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ABSTRACT
Privacy issues in recommender systems have attracted the
attention of researchers for many years. So far, a number
of solutions have been proposed. Unfortunately, most of
them are far from practical as they either downgrade the
utility or are very inefficient. In this paper, we aim at a
more practical solution (particularly in the sense of reliev-
ing the tension between utility and privacy), by proposing a
privacy-preserving hybrid recommender system which con-
sists of an incremental matrix factorization (IMF) component
and a user-based collaborative filtering (UCF) component.
The IMF component provides the fundamental utility while
allows the service provider to efficiently learn feature vec-
tors in plaintext domain, and the UCF component improves
the utility while allows users to carry out their computations
in an offline manner. Leveraging somewhat homomorphic
encryption (SWHE) schemes, we provide privacy-preserving
candidate instantiations for both components. Interestingly,
as a side effect of the hybrid design, individual components
can enhance each other’s privacy guarantees. With respect
to efficiency, our experiments demonstrate that the hybrid
solution is much more efficient than existing solutions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems— Distributed applications; E.3 [Data Encryption]: Pub-
lic key cryptosystems

General Terms
Algorithms, Security

Keywords
Recommender System, Homomorphic Encryption, Privacy,
Accuracy

1. INTRODUCTION
Recommender system predicts the preferences that users

would give to an item, so that it enables users to make
the most appropriate choices from the immense variety of
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items that are available. Today, recommender systems play
an important role in every corner of our daily life. Gen-
erally speaking, two representative types of recommender
systems are neighborhood-based and model-based. With a
neighborhood-based recommender system, in order to pre-
dict a user Alice’s rating for an item i, the system first chooses
a neighborhood for Alice or the item i then computes the pre-
diction based on data from the neighborhood. With a model-
based recommender system, the system first trains a model
using all available data then computes the predictions based
on the model. Due to their respective (dis)advantages, rec-
ommender service providers often adopt a hybrid approach,
which can combine neighborhood-based method and model-
based method in different ways [6].

In real-world deployment, most existing recommender sys-
tems are centralized in the sense that a service provider
will collect the inputs from all users and compute recom-
mendations for them. The collected data range from ex-
plicit inputs such as ratings to implicit behavior data such as
browsing histories and locations. This makes recommender
systems very privacy invasive to individual users. For in-
stance, Narayanan and Shmatikov [20] presented a robust de-
anonymization attack against anonymized Netflix dataset.
Weinsberg et al. [29] demonstrated that what has been rated
by a user can already potentially help an attacker identify this
user. Calandrino et al. [7] pointed out inference attacks which
allow an attacker with some auxiliary information to infer a
user’s transactions from temporal changes in the public out-
puts of a recommender system. Today, privacy has become
a troublesome issue for both the service provider and end
users.

1.1 Related Work
In the past decade, researchers have actively investigated

privacy-preserving recommender systems. Existing solu-
tions can be categorized into two groups. The cryptographic
solutions (e.g. [1, 8, 16, 22, 28]) often aim at securing the pro-
cedure of underlying recommender protocols, by using cryp-
tographic tools such as homomorphic encryption schemes
and zero-knowledge proof protocols. The data-obfuscation
solutions (e.g. [2, 13, 18, 19, 23, 24]) adopt the concept of
differential privacy and rely on adding noise to the original
data or computation results to restrict the information leakage
from recommender outputs. These two types of solutions are
somehow complementary as they try to prevent information
leakage from different sources.

Due to the large underlying user population, neighbor-
hood selection and model training procedures often make
the cryptographic solutions very inefficient even with effi-



cient cryptographic building blocks. Some cryptographic so-
lutions assume more than one semi-trusted servers. A serious
risk for these solutions is that if one server (e.g. the crypto ser-
vice provider (CSP) in [16, 22]) is compromised then all users’
private data may be completely exposed because the data is
protected by a single key from this server. The obfuscation-
based solutions usually assume a fully trusted third party,
which is responsible for calibrating noises into the compu-
tation. Technically, this third party can be replaced by a
secure multiparty computation protocol. But, the cost can be
too high to be practical. Moreover, even though differential
privacy is a mathematically rigorous concept, it has many
limitations in practical usage, e.g. [10, 14].

It is worth noting that there exist relatively more efficient
cryptographic solutions, which are based on additional setup
assumptions. For instance, the authors from [15, 26] pro-
posed the concept of friendship-based recommender systems,
which leverage the background social network information
among users. Unfortunately, these solutions do not gener-
alize to broader settings. Moreover, friendship information
may be sensitive in the first place, so that these solutions have
their inherent privacy drawbacks.

To sum up, it remains as an interesting problem to con-
struct a pragmatic privacy-preserving recommender system,
which preserves reasonable utility and is efficient enough in
practice.

1.2 Our Contribution
In order to obtain a privacy-preserving solution for data-

intensive machine learning algorithms, a very important di-
rection is to reduce the size of dataset involved in the compu-
tation. For instance, Shokri and Shmatikov proposed privacy-
preserving deep learning solutions by training models with
sub-datasets first and then aggregate the results [25].

In this paper, we adopt the above philosophy in an attempt
to investigate practical privacy-preserving recommender sys-
tems. To this end, we propose a hybrid recommender system,
which accommodates both neighborhood-based and model-
based components. The final predictions for a user Alice is
a combination of the predictions from the individual compo-
nents, as depicted in Figure 1. This corresponds to the system
architecture shown in Figure 2 from Section 3. To facilitate

Figure 1: Hybrid Predictions

privacy protection, we instantiate the neighborhood-based
component via user-based collaborative filtering (UCF), and
instantiate the model-based component via incremental ma-
trix factorization (IMF). The IMF allows RecSys to perform
matrix factorization based on expert rating dataset, and a
user Alice can perform a privacy-preserving IMF protocol to
learn her feature vector. With our simulated environment,
we show that the hybrid system provides more accurate rec-
ommendation results than the individual components. In
contrast, many existing solutions sacrifice the recommenda-

tion accuracy by using tailored recommendation techniques
(e.g. adding random noises in differential privacy solutions
or simplifying existing algorithms).

