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Abstract

We revisit the question of constructing an ideal cipher from a random oracle. Coron et
al. (Journal of Cryptology, 2014) proved that a 14-round Feistel network using random, inde-
pendent, keyed round functions is indifferentiable from an ideal cipher, thus demonstrating the
feasibility of such a construction. Left unresolved is the best possible efficiency of the transfor-
mation. We improve upon the result of Coron et al. and show that 10 rounds suffice.

1 Introduction

The security of practical block ciphers—i.e., families of pseudorandom permutations—is not cur-
rently known to reduce to well-studied, easily formulated, computational problems. Nevertheless,
modern block-cipher constructions are far from ad-hoc, and a strong theory for their construc-
tion has been developed. An important area of research is to understand the provable security
guarantees offered by these classical paradigms.

One of the well-known approaches for building practical block ciphers is to use a Feistel net-
work [Fei73], an iterated structure in which key-dependent, “random-looking” round functions on
{0, 1}n are applied in a sequence of rounds to yield a permutation on {0, 1}2n. In analyzing the
security that Feistel networks provide, it is useful to consider an information-theoretic setting in
which the round functions are instantiated by independent, truly random (keyed) functions. The
purpose of such an analysis is to validate the structural robustness of the approach. Luby and
Rackoff [LR88] proved that when independent, random round functions are used, a three-round
Feistel network is indistinguishable from a random permutation under chosen-plaintext attacks,
and a four-round Feistel network is indistinguishable from a random permutation under chosen
plaintext/ciphertext attacks.

In the Luby-Rackoff result, the round functions are secretly keyed and thus the adversary does
not have direct access to them; the security notion considered—namely, indistinguishability—is
one in which the key of the overall Feistel network is also unknown to the adversary. A stronger
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notion of security, called indifferentiability [MRH04], applies even when the round functions are
public, and aims to show that a block cipher behaves like an ideal cipher, i.e., an oracle where
each key defines an independent, random permutation. Proving indifferentiability is more complex
than proving indistinguishability: to prove indifferentiability of a block-cipher construction BC
that relies on an ideal primitive O from an ideal cipher IC, one must exhibit a simulator S such
that that the view of any distinguisher interacting with (BCO,O) is indistinguishable from its view
when interacting with (IC,SIC). In the context of Feistel networks, it is known (see [CHK+14])
that one can simplify the problem and focus on indifferentiability of the Feistel network when using
independent, random, unkeyed round functions from a public random permutation; an ideal cipher
can then be obtained by keying the round functions.

In a landmark result building on [CPS08, Seu09, HKT11], Coron et al. [CHK+14] proved that
when using independent, random round functions, a 14-round Feistel network is indifferentiable
from a public random permutation. The key question left open by the work of Coron et al. is one
of efficiency : how many rounds are needed in order for indifferentiability to hold? It is known from
prior work [CHK+14] that 5 rounds are not sufficient, while (as we have just noted) 14 rounds are.
In this work, we narrow this gap and show that a 10-round Feistel network is indifferentiable from
a random permutation.

We provide an overview of our proof, and the differences from that of Coron et al., in Section 2.

Concurrent work. Concurrent with our own work, Dai and Steinberger [DS15] have also claimed
a proof of indifferentiability of a 10-round Feistel network from an ideal cipher. We have been in
communication with them in order to coordinate the release of our results, but as of this writing
neither team has seen the technical details of the other’s work.

1.1 Other Related Work

Ramzan and Reyzin [RR00] proved that a 4-round Feistel network remains indistinguishable from
a random permutation even if the adversary is given access to the middle two round functions.
Gentry and Ramzan [GR04] showed that a 4-round Feistel network can be used to instantiate
the random permutation in the Even-Mansour cipher [EM93] and proved that such a construction
is a pseudorandom permutation, even if the round functions of the Feistel network are publicly
accessible. Dodis and Puniya [DP07] studied security of the Feistel network in a scenario where
the adversary learns intermediate values when the Feistel network is evaluated, and/or when the
round functions are unpredictable but not (pseudo)random.

Coron et al. [CDMP05] adapted the notion of indifferentiability to the framework of inter-
active Turing machines. Various relaxations of indifferentiability, such as public indifferentiabil-
ity [DP07, YMO08], or honest-but-curious indifferentiability [DP06], have also been considered.
Dodis and Puniya [DP06] proved that a Feistel network with super-logarithmic number of rounds
is indifferentiable from an ideal cipher in the honest-but-curious setting. Mandal et al. [MPS12]
proved that the 6-round Feistel network is publicly indifferentiable from an ideal cipher.

1.2 Organization of the Paper

In Section 2 we provide a high-level overview of our proof, and how it differs from the prior work
of Coron et al. After some brief background in Section 3, we jump into the technical details of our
paper, describing our simulator in Section 4 and giving the proof of indifferentiability in Section 5.
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2 Overview of Our Proof

We first describe the proof structure used by Coron et al., and then describe how our proof differs.

2.1 The Techniques of Coron et al.

Consider a naive simulator for an r-round Feistel construction, which responds to distinguisher
queries to each of the round functions F1, . . . ,Fr, by always returning a uniformly random value.
Unfortunately, there is a simple distinguisher who can distinguish oracle access to (FeistelFr ,F)
from oracle access to (P,SP): The distinguisher will query (x0, x1) to the first oracle, receiving
(xr, xr+1) in return and will use oracle access to the second oracle to evaluate the r-round Feistel
and compute (x′r, x

′
r+1) on its own, creating a chain of queries, (x1, . . . , x

′
r). Note that in the

first case (xr, xr+1) = (x′r, x
′
r+1) with probability 1, while in the second case the probability that

(xr, xr+1) = (x′r, x
′
r+1) is negligible, so security is broken.

The following is an approach to fixing the above attack, which essentially gives the very high-
level intuition for how a successful simulator works: If the simulator can find out the value of
P(x0, x1) = (xr, xr+1) before the distinguisher queries the entire chain, then the simulator can assign
values for the remaining queries Fi(xi), conditioned on the restriction FeistelFr (x0, x1) = (xr, xr+1).
More specifically, if there are two consecutive rounds (i, i+ 1), where i ∈ {1, . . . , r− 1} which have
not yet been queried, the simulator can adapt its assignments to Fi(xi), Fi+1(xi+1) to be consistent
with P(x0, x1) = (xr, xr+1). When the simulator adapts the assignment of Fi(xi) to be consistent
with a constraint P(x0, x1) = (xr, xr+1), we say that this value of Fi(xi) has been assigned via a
ForceVal assignment. We next discuss further details of the Coron et al. [CHK+14] construction.

Partial chain detection and preemptive completion. To allow the simulator to preemptively
discover P(x0, x1) = (xr, xr+1), Coron et al. fix two “detect zones” which are sets of consecutive
rounds {1, 2, 13, 14}, {7, 8}. Each time the simulator assigns a value to Fi(xi), it also checks whether
there exists a tuple of the form (x1, x2, x13, x14) such that (1) F1(x1), F2(x2), F13(x13), F14(x14)
have all been assigned and (2) P(F1(x1)⊕ x2, x1) = (x14,F13(x13)⊕ x14); or whether there exists
a tuple of the form (x7, x8) such that F7(x7) and F8(x8) have both been assigned. We call such
a sequence of consecutive assignments a “partial chain,” and when a new partial chain is detected
it is “enqueued for completion” and will later be dequeued and preemptively completed. When a
partial chain includes both x1 and xr, we say it is a “wraparound” chain. Note that preemptive
completion of a chain can cause new chains to be detected and these will then be enqueued for
completion. This means that in order to prove indifferentiability, it is necessary to argue that
for xi that fall on multiple completed chains, all restrictions on the assignment of Fi(xi) can be
simultaneously satisfied. In particular the “bad case” will be when some assignment Fi(xi) must be
adapted via a ForceVal assignment, but an assignment to Fi(xi) has already been made previously.
If such a case occurs, we say the value at an adapt position has been “overwritten.” It turns out
that to prove indifferentiability, it is sufficient to prove that this occurs with negligible probability.

4-Round buffer zone. In order to ensure that overwrites do not occur, [CHK+14] introduce
the notion of a 4-round buffer zone. The simulator of [CHK+14] has two 4-round buffer zones,
corresponding to rounds {3, 4, 5, 6} or {9, 10, 11, 12}. Within the buffer zones, positions {3, 6}
(respectively {9, 12}) are known as the set uniform positions, and positions {4, 5} (respectively
{10, 11}) are known as the adapt positions. [CHK+14] prove the following property (which we
call henceforth the strong set uniform property): At the moment that a chain is about to be
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completed, the set uniform positions of the buffer zone are always unassigned. This means that the
simulator will always assign uniformly random values to F3(x3) and F6(x6) (respectively F9(x9)
and F12(x12)) immediately before assigning values to F4(x4) and F5(x5) (respectively F10(x10) and
F11(x11)) using ForceVal. This will ensure that ForceVal never overwrites since x4 = x2⊕F3(x3) is
only determined at the moment F3(x3) is assigned and so the probability that F4(x4) has already
been assigned is negligible (a similar argument holds for the other adapt positions).

Rigid structure. The rigid structure of [CHK+14] is used in their proof in two ways: First,
since all assignments, across all completed chains are uniformly random except in the fixed adapt
positions {4, 5} and {10, 11}, it is easier to argue about “bad events” occurring. In particular, since
the adapt zone of one chain ({4, 5} or {10, 11}) cannot overlap with the detect zone of another
chain ({1, 2, 13, 14} or {7, 8}), they can argue that if a “bad event” occurs in a detect zone of a
chain C, the bad event must have been caused by a uniform random setting of Fi(xi) either during
a direct distinguisher query to xi, or during completion of some other chain D.

