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Abstract

We perform a concrete security treatment of digital signature schemes obtained from canonical
identification schemes via the Fiat-Shamir transform. If the identification scheme is random self-
reducible and satisfies the weakest possible security notion (hardness of key-recoverability), then
the signature scheme obtained via Fiat-Shamir is unforgeable against chosen-message attacks in the
multi-user setting. Our security reduction is in the random oracle model and loses a factor of roughly
Q#, the number of hash queries. Previous reductions incorporated an additional multiplicative loss of
N, the number of users in the system. Our analysis is done in small steps via intermediate security
notions, and all our implications have relatively simple proofs. Furthermore, for each step, we show
the optimality of the given reduction in terms of model assumptions and tightness.

As an important application of our framework, we obtain a concrete security treatment for Schnorr
signatures in the multi-user setting.
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1 Introduction

CANONICAL IDENTIFICATION SCHEMES AND THE FIAT-SHAMIR TRANSFORM. A canonical identification
scheme ID as formalized by Abdalla et al. [AABN02] is a three-move public-key authentication protocol
of a specific form. The prover (holding the secret-key) sends a commitment R to the verifier. The verifier
(holding the public-key) returns a random challenge h, uniformly chosen from a set ChSet (of exponential
size). The prover sends a response s. Finally, using the verification algorithm, the verifier publicly
checks correctness of the transcript (R, h, s). There is a large number of canonical identification schemes
known (e.g. [FS87, GQIO, Bet88, MS90, Sch91, BM91, Gir91, OS91, Oka9d3, KW03, GJKWO07], the most
popular among them being the scheme by Schnorr [Sch91]. The Fiat-Shamir method [FS87] transforms
any such canonical identification scheme into a digital signature scheme SIG[ID] using a hash function.

DIGITAL SIGNATURES IN THE MULTI-USER SETTING. When it comes to security of digital signature
schemes, in the literature almost exclusively the standard security notion of unforgeability against chosen
message attacks (UF-CMA) [GMRSS] is considered. This is a single-user setting, where an adversary
obtains one single public-key and it is said to break the scheme’s security if he can produce (after
obtaining () many signatures on messages of his choice) a valid forgery, i.e. a message-signature pair that
verifies on the given public-key. However, in the real world the attacker is usually confronted with many
public-keys and presumably he is happy if he can produce a valid forgery under any of the given public-keys.
This scenario is captured in the multi-user setting for signatures schemes. Concretely, in multi-user
unforgeability against chosen message attacks (MU-UF-CMA) the attacker obtains N independent public-
keys and is said to break the scheme’s security if he can produce (after obtaining Qs many signatures on
public-keys of his choice) a valid forgery that verifies under any of the public-keys.

There are essentially two reasons why one typically only analyzes signatures in the single-user setting.
First, the single-user security notion and consequently their analysis are simpler. Second, there exists a
simple generic security reduction [GMS02] between multi-user security and standard single-user security.
Namely, for any signature system, attacking the scheme in the multi-user setting with N public-keys
cannot increase the attacker’s success ratio (i.e., the quotient of its success probability and its running
time) by a factor more than N compared to attacking the scheme in the single-user setting. As the
number of public-keys N is bounded by a polynomial, asymptotically, the single-user and the multi-user
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setting are equivalent. However, the security reduction is not tight: it has a loss of a non-constant factor
N. This is clearly not satisfactory as in complex environments one can easily assume the existence of at
least N = 23° (~ 1 billion) public-keys, thereby increasing the upper bound on the attacker’s success
ratio by a factor of 230, For example, if we assume the best algorithm breaking the single-user security
having success ratio p = 278°, then it can only be argued that the best algorithm breaking the multi-user
security has success ratio p’ = 2789 . 230 = 2750 which is not a safe security margin that defends against
today’s attackers.

TIGHTNESS. Generally, we call a security implication between two problems tight [BR96], if the success
ratio p of any adversary attacking the first problem cannot decease by more than a small constant factor
compared to the success ratio p’ of any adversary attacking the second problem [Gal04, BR09]. Here the
success ratio p is defined as the quotient between the adversary’s success probability and its running time.
We note that this notion of tightness is slightly weaker than requiring that both, success probability and
running time, cannot decrease by more than a small constant factor (called strong tightness in [Gal04]).
However, the main goal of a concrete security analysis is to derive parameters provably guaranteeing
k-bit security. As the term k-bit security is commonly defined as the non-existence of any adversary that
breaks the scheme with a success ratio better than 2% (see, e.g., [BR09, CKMS16]), our definition of
tightness is sufficient for this purpose.

1.1 Owur Contributions

This work contains a concrete and modular security analysis of signatures SIG[ID] obtained via the Fiat-
Shamir transform. Throughout this paper we assume that our identification schemes ID are ¥-protocols,
i.e. they are honest-verifier zero-knowledge (HVZK), have special soundness (SS), and commitments R
are sampled at random from a sufficiently large set. For some of our tight implications we furthermore
require ID to be random self-reducible (RSR), a property we formally define in Definition 2.5. Most known
canonical identification schemes satisfy the above properties.

SECURITY NoOTIONS. For identification schemes we consider XXX-YYY security, where XXX € {KR, IMP,
PIMP} denotes the attacker’s goal and YYY € {KOA, PA} the attacker’s capabilities. If the attacker’s
goals defined as follows: in key-recovery (KR), it tries to compute a valid secret-key; in impersonation
(IMP), it tries to impersonate a prover by convincing an honest verifier; parallel impersonation (PIMP) is
a parallel version of IMP, where the adversary tries to convince a verifier in one of Q¢y many parallel
sessions. The attacker’s capabilities are defined as follows: in a key-only attack (KOA), the adversary
is only given the public-key; in a passive attack (PA), the adversary is provided with valid transcripts
between an honest prover and verifier. In total, we obtain 3 x 2 = 6 different security notions that that
were all previously considered in the literature [PS00, 0098, AABNO02], except PIMP-YYY security.

OVERVIEW. We show via a chain of implications that KR-KOA-security (the weakest possible security
notion for ID where the adversary has to compute a secret-key from a given public-key without any further
oracle access) implies multi-user unforgeability against chosen message attacks (MU-UF-CMA) of SIG[ID].
The diagram in Figure 1 summarizes our results. All implications are optimal in terms of tightness and
model requirements in the following sense. If one implication makes use of a special model requirement,
we prove its impossibility without this requirement. For example, our implication PIMP-KOA — UF-KOA
requires the random oracle model [BR93] (with its well-known deficiencies [CGH98]) and we show that the
non-programmable random oracle model [FLR™10] is not sufficient to prove the same implication. Exactly
one of our implications, namely IMP-KOA — PIMP-KOA is non-tight, and we prove the impossibility of
such a tight implication. We now discuss the implications from Figure 1 in more detail.

FROM IDENTIFICATION TO SINGLE USER SECURITY FOR SIGNATURES. Our first main theorem can be
informally stated as follows.

Theorem 1.1. If the identification scheme is KR-KOA-secure against any adversary having success ratio
p, then SIG[ID] is UF-CMA-secure in the random oracle model against any adversary having success ratio
0o =~ p/Qn, where Qy is the mazimal number of the adversary’s random oracle queries.

The proof of this theorem is obtained by combining four independent Lemmas 3.5, 3.6, 3.7, and 3.8 via
intermediate security notions IMP-KOA, PIMP-KOA, and UF-KOA! security, see Figure 1. We certainly
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Figure 1: Overview of our notions and results for canonical identification schemes ID and their implied

signature schemes SIG[ID]. X Z, Y means that X-security implies Y-security under condition Z. Trivial
implications are denoted with green arrows. All implications are tight except the one marked with red.
The conditions are: rew. (reduction rewinds), loss @ (reduction loses a factor of @), PRO (reduction is
in the programmable random oracle model), SS (reduction uses special soundness), and RSR (reduction
uses random self-reducibility for tightness). All implications from top to bottom require HVZK. X 7/Z—> Y
means that X-security does not imply Y-security if only condition Z is fulfilled. The conditions are:
non-rew. (reduction does not rewind), loss < @ (reduction loses a factor smaller than @), and NPRO
(reduction is in the non-programmable random oracle model).

do not claim any novelty of the above lemmas, nor a new proof technique. For example, the implication
IMP-KOA — UF-CMA is already explicitly contained in [O098] (and implicitly in the seminal paper by
Pointcheval and Stern [PS00]). However, by our specific choice of the intermediate security notions, all
four proofs are simple and intuitive. In particular, unlike previous proofs, none of our proofs requires the
full power of the Forking Lemma [PS00, BNO6]. At the core of Lemma 3.5 (KR-KOA — IMP-KOA) we
use a new Multi-Instance Reset Lemma (Lemma 3.3) which is a generalization of Bellare and Palacio’s
(Single-Instance) Reset Lemma [BP02] and may be of independent interest. The key to simplicity is the
fact that IMP-KOA security only deals with one single impersonation session, which greatly simplifies the
probability analysis. Even though the reduction uses rewinding, the RSR property makes the implication
KR-KOA — IMP-KOA tight. We view identifying the intermediate security notions that allow for simple
proofs as a conceptual contribution. Our result show that IMP-KOA and PIMP-KOA security can be
seen as the tightness barrier for identification schemes in the sense that PIMP-KOA is the weakest of our
notions for ID that is tightly equivalent to (multi-user) UF-CMA security of SIG[ID] in the random oracle
model, whereas IMP-KOA is tightly equivalent to KR-KOA.

One particular advantage of our modular approach is that we are able to prove optimality of all four
implications via meta-reductions (Lemmas 4.1, 4.3, 4.5, and 4.6). Lemma 4.3 proving the impossibility of
a tight reduction between PIMP-KOA and IMP-KOA security is a generalization of Seurin’s impossibility
result to canonical identification schemes [Seul2]; Lemmas 4.5 and 4.6 proving the impossibility of a
reduction in the non-programmable random oracle model between PIMP-KOA, UF-KOA, and UF-CMA can
be considered as a fine-grained version of a general impossibility result by Fukumitsu and Hasegawa [FH15]
who only consider the implication IMP-PA — UF-CMA; All our impossibility results assume the reductions
to be key-preserving [PV05] and are conditional in the sense that the existence of a reduction would
imply that ID does not satisfy some other natural security property (that is believed to hold).

FROM SINGLE-USER TO MULTI-USER SECURITY FOR SIGNATURES. Our second main theorem can be
informally stated as follows.

Theorem 1.2. IfID is UF-KOA-secure against any adversary having success ratio p, then it is MU-UF-CMA-
secure in the random oracle model against any adversary having success ratio p' = p/4, independent of
the number of users N in the multi-user scenario.

This theorem improves the bound implied by previous generic reductions [GMS02] by a factor of N.
Following our modular approach, the theorem is proved in two steps via Lemmas 3.9 and 3.10. Lemma

is not allowed to ask any signing query.



3.9 proves that UF-KOA tightly implies MU-UF-KOA. Tightness stems from the RSR property, meaning
that from a given public key pk we can derive properly distributed pk, ..., pky such that any signature
o which is valid under pk can be transformed into a signature o; which is valid under pk; and vice-versa.

Lemma 3.10 is our main technical contribution and proves MU-UF-KOA — MU-UF-CMA in the
programmable random oracle model, again with a tight reduction. One is tempted to believe that it can
be proved the same way as in the single user setting (i.e., the same way as UF-KOA — UF-CMA). In the
single user setting, the reduction simulates signatures on m; using the HVZK property to obtain a valid
transcript (R;, h;, s;) and programs the random oracle as H(R;, m;) := h;. However, in the MU-UF-KOA
experiment an adversary can ask for a signature under pk; on message m which makes the reduction
program the random oracle H(Ry,m) := hy. Now, if the adversary submits a forgery (R1, s2) under pk,
on the same message m, the reduction cannot use this forgery to break the MU-UF-KOA experiment
because the random oracle H (R, m) was externally defined by the reduction. Hence, for the MU-UF-KOA
experiment, m, (Ry, s2) does not constitute a valid forgery. In order to circumvent the above problem we
make a simple probabilistic argument. In our reduction, about one half of the multi-user public-keys
are coming from the MU-UF-KOA experiment, for the other half the reduction knows the corresponding
secret-keys. Which secret-keys are known is hidden from the adversary’s view. Now, if the multi-user
adversary first obtains a signature on message m under pk; and then submits a forgery on the same
message m under pk,, the reduction hopes for the good case that one of the public-keys comes from
the MU-UF-KOA experiment and the other one is known. This happens with probability 1/4 which is
precisely the loss of our new reduction.

1.2 Example Instantiations

SCHNORR. SIGNATURES. One of the most important and signature schemes in the discrete logarithm
setting is the Schnorr signature scheme [Sch91]. It is obtained via the Fiat-Shamir transform applied to
the Schnorr identification protocol. The recent expiry of the patent in 2008 has triggered a number of
initiatives to obtain standardized versions of it.