Relying on somewhat homomorphic encryption (SWHE)
schemes, we propose privacy-preserving protocols for both
components.

• We propose a privacy-preserving UCF protocol by in-
troducing a third party, named Proxy. Different from
most existing works, it is not necessary to require the
Proxy to be semi-honest.

• We propose two privacy-preserving IMF protocols. The
server-centric protocol pushes most of the computation
workload to the server, and the balanced protocol is
more computation balanced for the participants.

We evaluate the privacy properties of the hybrid system with
respect to a number of attack scenarios, ranging from pure
semi-honest adversaries to fully colluded ones.

As the privacy-preserving UCF protocol will be less fre-
quently executed than the privacy-preserving IMF protocol
in the hybrid solution, in this paper we mainly study the
performances of the IMF protocols, based on Microsoft SEAL
library [17]. The results show that the server-centric protocol
is extremely efficient for the end users, while it is also very
efficient for RecSys in comparison to other existing solutions.
The balanced IMF protocol is less efficient for both partici-
pants because of its stronger privacy guarantees. Due to the
complexity of parameter selection, we only give some brief
performance figures for the balanced IMF protocol and leave
the detailed evaluation as a future work.

1.3 Organization
The rest of this paper is organized as follows. In Section

2, we present preliminaries on notation and building blocks.
In Section 3, we present the hybrid system and its evaluation
results. In Section 4, we give a high-level description of our
privacy-preserving hybrid system. In Section 5, we describe
the privacy-preserving UCF protocol. In Section 6, we de-
scribe two privacy-preserving IMF protocols. In Section 7,
we provide security and efficiency analysis for our solution.
In Section 8, we conclude the paper.

2. PRELIMINARY
Suppose the item set is denoted by I = (1, · · · ,M). For a

user x, its ratings are denoted by Rx = (rx,1, · · · , rx,M). The
rating value is often an integer from {0, 1, 2, 3, 4, 5}. If item i
has not been rated, then rx,i is set to be 0. User x’s average
rating is denoted by ry. We use bold letters such as u,v to
denote vectors, and use 〈u,v〉 to denote the inner product.

Many metrics can be used to measure the recommendation
quality of a recommender protocol. In this paper, we use
Root Mean Square Error (RMSE), defined as follows.

RMSE =

√
1
|Γ|

∑
r̂u,i∈Γ

(r̂u,i − ru,i)2,

where Γ is the set of predicted ratings, r̂u,i is the predicted
rating and ru,i is the real rating value. Note that lower RMSE
implies more accurate recommendations/predictions.

2.1 User-based Collaborative Filtering



For two rating vectors Rx,Ry, their Cosine similarity is
denoted as Simx,y, where

Simx,y =
〈Rx,Ry〉

‖Rx‖ × ‖Ry‖

= 〈
Rx

‖Rx‖
,

Ry

‖Ry‖
〉

Suppose we want to compute predictions for a user x based
on the rating data from a user group G, then the formula is
as follows.

px,i = rx +

∑
y∈G ∧ ry,i,0

Simx,y(ry,i − ry)

∑
y∈G ∧ ry,i,0

Simx,y

We select UCF as a building block for our hybrid system,
because it provides better accuracy than other algorithms in
case of a small user population.

2.2 Matrix Factorization
Given a user set U = {1, 2, · · · ,N} and their rating vectors

Rx for x ∈ U, let R denote the set of (x, j) such that rx, j , 0.
One of the most popular collaborative filtering algorithms is
based on low-dimensional factor models, which derive two
feature matrices U and V from the rating dataset. The feature
vector ux denotes user x’s interest and the feature vector v j
denotes item j’s characteristics. Every feature vector has very
low dimension k, which is often a much smaller integer than
M and N.

U =


u1
u2
...

uN

 and V =


v1
v2
...

vM


In practice, U and V are often computed by minimizing the

following Regularized least Squares Error (RSE) function:

min
U,V

1
|R|

∑
(x, j)∈R

(rx, j − 〈ux,v j〉)2 + λ
∑
x∈U

||ux||
2
2 + µ

∑
j∈I

||v j||
2
2 (1)

for some positive parameters λ, µ. Using the standard gradi-
ent descent method, U and V can be learned through recur-
sively applying the updating rules. Every round of updating
is called an epoch, and the total number of epochs is denoted
as MAXepoch.

u(t)
x = u(t−1)

x − γ∇ux F(U(t−1),V(t−1)) (2)

v(t)
j = v(t−1)

j − γ∇v j F(U(t−1),V(t−1)) (3)

where γ > 0 is a small gain factor and

∇ux F(U,V) = −2
∑

j:(x, j)∈R

v j(rx, j − 〈ux,v j〉) + 2λux (4)

∇v j F(U,V) = −2
∑

x:(x, j)∈R

ux(rx, j − 〈ux,v j〉) + 2µv j (5)

2.3 Somewhat Homomorphic Encryption
Since the breakthrough work of Gentry [11], many some-

what homomorphic encryption (SWHE) schemes have been

proposed (e.g. the BV scheme [5], BGV scheme [4], YASHE
scheme [3]). A SWHE scheme can be described by three al-
gorithms (Keygen,Enc,Dec).

• Keygen(λ,L): With the security level λ, the multiplica-
tion depth L, this algorithm outputs a public/private/evaluation
key pair (PK,SK,EVK).

• Enc(PK,m): this algorithm outputs a ciphertext c.

• Dec(SK, c): this algorithm outputs a plaintext m or an
error ⊥.