Bounding the simulator’s runtime. The approach of [CHK+14] (originally introduced in
[CPS08]) is to bound the total number of partial chains that get completed by the simulator.
Note that in order to create a partial chain of the form (x1, x2, x13, x14), it must be the case that
P(F1(x1)⊕ x2, x1) = (x14,F13(x13)⊕ x14) and so, intuitively, the distinguisher had to query either
P or P−1 in order to achieve this. Thus, the number of partial chains of the form (x1, x2, x13, x14)
(i.e. wraparound chains) that have will get detected and completed by the simulator is at most the
total number of queries made by the distinguisher. Since there is only a single middle detect zone
{7, 8}, once we have a bound on the number of wraparound chains that are completed, we can also
bound the number of completed partial chains of the form (x7, x8).

2.2 Our Techniques

We next briefly discuss how our techniques differ from the techniques of [CHK+14] in the four main
areas discussed above.

Separating detection from completion for wrap-around chains. When the distinguisher
makes a query Fi(xi) to the simulator, our simulator proceeds in two phases: In the first phase,
the simulator does not make any queries, but enqueues for completion all partial chains which it
predicts will require completion. In the second phase, the simulator actually completes the chains
and detects and enqueues only on the middle detect zone (which in our construction corresponds
to rounds {5, 6}). This simplifies our proof since it means that after the set of chains has been
detected in the first phase, the simulator can complete the chains in a manner that minimizes
“bad interactions” between partial chains. In particular, in the second phase, the simulator first
completes chains with the property that one of the set uniform positions has already been assigned.
(Although this contradicts the strong set uniform property of [CHK+14], in our proof we are able
to relax this requirement. See the discussion of the weak set uniform property below for further
details.) The simulator then proceeds to complete (and detect and enqueue) other chains. This
allows us to reduce the complexity of our analysis.

Relaxed properties for the 4-round buffer zone. When a partial chain is about to be com-
pleted, we allow the case that one of the set uniform positions has already been assigned to occur, as
long as the adapt position adjacent to this set uniform position has not yet been assigned. Hence-
forth, we call this the weak set uniform property. We prove that the weak set uniform property
holds in Claim 5.35.
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Relaxed structure. Requiring only the weak set uniform property allows us to consider a more
relaxed structure for detect zones and 4-round buffer zones. Instead of requiring that for every
chain that gets completed the 4 round buffer positions ({3, 4, 5, 6} or {9, 10, 11, 12} in the case of
[CHK+14]) are always unassigned, we allow more flexibility in the position of the 4-round buffer.
For example, depending on whether the detected chain is of the form (x1, x2, x10), (x1, x9, x10),
or (x5, x6), our 4-round buffer will be one of: {3, 4, 5, 6} or {6, 7, 8, 9}, {2, 3, 4, 5} or {5, 6, 7, 8},
{1, 2, 3, 4} or {7, 8, 9, 10}, respectively. This flexibility allows us to reduce the number of rounds.
However, now, the adapt zone of one chain may coincide with the detect zone of another chain. In
order to reason about bad events occurring due to the fact that positions do not have dedicated roles
and due to the fact that partial chains in the middle detect zone are detected during the completion
of other chains, we introduce the new bad events BadlyHitFV and BadlyCollideFV. Furthermore, in
order to prove that a wraparound chain that has not been detected does not get created during the
completion of other chains we introduce the new bad event BadlyCollideP. (See Section 5.3.1 for a
list of the bad events).

Balancing detection with the simulator’s runtime. In these proofs, there is a clear trade-off
between the achieved security bound and the running time of the simulator. If the simulator is too
“aggressive” and detects too many chains too early, then we may perhaps achieve better security at
the cost of extremely high simulator complexity. In comparison to the construction of [CHK+14],
our construction has more detect zones and, moreover, for wraparound chains, we detect on partial
chains consisting of three consecutive queries instead of four consecutive queries. Nevertheless, at a
high-level, our proof that the simulator runtime is bounded follows very similarly to [CHK+14]. As
in [CHK+14], we can first bound the number of completed partial chains of the form (x1, x2, x10)
and (x1, x9, x10) (such chains are wraparound chains since they contain both x1 and x10). Once
we have done this, we again have only a single non-wraparound detect zone and so we can follow
the argument of [CHK+14] to bound the number of completed partial chains of the form (x5, x6).
Once we have a bound on the number of completed partial chains, it is fairly straightforward to
bound the simulator complexity.

3 Background

We use the definition of indifferentiability used by Coron et al. [CHK+14], based on the definition
of Maurer, Renner, and Holenstein [MRH04].

Definition 1. Let C be a construction that, for any n, accesses functions F = (F1, . . . ,Fr)
over {0, 1}n and implements an invertible permutation over {0, 1}2n. (We stress that C allows
evaluation of both the forward and inverse direction of the permutation.) We say that C is indif-
ferentiable from a random permutation if there exists a simulator S and a polynomial t such that
for all distinguishers D making at most q = poly(n) queries, S runs in time t(q) and

|Pr[DCF,F(1n) = 1]− Pr[DP,SP
(1n) = 1]|

is negligible, where F are random, independent functions over {0, 1}n and P is a random permuta-
tion over {0, 1}2n. (We stress that P can be evaluated in both the forward and inverse direction.)

The r-round Feistel construction, given access to F = (F1, . . . ,Fr), is defined as follows. Let
(Li−1, Ri−1) be the input to the i-th round, with (L0, R0) denoting the initial input. Then, the
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Figure 1: The 10-round Feistel construction with detect zones labeled.

output (Li, Ri) of the i-th round of the construction is given by Li := Ri−1 and Ri := Li−1 ⊕
Fi(Ri−1). So, for a r-round Feistel, if the 2n-bit input is (L0, R0), then the output is given by
(Lr, Rr) as illustrated in Figure 1.

4 Our Simulator

4.1 Informal Description of the Simulator

The queries to F1, . . . ,F10 are answered by the simulator through the procedure S.F(i, x) for
i = 1, . . . , 10. When the distinguisher asks a query F(i, x), the simulator checks to see if the query
has already been set. The queries that are already set are held in tables G1, . . . , G10 as pairs (x, y)
such that if F(i, x) is queried, and if x ∈ Gi, then y is returned as the answer to query F(i, x). If the
query has not already been set, then the simulator adds x to the set Aji where j indicates the jth
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query of the distinguisher. The simulator then checks if i ∈ {1, 2, 5, 6, 9, 10} where these mark the
endpoints of the detect zones and if so, checks to see if any new partial chains of the form (x9, x10, 9),
(x1, x2, 1) and (x5, x6, 5) need to be enqueued. If no new partial chains are detected, the simulator
just sets the value of Gi(x) uniformly at random and returns that value. If new partial chains are
detected and enqueued in Qenq, then the simulator evaluates these partial chains “forward” and
“backward” as much as possible (without setting any new values of Gi′(xi′)). Say the evaluation
stopped with xi′ /∈ Gi′ . Then, the simulator adds xi′ to Aji′ and checks if i′ ∈ {1, 2, 5, 6, 9, 10} and if
so, detects any additional partial chains that form with (xi′ , i

′) and enqueues them for completion
if necessary and repeats the process again until no more partial chains are detected.

The chains enqueued for completion during this process are enqueued in queues Q1,Q5,Q6,Q10

and Qall. Any chain that has been enqueued in Qenq is also enqueued in Qall. The chains enqueued
in Qb for b ∈ {1, 5, 6, 10} are those that exhibit the weak set uniform property. Specifically, say
C = (xk, xk+1, k, `, g, b) is a chain that is enqueued to be adapted at position ` i.e. the “adapt”
positions for C are at `, `+1 and the “set uniform” positions are at `−1, `+2 with the “set uniform”
position that is adjacent to the query that caused C to be enqueued being at “good” set uniform
position g and the other “set uniform” position at b. If, at the time of enqueueing, the chain C can
be evaluated up to the “bad” set uniform position b and the value of chain C at b, say xb, is such
that xb /∈ Gb, then C is enqueued in Qb. (Note that there are chains that exhibit this property but
are not enqueued for completion in Qb and are not even dequeued for completion. These are the
chains that belong to the set MidEquivChains. The reason for this is only to simplify the analysis
for the bound of the complexity of the simulator. We will later show that ignoring these chains
does not affect the simulation and in fact, these chains belong to CompletedChains at the end of
the simulator’s run while answering D’s jth query.)

The completion of enqueued chains starts with the completion of the chains enqueued in
Qb for b ∈ {1, 5, 6, 10}. A chain C is dequeued from Qb and if C /∈ CompletedChains and
C /∈ MidEquivChains, the simulator “completes” the chain. This process proceeds similarly to
the completion process in [CHK+14]. The simulator evaluates the chain forward/backward upto
the 4-round buffer setting Gi(xi) values uniformly at random for any xi /∈ Gi that comes up in the
evaluation forward/backward. In the 4-round buffer consisting of the “set uniform” positions and
the “adapt” positions, the simulator sets the values of C at the set uniform positions uniformly
at random (if it has not already been set) and forces the values at the adapt positions such that
evaluation of the Feistel is consistent with the random permutation. (Note that this could possibly
lead to a value in Gi(·) getting overwritten. A major technical part of the proof is to show that
this happens with negligible probability.) Once the simulator has completed the chain C, it places
C in the set CompletedChains along with the chains that are got by evaluating C forward that are
in the detect zone positions i.e. chains of the form (xk, xk+1, k) for k = 1, 5, 9.

Once the simulator completes the chains enqueued in Qb for all b ∈ {1, 5, 6, 10}, the simulator
completes the remaining chains enqueued in Qall. The completion process for the remaining chains
enqueued in Qall is the same as the completion process described above except that the simulator
detects additional partial chains of the form (x5, x6, 5) during the completion and enqueues them
in the queue Qmid i.e. during the completion of a chain C in Qall, if an assignment occurs such
that xk ∈ Gk for some k ∈ {5, 6} due to the assignment and xk /∈ Gk before the assignment, then
the simulator enqueues the partial chain (x5, x6, 5) in Qmid for all xk′ ∈ Gk′ such that k′ ∈ {5, 6}
and k 6= k′. (Note that the assignment could be a ForceVal assignment as well.)