Theorems 1.1 and 1.2 can be used to derive a concrete security bound for strong multi-user MU-UF-CMA-
security of Schnorr signatures in the random oracle model from the DLOG problem.? Our reduction
loses a factor of roughly @)y, the number of random oracle queries. This improves previous bounds
by a factor of N, the number of users in the system. We derive concrete example parameters for a
provably secure instantiation. Figure 1 shows that DLOG is tightly equivalent to IMP-KOA-security
and PIMP-KOA-security is tightly equivalent to MU-UF-CMA-security, meaning the tightness barrier for
Schnorr lies precisely between IMP-KOA and PIMP-KOA security.

KATZ-WANG SIGNATURES. The Chaum-Pedersen identification scheme [CP93] is a double-generator
version of Schnorr. It is at least as secure as Schnorr which means one cannot hope for a tight proof
under the DLOG assumption. However, we can use a simple argument from [KW03, GTKWO07] for a tight
security proof of its PIMP-KOA security under the (stronger) Decision Diffie-Hellman Assumption. The
resulting signature scheme is known as the Katz-Wang signature scheme [KW03] and our framework
yields a tight proof of its strong MU-UF-CMA-security. Again, this improves previous bounds by a factor
of N, the number of users in the system.

GUILLOU-QUISQUATER SIGNATURES. Another canonical identification scheme of interest with the required
properties is the one by Guillou-Quisquater [GQ90]. Similar to Katz-Wang, for the Guillou-Quisquater
scheme, we can use an argument from [ABP13] for a tight proof of PIMP-KOA security under the Phi-
hiding assumption. Alternatively, we can give a proof with loss @5, under the Factoring assumption. Our
framework also shows that this loss is unavoidable.

1.3 Related Work

SINGLE-USER SECURITY. There have been many different works addressing the single-user security of
Fiat-Shamir based signature schemes SIG[ID]. In pioneering work, Pointcheval and Stern [PS00] introduced
the Forking Lemma as a tool to prove UF-CMA security of SIG[ID] from HVZK, SS and KR-KOA-security.

2We can even prove strong MU-UF-CMA security of Schnorr signatures in the sense that a new signature on a previously
signed message already counts as a valid forgery.



Ohta and Okamoto [0O098] gave an alternative proof from IMP-KOA security and HVZK. Abdalla et
al. [AABNO02] prove the equivalence of IMP-PA-security of ID and UF-CMA security of SIG[ID] in the
random oracle model. All above results incorporate a security loss of at least @);, and can be seen as a
special case of our framework. Furthermore, [BP02] consider stronger security notions (e.g., IMP-AA and
man-in-the middle security) for the Schnorr and GQ identification schemes. Abdalla et al. [AFLT12] show
that lossy identification schemes tightly imply UF-CMA-secure signatures in the random oracle model
from decisional assumptions. Our Multi-Instance Reset Lemma (Lemma 3.3) is a generalization to the
Reset Lemma of Bellare and Palacio [BP02].

MULTI-USER SECURITY. To mitigate the generic security loss problem in the multi-user setting for the
special case of Schnorr’s signature scheme, Galbraith, Malone-Lee, and Smart (GMLS) proved [GMS02] a
tight reduction, namely that attacking the Schnorr signatures in the multi-user setting with /N public-keys
provably cannot decrease (by more than a small constant factor) the attacker’s success ratio compared to
attacking the scheme in the single-user setting. Unfortunately, Bernstein [Ber15b] recently pointed out
an error in the GMLS proof leaving a tight security reduction for Schnorr signatures as an open problem.
Even worse, Bernstein identifies an “apparently insurmountable obstacle to the claimed [GMLS] theorem”.
Section 4.3 of [Berl5b] further expands on the insurmountable obstacle. Our Theorem 1.2 shows there
is such a tight security reduction for Schnorr signatures if one is willing to rely on the random oracle
model. Additionally, in Theorem B.1 we also prove an alternative tight reduction in the standard model
which assumes strong UF-CMA security. (Schnorr is generally believed to be strongly UF-CMA secure and
this is provably equivalent to UF-CMA security in the random oracle model.) Proving the original GMLS
theorem (i.e., without random oracles and from standard UF-CMA security) remains an open problem.

IMPOSSIBILITY RESULTS. In terms of impossibility results, Seurin [Seul2], building on earlier work of
[PVO05, GBLOS], proves that there is no tight reduction from the (one-more) discrete logarithm assumption
to UF-KOA-security of Schnorr signatures. A more recent result by [FJS14] even excludes a reduction
from any non-interactive assumption.® Fukumitsu and Hasegawa [FH15], generalizing earlier work on
Schnorr signatures [FF13, PV05], prove that SIG[ID] cannot be proved secure in the non-programmable
random oracle model only assuming IMP-PA security of ID.

SCHNORR SIGNATURES VS. KEY-PREFIXED SCHNORR SIGNATURES. After identifying the error in the
GMLS proof, Bernstein [Ber15b] uses the lack of a tight security reduction for Schnorr’s signature scheme
as a motivation to promote a “key-prefixed” modification to Schnorr’s signature scheme which includes
the verifier’s public-key in the hash function. The EdDSA signature scheme by Bernstein, Duif, Lange,
Schwabe, and Yang [BDL"11] is essentially a key-prefixing variant of Schnorr’s signature scheme. (In the
context of security in a multi-user setting, key-prefixing was considered before, e.g., in [BGLS03].) In
[BDL*11] key-prefixing is advertized as “an inexpensive way to alleviate concerns that several public
keys could be attacked simultaneously.” Indeed, Bernstein [Berl5b] proves that single-user security of
the original Schnorr signatures scheme tightly implies multi-user security of the key-prefixed variant of
the scheme. That is, the key-prefixed variant has the advantage of a standard model proof of its tight
multi-user security, whereas for standard Schnorr signatures one has to assume strong security or rely on
the random oracle model.

The TLS standard used to secure HTTPS connections is maintained by the Internet Engineering
Task Force (IETF) which delegates research questions to the Internet Research Task Force (IRTF).
Cryptographic research questions are usually discussed in the Crypto Forum Research Group (CFRG)
mailing list. In the last months the CFRG discussed the issue of key-prefixing.

Key-prefixing comes with the disadvantage that the entire public-key has to be available at the time
of signing. Specifically, in a CFRG message from September 2015 Hamburg [Ham15] argues “having to
hold the public key along with the private key can be annoying” and “can matter for constrained devices”.
Independent of efficiency, we believe that a cryptographic protocol should be as light as possible and
prefixing (just as any other component) should only be included if its presence is justified. Naturally, in
light of the GMLS proof, Hamburg [Ham15] and Struik [Str15] (among others) recommended against key
prefixing for Schnorr. Shortly after, Bernstein [Berl5a] identifies the error in the GMLS theorem and
posts a tight security proof for the key-prefixed variant of Schnorr signatures. In what happens next,
the participant of the CFRG mailing list switched their minds and mutually agree that key-prefixing

3The main result of the published paper [FJS14] even excludes reduction from any interactive assumption (with special
algebraic properties), but the proof turned out to be flawed.



Prover P(sk) Verifier V(pk)
(R, St) <2 P1(sk) >
-« h & ChSet
s <2 Py(sk, R, h, St) -
d=V(pk,R,h,s)

Figure 2: A canonical identification scheme and its transcript (R, h, s).

should be preferred, despite of its previously discussed disadvantages. Specifically, Brown writes about
Schnorr signatures that “this justifies a MUST for inclusion of the public key in the message of the classic
signature” [Brol5]. As a consequence, key-prefixing is contained in the current draft for EdADSA [JL]. In
the light of our new results, we recommend to reconsider this decision.

2 Definitions

2.1 Preliminaries

For an integer p, define [p] := {1,...,p} and Z, as the residual ring Z/pZ. If A is a set, then a < A
denotes picking a from A according to the uniform distribution. All our algorithms are probabilistic
polynomial time unless stated otherwise. If A is an algorithm, then a <= A(b) denotes the random variable
which is defined as the output of A on input b. To make the randomness explicit, we use the notation
a := A(b; p) meaning that the algorithm is executed on input b and randomness p. Note that A’s execution
is now deterministic.

2.2 Canonical Identification Schemes

A canonical identification scheme ID is a three-move protocol of the form depicted in Figure 2. The
prover’s first message R is called commitment, the verifier selects a uniform challenge h from set ChSet,
and, upon receiving a response s from the prover, makes a deterministic decision.

Definition 2.1 (Canonical Identification Scheme). A canonical identification scheme ID is defined
as a tuple of algorithms ID := (IGen, P, ChSet, V).
o The key generation algorithm 1Gen takes system parameters par as input and returns public and
secret key (pk, sk). We assume that pk defines ChSet, the set of challenges.
e The prover algorithm P = (P1,P2) is split into two algorithms. Py takes as input the secret key sk
and returns a commitment R and a state St; Py takes as input the secret key sk, a commitment R,
a challenge h, and a state St and returns a response s.
o The verifier algorithm V takes the public key pk and the conversation transcript as input and outputs
a deterministic decision, I (acceptance) or 0 (rejection).
We require that for all (pk, sk) € 1Gen(par), all (R, St) € P1(sk), all h € ChSet and all s € Py(sk, R, h, St),
we have V(pk, R, h,s) = 1.

We make a couple of useful definitions. An identification scheme ID is called unique if for all
(pk, sk) € 1Gen(par), (R, St) € P1(sk), h € ChSet, there exists at most one response s € {0,1}* such that
V(pk, R, h,s) = 1. A transcript is a three-tuple (R, h, s). It is called valid (with respect to public-key pk) if
V(pk, R, h,s) = 1. Furthermore, it is called real, if it is the output of a real interaction between prover and
verifier as depicted in Figure 2. A canonical identification schemes ID has « bits of min-entropy, if for all
(pk, sk) € IGen(par), the commitment generated by the prover algorithm is chosen from a distribution with
at least a bits of min-entropy. That is, for all strings R’ we have Pr[R = R'] <27« if (R, St) <> P1(sk)
was honestly generated by the prover.

We now define (parallel) impersonation against key-only attack (KOA), passive attack (PA), and active
attack (AA).



Definition 2.2 ((Parallel) Impersonation). Let YYY € {KOA,PA,AA}. A canonical identification
ID is said to be (t,e,Qcu, Qo)-PIMP-YYY secure (parallel impersonation against YYY attacks) if for all
adversaries A running in time at most t and making at most Qcu queries to the challenge oracle CH and
Qo queries to oracle O,

(pk, sk) <2 1Gen(par)
Pr | V(pk, Ri<,hi-,80) = 1A i* € [Qcy] | St & AC)(pk) <e,
(i*a Si*) ACH()(pka St)

where on the i-th query CH(R;) (i € [Qcul), the challenge oracle returns h; < ChSet to A.* Depending
on YYY, oracle O is defined as follows.

o IfYYY = KOA (key-only attack), then O always returns L.

o IfYYY = PA (passive attack), then O := TRAN, where on the j-th empty query TRAN(€) (5 € Qo),
the transcript oracle returns a real transcript (R, b, s%) to A, where (R}, St}) < Pi(sk), b
ChSet; s, & Py(sk, R}, ), St,).

o If YYY = AA (active attack), then O := PROVER = (PROVER;, PROVERz), where on the j-
th query PROVER1(€) (j € Qo), the prover oracle returns R} for (R}, St}) Pi(sk) to A; on
query PROVERz(j, b)), the oracle returns s); <= Pa(sk, R}, b, St;-), if R} is already defined (and L
otherwise).

If YYY = KOA, then the parameter Qo is not used and we simply speak of (t,e,Qcy)-PIMP-KOA.
Moreover, (t,e,Q0)-IMP-YYY (impersonation against YYY attack) security is defined as (t,e,1,Q0)-
PIMP-YYY security, i.e., the adversary is only allowed Qcy = 1 query to the CH oracle.

Definition 2.3 (Key-recovery). Let YYY € {KOA, PA,AA}. A canonical identification |D is said to be
(t,e)-KR-YYY secure (key recovery under YYY attack) if for all adversaries A running in time at most t,

(pk, sk) < 1Gen(par)

Pr| (sk",pk) € 1Gen(par) | . AOO) (pk) =5

where depending on YYY oracle O is defined as in Definition 2.2. The winning condition (sk*, pk) €
IGen(par) means that the tuple (sk™, pk) is in the support of 1Gen(par), i.e., that A outputs a valid secret-key
sk™ with respect to pk.

Definition 2.4 (Special Soundness). A canonical identification 1D is said to be SS (special sound)
if there there exists an extractor algorithm Ext such that, for all (pk,sk) € IGen(par), given any two
accepting transcripts (R, h,s) and (R,h',s") (where h # h'), we have Pr[(sk™, pk) € 1Gen(par) | sk*
Ext(pk, R, h,s, 1, s")] = 1.