Throughout the paper, given a key pair (PKu,SKu) for some
user u, we use [m]u to denote a ciphertext of the message m
under public key PKu. When m is a vector of messages, we
use Enc(PKu,m) to denote the vector of ciphertexts, where en-
cryption is done for each element independently. Given two
ciphertexts [m1]u and [m2]u, we have the following notations.

• We use [m1]u ⊕ [m2]u and [m1]u ⊗ [m2]u to denote the
homomorphic addition and multiplication respectively.

• We use the notation
∑

1≤i≤N[mi]u to denote the result of
sequentially applying ⊕ to the cipheretxts.

• We use ReRand to denote a rerandomization algorithm.
Given a ciphertext [m]u, no attacker can tell whether
ReRand([m]u) and [m]u encrypt the same plaintext or
not. Generically, his operation is equivalent to adding
with one encrypted zero.

• With respect to ⊕, we use the notation 	 to denote the
homomorphic sunstraction operator. It is clear that we
can implement 	 based on ⊕.

• We also use ⊕, ⊗, and 	 to denote partial homomor-
phic operations, in which case one of the arguments
is in plaintext form. The distinction should be clear
from the contexts. Unlike ⊗, the partial ⊗ has less
noise increase and doesn’t need the costly relineariza-
tion, which makes it much faster.

2.4 Approximate Integer Division
Assume a two-party setting, where Alice holds a SWHE

public/private key pair (PKa,SKa) and the RecSys holds two
ciphertexts [X]a and [Y]a satisfying X < 2L+1Y for some integer
L. We design an algorithm for the RecSys to compute [bX

Y c]a.
The algorithm is based on a secure integer comparison proto-
col COM [27]: given inputs ([A]a, [B]a; SKa) from RecSys and
Alice respectively, COM outputs ([b]a, ∅) to the participants
respectively. Note that b = 1 if A ≥ B and b = 0 otherwise.

Algorithm 1: Approximate Integer Division

1 t = L
2 while t ≥ 0 do
3 ([bt]a; ∅) = COM([X]a, [2tY]a; SKa)
4 [X]a = [X]a 	 (2t

⊗ [bt]a ⊗ [Y]a)
5 t = t − 1

6 [bX
Y c]a =

∑
0≤t≤L

2t
⊗ [bt]a

The complexity of this protocol is breifly summarized in
Table 1. Note that we use par. ⊗ to denote partial ⊗.



⊕ 	 ⊗ par. ⊗ COM
Alice 0 0 0 0 L+1

Server L 1 L+1 2L+1 L+1

Table 1: Division Complexity

3. HYBRID RECOMMENDER SYSTEM
In this section, we first describe our hybrid recommender

system and also the motivation behind it. Then, we study its
performance in terms of recommendation accuracy.

3.1 Hybrid System Design
There are two types of entities in the proposed recom-

mender systems: recommender service provider (RecSys)
and users. The overall system structure is shown in Figure 2.

Figure 2: Hybrid System Framework

The RecSys is a commercial organization who collects item
ratings from professionals and build models to help the users
find their best recommendations. As a return, the RecSys
may ask for some monetary reward for the service. The
users are customers of the Recsys, and they want to receive
good recommendations without sacrificing their privacy (i.e.
disclosing their rating vectors to the RecSys or others). We
further assume the users are clustered into groups, depending
on demographic information such as locations. For each user
group, we assume the existence of a third party named Proxy,
which will facilitate the protocol execution. In practice, if
RecSys represents an international company then a Proxy
can be regarded as a branch or a broker in an individual
country. This system structure aligns well with the practice
in recommendation industry.

To compute recommendations for a user Alice of a certain
group, we will take into account both local influences and
global influences. The local influence comes from the users
from Alice’s group, and we employ the UCF to benefit from
the similarities between users in a group. For each group,
the execution of UCF is coordinated by the Proxy. The global
influence comes from the expert dataset from the RecSys, and
we employ IMF to learn item features from the dataset. Note
that the expert dataset is from professional critics who may
make a living for their opinions. In addition, they usually
disclose their dataset to RecSys for some monetary reward.
Finally, the local and global influences are combined to pro-
vide hybrid recommendations. In more detail, for a user

Alice, her recommendations are computed in three steps.

1. Suppose the user group that Alice is involved in is de-
noted asG. Then we compute prediction p(uc f )

a,i based on
UCF as shown in Section 2.1.

2. For Alice, let the indices of the unzero ratings (in the
form (a, j)) be denoted byRa. We employ an incremental
matrix factorization (IMF) algorithm (i.e. Algorithm 2)
to learn Alice’s feature vector ua. Then, the prediction
p(im f )

a,i can be computed as an inner product 〈ua,vi〉.

3. With both p(im f )
a,i and p(uc f )

a,i , we can compute a hybrid
predication score pa,i with a parameter α, which de-
notes the percentage that IMF contributes to the final
prediction.

pa,i = α · p(im f )
a,i + (1 − α) · p(uc f )

a,i (6)

This can be regarded as the simplest way to generate
hybrid predictions. We can adapt it for better security,
as shown in Section 7.1.

Algorithm 2: Incremental Matrix Factorization

1 INPUT: Ra, U and V
2 Initialize ua = u(0)

a

3 U(0) =
(U

ua

)
, V(0) = V, R = R ∪ Ra

4 t=1
5 while t ≤MAXepoch do
6 u(t)

a = u(t−1)
a − γ∇ua F(U(t−1),V(t−1))

7 U(t) =
( U

u(t)
a

)
8 V(t) = V
9 t = t + 1

10 OUTPUT: ua = u
(MAXepoch)
a

3.2 System Performance
Since we do not have a real-world dataset at hand, we

investigate the performance (i.e. prediction accuracy) in a
carefully simulated environment. The simulation is based on
the Movielens 1M dataset [12], which has 6040 users and 3952
items. The source codes for the experiments are in Github1.

First, the expert dataset and user groups are generated as
follows.