Finally, the simulator completes all the chains in Qmid that are not already in CompletedChains.

7



The completion process again is the same as the process described for chains enqueued in Qb. The
simulator then returns the answer Gi(x) to the query F(i, x).

4.2 Formal Description of the Simulator

The simulator S internally uses hashtables G1, . . . , G10 to store the function values. Additionally,
it uses sets A1, . . . , A10 to detect partial chains that need to be completed; these sets store values
that would be added to Gi in the future. The simulator uses a queue Qenq to detect partial chains
that need to be completed and stores a copy of Qenq in a queue Qall that is used during completion.
Queues Q1,Q5,Q6,Q10 are used to store the chains in Qenq whose “bad” set uniform position is
known at the time of detection. Additionally, a queue Qmid is used to store new chains of the form
(x5, x6, 5) that are enqueued during the completion of chains from Qall. A set CompletedChains is
used to remember the chains that have been completed already. Finally, a set MidEquivChains is
used to hold chains of the form (x1, x2, 1) and (x9, x10, 9) that are detected due to P/P−1 queries
made by the simulator. This set is needed only for the purpose of analyzing the complexity of the
simulator.

Variables: Queues Qenq, Qall, Q1, Q5, Q6, Q10, Qmid, Hashtables G1, . . . , G10, Sets Aji := ∅ for
i = 1, . . . , 10 and j = 1, . . . , q where q is the maximum number of queries made by the distinguisher,
Set CompletedChains:= ∅ and Set MidEquivChains := ∅. Initialize j := 0.

The procedure F(i, x) provides the interface to a distinguisher.

1 procedure F(i, x):
2 j := j + 1
3 for i ∈ {1, . . . , 10} do
4 Aji := ∅
5 FENQ(i, x)
6 while ¬Qenq.Empty() do
7 (xk, xk+1, k, `, g, b) := Qenq.Dequeue()
8 if (xk, xk+1, k) /∈ CompletedChains then
9 (xr, xr+1, r) := EvalFwdEnq(xk, xk+1, k, `− 2)

10 if r + 1 = b ∧ xr+1 /∈ Gr+1 then
11 Qb.Enqueue(xk, xk+1, k, `, g, b)

12 (xr, xr+1, r) := EvalBwdEnq(xk, xk+1, k, `+ 2)
13 if r = b ∧ xr /∈ Gr then
14 Qb.Enqueue(xk, xk+1, k, `, g, b)

15 for each Q ∈ 〈Q1, Q5, Q6, Q10, Qall, Qmid〉 do . processed in that order
16 while ¬Q.Empty() do
17 (xk, xk+1, k, `, g, b) := Q.Dequeue()
18 if (xk, xk+1, k) /∈ CompletedChains then
19 (x`−2, x`−1) := EvalFwdComp(Q, xk, xk+1, k, `− 2)
20 (x`+2, x`+3) := EvalBwdComp(Q, xk, xk+1, k, `+ 2)
21 Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b)
22 (x1, x2) := EvalBwdComp(⊥, xk, xk+1, k, 1)
23 (x5, x6) := EvalFwdComp(⊥, x1, x2, 1, 5)
24 (x9, x10) := EvalFwdComp(⊥, x1, x2, 1, 9)
25 CompletedChains := CompletedChains ∪ {(x1, x2, 1), (x5, x6, 5), (x9, x10, 9)}

8



26 FCOMP(i, x)
27 return Gi(x)

28 procedure EvalFwdEnq(xk, xk+1, k,m):
29 if k = 5 then
30 flagForMid:= 1

31 while (k 6= m) ∧ ((k = 10) ∨ (FENQ(k + 1, xk+1) 6=⊥)) do
32 if k = 10 then
33 (x0, x1) := P−1(x10, x11)
34 k := 0
35 else
36 if k = 9 ∧ flagForMid = 1 then
37 MidEquivChains := MidEquivChains ∪ {(xk, xk+1, k)}
38 xk+2 := xk ⊕G(k + 1, xk+1)
39 k := k + 1

40 flagForMid:= 0
41 return (xk, xk+1, k)

42 procedure EvalBwdEnq(xk, xk+1, k,m):
43 if k = 5 then
44 flagForMid:= 1

45 while (k 6= m) ∧ ((k = 0) ∨ (FENQ(k, xk) 6=⊥)) do
46 if k = 0 then
47 (x10, x11) := P(x0, x1)
48 k := 10
49 else
50 if k = 1 ∧ flagForMid = 1 then
51 MidEquivChains := MidEquivChains ∪ {(xk, xk+1, k)}
52 xk−1 := xk+1 ⊕G(k, xk)
53 k := k − 1

54 flagForMid:= 0
55 return (xk, xk+1, k)

56 procedure FENQ(i, x):
57 if x ∈ Gi then
58 return Gi(x)
59 else if x ∈ Aji then
60 return ⊥
61 else
62 Aji := {x} ∪Aji
63 if i ∈ {1, 2, 5, 6, 9, 10} then
64 EnqNewChains(i, x)

65 return ⊥
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66 procedure EnqNewChains(i, x):
67 if i = 1 then
68 for all (x9, x10, x1) ∈ (G9 ∪Aj9)×G10 × {x} do
69 if CheckBwd(x10, G10(x10)⊕ x9, x1) then
70 if (x9, x10, 9) /∈ MidEquivChains then
71 Qenq.Enqueue(x9, x10, 9, 3, 2, 5)
72 Qall.Enqueue(x9, x10, 9, 3, 2, 5)

73 if i = 2 then
74 for all (x10, x1, x2) ∈ (G10 ∪Aj10)×G1 × {x} do
75 if CheckFwd(x2 ⊕G1(x1), x1, x10) then
76 if (x1, x2, 1) /∈ MidEquivChains then
77 Qenq.Enqueue(x1, x2, 1, 4, 3, 6)
78 Qall.Enqueue(x1, x2, 1, 4, 3, 6)

79 if i = 5 then
80 for all (x5, x6) ∈ {x} × (G6 ∪Aj6) do
81 Qenq.Enqueue(x5, x6, 5, 2, 4, 1)
82 Qall.Enqueue(x5, x6, 5, 2, 4, 1)

83 if i = 6 then
84 for all (x5, x6) ∈ (G5 ∪Aj5)× {x} do
85 Qenq.Enqueue(x5, x6, 5, 8, 7, 10)
86 Qall.Enqueue(x5, x6, 5, 8, 7, 10)

87 if i = 9 then
88 for all (x9, x10, x1) ∈ {x} ×G10 × (G1 ∪Aj1) do
89 if CheckBwd(x10, G10(x10)⊕ x9, x1) then
90 if (x9, x10, 9) /∈ MidEquivChains then
91 Qenq.Enqueue(x9, x10, 9, 6, 8, 5)
92 Qall.Enqueue(x9, x10, 9, 6, 8, 5)

93 if i = 10 then
94 for all (x10, x1, x2) ∈ {x} ×G1 × (G2 ∪Aj2) do
95 if CheckFwd(x2 ⊕G1(x1), x1, x10) then
96 if (x1, x2, 1) /∈ MidEquivChains then
97 Qenq.Enqueue(x1, x2, 1, 7, 9, 6)
98 Qall.Enqueue(x1, x2, 1, 7, 9, 6)

99 procedure CheckFwd(x0, x1, x10):
100 (x′10, x

′
11) := P(x0, x1)

101 return x′10
?
= x10

102 procedure CheckBwd(x10, x11, x1):
103 (x′0, x

′
1) := P−1(x10, x11)

104 return x′1
?
= x1

105 procedure EvalFwdComp(Q, xk, xk+1, k,m):
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106 while k 6= m do
107 if k = 10 then
108 (x0, x1) := P−1(x10, x11)
109 k := 0
110 else
111 xk+2 := xk ⊕ FCOMP(Q, k + 1, xk+1)
112 k := k + 1

113 return (xm, xm+1)

114 procedure EvalBwdComp(Q, xk, xk+1, k,m):
115 while k 6= m do
116 if k = 0 then
117 (x10, x11) := P(x0, x1)
118 k := 10
119 else
120 xk−1 := xk+1 ⊕ FCOMP(Q, k, xk)
121 k := k − 1

122 return (xm, xm+1)

123 procedure FCOMP(Q, i, x):
124 if x /∈ Gi then
125 Gi(x)← {0, 1}n
126 if Q 6=⊥ ∧Q = Qall ∧ i ∈ {5, 6} then
127 EnqNewMidChains(i, x)

128 return Gi(x)

129 procedure EnqNewMidChains(i, x):
130 if i = 5 then
131 for all (x5, x6) ∈ {x} ×G6 do
132 Qmid.Enqueue(x5, x6, 5, 2, 4, 1)

133 if i = 6 then
134 for all (x5, x6) ∈ G5 × {x} do
135 Qmid.Enqueue(x5, x6, 5, 8, 7, 10)

136 procedure Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b):
137 flagMidAdapt0 := 0
138 flagMidAdapt1 := 0
139 FCOMP(Q, `− 1, x`−1)
140 x` := x`−2 ⊕G`−1(x`−1)
141 if (Q = Qall) ∧ (` = 5 ∨ ` = 6) ∧ (x` /∈ G`) then
142 flagMidAdapt0 := 1

143 FCOMP(Q, `+ 2, x`+2)
144 x`+1 := x`+3 ⊕G`+2(x`+2)
145 if (Q = Qall) ∧ (`+ 1 = 5 ∨ `+ 1 = 6) ∧ (x`+1 /∈ G`+1) then
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146 flagMidAdapt1 := 1

147 ForceVal(x`, x`+1 ⊕ x`−1, `)
148 if flagMidAdapt0 = 1 then
149 EnqNewMidChains(`, x`)

150 ForceVal(x`+1, x` ⊕ x`+2, `+ 1)
151 if flagMidAdapt1 = 1 then
152 EnqNewMidChains(`+ 1, x`+1)

153 procedure ForceVal(x, y, `):
154 G`(x) := y

5 Proof of Indifferentiability

Let Feistel denote the 10-round Feistel construction, let F be 10 independent random functions with
domain and range {0, 1}n, and let P denote a random permutation on {0, 1}2n. We let S denote
the simulator from the previous section. This section is dedicated to proving the following result:

Theorem 5.1. The probability that a distinguisher D making at most q queries outputs 1 in an
interaction with (P,SP) and the probability that it outputs 1 in an interaction with (FeistelF,F)
differ by at most O(q12/2n). Moreover, S runs in time polynomial in q.

