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Abstract. While the smart grid has the potential to have a positive im-
pact on the sustainability and efficiency of the electricity market, it also
poses some serious challenges with respect to the privacy of the consumer.
One of the traditional use-cases of this privacy sensitive data is the usage
for forecast prediction. In this paper we show how to compute the forecast
prediction such that the supplier does not learn any individual consumer
usage information. This is achieved by using the Fan-Vercauteren some-
what homomorphic encryption scheme. Typical prediction algorithms are
based on artificial neural networks that require the computation of an
activation function which is complicated to compute homomorphically.
We investigate a different approach and show that Ivakhnenko’s group
method of data handling is suitable for homomorphic computation.

Our results show this approach is practical: prediction for a small apart-
ment complex of 10 households can be computed homomorphically in
less than four seconds using a parallel implementation or in about half
a minute using a sequential implementation. Expressed in terms of the
mean average percentage error, the prediction accuracy is roughly 21%.

1 Introduction

One of the promising solutions to cope with current and future challenges of
electricity supply is the smart grid. With the prospect of having a positive impact
on the sustainability, reliability, flexibility, and efficiency many countries around
the world are investing significantly in such smart grid solutions. The deployment
of smart meters is already well underway. For example, in the United Kingdom
the large energy suppliers were operating over 400, 000 smart gas and electricity
meters, representing 0.9 percent of all the domestic meters operated by the large
suppliers in 2014 [9]. This development is expected to continue and intensify:

This work was supported by the European Commission through the ICT programme
under contract H2020-ICT-2014-1 644209 HEAT.



the EU third energy package has as an objective to replace at least 80 percent of
electricity meters with smart meters by 2020 [I5]. This change will fundamentally
re-engineer the (electricity) service industry.

The replacement of the classical meters with their smart variants has advan-
tages for both the consumer and industry. Some of the key benefits include giving
consumers the information to gain control over their energy consumption, low-
ering the cost for managing the supply of energy across industry, and producing
detailed consumption information data from these smart meters which in turn
enable a wide range of services [9]. It is expected that the meters have an update
rate of every 15 minutes at least [I4]. When generating such a large amount of
consumer data a lot of privacy sensitive information is being disclosed. There
are various initiatives (e.g. |[3136]) which stress and outline the importance of
having solutions for the smart grid where privacy protecting mechanisms are
already built-in by design.

This work is concerned with enhancing the privacy of the smart meter read-
ings in the setting of forecast prediction: energy suppliers need to forecast in
order to buy energy generation contracts that cover their clients. Moreover, to
ensure network capacity the network operators require longer term forecast-
ing [23I36)I0]. This forecasting is typically done by taking as input the (ag-
gregated) data from a number of households. Based on this consumption data,
together with other variables such as the date and the current temperature and
weather, a forecast is computed to predict the short, medium, or long term con-
sumption. The energy providers or network operators only need to know the
desired forecast information based on their (potentially proprietary) forecasting
algorithm and model. There is no need to observe the individual consumer data.

We investigate the potential of fully homomorphic encryption (FHE) to real-
ize this goal. The notion of FHE was introduced in the late 1970s [33] and a con-
crete instantiation was found in 2009 by Gentry [19]. FHE allows an untrusted
party to carry out arbitrary computation on encrypted data without learning
anything about the content of this data. Currently, the Fan-Vercauteren (FV)
FHE scheme [10] is regarded as the best choice with respect to security and
practical performance. See Section [4] for a more detailed description of the FV
scheme. Additively homomorphic encryption schemes [30] and other tools have
been proposed to enhance the privacy in the setting of computing detailed billing
in the context of the smart grid [32[29/1825I1324]. However, these approaches
cannot be directly used in the setting of prediction algorithms since these more
complex algorithms need to compute both additions and multiplications.

One popular class of algorithms which are used for prediction are based on
artificial neural networks. One of the main ingredients in these forecasting algo-
rithms is the computation of the so-called activation function, in practice it is
common to use a sigmoid function where the logistic function ¢ — 1/(1 4 e™%)
is a popular choice. However, computing such a sigmoid function homomor-
phically is far from practical. One possible way to proceed is to simply ignore
the sigmoidality requirement and to proceed with a truncated Taylor series ap-
proximating this function or, more generally, to use any non-linear polynomial



function which is simple. This was investigated by Livni et al. [26] regardless of
cryptographic applications. Recent work by Xie et al. [38] and Dowlin et al. [12]
suggests to apply the same approach to homomorphically encrypted data. How-
ever, by computing artificial neural networks in this fashion it becomes just an
organized manner of fitting a polynomial through the given data set. In this
paper we investigate an older tool for realizing this goal. Namely, we show that
Ivakhnenko’s group method of data handling (GMDH) which was proposed back
in 1970 [22] is a perfect match for being computed homomorphically. Moreover,
a recent comparison analysis between different forecasting methods [35] showed
that GMDH produced significantly more accurate results compared to the other
methods considered.