1. We first rank the rating vectors based on their hamming
weight (i.e. how many items have been rated) and take
the top 4000 vectors as the expert rating dataset. This
is a reasonable choice since experts usually rate more
items than individual users in reality.

2. With the left 2040 rating vectors, we run K-means clus-
tering algorithms to divide them into 10 groups. The
distance metric between two vectors is measured by
their Euclidean distance. Each group contains around
200 users, and some statistical information is shown in
Table 2.

1https://github.com/ClaudioCimarelli/OnlineKMF-RS



Group 1 Group 2 Group 3 Group 4 Group 5
UserNum 150 147 230 159 161
Density % 1.0093 0.9159 0.9692 0.9566 0.9164

Group 6 Group 7 Group 8 Group 9 Group 10
UserNum 153 238 174 401 227
Density % 0.9723 0.8905 0.8334 0.7911 0.8982

Table 2: Information of Groups

Then, we compute the RMSE for three settings. One is UCF
setting, where a user Alice’s predictions are solely generated
by the UCF algorithm based on data from Alice’s group. The
other is IMF setting, where a user Alice’s predictions are
solely from the IMF algorithm. The results are shown in
Table 3 and 4 respectively.

Group 1 Group 2 Group 3 Group 4 Group 5
0.9539 1.0712 1.0651 1.0367 1.1249

Group 6 Group 7 Group 8 Group 9 Group 10
0.9891 1.1133 1.1376 1.1585 0.9857

Table 3: RMSE in UCF Setting

Group 1 Group 2 Group 3 Group 4 Group 5
0.8372 0.9358 0.9418 0.9413 0.9770

Group 6 Group 7 Group 8 Group 9 Group 10
0.9091 0.9733 0.9907 1.0224 0.8898

Table 4: RMSE in IMF Setting

The last one is the hybrid setting, where Alice’s predictions
are generated by combining the predictions in the previous
two settings, as shown in Equation (6). With the factor α as
a variable, we plot the RMSE for the hybrid system in Figure
3. It is clear that IMF provides better recommender accuracy
than UCF. However, the hybrid system provide the best rec-
ommendation accuracy when IMF contributes approximate
80% to the final predictions.

Figure 3: RMSE of Hybrid System

4. PRIVACY-PRESERVING SYSTEM
Referring to the hybrid system description in Section 3.1,

we can construct a privacy-preserving hybrid version based
on privacy-preserving UCF and IMF protocols. We leave the
description of these protocols to Section 5 and 6, and focus on
a general description for the hybrid system here. We perform
detailed analysis in Section 7.

4.1 Setup Phase and Assumptions
We assume RecSys possesses a SWHE key pair (PKs,SKs).

Every user, say Alice, registers at RecSys and the Proxy of her
group with an identifier IDa and SWHE key pair (PKa,SKa).

We assume that the communication among users is in-
tegrity protected, and the communication between any user
and the Proxy is through an anonymous network and confi-
dentiality protected. Therefore, it is difficult for the Proxy to
identify users purely from the data sources.

4.2 Privacy-preserving System
Suppose a user Alice wants to compute the predictions for

all the items, then the protocol is as follows.

1. UCF contribution. If necessary, Alice initiates the privacy-
preserving UCF protocol from Section 5. At the end of
the protocol, the Proxy in Alice’s group sends [p(uc f )

a,i ]a
for every item 1 ≤ i ≤ M to RecSys. We remark on this
below.

2. IMF contribution. Alice initiates one of the privacy-
preserving IMF protocols in Section 6. At the end of the
protocol, RecSys obtains [p(im f )

a,i ]a for every 1 ≤ i ≤M.

3. Hybrid contribution. RecSys chooses a contribution fac-
tor α and computes the hybrid predictions [pa,i]a (1 ≤
i ≤M).

[pa,i]a = α ⊗ [p(im f )
a,i ]a ⊕ (1 − α) ⊗ [p(uc f )

a,i ]a

4. After receiving [pa,i]a (1 ≤ i ≤ M), Alice can decrypt
them and obtain the plaintext predictions.

Remark. It is common that individual users do not update
their ratings frequently. In fact, adding a few ratings values
does not affect the final predictions (or improve the recom-
mendation accuracy). This means that, it is unnecessary to
frequently execute the privacy-preserving UCF protocol in
the hybrid system. As such, RecSys can store [p(im f )

a,i ]a for ev-
ery 1 ≤ i ≤ M at the end of the first step, and use them for
a pre-defined period. In contrast, RecSys, as the professional
service provider, is incentivized to incorporate more expert
data to learn better feature vectors for the end users. We
demonstrate the effect by plotting the RMSE changes in Fig-
ure 4. This will in the end result in better satisfaction and
increase its revenue. As such, the privacy-preserving IMF
protocol should be executed every time Alice wants to re-
trieve new predictions. When evaluating the computational
complexity of the hybrid system, we should put more empha-
sis on step 2. Note also that step 1 (i.e. the privacy-preserving
UCF protocol) does not need to involve RecSys, Alice’s group
can carry out the computation in an offline manner. There-
fore, even if the participants have high workload in step 1, it
will not affect the practicality of the solution.



Figure 4: RMSE Influence w.r.t. Experts’ Set Size

4.3 Security Model(s)
If we assume RecSys and the Proxy are semi-honest, then

the security model will be essentially the same as the IND-
CPA security for encryption. Consequently, the IND-CPA
security of the underlying encryption scheme will provide
the necessary guarantee. We, as in the case of [16, 22], avoid a
straightforward description for the model. If the RecSys and
the Proxy are compromised or malicious, then things become
very complex and tedious to describe. Our setting is almost
identical to that in [27], so that we refer the reader to Section
III of [27] for detailed description of the security models.

Note that we do not consider Denial of Service (DoS) and
robustness attacks in this work. Nevertheless, these attacks
pose serious threat to recommender systems in practice. We
leave a formal investigation of these attacks as a future work.