Definition 2.5 (Random Self-reducibility). A4 canonical identification |D is said to be RSR (random
self-reducible) if there is an algorithm Rerand and two deterministic algorithms Tran and Derand such
that, for all (pk, sk) € |Gen(par):

e pk' and pk” have the same distribution, where (pk',7") <2 Rerand(pk) is the rerandomized key-pair
and (pk”, sk'") < 1Gen(par) is a freshly generated key-pair.

e For all (pk',7") € Rerand(pk), all (pk', sk') € 1Gen(par), and sk* = Derand(pk, pk’, sk’, '), we have
(pk, sk™) € 1Gen(par), i.e., Derand returns a valid secret-key sk™ with respect to pk, given any valid
sk’ for pk’.

e For all (pk',7') € Rerand(pk), all transcripts (R',},s') that are valid with respect to pk', the
transcript (R', 1/, s := Tran(pk, pk', 7', (R', 1/, 8"))) is valid with respect to pk.

Definition 2.6 (Honest-verifier Zero-knowledge). A canonical identification ID is said to be (perfect)
HVZK (honest-verifier zero-knowledge) if there exists an algorithm Sim that, given public key pk, outputs
(R, h,s) such that (R, h,s) is a real (i.e., properly distributed) transcript with respect to pk.

2.3 Digital Signatures

We now define syntax and security of a digital signature scheme. Let par be common system parameters
shared among all participants.

4On two queries CH(R;) and CH(R]) with the same input R; = R/ the oracle returns two independent random challenges
h; <= ChSet and h) <= ChSet.



Definition 2.7 (Digital Signature). A digital signature scheme SIG is defined as a triple of algorithms
SIG = (Gen, Sign, Ver).

o The key generation algorithm Gen(par) returns the public and secret keys (pk, sk).

o The signing algorithm Sign(sk, m) returns a signature o.

e The deterministic verification algorithm Ver(pk, m, o) returns 1 (accept) or 0 (reject).
We require that for all (pk, sk) € Gen(par), all messages m € {0,1}*, we have Ver(pk, m,Sign(sk,m)) = 1.

Definition 2.8 (Multi-user Security). A signature scheme SIG is said to be (t,e, N, Qs)-MU-SUF-CMA
secure (multi-user strongly unforgeable against chosen message attacks) if for all adversaries A running
in time at most t and making at most Qs queries to the signing oracle,

*

Ver(pk,~,m",

c*)=1 Fori=1,...,N : (pk,, ski) < Gen(par) <
A @ ,m*,0") ¢ ¢

)
Pr . . o * * IN(-. - = <y
{(Zj7mj70j) |.7 € [Qg]} (Z ym-, o ) ASK’M ' >(pk17 s >pkN)
where on the j-th query (i;,m;) € [N] x {0,1}* (j € [Qs]) the signing oracle SIGN returns o
Sign(sk;,,m;) to A, i.e., a signature on message m; under public-key k.

We stress that an adversary in particular breaks multi-user security if he asks for a signature on
message m under pk, and submits a valid forgery on the same message m under pk,.

The first condition in the probability statement of Definition 2.8 is called the correctness condition,
the second condition is called the freshness condition. Definition 2.8 covers strong security in the sense
that a new signature on a previously queried message is considered as a fresh forgery. For standard
(non-strong) MU-UF-CMA security (multi-user unforgeablility against chosen message attack) we modify
the freshness condition in the experiment to (i*,m*) ¢ {(i;,m;,) | j € [Qs]}, i.e., to break the scheme
the adversary has to come up with a signature on a message-key pair which has not been queried to the
signing oracle. We also define (t,e, N)-MU-UF-KOA security (multi-user unforgeability against key only
attack) as (t,e, N,0)-MU-UF-CMA security, i.e. Qs = 0, the adversary is not allowed to make any signing
query

Definition 2.9 (Single-user Security). In the single-user setting, i.e. N = 1 users, (t,e,Qs)-SUF-CMA
security (strong unforgeablility against chosen message attacks) is defined as (t,e,1,Qs)-MU-SUF-CMA
security. Similarly, standard (non-strong) (t,e,Qs)-UF-CMA security (unforgeablility against chosen
message attack) is defined as (t,e,1,Qs)-MU-UF-CMA security. Further, (t,e)-UF-KOA security (unforge-
ablility against key-only attack) is defined as (t,e,1,0)-MU-SUF-CMA security, i.e., N = 1 users and
Qs = 0 signing queries.

SECURITY IN THE RANDOM ORACLE MODEL. The security of identification and signature schemes
containing a hash function can be analyzed in the random oracle model [BR93]. In this model hash values
can only be accessed by an adversary through queries to an oracle H. On input z this oracle returns a
uniformly random output H(z) which is consistent with previous queries for input z. Using the random
oracle model, the maximal number of queries to H becomes a parameter in the concrete security notions.
For example, for (t,e, N, Qs, Qn)-MU-SUF-CMA security we consider all adversaries making at most @y,
queries to the random oracle. We make the convention that each query to the random oracle made during
a signing query is counted as the adversary’s random oracle query, meaning Qp > Q5.

2.4 Signatures from Identification Schemes

Let ID := (IGen, P, ChSet,V) be a canonical identification scheme. By the generalized Fiat-Shamir
transformation [BP02], the signature scheme SIG[ID] := (Gen, Sign, Ver) from ID is defined as follows. par
contains the system parameters of ID and a hash function H : {0,1}* — ChSet.

Gen(par): Sign(sk, m): Ver(pk,m,o):
(pk, sk) <= 1Gen(par) (R, St) <= P1(sk) Parse o = (R, s)
Return (pk, sk) h=H(R,m) h = H(R,m)
s & Py(sk, R, h, St) Return V(pk, R, h, )
Return 0 = (R, s)




In some variants of the Fiat-Shamir transform, the hash additionally inputs some public parameters, for
example h = H(pk, R,m).

We call ID commitment-recoverable, if V(pk, R, h, s) first recomputes R’ = V' (pk, h, s) and then outputs
1 iff R’ = R. For commitment-recoverable ID, we can define an alternative Fiat-Shamir transformation
SIG'[ID] := (Gen, Sign’, Ver’), where Gen is as in SIG[ID]. Algorithm Sign’(sk, m) is defined as Sign(sk,m)
with the modified output o’ = (h,s). Algorithm Ver'(pk,m,o’) first parses o’ = (h, s), then recomputes
the commitment as R’ := V'(pk, h, s), and finally returns 1 iff H(R',m) = h.

Since o = (R, s) can be publicly transformed into o’ = (h, s) and vice-cersa, SIG[ID] and SIG'[ID] are
equivalent in terms of security. On the one hand, the alternative Fiat-Shamir transform yields shorter
signatures if h € ChSet has a smaller representation size than response s. On the other hand, signatures of
the Fiat-Shamir transform maintain their algebraic structure which in some cases enables useful properties
such as batch verification.

3 Security Implications

In this section we will prove the following two main results.

Theorem 3.1 (Main Theorem 1). Suppose ID is SS, HVZK, RSR and has « bit min-entropy. If ID is
(t,€)-KR-KOA secure then SIG[ID] is (¢, &', Qs, Qr)-UF-CMA-secure and (t",&"”, N, Qs, Qr)-MU-UF-CMA-
secure in the programmable random oracle model, where

g € s 1
o< 6 1) -4 ==

g S 6@t gaog |ChSet|’
1 € Qs 1
o< oy 1) -4+ =

e A T |ChSet|’

and Qs and Qn are upper bounds on the number of signing and hash queries in the UF-CMA (or
MU-UF-CMA) ezperiment, respectively.

The proof of Theorem 3.1 is obtained by combining Lemmas 3.5-3.10 below and using Q) <t — 1.

Theorem 3.2 (Main Theorem 2). Suppose ID is HVZK, RSR and has « bit min-entropy. If SIG[ID] is
(t,e,Qn + Qs)-UF-KOA secure then SIG[ID] is (t',&', N, Qs, Qn)-MU-UF-CMA secure in the programmable
random oracle model, where

Qh@s

2()4
and Qg, Qn are upper bounds on the number of signing and hash queries in the MU-UF-CMA experiment,
respectively.

e <de+

, tVat

The proof of Theorem 3.2 is obtained by combining Lemmas 3.9 and 3.10 below.

3.1 Multi-Instance Reset Lemma

We first state and prove a new reset lemma that we will later use in the proof of Theorem 3.1. It is
presented in the style of Bellare and Neven’s General Forking Lemma [BN06] and does not talk about
signatures or identification protocols. It is a generalization to many parallel instances of the Reset
Lemma [BP02], which is obtained by setting N = 1.

Lemma 3.3 (Multi-Instance Reset Lemma). Fiz an integer N > 1 and a non-empty set H. Let C
be a randomized algorithm that on input (I, h) returns a pair (b,c), where b is a bit and o is called the
side output. Let 1G be a randomized algorithm that we call the input generator. The accepting probability
of C is defined as

acc:=Prlb=1|1<EI1G;h <& H;(b,o) & C(I,h)]

The (multi-instance) reset algorithm R associated to C is the randomized algorithm that takes input
I, ..., Ix and proceeds as follows.



Algorithm Re(Iy,...,In):
Fori € [N]:
Pick random coins p;
hi << H
(biy o) <= C(Liy hi; pi)
If by = ... = by = 0 then return (0, ¢, ¢) // Abort in Phase 1
Fiz i* € [N] such that bjx =1
For j € [N]:
Wy & H
(b}, 0%) € C(Li=, W pi-)
If 35* € [N] : (hi= # R and b, = 1) then return (i, 04+, 07 )
Else return (0, €, €) // Abort in Phase 2
Let
res:=Pr[i* > 1| 11,...,In €1G;(i*,0,0") & Re(L, ..., IN)].
Then

RRAY
res> [ 1— 1—acc+) .
( < H] )

Proof. For fixed instance I and coins p, we define the probabilities

acc(l,p) = Pr [b=1]|(,0) & A, h;p),
W

res(l,p) = Pr b=1A0=1Ah#h|(bo) < AL h;p); (', 0") < AIN;p))].
o <EH

As for fixed I, p, the two events b = 1 and &’ = 1 are independent and we obtain
1
s(r,) 2 scc(T.p) - (accllp) = ). 1)

where the additive factor ﬁ accounts for the fact that Pr[h' = h] = 1/|H|. With the expectation taken

over I <= |G and random coins p, we bound
1
€1, lres(l )l > B facell ) (secllin) - o )|

> &g facelt )] (Enfoectlp] - )

[H]
= acc (acc 1)
H| )"

Above, we used (1), Jensen’s inequality® applied to the convex function ¢(X) := X - (X — 1/|H|), and
the fact that acc = E; ,lacc(I, p)].

Next, consider the random variables b;« and b, (j € [N]) as defined during in the execution of
Ra(li,...,In). Using acc = Pr[b;» = 1] and Pr[b; = 1 Abj« = 1] = Ey,, .. [res(Ii+, pi~)], we obtain

, Pr[t) = 1 A by = 1] 1

Finally, we bound

N N
1
Pr[no abort in phase 2 | no abort in phase 1] = lfH(lfPr[b; =1|bx=1])>1- <1 — acc + |H|> )

Jj=1

5Jensen’s inequality states that if ¢ is a convex function and X is a random variable, then E[p(X)] > ¢(E[X]).



and
N

Pr[no abort in phase 1] =1 — H(l —Prb; =1]) =1 — (1 — acc)V
i=1

to establish

1
res = Pr[no abort in phase 1 A no abort in phase 2] > (1 — (1 — acc + W)Nf.

This completes the proof. m

3.2 Proof of the Main Theorems

Lemma 3.4 (XXX-KOA — XXX-PA). Let XXX € {KR,IMP,PIMP}. IfID is (t,&, Qcu)-XXX-KOA secure
and HVZK, then ID is (= t,e, Qcu, Qo )-XXX-PA secure.

Proof. Let A be an adversary against the (¢, e, Qcu, Qo )-XXX-PA-security of ID. We now build an
adversary B against the (¢, e, Qcn)-XXX-KOA security of ID, with (¢,¢) as claimed.

CONSTRUCTION OF B. Adversary B inputs pk and runs A on pk. Essentially, B only has to simulate
the TRAN oracle of the passive attack PA in the first phase. All queries to the CH oracle (for YYY €
{IMP, PIMP}) in the second phase are echoed by B to its own CH oracle. Finally, B outputs whatever A
outputs. A query to the TRAN oracle can be perfectly simulated by computing a simulated proof via
(R, h, s) <= Sim(pk), and returning it. The running time of B is that of A plus roughly Qo executions of
Sim to simulate the TRAN oracle, which we ignore for simplicity. ™

Lemma 3.5 below proving that KR-KOA tightly implies IMP-KOA uses the Multi-Instance Reset
Lemma and that takes advantage of ID’s random self-reducibility (RSR).

Lemma 3.5 (KR-KOA rewinding, IMP-KOA). If ID is (t,e)-KR-KOA secure, SS and RSR, then ID is
(t',e")-IMP-KOA secure, where for any N > 1,

1
>(1-(01-¢ N2t~ 2Nt 2
£ (1= (- + ) 2)
In particular, the two success ratios are related as
e L _g.c (3)
t' ¢'|ChSet|] — = t’

We remark that without RSR, we we can still obtain the weaker bounds ¢ > &'(¢’ — ﬁ), t =~ 2t

Proof. We first show how to derive (3) from (2). If ¢’ < 1/|ChSet|, then (3) holds trivially. Assuming
g’ > 1/|ChSet|, we set N := (¢/ — 1/|ChSet|)~! to obtain t ~ 2t'/(e’ — 1/|ChSet|) and € > (1 — )% > 1.
Dividing € by t yields (3).