For the remainder of the paper, fix some distinguisher D making at most q queries.

5.1 Proof Overview

Our proof structure utilizes four hybrid experiments H1, . . . ,H4 as in the proof of Coron et
al. [CHK+14]. Hybrid H1 denotes the scenario in which D interacts with (P,SP), and H4 de-
notes the scenario in which D interacts with (FeistelF,F). To prove indifferentiability, we show
that the difference between the probability D outputs 1 in H1 and the probability D outputs 1 in
H4 is at most poly(q)/2n.

In H2, we replace the random permutation P in H1 with a two-sided random function R that
also implements R.CheckFwd and R.CheckBwd. Following [CHK+14], we first upper bound
the simulator complexity in hybrid H2. In order to bound the simulator’s complexity in H1, we
would like to then argue that the simulator ’s views are indistinguishable in H1 and H2. However,
in H1 the simulator itself implements CheckFwd and CheckBwd, while in H2 the procedures
R.CheckFwd and R.CheckBwd are provided by the two-sided random function R. Thus, we
introduce an additional hybrid H1.5 in which D interacts with (P, ŜP+

), where P+ denotes a
random permutation equipped with additional procedures CheckFwd and CheckBwd that are
implemented as in the simulator S. The simulator Ŝ in H1.5 implements the procedures CheckFwd
and CheckBwd by simply calling P+.CheckFwd and P+.CheckBwd. Thus, the difference in
hybrids H1 and H1.5 is purely conceptual. To bound the simulator’s complexity in H1 we then
argue that (1) the number of queries made by the simulator is essentially the same in H1 and H1.5;
and (2) the views of the simulator in H1.5 and H2 are indistinguishable.

Next, we define certain low-probability events (referred to as “bad events”) that can occur in an
execution of H2, and show that if these events do not occur in an execution of H2, then we can prove
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certain “good” properties; in particular, we can prove that for every call to ForceVal(x, ·, j) that
occurs in the execution, we have that x /∈ Gj before the call. If this is true, we say that “ForceVal
does not overwrite.” This is the main technical part of the proof.

In H3, we replace the two-sided random function R from H2 with the 10-round Feistel con-
struction Feistel. Then, the distinguisher D interacts with (Feistel, ŜFeistel+) where Feistel+ (similar
to P+) denotes the Feistel construction with additional procedures CheckFwd and CheckBwd
and the Feistel construction and the simulator share the same randomness. Given the property
that ForceVal does not “overwrite”, we prove that the distinguishing advantage of D is exactly
the probability with which the “bad events” occur by explicitly mapping the randomness used in
H2 and H3. The mapping and the proof follows exactly along the lines of the proof in [CHK+14].

Finally, in H4, the distinguisher accesses the random functions F directly instead of accessing
them through the simulator.

5.2 Indistinguishability of the First and Second Experiments

Recall that in experiment H1, the distinguisher D interacts with (P,SP). We define an intermedi-
ate hybrid experiment H1.5 in which D interacts with (P, ŜP+

), where P+ is a random permutation
which provides procedures CheckFwd and CheckBwd that are implemented as in the simula-
tor S. Also, the simulator Ŝ in experiment H1.5 differs from S in that Ŝ.CheckFwd simply calls
P+.CheckFwd and Ŝ.CheckBwd simply calls P+.CheckBwd.

The difference between experiments H1 and H1.5 is only conceptual, as all we have done is to
move the CheckFwd and CheckBwd procedures from the simulator into the oracle to which the
simulator has access. The following is thus immediate.

Lemma 5.2. The probability that D outputs 1 in H1 is equal to the probability it outputs 1
in H1.5. Moreover, the number of queries S makes to P plus the number of times S internally
runs CheckFwd and CheckBwd in H1 is equal to the number of queries Ŝ makes to P+ in H1.5.

Experiment H2 differs from H1.5 in that we replace the random permutation P+ with a random
two-sided function R. This two-sided function maintains a hashtable P containing elements of
the form (↓, x0, x1) and (↑, x10, x11). Whenever the procedure R.P(x0, x1) is queried, R checks if
(↓, x0, x1) ∈ P and if so, answers accordingly. Otherwise, an independent uniform output (x10, x11)
is picked and (↓, x0, x1) as well as (↑, x10, x11) are added to P , mapping to each other.

In addition to procedures P and P−1, R contains procedures CheckFwd(x0, x1, x10) and
CheckBwd(x10, x11, x1).

1 Procedure CheckFwd(x0, x1, x10) works as follows: If (↓, x0, x1) ∈ P ,
it returns true if (↓, x0, x1) maps to (x10, x11) for some value of x11 ∈ {0, 1}n and false otherwise.
The procedure CheckBwd(x10, x11, x1) works as follows: If (↑, x10, x11) ∈ P , it returns true if
(↑, x10, x11) maps to (x0, x1) for some value of x0 ∈ {0, 1}n and false otherwise.

1This is similar to the check procedure in [CHK+14].
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The pseudocode for the two-sided random function R, using hashtable P , is as follows:

1 procedure P(x0, x1):
2 if (↓, x0, x1) /∈ P then

3 (x10, x11)
$← {0, 1}2n

4 P (↓, x0, x1) := (x10, x11)
5 P (↑, x10, x11) := (x0, x1) //May overwrite an entry

6 return P (↓, x0, x1)

7 procedure P−1(x10, x11):
8 if (↑, x10, x11) /∈ P then

9 (x0, x1)
$← {0, 1}2n

10 P (↑, x10, x11) := (x0, x1)
11 P (↓, x0, x1) := (x10, x11) //May overwrite an entry

12 return P (↑, x10, x11)

13 procedure CheckFwd(x0, x1, x10):
14 if (↓, x0, x1) ∈ P then
15 (x′10, x

′
11) := P (↓, x0, x1)

16 return x′10
?
= x10

17 return false

18 procedure CheckBwd(x10, x11, x1):
19 if (↑, x10, x11) ∈ P then
20 (x′0, x

′
1) := P (↑, x10, x11)

21 return x′1
?
= x1

22 return false

Figure 2: Random Two-sided Function R
In the following section, we show that H2 and H1.5 are indistinguishable.

5.2.1 Indistinguishability of H2 and H1.5

We first bound the effect of replacing P+ with R as a function of the total number of queries q′

made to this oracle. Note, however, that both the simulator and D make queries to this oracle.
Thus, to conclude the proof of indistinguishability, we bound the number of queries to the oracle
as a function of the total number of queries q made by D.

Theorem 5.3. Let S′ be an algorithm that makes at most q′ queries to an oracle. Then the
difference between the probability that S′ outputs 1 when interacting with P+, and the probability
that S′ outputs 1 when interacting with R is at most 12q′2/2n.

Proof. Recall that both the simulator and D make queries to the oracle. So, S′ consists of both
the simulator and D and the number of queries to S′ corresponds to the queries to P/P−1 and
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CheckFwd/CheckBwd made by both the simulator and the distinguisher. In order to prove this
theorem, we consider experiments E0, E1, . . . , E3, where E0 corresponds to S′ interacting with P+,
and E3 corresponds to S′ interacting with R.

Experiment E0: S′ interacts with P+.

Experiment E1: S′ interacts with P1 where procedure P1.P is defined as follows:

1 procedure P1.P(x0, x1)
2 if (↓, x0, x1) /∈ P then

3 (x10, x11)
$← {0, 1}2n

4 if (↑, x10, x11) ∈ P then

5 (x10, x11)
$← {0, 1}2n \ {(x′10, x′11)|(↑, x′10, x′11) ∈ P}

6 P (↓, x0, x1) := (x10, x11)
7 P (↑, x10, x11) := (x0, x1)

8 return P (↓, x0, x1)

Procedure P1.P
−1 is defined analogously. Procedures P1.CheckFwd and P1.CheckBwd are

defined as follows.

1 procedure CheckFwd(x0, x1, x10):
2 if (↓, x0, x1) ∈ P then
3 (x′10, x

′
11) := P (↓, x0, x1)

4 return x′10
?
= x10

5 (x′10, x
′
11) := P(x0, x1) //Note that procedure P1.P is called

6 return x′10
?
= x10

7 procedure CheckBwd(x10, x11, x1):
8 if (↑, x10, x11) ∈ P then
9 (x′0, x

′
1) := P (↑, x10, x11)

10 return x′1
?
= x1

11 (x′0, x
′
1) := P−1(x10, x11) //Note that procedure P1.P

−1 is called

12 return x′1
?
= x1

Claim 5.4. The probabilities that S′ outputs 1 in E0 and E1 are identical.

Proof. The values assigned through procedures P and P−1 are chosen uniformly at random from
the set of values that have not been assigned so far in both E0 and E1. Also, the procedures
CheckFwd and CheckBwd are implemented in a similar manner in both experiments. So, the
experiments E0 and E1 behave identically.