5. PRIVACY-PRESERVING UCF
The overall structure is shown in Figure 5 where the num-

bers correspond to the steps below. Suppose the users in

Figure 5: User-based CF

Alice’s group consists of user i for 1 ≤ i ≤ T. Referring
to the setup information in Section 4.1, the protocol runs as

follows. For the sake of simplicity, in the first three steps,
we only describe the computations for Alice while implicitly
assuming all other users in the group will perform similar
computations.

1. Alice broadcasts her identifier IDa together with the
encrypted vectors [ Ra

‖Ra‖
]a and [(ra,1 − ra, · · · , ra,M − ra)]a.

Note that Ra
‖Ra‖

is the normalized rating vector.

2. After receiving the broadcasted messages from other
users, for every user 1 ≤ y ≤ T, Alice computes en-
crypted similarity [Sima,y]y, where

[Sima,y]y = 〈
Ra

‖Ra‖
, [

Ry

‖Ry‖
]y〉

3. For every item i (1 ≤ i ≤M), Alice does the following.

• When ra,i , 0, Alice computes her contribution
Con

a i
→y

to every user 1 ≤ y ≤ T.

NOM
a i
→y

= ReRand([Sima,y]y ⊗ (ra,i − ra))

DEN
a i
→y

= ReRand([Sima,y]y)

Con
a i
→y

= (IDy, i, NOM
a i
→y
, DEN

a i
→y

)

• When ra,i = 0, Alice sets Con
a i
→y

for every user
1 ≤ y ≤ T, as follows.

Con
a i
→y

= (IDy, i,NOM
a i
→y

= [0]y,DEN
a i
→y

= [0]y)

Alice sends the computed values to the Proxy. In addi-
tion, Alice sends IDa, [ra]a as well.

4. After receiving the values from Alice and all other users,
the Proxy computes the encrypted prediction for every
user and item in a partial form. In total, there are M·(T+1)
partial predictions.

For instance, the partial prediction for Alice with respect
to item i is computed as follows.

([ra]a,
∑

1≤x≤T

NOM
x i
→a
,

∑
1≤x≤T

DEN
x i
→a

)

5. The Proxy runs the approximate division protocol from
Section 2.4 to compute the complete predictions for Al-
ice and all other users. In total, there are M · (T + 1)
predictions.

For instance, for Alice with respect to the item i, the
Proxy runs Algorithm 1 from Section 2.4 to compute

b

∑
1≤x≤T NOM

x i
→a∑

1≤x≤T DEN
x i
→a

c,

which abuses the notation to denote a ciphertext of the
approximated division result. Then, the final encrypted
prediction [p(uc f )

a,i ]a is simply

[p(uc f )
a,i ]a = [ra]a ⊕ b

∑
1≤x≤T NOM

x i
→a∑

1≤x≤T DEN
x i
→a

c

The Proxy sends all these encrypted predictions to Rec-
Sys.



Complexity. Let ` = Mρ be the total number of non-zero
ratings, where ρ is the rating density, and let AID denote the
complexity numbers from Table 1. The complexity of this
protocol is briefly summarized in Table 5. We note that the
Enc operations for Alice can be done offline.

par. ⊗ ⊕ Enc
Alice (ρ + 1)MT T(M − 1) 2(1 − ρ)MT − 2M + 1
Proxy 0 M(2T2 + T − 1) 0

AID ReRand
Alice M(T + 1) 2ρMT
Proxy M(T + 1) 0

Table 5: UCF Complexity

Security. With respect to the security for Alice, we consider
two scenarios.

• Suppose that the Proxy is a semi-honest player, then
it learns no information about the users’ rating values
since everything is encrypted. No user learns anything
about another user due to the encryption. Referring
to Step 3, the anonymous communication network pre-
vents the Proxy from learning who has sent the con-
tribution. The application of ReRand is essential to
hide which items Alice has rated. Without this, the
Proxy might be able to use the technique from [29] to
re-identify Alice in some attack scenarios.

• Suppose the Proxy is malicious (or compromised) and
colludes with some of the users in the group, then it is
still difficult for it to recover and link Alice’s rating val-
ues. The anonymous communication network makes it
hard for the Proxy alone to link Alice’s contributions,
say Con

a i
→y

, to her identifier IDa. If the Proxy colludes
with user y, it will be able to decrypt Con

a i
→y

for all
1 ≤ i ≤ M. However, it is not immediate that the Proxy
can conclude that these Con

a i
→y

values belong to the
same user Alice. As long as there are other honest users
who have rated similar items to Alice, then the Proxy
still needs to try all combinations to determine whether
two contribution values belong to the same honest user.
In the extreme situation that all users collude with the
Proxy, then they can learn learn which items have been
rated by Alice and the rating deviations ra,i − ra. Subse-
quently, they may succeed in the re-identifying Alice.
We know that unless calibrating noise into the compu-
tation, there is nothing more we can do when all par-
ticipants collude. In the context of our hybrid solution,
we present more analysis in Section 7.1.

6. PRIVACY-PRESERVING IMF
In this section, we present two privacy-preserving IMF

protocols of different flavors. One protocol is server-centric,
meaning that most computations are pushed to the RecSys’s
side. The other protocol is balanced, meaning that the com-
putations are shared by both parties.

6.1 Server-centric IMF Protocol
We present a new protocol based on the following obser-

vation. For two column vectors X,Y, we have XYtX = XXtY.

