeon E5 2.7GHz processors, and with 64
GB RAM.

HEIib|Amortization| CPU |Amortized

n | B |deg(R)|log, ¢|Levels| Amount |Time| Time
16| 1 32768 | 710 | 33 172 188 1.09
16| 4 | 32768 | 451 | 19 277 147 0.53
16 | 16 | 16384 | 192 9 356 106 0.3

64| 8 | 32768 | 622 | 30 224 1500 6.69
64|64 16384 | 192 | 10 372 1582 4.25
256(256| 16384 | 278 | 11 390 34876 89.4

Table 7. Results for homomorphically evaluating a full image processing pipeline