We show that GMDH can be implemented homomorphically using the re-
cent fixed point approach from [IIJ6]. Using a five-layered network (one input
layer, three hidden layers and an output node) we are able to homomorphically
predict the next half-hour energy consumption for an apartment complex of 10
households. Our software implementation results indicate that this requires less
than four seconds using a parallel implementation or about half a minute using
a sequential implementation while the prediction accuracy expressed using the
mean absolute percentage error (MAPE, see Section [3| for a definition) is only
21 percent. This shows that privacy preserving forecasting using homomorphic
encryption is indeed practical.

2 The Smart Grid and Privacy Concerns

The authors of [34] define the smart grid as “an electricity network that can
cost efficiently integrate the behavior and actions of all users connected to it —
generators, consumers and those that do both — in order to ensure economically
efficient, sustainable power system with low losses and high levels of quality and
security of supply and safety”. This paper is concerned with the cryptographic
solutions to privacy concerns within the smart grid. Within this scope we assume
that the meters are protected against various types of side-channel attacks such
that no secret data can be retrieved from the device when it is operating (e.g. key
extraction). Moreover, we assume that the smart metering device acts honestly in
accordance with the implementation or protocol given to it. These assumptions
avoid the usual security threats and leave us with the privacy related concerns
which we aim to address.

In the early 1990s, Hart showed a non-intrusive approach where by monitor-
ing the electric load one can observe the individual appliances turning on and
off [20]. Hence, detailed smart meter readings, which are expected to be gener-
ated at least every 15 minutes in the context of the smart grid (cf. [14]), can be
used to derive various privacy sensitive information about a house-hold or even
an apartment complex. In order to grasp where the main privacy challenges are
in smart metering it is good to understand how and when the meter readings
are used in practice by the various parties involved. As identified by the survey
paper [23], which in turn has collected this information from the privacy impact



assessment by NIST [36] and the enumeration of data uses by the consultation
of the British Department of Energy and Climate Change [10], the key usages of
smart meter readings include the usage for load monitoring and forecasting and
smart billing.

There has been a significant amount of work related to privacy-preserving
smart billing solutions for the smart grid. One line of research allows complex
non-linear tariff policies where the bill is computed and sent along with a zero-
knowledge proof to ensure that the computations are correct [32I29]. Another
approach is based on privacy-friendly aggregation schemes (e.g. using additively
homomorphic encryption schemes such as the Paillier scheme [30]) where one
can compute a function on the ciphertexts which corresponds to adding the
plaintexts [I825T324]. Such approaches heavily rely on the fact that only ag-
gregation of the results is required. As soon as more complex operations need
to be computed (such as a large number of multiplications) one has to look for
other solutions.

One example where more complex operations are performed is in the setting
of load monitoring and forecasting. There are many different forecasting ap-
proaches (see e.g. the survey paper [2I] on this topic and the references therein).
One of the popular and well-studied techniques is using artificial neural networks
(see e.g. [II17]). In the next section we describe how such neural networks op-
erate, analyze the challenges they pose when being evaluated in the encrypted
domain, and discuss how this naturally leads to considering the group method
of data handling as an alternative forecasting tool.

3 Neural Networks versus The Group Method of Data
Handling

Over time, artificial neural networks (ANNs) have manifested themselves among
the most popular and reliable prediction tools for various purposes, including
load forecasting. For our preliminary discussion, it suffices to think of an ANN as
a real-valued function f : R™ — R that arises as the composition of a number
of ‘neurons’ v;; : R™-1 — R, organized in layers ¢ = 1,...,r, as depicted in
Figure [T} Each neuron is of the form

ni—1
Vij : R"" 1! 5 R: (iCl,(EQ, . ,l’ni_l) =g ( E WijkTh — b”>
k=1

for weights and biases w;jx, b;; € R and some fixed sigmoidal activation function
g : R — R, such as the logistic function ¢ — 1/(1 + e~*). The global shape of
the network is decided in advance, and the goal is to determine the weights
wy;r, and the biases b;; such that f approximates an unknown target function
f : R™ — R, in our case load prediction, as well as possible. This is done during
a so-called supervised learning phase. One starts from a reasonable guess, after
which the network’s performance is assessed by feeding to it a number of input-

output pairs of f , taken from a given data set, and measuring the error. During
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Fig. 1. Design of an Artificial Neural Network (ANN).

a process called backpropagation, which is based on the chain rule for derivation,
the weights and biases are then modified repeatedly, in the hope of converging
to values that minimize the error.

The backpropagation method requires the activation function g to have a nice
and easy derivative, while at the same time it should be sigmoidal, i.e. its graph
should have the typical step-like activation shape, allowing the ANNs to do what
they were designed for: to simulate computation in (an area of) the human brain.
Unfortunately, the class of such functions does not contain examples that are
easy to evaluate homomorphically. A natural attempt would be to use a Taylor
approximation to the logistic function or to one of its known alternatives, but
such approximations become highly non-sigmoidal away from the origin.