Experiment E2: S′ interacts with P2 where the procedures P2.P and P2.P
−1 are defined exactly

as R.P and R.P−1 respectively while procedures P2.CheckFwd and P2.CheckBwd are defined
as in P1.CheckFwd and P1.CheckBwd respectively.
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Claim 5.5. The probability that S′ outputs 1 in E1 differs from the probability that it outputs 1
in E2 by at most q′2/22n.

Proof. The proof of the claim follows exactly along the lines of [CHK+14, Lemma 3.8].

Experiment E3: S′ interacts with R.

Claim 5.6. The probability that S′ outputs 1 in E2 differs from the probability that it outputs 1 in
E3 by at most 11q′2/2n.

Proof. In order to prove this claim, we introduce events BadCheckForward, BadCheckBackward,
BadOverwrite, and BadBackwardQuery and prove that these events occur with probability at most
11q′2/2n. We proceed to argue that if none of these events occur the experiments E2 and E3 behave
exactly the same.

The event BadCheckForward occurs if P′.CheckFwd returns true in the last line in E2. Simi-
larly, the event BadCheckBackward occurs if P′.CheckBwd returns true in the last line in E2. The
probability of the events BadCheckForward and BadCheckBackward is at most q′/2n.

The event BadOverwrite occurs if either in E2 or in E3, in any call to the procedures P or P−1,
an entry of P is overwritten. The probability that BadOverwrite occurs in E2 and E3 is at most
2(q′)2/22n.

The event BadBackwardQuery occurs if in E2 either one of the two following events occur.
(1) There exists (x0, x1), (x

∗
10, x

∗
11) such that all of the following hold:

(i) The query P(x0, x1) is issued in the last line of a CheckFwd query, and P (↓, x0, x1) is set
to (x∗10, x

∗
11).

(ii) After (i), the query P−1(x∗10, x
∗
11), or CheckFwd(x0, x1, x

∗
10) or CheckBwd(x1, x

∗
10, x

∗
11) is

issued.

(iii) The query P(x0, x1) is not issued by the distinguisher between point (i) and point (ii).

(2) There exists (x∗0, x
∗
1), (x10, x11) such that all of the following hold:

(i) The query P−1(x10, x11) is issued in the last line of a CheckBwd query, and P (↑, x10, x11)
is set to (x∗0, x

∗
1).

(ii) After (i), the query P(x∗0, x
∗
1), or CheckFwd(x∗0, x

∗
1, x10) or CheckBwd(x∗1, x10, x11) is is-

sued.

(iii) The query P−1(x10, x11) is not issued by the distinguisher between point (i) and point (ii).

Consider the event (BadBackwardQuery∧¬BadCheckForward∧¬BadCheckBackward) occurs. To
analyze the probability of this event, let us consider the first case by which BadBackwardQuery
can occur. Consider any pair (x0, x1, x

∗
10, x

∗
11) such that (i) of event (1) holds. Since BadCheck-

Forward does not occur, we have that the CheckFwd query returns false. Now, as long as the
queries P(x0, x1), P

−1(x∗10, x
∗
11), CheckFwd(x0, x1, x

∗
10) or CheckBwd(x1, x

∗
10, x

∗
11) are not made

by the distinguisher, the value (x∗10, x
∗
11) is distributed uniformly in the set of all pairs (x′10, x

′
11) for

which CheckFwd(x0, x1, x
′
10) and CheckBwd(x1, x

′
10, x

′
11) was not queried. Thus, the prob-

ability that in a single query, the distinguisher queries a) P−1(x∗10, x
∗
11) is at most q′

22n−q′ , b)
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CheckFwd(x0, x1, x
∗
10) is at most q′

2n−q′ or c) CheckBwd(x1, x
∗
10, x

∗
11) is at most q′

22n−q′ . By a sim-

ilar argument for event (2) and by assuming q′ < 2n/2 and since there are at most q′ queries made
by the distinguisher, probability of (BadBackwardQuery∧¬BadCheckForward∧¬BadCheckBackward)
is at most 2 ∗ (2(q′)2/22n + 2q′2/2n) ≤ 8(q′)2/2n.

If the bad events defined above do not occur, the scenarios E2 and E3 behave identically.

Theorem 5.3 follows from Claims 5.4–5.6.

Theorem 5.3 bounds the effect of replacing P+ with R in terms of the total number of queries q′

made to the P+/R oracle. In the following sequence of claims, we show that q′ = poly(q) (where,
recall, q is the total number of queries made by the original distinguisher D).

Claim 5.7. In H2, the simulator dequeues a partial chain of the form (x1, x2, 1, `, g, b) such that
(x1, x2, 1) /∈ CompletedChains at most q times in total from the queue Qenq.

Proof. Consider such a dequeue call and let (x1, x2, 1, `, g, b) be the chain dequeued from Qenq.
The chain must have been enqueued in Qenq when CheckFwd(x2 ⊕ G1(x1), x1, x10) = true for
a fixed x10 in lines 75 and 95 of the simulator. Since G1(x1) is never overwritten (as 1 is not
an adapt position for any chain), there is a tuple (x0, x1, x10) where x0 = x2 ⊕ G1(x1) such that
CheckFwd(x2 ⊕ G1(x1), x1, x10) = true when the chain was enqueued. This implies that there
must have been a call either to P(x0, x1) such that (x10, x11) was chosen uniformly at random in
line 3 of R or to P−1(x10, x11) such that (x0, x1) was chosen uniformly at random in line 9 of R
for some x11 ∈ {0, 1}n. This call to P or P−1 was made by the distinguisher or the simulator.
Now if (x1, x2, 1) /∈ CompletedChains, we claim that this call was made by the distinguisher. This
is because, by definition, the simulator queries P or P−1 only in the following cases:

1. in a call to EvalFwdEnq or EvalBwdEnq

2. in a call to EvalFwdComp or EvalBwdComp

Consider the case where the simulator queried P/P−1 during a call to EvalFwdEnq(xk, xk+1, k,m)
or EvalBwdEnq(xk, xk+1, k,m). If m ∈ {1, 9}, then the query to P/P−1 is such that the triple
(↑, x10, x11) or (↓, x0, x1) is already in P . This is because CheckFwd/CheckBwd must have
returned true for these chains to have been enqueued. If m = 5, then the partial chain resulting
from a query to P/P−1 is added to the set MidEquivChains and chains belonging to that set are not
enqueued in any of the queues by definition of the simulator.

In case 2, the partial chain (x1, x2, 1) resulting from a query to P/P−1 is immediately added
to CompletedChains by definition of the simulator. So, if (x1, x2, 1) /∈ CompletedChains when it is
dequeued, it is due to a query made by the distinguisher. We also claim that there is a unique
distinguisher query corresponding to the chain (x1, x2, 1). Say this is not the case and there is
another chain (x′1, x

′
2, 1) that has been enqueued such that CheckFwd(x′2⊕G1(x

′
1), x

′
1, x
′
10) = true

due to the same distinguisher query. If D’s query was (↓, x0, x1) that returned (x10, x11), we have
that x′10 = x10, x1 = x′1 and G1(x

′
1)⊕x′2 = x2⊕G1(x1) giving x2 = x′2. If D’s query was (↑, x10, x11)

that returned (x10, x11), we have the same result again. So, there is a unique distinguisher query
corresponding to the chain (x1, x2, 1). Since D makes at most q queries, we have that there are
most q such partial chains dequeued.

The following can be proved similarly to Claim 5.7.
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Claim 5.8. In H2, the simulator dequeues a partial chain of the form (x9, x10, 9, `, g, b) such that
(x9, x10, 9) /∈ CompletedChains at most q times in total from the queue Qenq.

For a hashtable G we let |G| denote the number of entries in G.

Claim 5.9. In H2, at most 90q2 partial chains of the form (x5, x6, 5) are enqueued.

Proof. Before we bound the number of partial chains of the form (x5, x6, 5), we will bound the
size of |G5| and |G6|. The size of G5 can increase only in the following ways: (a) distinguisher
queries F(5, ·) (b) during the completion of a (x9, x10, 9) partial chain (c) during the completion of
a (x1, x2, 1) partial chain (d) during the completion of a (x5, x6, 5) partial chain where x5 /∈ G5 and
x5 ∈ Aj5.

There are at most q queries that the distinguisher makes. The simulator only completes
(x9, x10, 9) such that (x9, x10, 9) /∈ CompletedChains. By Claim 5.7, we have that there are at
most q such chains dequeued from Qenq and hence, at most q such chains can be dequeued from
the queues Q1,Q5,Q6,Q10 and Qall. Similarly, by Claim 5.8, we have that there are at most q
completions of a partial chain of the form (x1, x2, 1).

For the last case, a value x5 ∈ {0, 1}n gets added to Aj5 for j = 1, . . . , q only when x5 /∈ G5.

So, a bound on
∑j

i=1A
j
5 gives a bound on x5 added to G5 due to a completion of a (x5, x6, 5)

partial chain. A value x5 ∈ {0, 1}n gets added to Aj5 for j = 1, . . . , q only in one of the following
ways: (i) the distinguisher queried F(5, x5) (ii) the simulator made a call to EvalFwdEnq or
EvalBwdEnq during the completion of a (x9, x10, 9) chain where (x9, x10, 9) /∈ CompletedChains
(iii) the simulator made a call to EvalFwdEnq or EvalBwdEnq during the completion of a
(x1, x2, 1) chain where (x1, x2, 1) /∈ CompletedChains. Thus, we have

∑j
i=1A

j
5 ≤ 3q by Claims 5.7

and 5.8. So, putting everything together, we have that |G5| ≤ 6q and by a similar argument,
|G6| ≤ 6q.

Now, the number of partial chains of the form (x5, x6, 5) that are enqueued in Qall can be bound
by

∑q
j=1 |A

j
5|.|G6 ∪Aj6|+

∑q
j=1 |G5 ∪Aj5|.|A

j
6| and hence can be bound by 54q2. And, the number

of partial chains of the form (x5, x6, 5) partial chain that are enqueued in Qmid can be bound by
|G5| · |G6| and hence can be bound by 36q2.