To prove (2), let A be an adversary against the (¢, ¢’)-IMP-KOA-security of ID. We now build an
adversary B against the (t,e)-KR-KOA security of ID, with (¢,¢) as claimed in (2).

We use the Multi-Instance Reset Lemma (Lemma 3.3), where H := ChSet and |G runs (pk, sk) <> |Gen
and returns pk as instance I. We first define adversary C(pk, h; p) that executes A(pk; p), answers A’s
single query R with h, and finally receives s from A. If transcript (R, h, s) is valid with respect to pk
(i.e., V(pk, R, h,s) = 1)), C returns (b = 1,0 = (R, h, s)); otherwise, it returns (b = 0,¢€). By construction,
C returns b = 1 iff A is successful:

acc=¢'.

Adversary B is defined as follows. For each ¢ € [N], it uses the RSR property of ID to generate a fresh
public key/trapdoor pair (pk;,7;) <% Rerand(pk). Next, it runs (i*,0,0’) <2 Re(pky, ..., pky), with C
defined above. If i* > 1, then both transcripts ¢ = (R, h, s) and ¢’/ = (R, h/, s’) are valid with respect
to pk,. and h # h’. B uses the SS property of ID and computes sk;« < Ext(pk,., R, h,s,h’, s’). Finally,
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using the RSR property of ID, it returns sk = Derand(pk;., sk;-, 7;+) and terminates. By construction, B
is successful iff R¢ is. By Lemma 3.3 we can bound B’s success probability as

e=res>(1—-(1-¢+

L \ny2
|ChSet|) )

The running time ¢ of B is that of R¢, meaning 2Nt' plus the N times the time to run the Rerand and
Derand algorithms of RSR plus the time to run the Ext algorithm of SS. We write ¢ & 2Nt’ to indicate
that this is the dominating running time of B. m

Lemma 3.6 (IMP-KOA 2222, PIMP-KOA). If ID is (,2)-IMP-KOA secure, then ID is (., Qcy)-
PIMP-KOA secure, where
e <Qcy-¢e, t' =t

Proof. Let A be an adversary against the (¥',¢’, Qcy)-PIMP-KOA-security of ID. We now build an
adversary B against the (¢,e)-IMP-KOA security of ID, with (¢,¢) as claimed.

CONSTRUCTION OF B. First, B obtains pk from its IMP-KOA experiment and forwards it to A. Next, it
picks i* <& [Qcu]. On A’s i-th query CH4(R;), it proceeds as follows. If ¢ # i*, then it returns h; <2 ChSet.
If i = 4*, then it defines R := R;~, makes a query h <= CHp(R) to its own challenge oracle, and returns
hi+ := h to A. Eventually, A submits (i,s) and terminates. If ¢ # ¢*, then B aborts. Otherwise, B
outputs s to its own experiment and terminates. Clearly, if i = i* then B wins if A wins. Since i* is
uniform in [Qcy) the probability that this happens is 1/Qcy. W

Lemma 3.7 (PIMP-KOA PRO, UF-KOA). IfID is (t, e, Qcu)-PIMP-KOA secure, then SIG[ID] is (t', €', Qp)-
UF-KOA secure in the programmable random oracle model, where

=, t'~t, Qn=CQcn—1.

Proof. Let A be an adversary against the (t',¢’, Qp)-UF-KOA-security of SIG[ID]. We now build an
adversary B against the (¢, &, Qcu)-PIMP-KOA security of ID, with (t,&, Qcu) as claimed.

CONSTRUCTION OF B. First, B obtains pk from its PIMP-KOA experiment which it forwards to A. If A
makes a query (R;,m;) to the random oracle, B returns H(R;, m;) if it is already defined, otherwise B
makes a query h; <2 CH(R;) and programs the random oracle H(R;, m;) := h;. Eventually, A submits a
forgery (m,o = (R, s)), and terminates. We assume that (R,m) € {(R;,m;)}, i.e., H(R, m) was queried
by A. If not, B makes a dummy query to H(R,m) which is simulated as described above. Hence, in total,
there are Qcu := Qp + 1 queries to H. Let ¢ € [Qp + 1] be the unique index such that (R;, m;) = (R, m).
Adversary B outputs (i, s;) and terminates. Note that (R;, h;, s;) is a valid transcript and hence breaks
PIMP-KOA security iff A’s forgery is valid, establishing € = ¢’. The running time of B is roughly that of
A hencet' ~t. m

The following lemma is a special case of Lemma 3.10 (with a slightly improved bound).

Lemma 3.8 (UF-KOA FPRO, UF-CMA). Suppose ID is HVZK and has « bit min-entropy. If SIG[ID] is

(t,e,Qn)-UF-KOA secure, then SIG[ID] is (¢',€',Qs, Qn)-UF-CMA secure in the programmable random
oracle model, where

and Qs, Qp are upper bounds on the number of signing and hash queries in the UF-CMA experiment,
respectively.

Lemma 3.9 (UF-KOA RSR, MU-UF-KOA). Suppose ID is RSR. If SIG[ID] is (¢,e)-UF-KOA secure, then
SIG[ID] is (t',¢’, N)-MU-UF-KOA secure, where

e =g, t ~t.

Note that without the RSR property one can use the generic bounds from [GMS02] to obtain a
non-tight bound with a loss of N.
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Proof. Let A be an algorithm that breaks (¢#,&’, N)-MU-UF-KOA security of SIG[ID]. We will describe an
adversary B invoking A that breaks (¢, e)-UF-KOA security of SIG[ID] with (¢,¢) as stated in the lemma.
Adversary B is executed in the UF-KOA experiment and obtains a public-key pk.

SIMULATION OF PUBLIC-KEYS INPUT TO A. For each ¢ € [N], B generates (pk;,7;) < Rerand(pk) by
using the RSR property of ID. Then B runs A on input (pky,...,pky)-

FORGERY. Eventually, A will submit its forgery (i*,m*,o* := (R*, s*)) in the MU-UF-KOA experiment.
B computes h* = H(m*, R*) and runs s <= Tran(pk, pk;., 7+, (R*,h*,s*)). By the RSR property of ID,
the random variables (pk, R*, h*,s) and (pk;., R*, h*,s*) are identically distributed. If o* is a valid
signature on message m* under pk;., then (R*, s) is also a valid signature on m* under pk. Thus, we have
¢ = ¢’. The running time ¢ of B is ¢’ plus the N times the time to run the Rerand and Tran algorithms of
RSR. We again write t ~¢'. m

Lemma 3.10 (MU-UF-KOA PRO, MU-UF- CMA). Suppose ID is HVZK and has « bit min-entropy. If

SIG[ID] is (t,e, N,Qp)-MU-UF-KOA secure, then SIG[ID] is (t',e', N, Qs, Qn)-MU-UF-CMA secure in the
programmable random oracle model, where

t ~t,

and N is the number of users and Qs and Qp are upper bounds on the number of signing and hash queries
in the MU-UF-CMA experiment, respectively.

Proof. Let A be an algorithm that breaks (¢',¢’, N, Qs, Qr)-MU-UF-CMA security of SIG[ID]. We will
describe an adversary B invoking A that breaks (¢, e, N, @Qp)-MU-UF-KOA security of SIG[ID] with (¢, )
as stated in the lemma. Adversary B is executed in the MU-UF-KOA experiment and obtains public-keys
(pky,...,pky), and has access to a random oracle H.

PREPARATION OF PUBLIC-KEYS. For each i € [N], adversary B picks a secret bit b; <2 {0,1}. If b; =1
then B defines pk| := pk;, else B generates the key-pair (pk!, sk) Gen(par) itself. We note that all
simulated public-keys are correctly distributed.

Adversary B runs A on input (pk}, ..., pk’y) answering hash queries to random oracle H’ and signing
queries as follows.

SIMULATION OF HASH QUERIES. A hash query H'(R,m) is answered by B by querying its own hash
oracle H(R,m) and returning its answer.

SIMULATION OF SIGNING QUERIES. On A’s j-th signature query (i;,m;), B returns a signature o; on
message m; under pkij according to the following case distinction.

o Case A: b;; = 0. In that case sk is known to B and the signature is computed as o; :=
(R, s5) Sign(sklj m;). Note that thls involves B making a hash query and defining H'(R;, m;) :=
H (Rj L )

e Case B: b;; = 1. In that case sk;j is unknown to B and the signature is computed using the HVZK
property of ID. Concretely, B runs (R;, hj,s;) Sim(pkgj). If hash value H'(R;, m;) was already
defined (via one of A’s hash/signing queries) and H'(R;,m;) # hj, B aborts. Otherwise, it defines
the random oracle

H’(Rj,mj) = h (4)
and returns o; := (R;, s;), which is a correctly distributed valid signatures on m; under pk Note
that by (4), B makes H and H' inconsistent, i.e., we have H(R;,m;) # H'(R;,m;) with high
probability. Also note that for each signing query, B aborts with probability at most Q /2% because
R; has min-entropy a. Since the number of signing queries is bounded by @, B aborts overall with
probability at most Q,Qs/2%.

FORGERY. Eventually, A will submit its forgery (i*,m*, o* := (R* s*)). We assume that it is a
valid forgery in the MU-UF-CMA experiment, i.e., for h* = H'(R*,m*) we have V(pkj., R*, h* s*) = 1.
Furthermore, it satisfies the freshness condition, i.e.,

(@*,m”) & {(ij,m;) : j € [Qs]}- (5)

After receiving A’s forgery, B computes a forgery for the MU-UF-KOA experiment according to the
following case distinction.
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e Case 1: There exists a j € [Q,] such that (m*, R*) = (m;, R;). (If there is more than one j, fix any
of them.) In that case we have and h* = h; and furthermore i* # i; by the freshness condition (5).
— Case la: (b = 1) and (b;; = 0). Then the hash value h* = H'(R*,m") was not programmed
by B in (4). That means h* = H'(R*, m*) = H(R*, m*) and B returns (i*, m*, (R*,s*)) as a

valid forgery to its MU-UF-KOA experiment.

— Case 1b: (b~ = b;;) or (b~ = 0ADb;; = 1). Then B aborts.

Note that in case 1 we always have i* # i; and therefore B does not abort with probability 1/4 in
which case it outputs a valid forgery.
e Case 2: For all j € [Q;] we have: (m*, R*) # (m;, R;).

— Case 2a: b;» = 1. Then the hash value h* = H'(R*,m*) was not programmed by B in (4).
That means h* = H'(R*,m*) = H(R*,m*) and B returns (i*, m*, (R*, s*)) as a valid forgery
to its MU-UF-KOA experiment.

— Case 2b: b;x = 0. Then B aborts.

Note that in case 2, B does not abort with probability 1/2 in which case it outputs a valid forgery.
Overall, B returns a valid forgery of MU-UF-KOA experiment with probability

5>Inin{1 1} . <€/ QhQs) _ 1 (6’ QhQs)
- 472 9 1 oo .

The running time of B is that of A plus the @, executions of Sim. We write ' & t. This completes the
proof. ®

If s in ID is uniquely defined by (pk, R, h) (e.g., as in the Schnorr identification scheme), then one can
show the above proof even implies MU-SUF-CMA security of SIG[ID]. The simulation of hash and signing
queries is the same as in the above proof. Let (i*,m*, R*, s*) be A’s forgery. The freshness condition of
the MU-SUF-CMA experiment says that (i*, m*, R*,s*) ¢ {(i;,m;, R;,s;) : j € [Qs]}. Together with the
uniqueness of ID, this implies (i*,m*, R*) ¢ {(i;,m;, R;) : j € [Qs]}. If (¢*,m*) & {(i;,m;) : j € [Qs]},
then B can break MU-UF-KOA security by the same case distinction as in the proof above. Otherwise, we
have R* ¢ {R; : j € [Q4]}, in which case we can argue as in case 2.

4 Impossibility Results

In this section, we show that Theorems 3.1 and 3.2 from the previous section are optimal in the sense
that the security reduction requires: rewinding (Lemma 4.1), security loss of at least O(Q) (Lemma 4.3)
and programmability of random oracles (Lemmas 4.5 and 4.6).

Let X and Y be some hard cryptographic problems, defined through a (possibly) interactive experiment.
A black-box reduction R from X to Y is an algorithm that, given black-box access to an adversary A
breaking problem Y, breaks problem X. If X and Y are security notions for identification or signatures
schemes, then a reduction R is called key-preserving, if R only makes calls to A with the same pk that it
obtained by its own problem X. All our reductions considered in this section are key-preserving.

non-rewind.
Lemma 4.1 (KR-KOA Oﬁb IMP-KOA). If there is a key-preserving reduction R that (tr,er)-
breaks KR-KOA security of ID with one-time black-box access to an adversary A that (t4,e.)-breaks
IMP-KOA security of 1D, then there exists an algorithm M that (tpm,€m, Qo)-breaks IMP-AA security of
ID, where

1
> - — tm~t =1.
EM Z ER \ChSet\ ) M R QO

Proof. Assuming the existence of a key-preserving reduction R as above, we construct a meta-reduction
M to break IMP-AA security of ID. M gets the public key pk of the IMP-AA challenge as input and has
oracle access to O = PROVER, black-box accesses to R and simulates the adversary A.