One way out is simply to ignore the sigmoidality requirement and to proceed
with this truncated Taylor series, or more generally to replace g by any simple
non-linear polynomial function, the easiest choice being ¢ — t2. This has been
investigated by Livni et al. [26] for reasons of computational efficiency, regardless
of cryptographic applications. Recent work by Xie et al. [38] and Dowlin et al. [12]
suggested to apply the same approach to homomorphically encrypted data. The
resulting neural networks were named ‘crypto-nets’.

However in this way the ANN just becomes an organized way of fitting a
polynomial through the given data set. There exist older and simpler predic-
tion tools that do this. In this paper we study one of the oldest such tools,
namely Ivakhnenko’s group method of data handling (GMDH) from 1970 [22].
Besides being suited for applications using homomorphic encryption, one partic-
ular feature is that its performance in the context of load forecasting enjoys a
large amount of existing literature, at times even with results that are superior
to ANNSs. Indeed, a comparison analysis between different forecasting methods
from 2008 [35] showed that GMDH produced significantly more accurate results
compared to the other methods considered.

The basic version of GMDH works as follows, although many variations are
possible (and seem to deserve a further analysis). The goal is to approximate
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Fig. 2. Network-like illustration of the Group Method of Data Handling.

our target function f :R™ — R with a truncated Wiener series
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which is also called a Kolmogorov-Gabor polynomial. The idea is to approach
this by a finite superposition of quadratic polynomials

vij i R? = Ro: (z,9) = bijo + bijiz + bijoy + bijazy + bijax® + bijsy®

along a diagram of the kind depicted in Figure[2] One can think of this as some
sort of ANN, and indeed the diagram is sometimes called a ‘polynomial neural
network’. As a first main difference, however, note that the wiring is incomplete:
each neuron has two inputs only.

Also the learning phase is quite different from the one in conventional ANNs.
Here the goal is to determine the coefficients b;;, of the quadratic polynomials
v;5, but also the concrete structure of the network, which is not fixed in advance.
Indeed, one decides beforehand on the number of layers r and the number of neu-
rons n; in each layer, but the wiring between these is defined during the learning
process. Recall that each node can have only two inputs, so the following con-
straint should be satisfied: n; < ("15 1). In order to prevent exponential growth
of the number of neurons, the left hand side will in general be much smaller than
the right hand side. As to which combinations end up being chosen, one first
considers all possible combinations and then removes the ("’i;) — n,; worst neu-
rons with respect to their error performance, in the sense explained below, while
at the same time determining the coefficients b;;;; of the surviving neurons. One
then proceeds with the next layer. In particular, there is no backpropagation.
The node with the smallest error performance will be assigned as an output for
the whole network; this may in fact be different from what was initially foreseen
to become the output neuron. One sometimes applies the rule that if at some
point all nodes in layer ¢ perform worse than the best performing node in layer
1 — 1, then the algorithm stops, and the latter node is assigned as the output.



To assess the error performance of a neuron, while at the same time deter-
mining the coefficients of the corresponding quadratic polynomial, one uses a
given data set of correct input-output pairs for f . Additionally, an error (or loss)
function should be set up beforehand. Throughout this paper we use the Mean
Squared Error (MSE) function

MSE((yiO ecdxst7 L ’yflo ecast)7 (y?ctua17 o 7yfluctual)) — ﬁ 2(y£0 ecast __ y?ctual)27
i=
but there are a couple of other standard choices, such as the Mean Absolute
Error (MAE) and the Mean Absolute Percentage Error (MAPE):

n n forecast actual
l | forecast __ , actual 100 Yi — Y
Yi Yi resp. actual
i=1 i=1 g

For each neuron v;; the data set is randomly split into a learning set and a test
set. This is done to avoid overfitting, where the network learns too much about
the inherent noise always being present in real-world data. The learning set is
used to determine the coefficients b;;x, by choosing them such that the error is
as small as possible. In the case of MSE this can be achieved by linearization of
the quadratic polynomial and applying the least squares method. The test set is
then used to assess the performance of the neuron.

4 The Fan-Vercauteren SHE scheme

In this section we briefly describe a simplified version of the FV scheme [I6],
which we will present in its somewhat homomorphic encryption (SHE) form,
meaning that it is suitable only for computations up to a given depth, thereby
avoiding very expensive bootstrapping operations. It concerns a scale-invariant
SHE scheme based on the hardness of the ring version of the learning with errors
problem (RLWE) [27]. It works in the polynomial ring R = Z[X]/(f(X)) with
f(X)=X%+1 and d = 2". For an integer N we denote with Ry the reduction
of R modulo N. Abusing notation, elements of R will often be identified with
their unique representant in Z[X] of degree at most d — 1, and similarly elements
of Ry are identified with their unique representant inside

{ag-1 X+ ag_a X2 +...+ao| a; €(—N/2,N/2] for all i},

but this should cause no confusion. For an element a € R or a € Z[X] we write
[a]n do denote its reduction inside the above set of representants.