Claim 5.10. In H2, we have |Gi| ≤ 93q2 for all i.

Proof. The size of Gi can only increase in the following ways: (a) distinguisher queries F(i, ·)
(b) during the completion of a (x9, x10, 9) partial chain (c) during the completion of a (x1, x2, 1)
partial chain (d) during the completion of a (x5, x6, 5) partial chain.

There are at most q distinguisher queries and at most q completions each of partial chains of
the form (x9, x10, 9) and (x1, x2, 1) by Claims 5.7 and 5.8. There are at most 90q2 completions of
a (x5, x6, 5) partial chain by Claim 5.9. So, |Gi| ≤ 90q2 + 3q ≤ 93q2.

Claim 5.11. In H2, the simulator makes at most 644q2 queries to R.P and R.P−1.

Proof. The simulator makes calls to R.P/R.P−1 only in procedures EvalFwdEnq, EvalBwdEnq,
EvalFwdComp and EvalBwdComp. By bounds on the number of partial chains that are en-
queued for completion given in Claims 5.7, 5.8 and 5.9 and by definition of the simulator, the
number of calls to P/P−1 is bounded by 92q2 · 7 = 644q2.

Claim 5.12. In H2, the simulator makes at most 3, 166, 000q6 queries to the procedures R.CheckFwd
and R.CheckBwd.
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Proof. The number of CheckFwd queries made by the simulator is bounded by
∑q

j=1 |(G10 ∪
Aj10| × |G1| × |Aj2|) +

∑q
j=1 |(G2 ∪Aj2| × |G1| × |Aj10|).

A value x10 ∈ {0, 1}n gets added to Aj10 for j = 1, . . . , q only in one of the following ways: (a) the
distinguisher queried F(10, x10) (b) the simulator made a call to EvalFwdEnq or EvalBwdEnq
during the completion of a (x1, x2, 1) chain where (x1, x2, 1) /∈ CompletedChains (c) the simulator
made a call to EvalFwdEnq or EvalBwdEnq during the completion of a (x5, x6, 5) chain.

There are at most q distinguisher queries and by Claims 5.8 and 5.9, there are at most q and
90q2 such calls to EvalFwdEnq and EvalBwdEnq. So,

∑q
j=iA

j
10 ≤ 90q2 + 2q ≤ 92q2. In a

similar manner, we can bound
∑q

j=iA
j
2 ≤ 90q2 + 2q ≤ 92q2.

So, the number of CheckFwd queries made by the simulator is bounded by 1582860q6. By
a similar argument, the number of CheckBwd queries made by the simulator is bounded by
1582860q6. Hence, there are at most O(q6) queries to R.CheckFwd and R.CheckBwd.

Corollary 5.13. In H1.5 and H1, the simulator makes at most 3.2 × 106q6 queries to P+ and P

respectively except with probability at most 1015q12

2n ·

Proof. For the sake of contradiction, assume that there exists a distinguisher D that makes at
most q queries such that in H1.5 the simulator makes more than 3.2 × 106q6 queries to P+ with

probability greater than 1015q12

2n · By Claims 5.11 and 5.12, the simulator makes at most 3, 166, 644q6

queries to R in H2. Now, consider a distinguisher S′ which aims to distinguish P+ and R making
only r′(q) queries. The distinguisher S′ consists of D and the simulator together. S′ outputs 1 if
D and the simulator make more than 3.2 × (10q)6 queries. Then, S′ issues at most 3.2 × (10q)6

queries and distinguishes R from P+ with probability greater than 1015q12

2n ≥ 12·(3.2×(10q)6)2

2n which
contradicts Theorem 5.3. Hence, the simulator makes at most 3.2 × 106q6 queries to P+ except

with probability 1015q12

2n · Combining this with Lemma 5.2, we get the result.

Lemma 5.14. The probability that D outputs 1 in H1 differs from the probability that it outputs 1

in H2 by at most 2·1015q12
2n ·

Proof. By Lemma 5.2, we have that the distinguisher D outputs 1 in H1 and H1.5 with the same
probability. Now, for the sake of contradiction, assume that D distinguishes H1.5 from H2 with

advantage greater than 2·1015q12
2n ·We construct a distinguisher S′ that consists of D and the simulator

where S′ makes at most 3.3× (10q)6 queries and distinguishes R from P+. S′ works as follows: S′

outputs 1 if the number of queries issued by D and the simulator exceeds 3.3× (10q)6; otherwise,
it outputs whatever is output by D. By Corollary 5.13, the simulator makes at most 3.2× (10q)6

queries in H1.5 except with probability 1015q12

2n and by Claims 5.11 and 5.12, the simulator makes

at most 3, 166, 644q6 queries in H2. So, distinguisher S′ making at most 3.3 × (10q)6 queries can

distinguish R and P+ with probability greater than 1015q12

2n ≥ 12·(3.3×(10q)6)2

2n which contradicts
Theorem 5.3.

Extending the analysis, we also bound the overall running time of the simulator.

Claim 5.15. In H2, the simulator runs in time O(q6).

Proof. We analyze the running time of the procedures of Ŝ. Procedure FENQ runs in time O(1) ex-
cept for the run-time of procedure EnqNewChains. Procedures EvalFwdEnq and EvalBwdEnq
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run in time O(1) except for the run-time of procedure FENQ. Procedures EvalFwdComp and
EvalBwdComp run in time O(1) except for the run-time of procedure FCOMP. Procedure Adapt
runs in time O(1) except for the run-time of procedures FCOMP and EnqNewMidChains. Pro-
cedure FCOMP runs in time O(1) except for the run-time of procedure EnqNewMidChains. Pro-
cedures CheckFwd, CheckBwd and ForceVal run in time O(1).

Procedure EnqNewChains runs in time O(q4) by the bounds on |Gi| given by Claim 5.10 and
by the bounds on

∑q
j=1 |A

j
i | for i ∈ {1, 2, 5, 6, 9, 10} derived in Claims 5.9 and 5.12. Procedure

EnqNewMidChains runs in time O(q2) by the bounds on |G5| and |G6| derived in Claim 5.9.
Calls to FENQ are made either by a direct query by the distinguisher, or in calls to EvalFwdEnq

or EvalBwdEnq. There are at most O(q2) calls to EvalFwdEnq and EvalBwdEnq by the
bounds established on the number of partial chains enqueued in Qenq given by Claims 5.7, 5.8 and
5.9. So, the maximum number of calls to FENQ is bounded by O(q2). Calls to EnqNewChains
are made only during calls to FENQ. So, there are at most O(q2) calls to EnqNewChains. Calls
to CheckFwd and CheckBwd are only made in EnqNewChains - so there are at most O(q6)
calls to CheckFwd and CheckBwd.

There are at most O(q2) calls to EvalFwdComp, EvalBwdComp and Adapt by the bounds
on the number of partial chains enqueued in Qenq and Qmid given by Claims 5.7, 5.8 and 5.9. There
are at most O(q2) calls to FCOMP since FCOMP is called only in EvalFwdComp, EvalBwdComp,
Adapt or as a result of a direct distinguisher query. Calls to EnqNewMidChains are made only
during calls to FCOMP and Adapt. So, there are at most O(q2) calls to EnqNewMidChains.
There are at most O(q2) calls to ForceVal since ForceVal is called only during Adapt. Putting
all of this together, the simulator runs in time O(q6).

Corollary 5.16. In H1.5 (and hence H1), the simulator runs for at most O(q6) steps and makes

at most 3.2× (10q)6 queries except with probability at most 1015q12

2n ·

Proof. By Claims 5.11 and 5.12, the simulator makes at most 3.2× (10q)6 queries to R in H2 and
by Claim 5.15, runs in time at most r(q) ∈ O(q6) in H2. For the sake of contradiction, assume that
there exists a distinguisher D that makes at most q queries such that in H1.5 the simulator runs in
time greater than r(q) or makes more than 3.2× (10q)6 queries to P+ with probability greater than
1015q12

2n · Now, consider a distinguisher S′ which aims to distinguish P+ and R making only r′(q)
queries. The distinguisher S′ consists of D and the simulator together. S′ outputs 1 if the simulator
runs for more than r(q) steps or if D and the simulator make more than 3.3× (10q)6 queries. Then,
S′ issues at most 3.3 × (10q)6 queries and distinguishes R from P+ with probability greater than
1015q12

2n ≥ 12·(3.3×(10q)6)2

2n which contradicts Theorem 5.3. Combining this with Lemma 5.2, we get
the result.

5.3 Properties of H2

Before we define the third hybrid experiment, we introduce some definitions and establish some
properties of executions in the second experiment H2. The definitions here follow closely along the
lines of the definitions in [CHK+14]. A partial chain is a triple (xk, xk+1, k) ∈ {0, 1}n × {0, 1}n ×
{0, . . . , 10}. If C = (xk, xk+1, k) is a partial chain, we let C[1] = xk, C[2] = xk+1, and C[3] = k.