CONSTRUCTION OF M(pk). M runs R(pk) and, upon receiving pk from R, M simulates the interaction
with A(pk) by echoing M’s queries to the IMP-AA experiment. That is, M queries R <= PROVER1()
provided by the IMP-AA experiment and returns R to R. Upon receiving h from R, M queries
s <2 PROVERg(1, h) provided by the IMP-AA experiment and returns s to R with probability €.4.
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Figure 3: Meta-reduction M uses R to break the IMP-MIM security in n MIM rounds. n is the total

amount of executions of A performed by R. For every MIM round j € [n], A picks an i} € [Qcu] and

forwards a valid response s;;+. M fails when R fails, (R, h,s) = (R;+, hi=, s;=) for some j € [n]. It also
J J J

fails with some probability when A gets rewinded on a different hj’i; after having requested 8j,i

After receiving sk from R, M uses sk to impersonate a prover. First, M computes (R*, St)
P1(sk) and queries oracle h* CH(R*) provided by the IMP-AA experiment. Next, M outputs
s* ¢ Py(sk, R*, h*, St) and terminates.

By the correctness of ID, (R*, h*,s*) is a valid transcript and (R*, h*, s*) # (R, h, s) with probability
at least 1 — 1/|ChSet|]. We note that M perfectly simulates an (t4,c4) adversary against IMP-KOA
security. Thus, we have ey > eg — 1/|ChSet|. =

For our next impossibility result, we will require the following definition for identification schemes.

Definition 4.2 (Concurrent (Weak) Impersonation against Man-in-the-Middle Attacks). A
canonical identification 1D is said to be (t,&,Qcu, Qo)-IMP-MIM secure (impersonation against man-in-
the-middle attacks) if for all adversaries A running in time at most t and adaptively making at most Qo
queries to the prover oracle PROVER and Qcy queries to the challenge oracle CH,

P V(pk, Rix, hix,8i+) = LA (i* € [Qcul) (pk, sk) < 1Gen(par) <
UL AR hieysie) @ LRGBG8 |G € [Qol} | (6%, i) € APROVERO.CHO) (p)y | =€

where oracles PROVER and CH are defined as in Definition 2.2. We define weak impersonation against
man-in-the-middle attack (WIMP-MIM) by restricting R;- € {R,..., Rg }.

We remark that wIMP-MIM is a non-standard definition without any practical relevance, but it will
only be used for showing negative results. The following generalizes a result by Seurin [Seul2] to canonical
identification schemes.

loss
Lemma 4.3 (IMP-KOA ﬁLQ) PIMP-KOA). Suppose that ID has « bit min-entropy and there is a

key-preserving reduction R that (tgr,er)-breaks IMP-KOA security of ID with n-time black-box access to
an adversary A that (t4,ea, Qcn)-breaks PIMP-KOA security of ID. Then there exists an algorithm M
that (tam,em, 1, Qo = nQcu)-breaks IMP-MIM security of 1D, where

nln(l-ea)™) n  n
Qon [ChSet| ~ 20

EM 2 ER — tm ~tr.

Proof. Assuming the existence of a key-preserving reduction R, we construct a meta-reduction M to
break IMP-MIM security of ID (see Figure 3). M inputs public key pk of the IMP-MIM challenger, has
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black-box accesses to R and simulates the adversary 4 while interacting within Qo = nQcy many MIM
rounds.

W.lo.g. we can assume that our adversary A never accesses its random coins. Instead, it generates
pseudorandomness directly using a PRF, where the key & of PRF is part of the description of A. Adversary
A’s randomness is derived from its current view using the PRF. As we assume that R has only black box
access to A, it can not access key k and hence it can not distinguish A’s pseudorandom randomness from
uniform randomness by observing the outputs of A.

CONSTRUCTION OF M(pk). M runs R(pk) who is interacting with a simulated A(pk). (Recall that R is
key-preserving, so it always executed A on pk.) R can execute A at most n times and hence rewinds it
at most n — 1 times to any desired state. In the simulation of A described below we make the explicit
convention that M always keeps the simulation of A consistent with previous executions. That is, as
long as there exists a j' < j such that for all ¢ <, hj;» = hjr ;, then M will also use R;; = Rj/; and
Cj,i = Cj/7i.

Upon receiving pk from R, M simulates the j-th execution or rewind (j € [n]) of A(pk) as follows.

e First, M sets a flag b; := 0. The flag b; will be switched to 1 once M has obtained one valid
transcript from the PROVER oracle.

e To simulate the i-th query to the challenge oracle (i € [Qcy]), M starts an interaction with a
new prover: M calls R;; <> PROVER; () and forwards it to R, which will reply with an arbitrary
hj; € ChSet. If b; = 1, M sets ¢;,; := 0. Otherwise, M flips a biased coin ¢;; with Pr(c;; = 1] = py,
where p will be defined later.

Case 1: ¢j; = 1. If there is an index j' < j with R ; = Rj;, hj; # hj;, and ¢jr; = 1, then M
aborts its attempt to break IMP-MIM security of ID. Otherwise, it defines i} := i and requests
5j,i PROVERg(Ij)i;,hj)i;), where Ij,i; = (j — 1) Qcu + i;- refers to the iji; ’s query to the
PROVER; oracle from which M obtained challenge hj,i;. Note that M now obtained one transcript
(Rjix, hjir, 8j,i7) from the PROVER oracle and therefore sets b; := 1.

Case 2: ¢;; = 0. M does nothing.

e After Qcy simulated challenge queries, M sets (i}, sjyl-;) = (L, 1) if 4} is undefined. Finally, M

returns (z;‘,sﬂj) to R.
This completes the simulation of the j-th execution of A.
At some point R makes a query CH(R), which M forwards to its own CH, receiving h. Finally, R
outputs s and terminates. M also outputs s and terminates. This completes the description of M.

ANALYSIS OF M. We define Bad; as the event that the transcript (R, h,s) output by R does not
satisfy the freshness condition (R, h,s) ¢ {(R;:, hji, ;) | (j,7) € [n] X [Qcu)} of the IMP-MIM security
experiment. Note that s;; #L only if i =4} and therefore we only need to consider the case i = ij.
Pr[Badl] = PI‘[E'_] € [TL] : (R, h, S) = (R]J; R hj7fL'; s Sj,i;)]
< Pr[Fj€n]: (Rh) = (Rjur, hyr)].

We let (jo,%0) € [n] X [Qcu] be the unique pair of indices such that R makes its single query CH(R) after
receiving R but before receiving R, io+1-

Pr[3j € [n] : (R,h) = (Rjax, hyir)] < Pr[3(4,i3) # (o, io) : (B, h) = (Rjix, hyjr)] (6)
+ Pr{(4,45) = (Jo, io)]- (7)

We bound the probabilities (6) and (7) individually. To bound (7), only a single query is considered.
Therefore

Pr[(j,77) = (jo,i0)] = Prlcjpi, = 1] < p.

To bound (6), we define a natural order on the set [n] x [Qcu] via (4,7) < (jo,40) iff R;,; was received
before R, ;,, i€, (j —1)Qcn +1 < (jo — 1)Qcu + 0. Note that R chooses hj ;- for (j,4}) < (jo,%0) before
seeing h <= ChSet. Furthermore, R is fixed for (j,}) > (jo,io) while R;;- <= PROVER; () has at least o
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bits of min-entropy. Therefore by splitting the probabilities and using a union bound

Pr3(j,i5) # (o, o) : (B, h) = (R, hj)]

< Pr[3(5,45) < (Jo,io) : (R, h) = (Rj,i;ahj,i;)] +Pr[3(4,47) > (Jo,i0) : (R, h) = (Rj,i;,hj,i;)]
< Pr[EI(j, ’Lj) < (Jo,i0) : h = hj,i;] + Pr[EI(j, ’Lj) > (Jo,i0) : R= RJﬂj]
< Jo n—jo+1 n_.n
= |ChSet| 20 ~ |ChSet| = 2«
Overall, this yields
n n
< —
PriBadi] < e T4+ 5

Next, we define Badsy as the event that M aborts. By a union bound we get
Pr[Badg} = PI“[E'] S [ﬂ},j/ < j,t € [QCH] : Rj/,i = Rj,,‘ A hjgi 75 h]’,,’ AN Cji = Cj i = 1]
= Pr[F3jenl.j <j:Rjir=Rji: Ny # hjas Acjrir =1]
< Pr[Ejien)j <jree=1< -1

CHIOCE OF . We now choose 1 such that on one side A forges with probability €4 and on the other
side the probability that Bad; or Bads happen is bounded. We set

p=1-—(1- 5A)1/Qc:n

for a desired success probability 0 < €4 < 1 of A and Qc¢y queries. Note that for an execution j € [n] that
unless for all ¢ € [Qcu] we have ¢;; =0, A will always send a valid transcript and break the PIMP-KOA
security. Let 7z := (1 — p). For any execution j € [n], A has success probability

QCH QCH
Pri3i € [Qeul i =1]=) p(l-m* =3 (@ - =1-(1-u =ca.
k=1 k=1
Finally, we can bound the success probability of M
n n _nln((1-—e4)™") n n
Pr[Bad; A Bads] < n - - 4 < n
r[Bad, adz] <n M+|ChSet|+20‘_ Ocn +|ChSet|+20"

where the bound pz < In((1 —e4)7!)/Qcy was proved in [Seul2, Lemma 1]. Therefore we have

nln((l-ea)™)  n  n
Qon ChSet| 207

EM ZER — tim R tr = ntg

which concludes the proof of the lemma. ®

For a precise analysis of the function In ((1 — EA)_l), we refer to [Seul2]. For our purpose, it is
sufficient that for a concrete choice of £ 4, there is a constant ¢ such that ¢-e4 =1In ((1 —4)~"). Hence
Lemma 4.3 gives roughly exq > ex — ¢-n/Qcy - €4 for a suitable choice of € 4. Therefore ex can be at
most ¢-n/Qcy - €4. Otherwise M would break IMP-MIM security of ID with e, > 0.

It is easy to see that the meta-reduction of the proof of Lemma 4.3 just forwards all R;; received
during the Man-in-the-Middle attack and R sent by R. So if R is furthermore randomness-preserving,
ie., it chooses R € {R11,...,Rn 0} then M attacks wiIMP-MIM-security of ID. This observation
(formalized in the following corollary) is important since the Schnorr identification scheme is wIMP-MIM
but not IMP-MIM-secure (cf. Section 5.1).

Corollary 4.4. If ID has a bit min-entropy and there exists a key- and randomness-preserving reduction
R that (tr,er)-breaks IMP-KOA security of ID with n-time black-box access to an adversary A that
(ta,ea, Qcn)-breaks PIMP-KOA security of ID, then there exists an algorithm M that (tp,em, 1, Qo =
nQcu)-breaks wIMP-MIM security of 1D, where

nln ((1—c4)7?) _n
Qon |ChSet| 207 M TR

EM ZER —
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[ Random Oracle H ]

Figure 4: Meta-reduction M runs R to break IMP-AA security in the non-programmable random oracle
model, where both M and R have oracle access to the same external random oracle H. M simulates an
adversary A that breaks UF-KOA security of SIG[ID] (which is in the dashed box) and answers the oracle
queries of R.

Lemma 4.5 (IMP-KOA m UF-KOA). If there exists a key-preserving reduction R in the non-
programmable random oracle (NPRO) model that (tr,er)-breaks IMP-KOA security of ID with n-time
black-boz access to an adversary A that (ta,e4, Qn)-breaks UF-KOA security of SIG[ID], then there exists
an algorithm M that (ta, e, 1)-breaks IMP-AA-security of ID, where

1
> -t tR.
FMZER T CRGey] M TR

Proof. Assuming the existence of a key-preserving reduction R as above, we construct a meta-reduction
M to break IMP-AA security of ID. Figure 4 gives a pictorial overview of it M. We can w.l.0.g. assume
that n = 1 since M only interacts with A by sending the fixed pk. M obtains the public key pk from
the IMP-AA experiment and has oracle access to PROVER, black-box accesses to R and simulates the
adversary A. Additionally, both M and R get access to the same external random oracle H, in the
NPRO model.

CONSTRUCTION OF M(pk). M runs R(pk) and, upon receiving pk from R, M simulates A(pk) as follows.
First, M queries R <2 PROVER;() to the IMP-AA experiment . Next, M picks an arbitrary message m,
queries h = H(m, R) to the random oracle, and s <& PROVER3(1, /) to the IMP-AA experiment. With
probability €4, M returns (m, (R, s)) as a forgery to R.