The plaintext space in the FV scheme is given by the ring R; for some small
integer modulus ¢ > 1, while a ciphertext is given by a pair of ring elements in R,
where ¢ > 1 is a much larger modulus. The key generation and the encryption
operations in the FV scheme require sampling from two probability distributions
defined on R, denoted Xiey and Xerr. The security of the scheme is determined
by the degree d of f, the size of ¢, and by the probability distributions. Typically



Xkey and Xerr are coeflicient-wise discrete Gaussian distributions centered around
0 and having a small standard deviation, but in practice one often samples the
coefficients of the key from a uniform distribution on a narrow set like {—1,0,1}.
The RLWE distribution on R, x R, is constructed as follows: first choose a fixed
element s < Xiey, and then generate samples of the form (a,b) with a < R,
uniformly random and b = [—(as + €)]; with e < Xerr. (The minus sign is
not standard but makes a better fit with the discussion below.) The decision
RLWE problem is then to distinguish between the RLWE distribution and the
uniform distribution on R, x R,. The search RLWE problem is to retrieve s from
polynomially many samples. Both problems are believed to be very hard for an
appropriate choice of parameters.

By construction, for a RLWE sample (a,b) we have that e = —[as + 0],
and therefore that the right-hand side has small coefficients, with overwhelm-
ing probability. Furthermore note that the sample can be easily re-randomized
without knowledge of s as follows: choose u < Xkey and €1, ez < Xerr and form
the new sample as (ua+ e1, ub+ e3). In the encryption scheme below, the public
key will consist of a single RLWE sample, which will be re-randomized during
encryption. The new RLWE sample will then be used as an additive mask to
encrypt a message m € R;. Before we present the F'V scheme, we first describe
some subroutines that are required in the algorithm:

— WordDecomp,, ,(a): This function is used to decompose a ring element a € R,
in base w by splicing each coefficient of a. For u = |log,,(q)], it returns a; € R
with coefficients in (—w/2,w/2], such that a = Y.}, a;w’.

— Powers0f,, 4(a): This function scales an element a € R, by the different

powers of w. It is defined as Powers0f,, 4(a) = (aw’)¥_,.

These two functions can be used to perform a polynomial multiplication in R,
through an inner product: (WordDecomp,, ,(a), Powers0£f,, 4(b)) = a - b. This ex-
pression has advantage in reducing the noise during homomorphic multiplica-
tions, as the first vector contains small elements only.

The FV scheme consists of an encryption scheme augmented with additional
functions Add, Mult, and ReLin to compute homomorphically on encrypted data.

1. ParamsGen(\): For a given security parameter A, choose a degree d = 2™ and
thus a polynomial f(X) = X¢ 4 1, moduli ¢ and t and distributions Yerr
and Xiey. Also choose the base w for WordDecomp,, ,(-). Return the system
parameters (d, ¢, t, Xerr, Xkeys w).

2. KeyGen(d, ¢,t, Xerr; Xkey, W): Sample the secret key s <— Xkey, sample a + R,
uniformly at random, and sample e < Xe. Compute b = [—(as + €)],.
The public key is the pair pk = (b,a) and the secret key is sk = s. The
scheme uses another key rlk called relinearization key in the function ReLin
below. Define ¢ = u+1 = |log,,(¢)|+1, sample a vector a < Rg uniformly at
random, sample e + ., and let rlk = ([PowersQf,, ,(s?) —(e+a-s)],a) €
R. x R

3. Encrypt(pk,m): First encode the input message m € R; into a polynomial
Am € R, with A = |g/t]. Next sample the error polynomials eq, €2 < Xerr;



sample % <= Xkey, and compute the two polynomials co = Am+bu+e; € R,
and ¢; = au+ez € Ry. The ciphertext is the pair of polynomials ¢ = (¢, ¢1).

4. Decrypt(sk, c): First compute the polynomial 7 = [cy + s¢1]q. Then recover
the plaintext message m by a decoding the coefficients of m by scaling down
by A and rounding.

5. Add(cq, c2): For two ciphertexts c1 = (¢1,0,¢1,1) and c2 = (c2,0,¢2,1), return
c= (0170 +c2.0,C1,1 + 0271) € Rq X Rq.

6. Mult(cy, co,rlk): Compute €mut = (co, c1, c2) where ¢y = L% c1,0-C20], 01 =
Lé (c1,0-c21+c¢1,17¢20)], and ¢o = Lé -c1,1 - €2,1| and apply relinearization.

7. ReLin(Cpuit, rlk): Write rlk = (b, a) and €t = (co, ¢1, ¢2), then compute a
relinearized ciphertext as ¢’ = (cg, ¢;) as ([co+(WordDecomp,, ,(c2), b)]y, [c1+
(WordDecomp,, ,(c2),a)]q)-

Given an FV ciphertext ¢ = (cg, ¢1), we can write [co + ¢15]q = Am + e, where
e is called the noise inside the ciphertext. Every operation on ciphertexts causes
the noise to increase. It is clear that when the noise gets too large, in particular
if |le|loc > A/2, correct decryption will fail, where ||-||s denotes the maximal
absolute value of the coefficients.