XYtX =


x1
...

xn

 ×
[

y1 · · · yn

]
×


x1
...

xn


=


x1
...

xn

 ×
[

x1 · · · xn

]
×


y1
...

yn


= XXtY

In the following , for Alice, if the rating ra, j = 0 we set
da, j = 0, otherwise we set da, j = 1. The updating rule can be
rewritten as follows.

u(t)
a = (1 − 2γλ)u(t−1)

a + 2γ
∑

j:(a, j)∈R

v j(ra, j − 〈u
(t−1)
a ,v j〉)

= (1 − 2γλ)u(t−1)
a + 2γ(

∑
1≤ j≤M

v jra, j −

∑
1≤ j≤M

da, jv j〈u
(t−1)
a ,v j〉)

= (1 − 2γλ)u(t−1)
a + 2γ(

∑
1≤ j≤M

v jra, j − (
∑

1≤ j≤M

da, jv jvt
j)u

(t−1)
a )

= ((1 − 2γλ)Ik + 2γ(
∑

1≤ j≤M

da, jv jvt
j))u

(t−1)
a + 2γ

∑
1≤ j≤M

v jra, j

= ∆u(t−1)
a + 2γ

∑
1≤ j≤M

v jra, j

where ∆ = ((1 − 2γλ)Ik − 2γ(
∑

1≤ j≤M da, jv jvt
j)) and Ik is a k × k

identity matrix. Let e = MAXepoch. To further optimize the
training, we can expand all the epoches to get the final vector.

u(e)
a = ∆eu(0)

a + 2γ
∑

1≤ j≤M

(
∑

i∈[0,e)

∆ivt
j)ra, j

= ∆eu(0)
a + (2γ

∑
i∈[0,e)

∆i)
∑

1≤ j≤M

vt
jra, j

In the proposed protocol, we choose to precalculate ∆ in-
teractively, then do the training. The protocol is as follows.

1. RecSys computes U and V based on its expert dataset.

2. Alice and RecSys first interactively compute the ma-
trix ∆ and then RecSys runs the Algorithm 2 in the
encrypted form, as shown in Figure 6.

3. RecSys can compute the predictions for Alice in the en-
crypted form. For instance, for the item i, the prediction
is [p(im f )

a,i ]a = 〈[ua]a,vi〉.

⊕/	 par. ⊗ Enc Dec
Alice (k2 + k) · (ρM − 1) (k2 + k) · ρM 0 0

RecSys 0 0 (k2 + k)M 0

Table 6: Server-centric Complexity (offline)

⊕/	 par. ⊗ Enc Dec
Alice 2k 0 k 0

RecSys k2 + k k2 0 k

Table 7: Server-centric Complexity (online)



Alice RecSys
(PKa,SKa) (PKs,SKs)
[v j]s, [v jvt

j]s (1 ≤ j ≤M)
[∆1]s = [v1vt

1]s ⊗ da,1

· · ·

[∆M]s = [vMvt
M]s ⊗ da,M

[∆]s =
∑

j:(a, j)∈R

[∆ j]s

[∆]s
−−−→

∆ = (1 − 2γλ)Ik − 2γ∆

[vt]s =
∑

j:(a, j)∈R

[vt
j]s ⊗ ra, j

Choose a random vector ra
[v’t]s = [vt]s ⊕ ra

[v’t]s
−−−−→

Choose a random vector rs
v”t = v’t + rs

v”t
←−−

[v’t]a = [v”t
− ra]a

[v’t]a
−−−−→

[vt]a = [v’t]a 	 rs

[vt]a = (2γ
∑

i∈[0,e)

∆i)[vt]a

[u(e)
a ]a = ∆eu(0)

a ⊕ [vt]a

Figure 6: Server-centric IMF Protocol

Complexity. Note that Alice can compute [da, j]a, [ra, j] (1 ≤ j ≤
M) in the offline manner, and RecSys can compute U,V and
encrypt V in an offline manner. Let k, e, and ` be be defined
as before, the number of offline and online computations are
briefly summarized in Table 6 and 7 respectively.

Security. With respect to security, RecSys does not leak
information to Alice except what can be inferred from the
predictions. On the other hand, Alice will only leak the in-
formation that can be inferred from ∆. In the worst case, da, j
(1 ≤ j ≤ M) might be leaked to RecSys. However, we ar-
gue that the leakage would be much smaller in reality. For a
practical recommender system (e.g. our evaluation in Section
7.2 or Netflix), we can always assume that M � k2. In this
case, for a semi-honest RecSys, computing da, j (1 ≤ j ≤ M)
from ∆ is equivalent to some variant of sparse subset prob-
lem, which is shown to be hard in [21], unless that the density
M/ log(max(∆)) < 0.94[9], which is around several hundreds
in our case. Besides, the small k may not give a unique solu-
tion. When the RecSys is malicious (i.e. it can randomly set
the v j (1 ≤ j ≤ M)), it will be easy for RecSys to recover da, j
(1 ≤ j ≤ M). However, we do not see any incentive for this
kind of attack because it will disrupt the service and expose
the attack to Alice, thus lose RecSys’s customers.

In theory, it is easy to require ∆ to be encrypted under PKa
so that RecSys needs to compute the ∆t (1 ≤ t ≤ e) in the
encrypted form. However, consider the practical size of k
and e, this will significantly increase the circuit depth for the
SWHE scheme and the complexity will dramatically increase
accordingly. In our design, we have made a tradeoff between
security and efficiency on purpose.

6.2 Balanced IMF Protocol
As before, if the rating ra, j = 0 we set da, j = 0, otherwise we

set da, j = 1. The balanced protocol is as follows.

1. RecSys computes U and V based on its expert dataset,
and publishes [V]s.

2. Alice and RecSys interactively run the Algorithm 2 in a
privacy-preserving manner. Alice and RecSys perform
the protocol shown in Figure 7. At the end of the last
epoch, RecSys obtains [ua]a = [u(e)

a ]a

3. RecSys can compute the prediction for Alice in the en-
crypted form. For instance, for the item i, the prediction
is [p(im f )

a,i ]a = 〈[ua]a,vi〉.