Upon receiving a challenge query CHg (R*) query from R, M answers with h* <& CH((R*), where
CHp is provided by the IMP-AA experiment. Finally, R outputs s* to break IMP-KOA security and
terminates. M also outputs s* to its IMP-AA experiment and terminates. We note that (R*, h*, s*) =
q(R, h, s) with probability 1/|ChSet|, since h* is a random challenge chosen by the IMP-AA experiment and
h is the response of a random oracle query. Thus, if s* breaks IMP-KOA security, then s* breaks IMP-AA
security. Moreover, M perfectly simulates an adversary that (¢4,e.4, Qn)-breaks UF-KOA security. This
establishes epq > eg — 1/|ChSet|. m

By Lemma 3.6, Lemma 4.5 implies that there is no reduction from PIMP-KOA to UF-KOA in the
non-programmable random oracle model.
The following simple lemma actually holds for any signature scheme SIG.
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Lemma 4.6 (UF-KOA jf&g UF-CMA). Suppose that there is a key-preserving reduction R in the

non-programmable random oracle (NPRO) model that (tgr,er, Qp)-breaks UF-KOA security of SIG with
n-time black-box access to an adversary A that (€ 4,ta, Qs, Qn)-breaks UF-CMA security of SIG. Then
there exists an algorithm M that (e, tam)-breaks UF-KOA security of SIG, where

EM ZER, tM R IR.

Proof. Assuming the existence of a key-preserving reduction R as above, we construct a meta-reduction M
to break UF-KOA security of SIG[ID]. Similar to the proof of the last lemma, we can assume w.l.o.g. n = 1.
M gets the public key pk from the UF-KOA experiment and simulates an adversary A. Additionally,
both M and R get access to the same external random oracle H, in the NPRO model.

CONSTRUCTION OF M(pk). M runs R(pk) and, upon receiving pk from R, M make a signing query on
m <~ M to R. Upon receiving the signature o = (R, s), M terminates and returns (m, o) as a UF-KOA
forgery. As both M and R have access to the same random oracle, (m, o) is also a valid forgery in
UF-KOA experiment. (This argument does not hold if the random oracle is programmable.) Thus, we
have epf > er. H

Remark 4.7. All the reductions considered in this section are key-preserving which is the main restriction
of our results. If pk and R are elements from some multiplicative group G of prime order p, then we
can extend our previous techniques to exclude the larger class of algebraic reductions. A reduction is
algebraic, if for all group elements h output by the reduction, their respective representation is known.
That is, if at some point of its execution the reduction holds group elements g1, ..., g, € G and outputs
a new group element h, then it also knows it representation meaning it also outputs (a1, ...,a,) € Ly,
satisfying h = [] ¢g;"". Note that key-preserving and randomness-preserving reductions are a special case
of algebraic reductions.

5 Instantiations

In this section we consider three important identification schemes, namely the ones by Schnorr [Sch91],
by Katz-Wang [KW03, CP93] and by Guillou-Quisquater [GQ90]. We use our framework to derive tight
security bounds and concrete parameters for the corresponding Schnorr/Katz-Wang/Guillou-Quiquater
signature schemes.

5.1 Schnorr Identification/Signature Scheme
5.1.1 Schnorr’s Identification Scheme

The well-known Schnorr’s identification scheme is one of the most important instantiations of our
framework. For completeness we show that Schnorr’s identification has large min-entropy, special
soundness (SS), honest-verifier zero-knowledge (HVZK), random-self reducibility (RSR) and key-recovery
security (KR-KOA) based on the discrete logarithm problem (DLOG). Moreover, based on the one-more
discrete logarithm problem (OMDL), Schnorr’s identification is actively secure (IMP-AA) and weakly
secure against man-in-the-middle attack (wIMP-MIM).

Let par := (p, g,G) be a set of system parameters, where G = (g) is a cyclic group of prime order p
with a hard discrete logarithm problem. Examples of groups G include appropriate subgroups of certain
elliptic curve groups, or subgroups of Z;. The Schnorr identification scheme IDs := (IGen, P, ChSet, V) is
defined as follows.

IGen(par): P+ (sk):
sk=2&17, r<& 7y R=g"
pk =X =g¢" St:=r
ChSet := {0,1}" Return (R, St)

Return (pk, sk)
Pa(sk, R, h, St):

V(pk, R, h,s): Parse St =r

If R=g¢°- X" then return 1 Return s = x - h + 7 mod p
Else return 0
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We recall the DLOG assumption.

Definition 5.1 (Discrete Logarithm Assumption). The discrete logarithm problem DLOG is (t,¢€)-
hard in par = (p, g,G) if for all adversaries A running in time at most t,

Pr[g“’:X ’XG;mA(X) }gs.

Lemma 5.2. |Ds is a canonical identification with o = logp bit min-entropy and it is unique, has special
soundness (SS), honest-verifier zero-knowledge (HVZK) and is random-self reducible (RSR). Moreover, if
DLOG is (t,e)-hard in par = (p,g,G) then IDs is (t,e)-KR-KOA secure.

Proof. The correctness of I1Ds is straightforward to verify. We note that R in (R, St) <= P1(sk) is uniformly
random over G. Hence, IDs has log |G| = log p bit min-entropy. We show the other properties as follows.

UNIQUENESS. For all (X, z) € IGen(par), (R :=g", St :==r) € P1(sk) and h € {0,1}", the value s € Z,,
satisfying ¢* = X"R < s = xh + r is uniquely defined.
SPECIAL SOUNDNESS (SS). Given two accepting transcripts (R, h, s) and (R, 1/, s") with h # b/, we define
an extractor algorithm Ext(X, R, h,s,h/,s') := a* := (s — §')/(h — I') such that, for all (X := ¢*,z) €
IGen(par), we have Pr[g*” = X] = 1, since we have R = ¢g°X " = ¢¥ X 7" and then X = g(s=5)/(h=h"),
HONEST-VERIFIER ZERO-KNOWLEDGE (HVZK). Given public key X, we let Sim(X) first sample h
{0,1}™ and s <2 Z, and then output (R := g°X " h,s). Clearly, (R, h,s) is a real transcript, since s is
uniformly random over Z, and R is the unique value satisfying R = ¢°X —h,
RANDOM-SELF REDUCIBILITY (RSR). Algorithm Rerand and two deterministic algorithm Derand and
Tran are defined as follows:
e Rerand(X) chooses 7/ & 7, and outputs (X’ := X -¢g™ ,7'). We have that, for all (X, ) € |Gen(par),
X' is uniform and has the same distribution as X" where (X", z'") <= |Gen(par).
e Derand(X, X', 2/,7') outputs 2* = z' — 7'. We have, for all (X', 7') Rerand(X := ¢%) and
(X', 2') € 1Gen(par), X' = ¢ and 2’ = x 4+ 7’ and thus z* = .
e Tran(X, X', 7/, (R',h,s")) outputs s = s’ — 7' - h’. We have, for all (X', 7’) € Rerand(X := g%), if
(R',},s") is valid with respect to X’ := ¢®t™ then s =s' —7/- W = (x+7 )W +r—7-h' = zh' +r
and (R', 1/, s) is valid with respect to X.
KEY-RECOVERY AGAINST KEY-ONLY ATTACK (KR-KOA). KR-KOA-security for ID is exactly the DLOG
assumption. M

We recall the OMDL assumption.

Definition 5.3 (One-more Discrete Logarithm Assumption [BNPS03]). We says that OMDL is
(t,e,Q)-hard in par = (p, g,G) if for all adversaries A running in time at most t and adaptively making
at most QQ queries to the discrete logarithm oracle DL,

Xi,...,X EG
1 y Q41 <€’

Pr| Forie|Q+1]:X; =g" (xl,...,mQH)ADL(')(X17--~7XQ+1) <

where on input arbitrary group element Y the discrete logarithm oracle DL returns y € Z, such that
gy =Y.

Lemma 5.4 (Theorem 5.1 in [BP02]). If the OMDL problem is (t,e,Q)-hard then IDs is (t',&',Qo)-
IMP-AA secure, where &’ < /e +1/p, t = 2t', and Qo = Q.

We now show that the Schnorr identification scheme is weakly IMP-MIM secure based on one-more
discrete logarithm assumption.

Lemma 5.5. If OMDL problem is (t,&,Q)-hard then IDs is (t', &', Qcu, Qo)-wIMP-MIM secure, where
d=e t=t, Qo=0Q.

Proof. Let A be an algorithm that breaks (¢,¢’, Qcu, Qo)-wIMP-MIM security of IDs. We will describe
an adversary B invoking A that (¢, e, Q)-breaks OMDL with (¢,¢, Q) as stated in the theorem. Adversary
B obtains Xj,..., Xg+1, and has access to a discrete logarithm oracle DL. B runs A on input pk :=
X := Xg+1 and answers the adaptive PROVER and CH queries as follows:
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e On the j-th PROVER:() query (j € [Qo]), B returns R} := X;.

e On the j-th PROVER2(j, h}) query, B queries and returns s’ = DL(X" - R}).

e On the i-th CH(R;) query, B chooses a random h; <= ChSet and returns h;.

Note that weak IMP-MIM security requires that for all i, j, we have R; = R; for some R;» previously
returned by the PROVER; () oracle.

Eventually, A returns (i*,s;«) and terminates. We can assume that .4 has made the queries
PROVERgz(j, b)) for all j € [Qo]. If not B makes the dummy query PROVER2(j, b)) for an arbitrary
h’; # hi- to obtain a valid transcript (R}, h}, s}) for all j € [Qo]. So in total, B made exactly Qo calls to
the DL oracle.

A wins if (Ri«, hi«, s;+) is a valid transcript, (Ri«, hix, si-) & {(R}, b}, 85) | j € [Qol}, and R« = R,
for some index j*. (If there exists more than one index j*, we fix an arbitrary one.) From the above
observations we conclude that B knows two valid transcripts, (Ri«,hi«,s;+) and (R}, = R, hj., s%.)
satisfying (his, si=) # (Rj., s}.). From the two valid transcripts, B can reconstruct sk = z¢41 using the
special soundness of the Schnorr identification scheme. Furthermore, since (R}, h}, 5;) = (Xj, h;, s;) is a
valid transcript and x4 is known, B can compute z; = s} — v 1) for all j € [Q]. Finally, B returns
(x1,...,20+1), breaks OMDL problem with e = ¢’ and t ~¢. =

We now define the Q-interactive discrete-logarithm problem which precisely models PIMP-KOA-security
for IDs, where @ = Qo is the number of parallel impersonation rounds.

Definition 5.6 (Q-IDLOG). The interactive discrete-logarithm assumption Q-IDLOG is said to be (t,¢€)-
hard in par = (p, g,G) if for all adversaries A running in time at most t and making at most Q queries
to the challenge oracle CH,

&7, X =g"

Prise{zhitrilic[Q} | (o g0 x)

<e,

where on the i-th query CH(g"™) (i € [Q]), the challenge oracle returns h; <= Z, to A.

In Appendix A we prove that in the generic group model, the @Q-IDLOG problem in groups of
prime-order p is at least (2t2/p,t)-hard. Note that the bound is independent of Q.

5.1.2 Schnorr’s Signature scheme

Let H : {0,1}* — {0,1}" be a hash function with n < log,(p). As IDs is commitment-recoverable we
can use the alternative Fiat-Shamir transformation to obtain the Schnorr signature scheme Schnorr :=
(Gen, Sign, Ver).

Gen(par): Sign(sk, m): Ver(pk, m, o):
sk:=2&17, r& 7y R=g" Parse o = (h,s) € {0,1}" x Z,
pk =X =g" h=H(R,m) R=g’X""
Return (pk, sk) s=x-h+rmodp If h = H(R,m) then return 1
o=(h,s)€{0,1}" x Z, Else return 0.
Return o

The DLOG problem is tightly equivalent to the 1-IDLOG problem by Lemma 3.5. Assuming the
OMDL problem is hard, Schnorr is wIMP-MIM-secure and by Corollary 4.4 there cannot exist a tight
implication 1-IDLOG — Q-IDLOG meaning the bound from Lemma 3.6 is optimal. By Lemmas 3.7 and
3.8, the Q-IDLOG problem is tightly equivalent to SUF-CMA-security of Schnorr in the programmable
ROM. The latter is only tightly equivalent to MU-SUF-CMA-security in the programmable ROM (via
Lemmas 3.9 and 3.10). Lemma B.1 in the Appendix improves this by proving that SUF-CMA security is
tightly equivalent to MU-SUF-CMA-security in the standard model. Figure 5 summarizes the modular
security implications for Schnorr.

We derive the following concrete security implications.
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rew. (L. 3.5) loss Q (L. 3.6) PRO (L. 3.7, L. 3.8) (L. B.1)
DLOG 1-IDLOG Q-IDLOG SUF-CMA

non-rew. (L. 4.1) loss < @ (L. 4.3) NPRO (L. 4.5, L. 4.6)

MU-SUF-CMA

Figure 5: Security relations for the Schnorr signature scheme. All implications except the red one are
tight.