From now on we assume that ye. is a coefficient-wise discrete Gaussian
with standard deviation o and that Xy, samples the coefficients uniformly from
{-1,0,1}. With overwhelming probability Be;y = 60 and By, = 1 are upper
bounds on the absolute values of the coefficients of their respective samples.
Therefore we can use V' = Beyy(1+2dByey) = Berr(142d) as an upper bound on
the noise of the input ciphertexts. When doing arithmetic the noise is affected in
the following way. Firstly, adding ciphertexts c; and co corresponds to adding the
noises, potentially augmented by a carryover « satisfying ||v||c < t, as explained
in [16]. Secondly, multiplying a ciphertext ¢ by an unencrypted scalar (Aa,0)
for some a € R; corresponds to multiplying the noise by «, again with some
carryover «. For use below, fix an integer A > 1 and assume that the coefficients
of @ are in {—1,0,1} with at most A of them being non-zero. Then in a similar
way one sees that ||v|lcc < [A/2]-t. Thirdly, multiplying two ciphertexts c; and
co whose noise coefficients are bounded by E results in a ciphertext whose noise
coefficients are at most

2-E-t-d-(d+1)+8-t*-d*+{ Beyr-w-d/2

in absolute value, by [16, Lem. 2 & Lem. 3].

Now assume that we wish to evaluate a GMDH network f : R} — R,
having r hidden layers in a fresh component-wise encryption of an ng-tuple
(x1,22,...,2n,) € R{°. For the moment just think of this as a Kolmogorov-
Gabor polynomial that we evaluate in the encrypted domain along a diagram
of the kind depicted in Figure [2} the purpose of this will become clear in the
next section. The network parameters b;;;, are assumed to be small public scalars
along the lines mentioned above: the coefficients are in {—1,0,1} and at most A
of them are non-zero. Define A1 =6-A-t-d-(d+1)+2- X and

Ay =3/2-XN-l-Ber-w-d+24-12-d* +5-(|[\/2] +1)-t.



One verifies that homomorphically evaluating a node vy, : Ry® — R"* from the
first layer causes the noise coefficients to grow to at most A; -V + As. Recursively
applying this formula yields the upper bound A5V 4+ (AT —1)- Ay /(A; —1)
on the absolute values of the noise coefficients that are present in the output of
the entire network f.

The parameters of the FV scheme are not only determined by the noise
growth, but also by the security requirements. It is easy to see that when d and
o/q grow, amounting to larger polynomials and more noise in the ciphertexts,
then RLWE becomes harder. A precise security analysis is beyond the scope of
this paper, but to derive our security estimates we closely follow the work by
Albrecht, Player and Scott [3] and the open source LWE-estimator implemented
by Albrecht [2]. In particular, the LWE-estimator allows one to estimate the
concrete hardness of the LWE problem given the dimension d, the modulus
q and the standard deviation o. Note that the actual tool takes as input the
parameter a = v/270/q, instead of o directly.

For the design reasons explained in Section [6] we will take » = 3, A = 9,
while for compatibility reasons with the software library FV-NFL1ib [7] we wish
to take w = 232 and log, ¢ an integral multiple of 62. Targetting a security
level of 80 bits, we can address the restrictions coming from both the noise
growth and the security considerations by using the parameter set d = 4096,
q ~ 2186 and o = 102 (corresponding to o = 256/q). These parameters will be
used throughout the remainder of the paper and allow for usage of all plaintext
moduli t < 396. Note that one ciphertext takes up 186kB space.

5 Representing fixed-point numbers in plaintext space

Our final goal is to evaluate a trained GMDH network in the encrypted domain
using the FV scheme. As explained in the previous section, the plaintext space
is of the form R;, which is the reduction modulo a certain integer ¢ > 1 of
R = Z[X]/(X? + 1), where d = 2" for some n € Z~g. Therefore an important
task is to encode the input values x1,x2,...,2,, € R, as well as the coefficients
biji € R, as elements of R;. This should be done in such a way that real additions
and multiplications agree with the corresponding operations in the ring R;, up
to a certain depth of computation. Dowlin et al. [II] proposed two ways of
addressing this issue, which were revisited in a recent paper by Costache et
al. [6], who showed them to be essentially equivalent, and also provided lower
bounds on t and d guaranteeing that the arithmetic in R is indeed compatible
with that in R; to the extent desired. We briefly recall their main conclusions,
adapted to our setting.

On the real number side, we use fixed-point arithmetic. We assume that
the z;’s and the b;j;’s are given in balanced ternary expansion to some finite
precision, that is, they are of the form

be,—1be,—2 ... by . b_1b_o...b_y, (1)
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with b; € {—=1,0,1} for i = —{5,...,¢; — 1. This should be read as
b51,13€1_1 + b51,23€1_2 +...+ b030 + b,13_1 + b,23_2 + ...+ b,gz?)_&.