Definition 2. Fix tables G = Ŝ.G and P = R.P in an execution of H2, and let C = (xk, xk+1, k)
be a partial chain. We define functions next, prev, val+, val−, and val as follows:
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1 procedure next(xk, xk+1, k):
2 if k < 10 then
3 if xk+1 /∈ Gk+1 then return ⊥
4 xk+2 := xk ⊕Gk+1(xk+1)
5 return (xk+1, xk+2, k + 1)
6 else if k = 10 then
7 if (↑, x10, x11) /∈ P then return ⊥
8 (x0, x1) := P (↑, x10, x11)
9 return (x0, x1, 0)

10 procedure prev(xk, xk+1, k):
11 if k > 0 then
12 if xk /∈ Gk then return ⊥
13 xk−1 := xk+1 ⊕Gk(xk)
14 return (xk−1, xk, k − 1)
15 else if k = 0 then
16 if (↓, x0, x1) /∈ P then return ⊥
17 (x10, x11) := P (↓, x0, x1)
18 return (x10, x11, 10)

19 procedure val+i (C):
20 while (C 6=⊥) ∧ (C[3] /∈ {i− 1, i}) do
21 C := next(C)

22 if C =⊥ then return ⊥
23 if C[3] = i then return C[1]
24 else return C[2]

25 procedure val−i (C):
26 while (C 6=⊥) ∧ (C[3] /∈ {i− 1, i}) do
27 C := prev(C)

28 if C =⊥ then return ⊥
29 if C[3] = i then return C[1]
30 else return C[2]

31 procedure vali(C):
32 if val+i (C) 6=⊥ then return val+i (C)
33 else return val−i (C)

We say that ⊥/∈ Gi for i ∈ {1, . . . , 10}. So, if vali(C) /∈ Gi, then either vali(C) =⊥ or vali(C) 6=⊥
and vali(C) /∈ Gi.

Definition 3. For a given set of tables G,P , two partial chains C,D are equivalent (denoted
C ≡ D) if they are in the reflexive, transitive closure of the relations given by next and prev.
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So, two chains C and D are equivalent if C = D, or if D can be obtained by applying next and
prev finitely many times to C.

Definition 4. The set of table-defined chains contains all chains C for which next(C) 6=⊥ and
prev(C) 6=⊥.

Definition 5. A chain C = (xk, xk+1, k, `, g, b) is called an enqueued chain if C is enqueued for
completion. For such an enqueued chain, we define next(C) as the procedure next applied to the
partial chain (xk, xk+1, k) i.e. next(C) := next(xk, xk+1, k). The procedures prev, val+, val− and val
on an enqueued chain C are defined in a similar manner.

Definition 6. The set Q∗all contains chains that are enqueued in Qall but not in Q1, Q5, Q6, Q10.

Definition 7. We say that a uniform assignment to Gk(xk) occurs when the simulator sets Gk(xk)
through an assignment Gk(xk) ← {0, 1}n i.e. a uniform random value is chosen from the set of
n-bit strings and Gk(xk) is assigned that value.

A uniform assignment to Gk(xk) occurs in line 125 of the simulator’s execution. In particular,
if Gk(xk) is set through a ForceVal(xk, ·, k) call, then it is not a uniform assignment.

Definition 8. We say that a uniform assignment to P occurs in a call to R.P(x0, x1) if (↓, x0, x1) /∈
P when the call is made and P (↓, x0, x1) is set through the assignment P (↓, x0, x1) := (x10, x11)
where (x10, x11) is chosen at random from the set of 2n-bit strings.

Similarly, it occurs in a call to R.P−1(x10, x11) if (↑, x10, x11) /∈ P when the call is made and
P (↑, x10, x11) is set through the assignment P (↑, x10, x11) := (x0, x1) where (x0, x1) is chosen at
random from the set of 2n-bit strings.

A uniform assignment to P (↓, x0, x1) occurs in line 4 of R in Figure 2 and a uniform assignment
to P (↑, x10, x11) occurs in line 10 of R in Figure 2.

We define a set of “bad” events, and show that these occur with negligible probability. Following
that, we analyze execution of the experiment assuming that none of these bad events occur.

In the remainder of the section, we let T = O(q2) be an upper bound on the sizes of Gi and P
as well as the upper bound on the number of enqueued chains and hence, the number of calls to
the Adapt procedure in an execution of H2. The bound on T is derived from Claims 5.7–5.11.

5.3.1 Bad Executions

Definition 9. We say that event BadP occurs in H2 if either:

• Immediately after choosing (x10, x11) in a call to R.P(·, ·), either (↑, x10, x11) ∈ P or x10 ∈ G10.

• Immediately after choosing (x0, x1) in a call to R.P−1(·, ·), either (↓, x0, x1) ∈ P or x1 ∈ G1.

Lemma 5.17. The probability of event BadP in H2 is at most 2T 2/2n.

Proof. The proof follows exactly as in [CHK+14, Lemma 3.18].

Definition 10. We say that event BadlyHit+ occurs in H2 if either:

• Immediately after a uniform assignment to Gk(xk), there is a partial chain (xk, xk+1, k) such
that prev(prev(xk, xk+1, k)) 6=⊥.

22



• Immediately after a uniform assignment to Gk(xk), there is a partial chain (xk−1, xk, k − 1)
such that next(next(xk−1, xk, k − 1)) 6=⊥.

and the relevant partial chain is either table-defined or an enqueued chain in Qall.

Lemma 5.18. The probability of event BadlyHit+ in H2 is at most 40T 3/2n.

Proof. Consider the case where a uniform assignment toGk(xk) occurs and immediately after the as-
signment, there exists an enqueued chain C = (xk, xk+1, k) inQall such that prev(prev(xk, xk+1, k)) 6=⊥.
For this to occur, xk−1 := xk+1 ⊕ Gk(xk) should take one of T values (for k ∈ {2, . . . , 10}, xk−1
should be such that xk−1 ∈ Gk−1 and for k = 1, (↓, xk−1, xk) should be in P ). The probability of
this is at most T/2n. The analysis for the case where C is table-defined is exactly the same. There
are at most T enqueued chains and at most T options for xk+1 such that C is table-defined. So, the
total probability of the first case is 2T 2/2n. The second case can be analyzed in a similar fashion.
So, the total probability of BadlyHit+ for a uniform assignment Gk(xk) is 4T 2/2n. Since there can
be at most 10T such assignments, the probability of BadlyHit+ is 40T 3/2n.

Definition 11. We say that event BadlyCollide+ occurs in H2 if a uniform assignment to Gi(xi) is
such that there exist two partial chains C andD such that for some ` ∈ {0, . . . , 11} and σ, ρ ∈ {+,−}
all of the following are true:

• Immediately before the assignment, C and D are not equivalent.

• Immediately before the assignment, valσ` (C) =⊥ or valρ` (D) =⊥.

• Immediately after the assignment, valσ` (C) = valρ` (D) 6=⊥.

and one of the following is true:

• Immediately after the assignment, C and D are table-defined.

• Immediately after the assignment, C is table-defined and D is a chain enqueued in Qall.

• C and D are chains enqueued in Qall.

Lemma 5.19. The probability of event (BadlyCollide+ ∧ ¬BadlyHit+ ∧ ¬BadP) in H2 is at most
21160T 5/2n.

Proof. Case 1: After the assignment C and D are table-defined. The proof for this case follows
exactly as in [CHK+14, Lemma 3.21].

Case 2: C is a chain enqueued in Qall and D is table-defined after the assignment. Consider
the case that the enqueued chain C is of the form (xk, xk+1, k) where xk ∈ Ajk and xk+1 ∈ Ajk+1 for

some j ∈ {1, . . . , q}. Let val−` (C) = val−` (D) =⊥ before the assignment and val−` (C) = val−` (D) 6=⊥
after the assignment. For val−` (C) to change i = k. Since BadlyHit+ does not occur, we have that
val−`+1(C) = val−`+1(D) and `+ 1 = k But, since C is not equivalent to D before the assignment, we

can’t have that val−` (C) = val−` (D) 6=⊥ after the assignment and hence this case has probability 0.
Let val−` (C) =⊥ and val−` (D) 6=⊥ before the assignment and val−` (C) = val−` (D) 6=⊥ after the

assignment. For val−` (C) to change i = k. Since BadlyHit+ does not occur and val−` (D) does not
change due to the assignment, we have that xk+1⊕Gk(val−k (C)) = val−k−1(D) where `+ 1 = k. The
probability of this is 1/2n.
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Let val+` (C) = val−` (D) =⊥ before the assignment and val+` (C) = val−` (D) 6=⊥ afterward. For
val+` (C) to change after the assignment, it must be the case that ` = k + 2 and i = k + 1 since
BadlyHit+ does not occur. But for val−` (D) to change when ` = k + 2, we need i = k + 3 since
BadlyHit+ does not occur as D is table-defined after the assignment. So, we see that val+` (C) cannot
change in this case.

Let val+` (C) =⊥ and val−` (D) 6=⊥ before the assignment and val+` (C) = val−` (D) 6=⊥ after the
assignment. For val+` (C) to change i = k+1. Since BadlyHit+ does not occur and val−` (D) does not
change due to the assignment, we have that xk ⊕ Gk+1(val+k+1(C)) = val−k+2(D) where ` = k + 2.
The probability of this is 1/2n.

The remaining four cases follow similarly. The case for xk ∈ Gk, xk+1 ∈ Ajk+1 and xk ∈
Ajk, xk+1 ∈ Gk+1 and xk ∈ Gk, xk+1 ∈ Gk+1 where C = (xk, xk+1, k) is the enqueued chain follow
in a similar fashion. So, the total probability of this event can be computed as follows. There are
at most T enqueued chains and at most 11T 2 table-defined chains before the assignment and there
are at most 2T chains that were not table-defined before the assignment but were table-defined
after. There are at most 10T such assignments of the form Gi(xi) := f(i, xi) and there are at most
4 possibilities for σ, ρ. Thus, the probability is 10T · T · (11T 2 + 2T ) · 4 · 4/2n ≤ 2080T 4/2n.

Case 3: The proof follows similar to the proof of Case 2.

Definition 12. We say that event BadlyCollideP occurs in H2 if either:

• A uniform assignment P (↓, x0, x1) := (x10, x11) is such that there exist partial chains C and
D such that for some σ, ρ ∈ {+,−} the following are all true:

– Immediately before the assignment, C and D are not equivalent.

– Immediately before the assignment, valσ10(C) =⊥ or valρ10(D) =⊥.

– Immediately after the assignment, valσ10(C) = valρ10(D) = x10 6=⊥.

and one of the following conditions hold:

– Before the assignment, C and D are chains in Q∗all.