Alice RecSys
[v j]s , [v jvt

j]s (1 ≤ j ≤M) (PKs,SKs)
[∆1]s = [v1vt

1]s ⊗ 2γda,1

· · ·

[∆M]s = [vMvt
M]s ⊗ 2γda,M

[∆]s =
∑

j:(a, j)∈R

[∆ j]s

[Ψ]s =
∑

j:(a, j)∈R

2γra, j ⊗ [v j]s

[u(0)
a ]s

←−−−−

// Interactive Training

For t = 1 : e-1

[Θ]s = (1 − 2γλ) ⊗ [u(t−1)
a ]s

[u(t)
a ]s

= [Θ]s ⊕ [Ψ]s 	 ([∆]s ⊗ [u(t−1)
a ]s)

Choose a random vector ra

[u(t)
a ]s ⊕ ra

[u(t)
a +ra]s
−−−−−−−→

u(t)
a + ra

[u(t)
a +ra]s

←−−−−−−−

[u(t)
a ]s = [u(t)

a + ra]s 	 ra

For t = e

[Θ]s = (1 − 2γλ) ⊗ [u(t−1)
a ]s

[u(t)
a ]s

= [Θ]s ⊕ [Ψ]s 	 ([∆]s ⊗ [u(t−1)
a ]s)

Randomly choose ra

[u(t)
a ]s ⊕ ra

[u(t)
a +ra]s
−−−−−−−→

u(t)
a + ra

Randomly choose rs
[u(t)

a +ra+rs]a
←−−−−−−−−−

u(t)
a + ra + rs

[u(t)
a +rs]a

←−−−−−−−

[u(e)
a ]a = [u(t)

a + rs]a 	 rs

Figure 7: Balanced IMF Protocol

Complexity. As in the previous analysis, we assume RecSys
can compute U,V and encrypt V in an offline manner. The
offline computation is the same as in the server-centric pro-
tocol, so we refer to Table 6 for offline complexity. Let k, e,
and ` be be defined as before, the online complexity is briefly
summarized in Table 8, where ρ is Alice’s rating density.



⊕/	 ⊗ par. ⊗ Enc Dec
Alice (k2 + 5k) · e k2

· e k · e 0 0
RecSys 0 0 0 k · e k · e

Table 8: Balanced Complexity (online)

Security. With respect to security, due to the encryption,
Alice and RecSys do not leak any information to each other
even if both parties are malicious.

7. EVALUATING THE SOLUTION
In this section, we present additional security and efficiency

analysis for the hybrid system from Section 4.

7.1 Security Analysis
For the hybrid recommender system, we are interested in

the security for both an end user Alice and RecSys. With
respect to Alice, referring to the system structure in Figure 2,
it is clear that the behavior of the users from other groups do
not affect Alice’s security. We consider four attack scenarios,
shown in Figure 8, which are concerned with Alice’s rating
values and the received predictions.

Figure 8: Attack Scenarios against Alice

• In the first scenario, all other users in Alice’s group
are malicious and collude with each other to figure out
Alice’s information. In this case, the malicious users
will only have access to the encrypted values sent by
Alice in the first step of the privacy-preserving UCF
protocol, plus the final recommendation results. Based
on the IND-CPA security of the encryption scheme, this
means that the malicious users only gain what can be
inferred from the legitimate predictions they receive.

• In the second scenario, the attacker is RecSys. In this
case, the only possible place for information leakage is
the privacy-preserving IMF protocol execution. Sup-
pose that RecSys is semi-honest, then it learns no infor-
mation about Alice’s rating values in balanced proto-
col and learns very little in the server-centric protocol,
according to the analysis in Section 6. If RecSys is ma-
licious which means it can deviate from the protocol
execution, then it does not learn anything in the bal-
anced protocol and can learn which items Alice has
rated. As indicated at the end of Section 6.1, RecSys is
not incentivized to be malicious.

• In the third scenario, RecSys and the Proxy collude.
Note the fact that the Proxy only aggregate the en-

crypted data in the privacy-preserving UCF protocol,
we have the same conclusions as in the second scenario.

• In the fourth scenario, all players except for Alice col-
lude. In this case, even if these players follow the proto-
col specification, they will learn both Alice’s rating val-
ues and the received predictions simply by decrypting
the encrypted data in step 1 of the privacy-preserving
UCF protocol. This is an extreme scenario, and the
consequence is implied by the recommendation utility.

Figure 9: Attack Scenarios against RecSys

With respect to the security for RecSys, we consider two
scenarios, shown in Figure 9. For the sake of simplicity, we
only consider one user group.

• In one scenario, all users in the group are malicious
and collude. The information leakage comes from the
privacy-preserving IMF protocol. At the end, the mali-
cious users can recover the some of the feature vectors
v j (1 ≤ j ≤ M). The attack is simple, by trivially setting
their user feature vectors ui to be from v j (1 ≤ j ≤ M).
Given the fact that all users collude, they can com-
pute the UCF’s contributions in the hybrid predictions
they receive, and then they can obtain the selected v j
(1 ≤ j ≤ M). However, when not all users collude,
then the attack does not trivially work anymore. Since
the malicious users do not know exactly the UCF’s con-
tributions in the hybrid predictions they receive, then
it is much harder for them to recover some of the v j
(1 ≤ j ≤ M). An aditional barrier is that each user
can only contribute one user feature vector through the
privacy-preserving protocol, therefore, M users need to
collude in order to recover all v j (1 ≤ j ≤M).

• In the other scenario, the Proxy also collude with the
users. In this case, the consequence is the same as the
above scenario when all users collude. If the Proxy is
a branch of RecSys or has some commercial agreement,
then it will not be incentivized to collude and leak Rec-
Sys’s information.

Two Simple Enhancements. Assuming the Proxy and RecSys
are semi-honest, we can introduce some uncertainty in two
steps of the hybrid system from Section 4.

• One is in step 1, which executes the privacy-preserving
UCF protocol. Referring to the specification in Section
5, the Proxy does not aggregate everything to the pre-
dictions. For instance, the partial prediction for Alice
with respect to the item i is computed as follows. First
randomly choose a set S to include some percentage of



the users, and then compute the prediction as follows.