As usual we say that has /1 integral digits and /5 fractional digits; throughout
we assume that ¢; > 1 and f5 > 0. In order to encode (1) as an element of R;
one simply replaces the base 3 by X. This yields

by X by, o X072 b X0 b X T b o X T2 b, X, (2)
which one can rewrite as
e, 1 X T by o X T b X0 b X b o X TR b, X,

using the relation X¢ = —1.

To decode a given element of R; one first considers its unique representant in-
side {ad,le_l Fago X424 4 ap ‘ a; € (—t/2,t/2] for all i}, after which
one replaces all suitably high powers X* by —X*~? and one evaluates the result-
ing Laurent polynomial at 3. The outcome is a rational number whose denomi-
nator is a power of 3, so it can be easily rewritten in balanced ternary expansion.
For simplicity we think of ‘suitably high’ as ¢ > d/2, although to improve the
bound on d in Lemma (1| below, a more careful (but easy) estimation should be
made, that takes into account the lengths of the integral and fractional parts of
the fixed-point numbers involved.

Clearly, the ring operations in R; are compatible with fixed-point arithmetic
on the real number side as long as they do not involve ‘wrapping around’ modulo
t and/or modulo X¢ + 1. (In the latter case this means that neither the terms
of high degree nor the terms of low degree are allowed to cross the separation
point X%/2.) Thus ¢ and d should be taken large enough to ensure this, for
which Costache et al. elaborated concrete lower bounds. We will not explicitly
rely on these bounds, but rather apply the underlying ideas to obtain a more
implicit statement. For all integers ¢ > 0,A > 0,7 > —1 we define dy », =
2710 4 (271 — 1)\ Moreover for all £1 > 1,A\; > 1,05 > 0,\g > 0,7 > —1 we
introduce a polynomial Dy, x, .¢,.2,.»(X) € Z[X], which is recursively defined by
putting

Diynytarg—1(X) =14+ X 4+ X2 4. 4 XOter]

and for r > 0 letting Dy, x; ¢,.0,,7(X) be
X2aart 42X Y2021 Dy, gy agr—1(X) + 3Dgy Ay 2 A0 -1 (X))

multiplied with 1+ X + X2 + ... + XM 72271 We then define ¢y, \, ¢y 000 =
| Dear(X)||oo where as before ||-||o denotes the maximal absolute value of the
coefficients. Note that deg Dy x»(X) = d,+0,—1,0+rs—1,-- This all looks a bit
cumbersome but the idea underlying these definitions should become apparent
from the proof below.

Lemma 1. Suppose that the input values x1,xs,. .., Ty, resp. the coefficients
bijr are given by balanced ternary expansions of at most {1 resp. Ay integral

11



digits and £y resp. Ao fractional digits. Let xqyut be the evaluation of our GMDH
network at the x;’s, obtained by using fized-point arithmetic. Let ¢(X) € Ry
be the evaluation of our GMDH network at the encodings of the x;’s (using
the encodings of the b;ji’s as coefficients), obtained by using the respective ring
operations in Ry. If

t>2con e n0r  and  d>2-max{de,4o,—1,0 42— 1,r5 Doy 2o, + 1}
then ¢(X) decodes to xout.

Proof. Consider the evaluation of our GMDH network when carried out in
Z[X, X '], using encodings of the form (2). We claim that the outcome is of
the form X ~"¢(X) with m < dp, »,» and g(X) € Z[X] of degree at most

dey +6,-1,0 +1,—1,» and having coefficients bounded (in absolute value) by cg, A, ¢, 30,7
This claim clearly implies the lemma.

The key observation is that if one replaces all inputs by X % 4 X ~¢+1 4
X~%+2 4 4+ X%~ while replacing all encoded b;jx’s by X 2 4 X A2+l 4
X—22F2 1 4 XM~ then these quantities can only increase, by the triangle
inequality for the absolute value. By induction on 7, it is easy to show that the
corresponding evaluation is precisely X %2227 - Dy, 3 g, 3, .»(X), from which
the claim follows. |

These bounds are easy to compute in practice, using a computer algebra
package. For example with /1 =4, fo =1, A\ =1, Ay = 8 and r = 3, along the
Magma script below we obtain the bounds

t > 93659577705415581454099599864654 ~ 2106207 and  d > 368. (3)

This concrete choice of parameters will reoccur later in the paper.

elll := 4; lambdal := 1; ell2 := 1; lambda2 := 8; r := 3;
R<X> := PolynomialRing(Integers());
D := &+[X~1 : i in [0..ell1l + ell2 - 111;
beta := &+[X~i : i in [0..lambdal + lambda2 - 1]];
depth := -1;
repeat
depth +:= 1;
d := 2~depth*ell2 + (2~depth-1)*lambda2;
D := betax(X~(2%d) + 2*xX~dxD + 3*D"2);
until depth eq r;
print "Bound on t is", 2*Maximum(Coefficients(D));
print "Bound on d is", 2#Maximum(Degree(D), 2*d + lambda2 + 1);

One sees that the obtained bound on ¢ is very large, which is problematic for
a direct application of the FV scheme: remember from the previous section that
we need t < 396. To address this issue we follow an idea mentioned in [4, §5.5],
namely to decompose the plaintext space using the Chinese Remainder Theorem
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Fig. 3. The MAPE when forecasting the power consumption for the next half hour
when using a varying number of aggregated households.