Lemma 5.7. If DLOG is (¢, ¢)-hard in par = (p,g,G) then Schnorr is (t',¢’,Qs, Qn)-SUF-CMA secure
and (t",&",N,Qs, Qn)-MU-SUF-CMA secure in the programmable random oracle model, where

g e, Qs 1
— < 6 1) = =2 —
g S 6@+l o+ > T
e” e Qs 1
o< 12 1) -+ 224 —
o < 12(Qn+1) (t, T

Lemma 5.8. If Q,-IDLOG is (t,¢)-hard in par then Schnorr is (t',¢', N, Qs, Qn)-MU-SUF-CMA secure
in the programmable random oracle model, where
5’§25+%, t ~t.
p

We leave it an open problem to come up with a more natural hard problem over par that tightly
implies Q-IDLOG (and hence MU-SUF-CMA-security of Schnorr). Note that according to [FJS14], the
hard problem has to have at least one round of interaction.

The interpretation for the multi-user security of Schnorr over elliptic-curve groups is as follows. It is
well-known that a group of order p providing k-bits security against the DLOG problem requires logp > 2k.
If one requires provable security guarantees for Schnorr under DLOG, then one has to increase the group
size by =~ log(@},) bits. Reasonable upper bounds for log @, are between 40 and 80. However, the generic
lower bound of Theorem A.1 indicates that the only way to attack Schnorr in the sense of UF-KOA (and
hence to attack @Q-IDLOG) is to break the DLOG problem. In that case using groups with logp =~ 2k
already gives security guarantees for Schnorr.

5.2 Chaum-Pedersen Identification/Katz-Wang Signature Scheme
5.2.1 Chaum-Pedersen Identification Scheme

Let par := (p, g1, g2, G) be a set of system parameters, where G = (g1) = (g2) is a cyclic group of prime
order p. The Chaum-Pedersen identification scheme IDcp := (IGen, P, ChSet, V) is defined as follows.

IGen(par): P (sk):

sk ::$ZP TZP;R:(RlvRQ):(ngg)
pk = (X1, X2) = (97, 93) St:=r

ChSet := {0,1}" Return (R, St)

Return (pk, sk)
P2 (sk, R, h, St):

V(pk, R = (R1, R2),h, s): Parse St = r

If Ri =¢° X;" and R> = ¢° - X; " then return 1 Return s =z -h+rmod p
Else return 0

We recall the DDH assumption.

Definition 5.9 (Decision Diffie-Hellman Assumption). The Decision Diffie-Hellman problem DDH
is (t,€)-hard in par = (p, g1, g2, G) if for all adversaries A running in time at most t,

|Pr[1 & A(gf,g5) | # € Z,] — Pr[1 & A(git, g5°) | 21 € Zp;mo < Zy \ {21}] | <e.
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Clearly, all security results of Schnorr carry over to the Chaum-Pedersen identification scheme, i.e.,
IDcp is at least as secure as IDs. That also means that we cannot hope for tight PIMP-KOA security from
the DLOG assumption. Instead, for the Chaum-Pedersen identification scheme, we give a direct tight
proof of PIMP-KOA security under the DDH assumption which we extracted from [KW03].

Lemma 5.10. IDcp is a canonical identification scheme with o = logp bit min-entropy and it is unique,
has special soundness (SS), honest-verifier zero-knowledge (HVZK) and is random-self reducible (RSR).
Moreover, if DDH is (t,e)-hard in par = (p, g1, 92, G) then |Dcp is (t',¢’, Qcu)-PIMP-KOA secure, where
txt ande >e — Qcu/2".

Proof. The proof of SS, HVZK, uniqueness, and RSR is the same as in IDs.

To prove PIMP-KOA-security under DDH, let A be an adversary that (¢, &', Qcy)-breaks PIMP-KOA
security. We build an adversary B against the (¢,¢)-hardness of DDH as follows. Adversary B inputs
(X1, X5) and defines pk := (X3, X32). On the i-th challenge query CH(R; 1, R;2), it returns h; L.
Eventually, A returns i* € [Qcy] and s;« and terminates. Finally, B outputs d := V(pk, Rj«, hi=, $;+).
ANALYSIS OF B. If (X1,X5) = (¢7,4%), then B perfectly simulates the PIMP-KOA game and hence
Prid =1 (X1,X2) = (¢7,93)] = €. If (X1,X2) = (¢7*,65?) with z1 # x2, then we claim that even
a computationally unbounded A can only win with probability Qcy/2", ie., Pr[d = 1| (X1, X3) =

(91":95%)] < Qcu/2™. - N
It remains to prove the claim. For each index i € [Qcu), A first commits to R; 1 = ¢;"" and R; 2 = g5"*
(for arbitrary 7;1,7;,2 € Z,) and can only win if there exists an s; € Z,, such that

ri1+ hix1 = s =12+ hito
Ti2 — Tl
Tr1 — T2

where h; <= {0,1}" is chosen independently of r; 1,7; 2. This happens with probability at most 1/2", so
by the union bound we obtain the bound Qcy/2", as claimed. ®

5.2.2 Katz-Wang Signature scheme

Let H : {0,1}* — {0,1}" be a hash function with n < log,(p). As IDcp is commitment-recoverable we
can use the alternative Fiat-Shamir transformation to obtain a signature scheme which is known as the
Katz-Wang signature scheme KW := (Gen, Sign, Ver).

Gen(par): Sign(sk,m): Ver(pk, m,0):
sk=x &7, r & Z,; R= (R1,Rz2) = (g7, 9%) Parse o = (h,s) € {0,1}" X Z,
pk = (X1, X2) = (97, 93) h=H(R,m) R=g°X""
Return (pk;, sk) s=xz-h+7rmodp If h = H(R, m) then return 1
o= (h,s) € {0,1}" x Z, Else return 0.
Return o

By our results we obtain the following concrete security statements, where the first bound matches
[KWO03, Theorem 1].

Lemma 5.11. If DDH is (¢,¢)-hard in par = (p, g1, g2, G) then KW is (', &', Qs, Qr)-SUF-CMA secure
and (t", ", N, Qs, Qn)-MU-SUF-CMA secure in the programmable random oracle model, where

e’ e Qs 1
m S 7+7 77
t t p 2
e” e Qs 1

This bound shows that groups with logp ~ 2k and n = k provides k bits security for KW.
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5.3 Guillou-Quisquater Identification/Signature Scheme
5.3.1 Background on RSA and Notations

For n € N we denote by IP,, /5 the set of all n/2-bit primes and RSA,, := {(N = pq,p,q) | p,q € Pr/2,p # q}.
Let ¢(N) := (p — 1)(¢ — 1) be Euler’s totient function for (N, p,q) € RSA,. Let R be a relation on p and
g. By RSA,,[R] we denote the subset of RSA,, for that the relation R holds on p and q.

Let neNand 0 < c< i be a constant. We define the following two distributions.

Pen; (N, p, q) € RSA,[ged(e, p(N) = 1)]}
Pen; (N,p,q) <= RSA,[p = 1 mod e,p # 1 mod e?,q # 1 mod e]}

Tm Tm

Tnc:={(Ne)|e
Lnec:={(N,e)|e
Using the above notation, we recall the Phi-hiding assumption [CMS99, KOS10, KK12].

Definition 5.12 (Phi-hiding Assumption). The Phi-hiding problem ¢-H,, . is (t,€)-hard if for all
adversaries A running in time at most t,

|Pr[1 < A(N,e) | (N,e) € 7, ] — Pr[1 & A(N,e) | (N,e) & L, ]| <e.

5.3.2 Guillou-Quisquater Identification Scheme

Let par = (N, e) <= I, . be system parameters. The Guillou-Quisquater identification scheme IDgq :=
(IGen, P, ChSet, V) is defined as follows, where Z%, :={y € Zn | ged(y, N) = 1}.

IGen(par): P (sk):

sk=2 & 7% r & Zy; R=7r°mod N
pk:= X :=z° mod N St:=r

ChSet := Z. Return (R, St)

Return (pk, sk)
Pa(sk, R, h, St):

V(pk, R, h, s): Parse St =1r

If R =5 X" mod N and ((R,s) € Zxy X ZxN) Return s = 2" -7 mod N
then return 1
Else return 0

It is easy to prove IMP-KOA security of IDgq under the standard RSA assumption. Using our
framework this implies MU-UF-CMA security of the implies GQ signature scheme, with an unavoidable
security loss of )5,. Under the ¢-H,, . assumption we can, however, give a direct tight proof of PIMP-KOA
security, which is similar to [ABP13].

Lemma 5.13. IDgq is a canonical identification scheme with o = log(¢(N)) bit min-entropy and it
is unique, has special sound (SS), honest-verifier zero-knowledge (HVZK) and random-self reducible
(RSR). Moreover, if ¢-H,, . is (t,€)-hard then 1Dgq is (t',¢’, Qcu)-PIMP-KOA secure, where t =~ t' and
e > — (Qou+1)fe > 2 — (Qon +1)/2M.

Proof. The correctness of IDgq is straightforward to verify. We note that R <2 P;(sk) is uniformly random
over Z% . Hence, IDgq has log |Z%,| = log(¢(NN)) bit min-entropy. We show the other properties as follows.

UNIQUENESS. For all (X, z) € IGen(par), R := r® € Py(sk) and h € Z, the value s € Z} satisfying
5¢ = X"Rmod N < s = 2" -r mod N is uniquely defined, since gcd(e, #(N)) = 1.

SPECIAL SOUNDNESS (SS). Given two accepting transcripts (R, h,s) and (R,h’,s’) with h £ h' (wlog.
let b > K'), we have s°X" = R = s°X" mod N and (s/s')¢ = X"~ mod N. Since h,h € Z.,
ged(e, h — ') = 1. Applying the extended Euclidean algorithm we can compute A, B € Z%; such that

Ae+ B(h—h) =ged(e,h—h) =1
Then we define an extractor algorithm Ext(X, R, h, s, h’,s') := x* := X“4(s/s")B such that, for all (X :=

2¢ mod N, x) € IGen(par), we have Pr[(z*)¢ = X mod N] = 1, since we have (z*)¢ = (X4 (s/s")B)¢ =
XAe(S/S/)Be _ XAeXB(hfh') - X.
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HONEST-VERIFIER ZERO-KNOWLEDGE (HVZK). Given a public key pk = X, we let Sim(pk) first sample
h <2 Z, and s <2 Z% and then output (R := s¢X " mod N, h,s). Clearly, (R, h,s) is a real transcript,
since (h, s) is uniformly random over Z. x Z% and R is the unique value satisfying R = s*X~" mod N.

RANDOM-SELF REDUCIBILITY (RSR). Algorithm Rerand and two deterministic algorithm Derand and
Tran are defined as follows:

e Rerand(X;) chooses Z%, computes Xo := X7 - 72° mod N and returns (Xs,72). We have
that, for all (Xi,z1) € IGen(par), X5 is uniform and has the same distribution as X3, where
(XQ,T2) Rerand(Xl) and (X371‘3) IGen(par).

e Derand(Xy, Xo, x2, 72) outputs a* = z2/72 mod N. We have, for all (X5, 79) Rerand(X; :=
x§ mod N) with (X2,22) € IGen(par), X3 = 2§ mod N and x2 = 1 - 72 mod N and thus z* =
x1 mod N.

e Tran(Xy, X2, 72, (R2 := 1§ mod N, ho, $3)) outputs s; = 52/7'2h2 mod N. We have, for all (X2, 72) €
Rerand(X; := 2§ mod N), if (Rg,hs, s2) is valid with respect to X5 := (z1 - 72)¢ mod N then
1 = 52/7'2}‘2 = (z17m2)h2 ~7"2/7'2h2 = xi” -7 mod N and (Rg, ha, s1) is valid with respect to Xj.

PIMP-KOA SECURITY. Let A be an adversary that (¢,¢’, Qcy)-breaks PIMP-KOA-security. We build an
adversary B against the (¢, ¢)-hardness of ¢-H,, . as follows. Adversary B inputs (N, e), chooses X <= Z%
and defines pk := X. On the i-th challenge query CH(R;), it returns h; <2 Z.. Eventually, A returns
i* € [Qcu] and s;« and terminates. Finally, B outputs d := V(pk, R, hix, 84+ ).

ANALYSIS OF B. If (N,e) < I, ., then B perfectly simulates the PIMP-KOA game and hence Pr[d =
1| (Nye) < Iy =€ If (N,e) <2 L, with gcd(N,e) # 1, then we claim that even a computationally
unbounded A can only win with probability (Qcy + 1)/e, i.e., Pr[d =11 (N,e) <2 L] < (Qcu + 1)/e.

It remains to prove the claim. Let R, := {X | 3z € Z}, : X = z° mod N} be the set of all e-th
residues in Z3;. For X, R € Z}; we first analyze

p(X,R):= Pr [3s€Z}: s°=X".Rmod NJ.
hE7z,

e Case 1: X € R.. Then p(X, R) < 1 by choosing s := (X'/¢)". R/ if R € R...
e Case 2: X ¢ R.. Then p(X, R) < 1/e because

p(X,R)(p(X,R)—1/e) = Pr[3s,é:s°=X"-Rmod NAs =X"RmodN]
h#h
= Pr[3s,§:(s/3)° = X" mod N] = 0.
h#h

The last equality holds, since ged(e, h — h) = 1 which implies that (s/§)e/(h*ﬁ) is an e-th residue
and cannot equal to X ¢ R..
Using the bounds on p(X, R) we obtain

Pr[A wins] = Pr[A wins | X € R |Pr[X € R.] + Pr[A wins | X ¢ R.] - Pr[X ¢ R.]