([ra]a,
∑
x∈S

NOM
x i
→a
,

∑
1≤x≤T

DEN
x i
→a

)

If the percentage is close to 1, then the recommendation
accuracy will not be affected. As a result, the colluded
users will not be able to know the exact UCF contribu-
tions. This enhancement mitigates the attacks against
both Alice (by decreasing what other users can infer
from the received predictions) and RecSys (making it
harder to recover v j (1 ≤ j ≤M)).

• The other is in step 3 of the hybrid system from Section
4. In this case, RecSys can randomly set the contributing
factor α for every item and every user. If the derivation
of the α values is small, then this will not affect the
recommendation accuracy much. As a result, this will
make it very difficult for the malicious users to precisely
recover v j (1 ≤ j ≤ M). This enhances the effect of the
first enhancement.

7.2 Complexity Analysis
As in Section 3.2, we use the MovieLens 1M dataset. We

set the feature dimension to be k = 10 and set the MAXepoch
to be e = 30, T = 50. Alice’s rating vector has the den-
sity ρ = 0.9% and RecSys’s expert dataset has the density
ρ′ = 4.19%. We evaluate our scheme with Microsoft SEAL
library [17] based on YASHE scheme. We select the cipher-
text modulus q = 2226

− 226 + 1, the polynomial modulus
p(x) = x8192 + 1. Using Chinese Reminder Theorem, we se-
lect two 40-bit primes to represent the plaintext space of 280.
The primes are 1099511922689 and 1099512004609. By pack-
ing 8192 plaintexts into one ciphertext, we can process 8192
multiplications in one homomorphic multiplication. Based
on an Intel(R) Core(TM) i7-5600U CPU 2.60GHz, 8GB RAM,
we have the timing complexity for Enc (52.43 ms), Dec (39.63
ms), ⊗ (207.76 ms), par.⊗ (70.28 ms), ⊕/	 (742 µs).

Considering that the homomorphic cryptosystem requires
fix-point computation, we need to round all the float points
during the training epochs. For the matrix ∆eu(0)

a (denoted
as ∆e) in the protocol from Figure 6, we transform the float-
point vector into an integer one by rounding the matrix to be
∆r = b210∆ec. We transform all float point matrices or vectors
in the same way to integer ones.

Alice Alice RecSys RecSys
(offline) (online) (offline) (online)

Server-centric 10.10 1.08 1110 14.30
Balanced 10.10 213.87 1110 5.52

Table 9: Timing Cost (Seconds)

The timing costs for Alice and RecSys in the protocols from
Section 6.1 and 6.2 are summarized in Table 9. we have the
following additional observations.

• The offline computational cost for RecSys is mainly the
encryption of [v j]s and [v jvt

j]s, only once for multiple
users. The offline computation for Alice is the compu-
tation of [∆]s and [vt]s (or [Ψ]s), which can be done any
time and less frequently.

• For the server-centric protocol, RecSys can pack one
matrix [v jvt

j]s or a vector [v j]s into one ciphertext so that

the multiplication with da, j is equivalent to one mul-
tiplication and the communication cost can be further
reduced.

• For the balanced protocol, the server’s computational
cost is mainly the decryption and encryption, so we
reduce it by letting Alice pack u(t)

a into one ciphertext.

From the numbers, it is clear that the costs for both partic-
ipants in the balanced protocol are more balanced than the
server-centric protocol (considering both online and offline
computations). The server-centric protocol performs better,
at the risk of revealing Alice’s rated items when RecSys is
malicious.

7.3 Comparison
Compared with the schemes from [16, 22], we solve a cryp-

tographically different problem since we only protect the in-
cremental part rather than all the training process. As a result
of the simplification, we get rid of the extra third-party CSP.
Regarding the complexity, our solution performs significantly
better.

• The communicational cost is reduced from 580 MB [16]
to 5.73 MB in the server-centric Protocol, with 27 MB in
the balanced protocol.

• The computational cost per round in [16] is 1.5 minutes
on a PC with 3.4 GHz 6-core 64GB RAM, while the one
in [22] costs 170 minutes on two servers with 1.9 GHz
16-cores 128 GB RAM. Our computational cost is much
less than theirs.

While the schemes in [16, 22] deal with factorizing the whole
rating matrix, which generates the U matrix for multiple
users, our scheme generates one feature vector for a user
Alice by default. However, if Alice is the holder of multiple
users’ data, it’s easy to process them in one time by packing
the ∆ matrix from multiple users.

7.4 Complexity Analysis of UCF
Considering the simplicity of operations in UCF, we can

select small parameters for the SWHE. We select the cipher-
text modulus q = 2190

− 230 + 1, the polynomial modulus
p(x) = x4096 +1. The plaintext space is 29. Based on an Intel(R)
Core(TM) i7-5600U CPU 2.60GHz, 8GB RAM, we have the
timing complexity for Enc (41.78 ms), Dec (41.22 ms), par.⊗
(0.398 ms, the plaintext is much smaller), ⊕/	 (85 µs). The
time cost for Alice is 23046 seconds and for Proxy is 4106
seconds. But considering UCF is performed much less fre-
quently than IMF, this is acceptable.

8. CONCLUSION
This paper has described a hybrid design for privacy-

preserving recommender systems. Instead of focusing on
a single recommender algorithm, we have proposed a new
design in an attempt to facilitating privacy protection and en-
hancing recommendation accuracy. We have also attempted
to improve the efficiency by slightly relax the privacy guaran-
tees in the server-centric privacy-preserving IMF protocol. It
shows that the efficiency can be dramatically improved while
the users’ privacy might not be affected in practical settings.
Besides privacy, other issues such as robustness, are equally



important or more important from the perspective of ser-
vice providers. Note that the typical operations such as data
cleaning becomes much more difficult in privacy-preserving
systems (usually due to encryption). How to address these
issues altogether remains as a challenging future work.
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