(CRT). That is, if one lets ¢ be a large enough product of small mutually coprime
numbers t1,ts,...,t,, then we have the well-known ring isomorphism

R — Ry, X Ry X ... X Ry, g(X) = (g(X) mod ty,...,9(X) mod t,,).

Instead of evaluating our GMDH network directly in R;, we can work in each of
the R;,’s separately, simply by reducing things modulo ¢;. The outcomes can then
be combined very efficiently in order to end up in R; again. As a consequence it
suffices to carry out the F'V scheme using the much smaller plaintext spaces Ry,
although one needs to do it for each i separately. For the above example, the 13
mutually coprime numbers 269, 271, 277, 281, 283, 285, 286, 287, 289, 293, 307,
311 and 313 multiply together to

t = 95059483533087812461171515276210 ~ 2106229

which indeed satisfies the bound from . Thus it suffices to work with Ragg,
Rar1, - .-, R313.

6 Prediction Approach for the Smart Grid

6.1 Prediction Model: Apartment Complexes

It is known that it is intrinsically difficult to make accurate short-term predic-
tions based on data from one household when using an artificial neural net-
work [37], and the same volatile behaviour is to be expected when following
a GMDH approach. In order to confirm this we designed and trained for each
value of n =1,...,100 a GMDH network that predicts the energy consumption
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during the next half hour for n aggregated households. This was done along the
design criteria (and using the data set) described in Section below. The ob-
served prediction qualities, expressed in terms of the mean average percentage
error (MAPE), are given in Figure|3| One sees that the results for one household
are particularly bad, showing a MAPE of over 158 percent. However, the results
start to improve significantly when using aggregated measurements of 10 house-
holds: here the MAPE is slightly above 20 percent, while it drops to 7 percent
for n = 100. These observations are well in line with the ones for ANNs [37].
Due to this volatile nature we decided to aim for aggregated prediction, albeit
for a low number of households, at a scale where the security issues mentioned
in Section [2| remain at hand. More precisely, we chose n = 10. This use-case
matches small apartment complexes in rural areas and the aggregation could be
performed locally inside the apartment.

The cryptographic setting we have in mind is that these aggregated measure-
ments are homomorphically encrypted and sent to an untrusted third party. This
third party can be seen as just another service user on the smart grid network.
He/she has received the concrete parameters (such as the coefficients b;;;) of
a trained GMDH network from the party who wants to know the consumption
prediction (e.g. the electricity supplier or the network operator). Using both the
encrypted inputs z1, x2, . .., zy, and the network parameters the untrusted third
party can compute the encrypted forecast and forward this to the final party,
who is able to decrypt using the cryptographic key corresponding to the one
installed in the smart meter.

6.2 Design of the Network

As explained in Section [3| the exact layout of our GMDH network is determined
during a learning phase, for which we need access to some real smart meter data.
We used the data that was collected through the Irish smart metering electricity
customer behaviour trials [5] which ran in 2009 and 2010 with over 5,000 Irish
homes and businesses participating. The data consists of electricity consumed
during 30 minute intervals (in kW). Per household there are 25,728 electricity
measurements for a total of 536 days. We use the measurements of the first year
as training data and the remaining half year to validate and measure how good
the network is performing.

An important balancing act is to find a network layout that minimizes the
number of layers (and therefore the multiplicative depth of the prediction al-
gorithm) while at the same time preserving a reasonable prediction accuracy,
preferably comparable to [37]. Through some trial and error the simplest GMDH
network we found to meet these requirements consists of r = 3 hidden layers with
ny = 8, ng = 4 and nz = 2 nodes, respectively. As input layer a set of ng = 51
nodes is used, where 48 nodes represent the half hour measurements that were
made during the previous 24 hours. The remaining 3 inputs correspond to the
temperature, the month, and the day of the week. The single output node v4,;
then returns the predicted electricity consumption for the next half hour.
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Let f : R%! — R denote the function that we want to approximate, for which
a set of m input-output pairs

actual __ ¢

aCtual)i:l,...,ma with Y - f(xila Ti2y - axino)a

(@i1, Tizy + s Ting ) Y
is given through the Irish data set. As explained in Section [3| these are used to
inductively determine the coeflicients b;;;, while at the same time selecting the
best performing nodes. Assuming that layer i — 1 was dealt with, for node v;;
this is done by minimizing the quantity