1 1 . hi

< —+0- E)hl,.?iQCH[\/ES" (58 = X" . R;mod N | X & R,
1 1

S - + (1 _ 7)QCH
e e’ e

S QCH +1

e

This completes the proof of the claim. m

5.3.3 Guillou-Quisquater Signature Scheme

Let H : {0,1}* — Z. be a hash function. As IDgq is commitment-recoverable we can use the alternative
Fiat-Shamir transformation to obtain the Guillou-Quisquater signature scheme GQ := (Gen, Sign, Ver).
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Gen(par): Sign(sk, m): Ver(pk, m,0):
sk:=ax 7% r& 7% R=r°mod N Parse 0 = (h,s) € Ze x Ly
X :=2° mod N h = H(R,m) R=s°X"" mod N
pk =X s=2z" - r mod N If h=H(R,m) and R € Z} then return 1
Return (pk, sk) o= (h,s) €Ze x Iy Else return 0.
Return o

By our results we obtain the following concrete security statements.

Lemma 5.14. If ¢-H,, . is (t,€)-hard then GQ is (', €, Qs, Qrn)-SUF-CMA secure and (t",e"”, N, Qs, Qnr)-
MU-SUF-CMA secure in the programmable random oracle model, where

e € Qs 3

? S E + on—2 2cn’
e” € Qs 3
v = T T
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A Hardness of ()-IDLOG in the Generic Group Model

In the generic group model for the discrete logarithm setting [Sho97, Mau05], group operations in group
G can only be carried out via an oracle Og. Since (G, -) of order p is isomorphic to (Z,,+), elements
from G are internally identified with elements from Z,. The oracle maintains a list that initially contains
the elements (1,Cy = 1) (the generator), and (z, C, = 2) for x <= Z,,, and a counter i that counts the
number of entries in the list and is initialized to 2. During the execution of the experiment, the list
contains entries of the form (a,C,), where a € Z, and C, € N is a counter. On input of two counters
Ca, Cy € [c] X [¢], the oracle looks up the internal values (a, C,) and (b, Cy), and computes z = a+b mod p.
If there already exists a tuple (z,C,) in the list, then counter C, is output. Otherwise, the counter i is
increased by 1, the tuple (z,C, := i) is stored in the list, and the counter C, is output.

Theorem A.1. Let G be a group of prime order p. Then, every adversary A against Q-IDLOG in the
generic group model making at most Qg queries to the group oracle Og, has success probability at most

(Qc +2) +@ .

e<
2p D

Proof. Let A be an adversary against Q-IDLOG in the generic group model. In the proof we will simulate
the list with entries of the form (z(x), C.(x)), where z is a polynomial of degree one in some variable x.
As we will see, our simulation will sometimes fail. Initially, the counter is set to ¢ = 2 and the list contains
the elements (1,C; = 1) and (x,Cx = 2), where x is a variable. After A has finished its execution, x
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will be assigned a value x <= Z,. A is invoked on input C; =1 and Cx = 2. During its execution, A can
query oracle Og on (Cy(x), Cp(x)) € [i] X [i]. Og first computes the polynomial z(x) = a(x) + b(x). If
(2(x), C.(x)) is not in the list, Og increments counter i and adds (2(x), C(x) := i) to the list. Finally,
Og outputs C(x). In total, A makes Q¢ queries to this oracle and we denote by (z;(x),) the i-entry in
the list (i € [Qg + 2]).

Furthermore, A can make queries to CH(j), for some counter j € [¢], which is answered with h; <= Z,.
For j € [Q], we denote by (r;(x) = a;x + bj, C,, (x)) the polynomial associated to the j-th query to the
CH oracle. Eventually, A outputs s € Z, and terminates. Next, x <= Z, is chosen and A wins if there is
a j € [Q] such that s = (h; + a;)x + b;.

We remark that we simulate the Og perfectly, if none of the distinct polynomials z;(x) collide when
evaluated on input . We define Bad as the event that this is the case, i.e. there exist an i # ¢ € [Qg]
such that the polynomials z;(x), z¢(x) are distinct but z;(x) = z¢(x). By a union bound we first bound

Pr[Bad] = f;r[(fli,ﬂ € [Qg] X [Qg] @ zi(x) # ze(x) A zi(x) = ze(z)]
< (QG + 2) 1 @Qe+2°
2 p 2p

The success probability ¢ of A can be bounded as

e < PrBadVv3je(Q]:s=(h;j+aj)x+ b,
< Pr[Bad] +Pr[3j € [Q] : s = (hj + aj)x + b;]
Qe +2° | p i (05 = (hy ta)et b | b # —a) Q] B = —a,
< D) +Pr[3j Qs =(hj+aj)x+b;[h; #—a;]+ Pr [Fje[Q]:h; =—a]
P z hi,..,hg
< (QG+2)2+@
2p p

This completes the proof. =

B From Single-user to multi-user security for Schnorr

The following result provides an alternative way to prove (a slightly tighter version of) Theorem 3.2 for
the special case of Schnorr signatures. It proves that SUF-CMA security tightly implies MU-SUF-CMA
security in the standard model. Note that we require strong security but using Lemma 3.8, UF-KOA
security tightly implies SUF-CMA (and hence MU-SUF-CMA) security of Schnorr in the random oracle
model.

Lemma B.1 (SUF-CMA = MU-SUF-CMA). If Schnorr is (t,&, Qs)-SUF-CMA secure then, for any N > 1,
Schnorr is (t',¢’', N, Qs)-MU-SUF-CMA secure, where
2
e < 25+%, t' ~t,
p

Qs is an upper bounds on the number of signing queries and N is the number of users.

Proof. Let A be an adversary that breaks (t',¢', N, Qs)-MU-SUF-CMA security of Schnorr. We construct
an adversary B that breaks (¢,¢,Q;)-SUF-CMA security of Schnorr. Adversary B is executed in the
SUF-CMA experiment. It obtains a public-key pk = X = ¢® and has access to a signing oracle SIGN.

SIMULATION OF PUBLIC-KEYS. First, for each i € [N], adversary B picks a; <= Z,, secret bits b; <= {0,1},
and computes

ph; = Xi = X" - g%, ®)
That is, if b; = 0, then sk; = a; is known to B; if b; = 1 then sk; = x + a; is unknown to B. Note that the
public-keys are correctly distributed. Next, B runs A on input (pkq, ..., pky) answering signing queries

as follows.

SIMULATION OF SIGNATURE QUERIES. On A’s j-th signing query (i;,m;) € [N] x {0,1}*, B is supposed
to return a signature o; on message m; under pkij. Those are computed by adversary B according to the
following case distinction.
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Figure 6: Overview of the case distinction in the proof of Lemma B.1. Each node contains a condition. If
the condition is satisfied then we continue to the left child, otherwise to the right child. A leaf denotes
either a good case (getting a valid SUF-CMA forgery, marked with “v/”, or extracting the secret-key,
marked with “v”) or a bad case, marked with “X” (in which we abort).

e Case A: b;; = 0. In that case sk;; = a;; is known to B and the signature is computed as
gj = (hj, Sj) Sign(skij,mj).

e Case B: bij = 1. In that case skij =z +tais unknown to B and the signature is computed using
B’s signing oracle by first querying (h;, 5;) SIGN(mj). Then o; = (hj,s; := 3; +a;,;h;) is a
valid signature on message m; under pk; . Indeed, Ver(pk; ,m;) =1 because H(g*/ Xi;hj,mj) =
H(g% X" mj) = h;.

Adversary B returns o; = (h;, s;) which in both cases is a correctly distributed valid signature. For future
reference we also define R; := g% X, " and by (8)

;= log,(R;) = s; — (bi;x + a;;)hy. (9)

We assume that
Vk 75] c [QS] : Tk 7é Tj. (10)
Since s; and hence r; are uniform elements from Z,, condition (10) is not satisfied with probability

at most Q2/p. Note that the simulation of the public-keys and the signing queries do not leak any
information about the secret bits b;.

FORGERY. Eventually, A will submit a forgery (i*, m*,o* := (h*,s*)) and terminate. For the remainder

*

of this proof we assume o* is a correct signature on m* under pk;., i.e., for R* := gS*XZ-_*h* it holds that
H(R*,m*) = h*. Using (8) the correctness condition can be equivalently expressed as

r*i=log,(R") = s" — (bi=x + a; )h". (11)
Furthermore we assume that ¢* is a valid fresh forgery in the MU-SUF-CMA experiment:
(@, m*, h", s7) & {(i5,my, by, 55) | 5 € [Qs]}- (12)

After receiving A’s forgery, B is supposed to compute its own valid forgery under pk = X. To this end,
B defines the set of all indices j such that it queried m; to its signing oracle J := {j € [Qs] | b, = 1}
and makes the following case distinction. A pictorial overview of all cases is given in Figure 6.

e Case 1: For all j € [Q;] we have: h* # hj or r* # 1},
— Case la: b;~ = 1. Then for §* := s* — a;«h* we have

H(gﬁ*X—h*’m*) _ H(gs*X;h*)m*) = h*
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and hence
" :=(h",§")

is a correct signature on message m* under pk = X. It remains to show that 6* is a fresh
strong forgery in the SUF-CMA experiment.

On the one hand, if h* & {h1, ..., hg,}, we directly obtain 6* = (h*,8*) & {(h;,8;) | j € T}
(the set of all signatures obtained from the SUF-CMA signing oracle) which means that (m*, %)
satisfies the freshness condition of the SUF-CMA experiment. On the other hand, if the set
J* of indices j € [Q] such that h; = h* is non-empty, then we will use the condition 7* # r;
to show that the corresponding §; values are all distinct from 5*. Indeed, for all k € 7* N J
we have §, = ri + zh* # r* + xh* and therefore §* = r* + zh* ¢ {8, | k € J* N J}. For
all k € J\ J* we have h* # h; and therefore h* & {hy | k € J\ J*}. Consequently,
6* = (h*,8") & {(hx,8:) | k € J} and (m*,6*) satisfies the freshness condition of the
SUF-CMA experiment.

— Case 1b: b;« = 0. Then B aborts.

Note that in case 1, B aborts with probability exactly 1/2. If it does not abort, it outputs a valid
strong forgery.

e Case 2: There exists a j € [Q4] such that h* = h; and r* = r; and i* = i;.
Note that if j exists it is uniquely defined by (10).

— Case 2a: b;x = 1. As in case la,
6" = (h*,8" := 5" —a;h")

is a correct signature on message m* under pk = X. By r* = r; and h* = h; we obtain
(h*,s*) = (hj,s;). Since we also have ¢* = i;, A’s freshness condition (12) implies m* # m;
meaning that 6* is a valid fresh forgery in the SUF-CMA experiment.

— Case 2b: b;« = 0. Then B aborts.

Note that in case 2, B aborts with probability exactly 1/2. If it does not abort, it outputs a valid
strong forgery.

e Case 3: There exists a j € [Q,] such that h* = h; # 0 and 7* = r; and i* # ;.
Note that if j exists it is uniquely defined by (10).

— Case 3a: b;; # b~. By (9) and (11) we obtain two equations in the intermediates (r*, x)
r* = 8" — (bprx + a;)h”
r* = Sj — (biijraij)h*,
from which B can extract the single-user scheme’s secret-key x = log,(X) as
wi=((s" = ;) (W) 7"+ @i, — @) - (b = bi,) 7
Using sk = x, B computes a valid forgery on any fresh message.
— Case 3b: b;; = b;~. Then B aborts.

Note that in case 3, since b= # b;;, B aborts with probability exactly 1/2. If it does not abort, it
outputs a valid strong forgery.

e Case 4: There exists a j € [Q,] such that h; = h* = 0 and r* = r; and ¢* # ;.5
Again, if j exists it is uniquely defined by (10).

6By assuming the hash function to be zero-resistant we may as well discard this case.
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— Case 4a: b;; = 0. Then
6 :=(0,s")

is a correct signature on m* under pk = X. For all k # j with hy = h* = 0 we have by (10)
r* # 1y, and therefore s* = r* # rp, = §;. This means that 6* = (0,s*) = (0,7*) & {(hx, 5x) |
k € J} (the set of all signatures obtained from the SUF-CMA signing oracle). Therefore
(m*,6*) satisfies the freshness condition of the SUF-CMA experiment.

— Case 4b: bij = 1. Then B aborts.

Note that in case 4, B aborts with probability exactly 1/2. If it does not abort, it outputs a valid
strong forgery.

2
Overall, B returns a fresh strong forgery (m*,6*) under pk = X with probability e = £ (¢ — %)
Adversary B makes at most Q5 signing queries (in expectation only Q;/2). Its running time is that of A
plus some additional small computation for each signing query and each user (which we neglect), hence

t'~t. nm

We remark that due to forgery cases 1 and 4 our reduction requires strong SUF-CMA security and
does not work with standard UF-CMA security.
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