MSE ((fij(xlla e ax1n0)7 RN f’i_’j(anlv e ,Z‘"”LO)) ) (chtual’ ce. 7y7a7;:tual)) )

where f;; : R°" — R denotes the function obtained from the network by tem-
porarily considering v;; as an output node. The minimization can be done using
standard linear regression. The useful feature of this approach is that one can
apply L2-regularization and kill two birds with one stone. On the one hand reg-
ularization helps to avoid the owverfitting problem, while on the other hand it
allows to control the magnitude of the b;;;’s. In this way one can achieve that
v;; is a quadratic polynomial function with small coeflicients and a reasonable
MSE. We would like to point out that while we use MSE in the learning phase,
the quality of the eventually resulting GMDH network is measured in terms
of MAPE, in order to allow for a meaningful comparison with the forecasting
results reported upon in the scientific literature.

As outlined in Section [5| we carry out fixed-point arithmetic using balanced
ternary expansions, rather than binary expansions. To represent the input values
21,%2,...,%n, We use 1 fractional digit and, since the maximal data value is
27.265, at most 4 integral digits. The coefficients b;;, are represented using 1
integral and 8 fractional digits. With these choices we attain basically the same
average MAPE around 21 percent as in the floating point setting: a further
increase of the precision does not give any significant improvement, although it
gradually makes the fixed-point MSE converge to the floating-point one.

6.3 Benchmark Results

In order to assess the practical performance and verify the correctness of our
selected parameters we implemented the privacy-preserving homomorphic fore-
casting approach as introduced in this paper. Our implementation (which will be
made publicly avaiable soon) uses the FV-NFLIib software library [7] which im-
plements the F'V homomorphic encryption scheme which in turn uses the NFLlib
software library (as described in [28] and released at [8]) for computing polyno-
mial arithmetic. Our presented benchmark figures are obtained when running
the implementation on an average laptop equipped with an Intel Core 15-3427U
CPU (running at 1.80GHz).

Let us recall and summarize the exact forecasting setting and the param-
eters we selected for the implementation. It is our goal to predict the energy
consumption for the next half hour of an apartment complex of 10 households
while not revealing any energy consumption information to the party computing
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Table 1. The time (in ms) to compute the various basic (homomorphic) operations
for our selected parameters.

op ‘ enc dec keygen add mul scalar mul
ms | 21 538 77 0.1 33 29

on this data using the GMDH approach as outlined in Section [3] Inherent to this
approach we expect a MAPE which is slightly over 20 percent (see Section .
In order to work efficiently with real numbers we use the fixed-point represen-
tation with the parameters as outlined in Section [5} using the CRT approach
for decomposing plaintext space. We use the FV scheme for the homomorphic
computation with the parameters as presented in Section [4] Hence, we target a
security level of 80 bits and use the ring Roiso = Zoiss[X]/(X2" +1) along with
a standard deviation of 102. This means a ciphertext size of 186kB. Recall that
the coefficients b;;;, are not being encrypted, which limits the noise growth when
carrying out scalar multiplications.

As outlined in Section [6.2) the layout of our network consists of an input layer
of 51 nodes, three hidden layers of 8, 4 and 2 nodes respectively and a single
output node. Remember that when building a new layer the learning algorithm
excludes nodes corresponding to node pairs from the previous layer. So not all
nodes of the resulting GMDH network affect on the final output and thus can be
ignored during evaluation. Each node performs 8 multiplications out of which 5
are by polynomial coeflicients and 5 additions. Since there are at most 15 nodes
being evaluated this means computing 120 multiplications (out of which 75 by
polynomial coefficients) and 75 additions. Table [1| summarizes the performance
cost (expressed in milliseconds) for the various basic building blocks used in
our homomorphic prediction algorithm. As can be seen from this table, and
this is confirmed by running the entire forecasting algorithm in practice, the
average computation of the prediction over 100 aggregated datasets is around
2.5 seconds depending on the node wiring. However, as explained in Section [5]
this process has to be repeated 13 times for the CRT approach. In practice, the
entire forecasting can be computed in half a minute. Due to the embarrassingly
parallel nature of the CRT approach, a parallel implementation can compute
this in less than 4 seconds or 2.5 seconds on average.

7 Conclusions and Future Work

We have shown that Ivakhnenko’s group method of data handling from the
1970s is very suitable for homomorphic computation. This seems to be a better
method with respect to the applicability to implement prediction homomorphi-
cally compared to the related artificial neural network based approaches in this
cryptographic setting. We have studied this prediction approach in the setting
of enhancing the privacy of the consumer for forecasting in the smart grid. Our
privacy-preserving implementation of this approach to homomorphically forecast
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for 10 households shows is that this can be computed in less than four seconds
for parallel and in half a minute for a sequential implementation.

We would like to point out that this approach has applications beyond the

scope of just the smart grid. Other areas which need reliable prediction algo-
rithms but work with privacy sensitive data can directly benefit as well. Exam-
ples include computing on financial data or biometric data.
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