– Immediately after the assignment, C and D are table-defined.

– Before the assignment, C is a chain enqueued in Qall and immediately after the assign-
ment, D is table-defined.

• A uniform assignment P (↑, x10, x11) := (x0, x1) is such that there exist two partial chains C
and D such that for some σ, ρ ∈ {+,−} the following are all true:

– Immediately before the assignment, C and D are not equivalent.

– Immediately before the assignment, valσ1 (C) =⊥ or valρ1(D) =⊥.

– Immediately after the assignment, valσ1 (C) = valρ1(D) = x1 6=⊥.

and one of the following conditions hold:

– Before the assignment, C and D are chains in Q∗all.

– Immediately after the assignment, C and D are table-defined.

– Before the assignment, C is a chain enqueued in Qall and immediately after the assign-
ment, D is table-defined.
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Lemma 5.20. The probability of event BadlyCollideP in H2 is at most 314T 5/2n.

Proof. Consider the case that after a uniform random choice of (x0, x1) leading to an assignment
P (↑, x10, x11) := (x0, x1) the event BadlyCollideP occurs. The value val−1 (C) for a chain C does not
change due to the assignment since it is a P (↑, x10, x11) assignment and val−1 (C) can change only
due to a P (↓, x0, x1) assignment by definition of val−(·).

Suppose that val+1 (C) =⊥ and val−1 (D) 6=⊥ before the assignment and after the assignment
val+1 (C) = val−1 (D) = x1. The value val−1 (D) does not change due to the assignment as mentioned
above. So, the probability that val+1 (C) = val−1 (D) = x1 is 2−n.

Suppose that val+1 (C) = val+1 (D) =⊥ before the assignment and after the assignment val+1 (C) =
val+1 (D) = x1. For this to happen, val10(C) = val10(D) = x10 and val11(C) = val11(D) = x11
implying that C and D are equivalent chains. So, the probability of this event is 0.

Suppose that val+1 (C) =⊥ and val+1 (D) 6=⊥ before the assignment and after the assignment
val+1 (C) = val+1 (D) = x1. Now, the value of val+1 (D) stays the same after the assignment (even if
BadP occurs). So, the probability that val+1 (C) = val+1 (D) = x1 is 2−n.

The analysis for the other case is similar. There are at most T assignments of the form P (↑
, x10, x11) or P (↓, x0, x1). There are at most 11T 2 possibilities for a chain to be table-defined before
the assignment and T possibilities for a chain to be table-defined after the assignment but not
before. There are at most T chains enqueued for completion in Qall. So, the probability of the

event BadlyCollideP is at most T ·((11T 2+T )
2
+T 2+T ·(11T 2+T ))·2

2n .

Definition 13. We say that event BadlyHitFV occurs in H2 if a uniform assignment to Gs(xs) that
occurs in a call to Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b), for some s ∈ {g, b} one of the following
happens (where we let C = (x`−2, x`−1, `− 2)):

• s = `+ 2 and the following holds:

– Immediately before the assignment, val−`+1(C) =⊥.

– Immediately after the assignment, val−`+1(C) 6=⊥.

– Immediately after the assignment, y := val`−1(C)⊕val−`+1(C) is such that x′`+1⊕x′`−1 = y
for some x′`+1 ∈ G`+1 and x′`−1 ∈ G`−1.

• s = `− 1 and the following holds:

– Immediately before the assignment, val+` (C) =⊥.

– Immediately after the assignment, val+` (C) 6=⊥.

– Immediately after the assignment, y := val`+2(C) ⊕ val+` (C) is such that x′`+2 ⊕ x′` = y
for some x′`+2 ∈ G`+2 and x′` ∈ G`.

Lemma 5.21. The probability of event BadlyHitFV in H2 is at most 2T 3/2n.

Proof. Consider the first case where s = `+ 2. Note that for a chain C with s = `+ 2 the “value”
at the adapt position ` + 1 is set as val`+1(C) := val`+3(C) ⊕ Gs(vals(C)) where val`+3(C) 6=⊥ is
one of the arguments to Adapt. Since the assignment to Gs(xs) happens inside the Adapt call,
val−`+1(C) =⊥ until the assignment and val−`+1(C) 6=⊥ immediately after the assignment.

Now, y := val`−1(C)⊕ val−`+1(C). Note that val`−1(C) 6=⊥ since val`−1(C) = x`−1 is one of the
arguments of the Adapt procedure. So, for y := val`−1(C) ⊕ val`+3(C) ⊕ Gs(vals(C)) to be such
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that y = x′`−1 ⊕ x′`+1 where x′`−1 ∈ G`−1 and x′`+1 ∈ G`+1, y needs to take one of T 2/2n values.
Note that there are at most T such calls to Adapt by assumption. So, the probability of the first
case is at most T 3/2n.

The analysis for the second case is analogous.

Definition 14. We say that event BadlyCollideFV occurs in H2 if a uniform assignment to Gs(xs)
that occurs in a call to Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b), for some s ∈ {g, b} the following
happens (where we let C = (x`−2, x`−1, `− 2) and D is a chain in Q∗all):

• s = `+ 2, and for some (k, k′) ∈ {(`− 1, `+ 1), (`+ 1, `− 1)} the following holds:

– Immediately before the assignment, val−`+1(C) =⊥ and valk(D) 6=⊥.

– Immediately after the assignment, val−`+1(C) 6=⊥.

– Immediately after the assignment, y := val`−1(C)⊕val−`+1(C) is such that x⊕y = valk(D)
for some x ∈ Gk′ .

• s = `− 1, and for some (k, k′) ∈ {(`, `+ 2), (`+ 2, `)} the following holds:

– Immediately before the assignment, val+` (C) =⊥ and valk(D) 6=⊥.

– Immediately after the assignment, val+` (C) 6=⊥.

– Immediately after the assignment, y := val`+2(C)⊕ val+` (C) is such that x⊕y = valk(D)
for some x ∈ Gk′ .

Lemma 5.22. The probability of event BadlyCollideFV in H2 is at most 4T 3/2n.

Proof. Consider the first case where s = ` + 2. Note that during the Adapt call the “value” at
the adapt position ` + 1 is set as val`+1(C) := val`+3(C) ⊕ Gs(vals(C)) where val`+3(C) 6=⊥ is
one of the arguments to Adapt. Since the assignment to Gs(xs) happens inside the Adapt call,
val−`+1(C) =⊥ until the assignment and val−`+1(C) 6=⊥ immediately after the assignment.

Now, y := val`−1(C) ⊕ val−`+1(C). Note that val`−1(C) 6=⊥ since it is one of the arguments of
the Adapt procedure. Also note that if valk(D) 6=⊥ before the assignment, then valk(D) does not
change due to the assignment. Say k = `− 1 and k′ = `+ 1. So, for y := val`−1(C)⊕ val`+3(C)⊕
Gs(xs) to be such that y = x ⊕ val`−1(D) where x ∈ G`+1, the value y would have to take one of
T 2/2n values. (This is because T is the upper bound on the number of chains enqueued in Qall by
assumption and on the size of G`+1.) Similarly for the case where k = ` + 1 and k′ = ` − 1. So,
for a single call to Adapt where s = ` + 2, we have that the probability that the event occurs is
2T 2/2n. There are at most T calls to Adapt by assumption and hence, the probability of the first
case is at most 2T 3/2n.

The analysis for the second case is analogous.

We say that an execution of H2 is good if none of the events BadP, BadlyHit+, BadlyCollide+,
BadlyCollideP, BadlyHitFV or BadlyCollideFV occur. Lemmas 5.17–5.22 thus imply:

Lemma 5.23. The probability that an execution of H2 is good is O(T 5)/2n.
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5.3.2 Properties of Good Executions

The aim of this section is to prove that during a good execution ofH2, every call to ForceVal(x, ·, a)
is such that x /∈ Ga i.e. to prove that a ForceVal call does not “overwrite”.

Before we proceed with the proofs, we introduce some notation here. For a chain C =
(xk, xk+1, k, `, g, b) that is enqueued for completion, the “adapt positions” are at `, ` + 1. These
positions are those where the simulator uses ForceVal(·, ·, `) and ForceVal(·, ·, ` + 1) to force
the values at G`(·) and G`+1(·). Also, for the chain C, the “set uniform” positions are at ` − 1,
`+ 2. (These are the buffer zones that surround the adapt positions.) One of these “set uniform”
positions is adjacent to the query that caused the chain to be enqueued and this position is de-
noted by g and referred to as the “good” set uniform position. The other “set uniform” position
is referred to as the “bad” set uniform position. Note that g, b ∈ {` − 1, ` + 2} and g 6= b; Let a
be the adapt position that is adjacent to “bad” set uniform position. So, if b = `− 1, then a = `;
Else, if b = `+ 2, a = `+ 1. Consider a call Adapt(x`−2, x`−1, x`+2, x`+3, `, g, b), if b = `− 1 define
xa = x` as x` := x`−2⊕G`−1(x`−1) if x`−1 ∈ G`−1, and x` =⊥ otherwise. Analogously, if b = `+ 2,
define xa = x`+1 := x`+3 ⊕G`+2(x`+2) if x`+2 /∈ G`+2 and x`+1 =⊥ otherwise.

Also, for a chain C enqueued in Qb we say adapting is “safe” if just before the call to Adapt
for C, we have xg /∈ Gg and xa /∈ Ga. Analogously, for a chain C in Q∗all or Qmid we say
adapting is “safe” if just before the call to Adapt for C, we have x`−1 /∈ G`−1 and x`+2 /∈ G`+2.
Also, we loosely use the statement C ∈ CompletedChains where C = (xk, xk+1, k, `, g, b) to mean
that (xk, xk+1, k) ∈ CompletedChains.

To prove that ForceVal does not “overwrite”, we will prove that for every call to Adapt
that occurs during the completion of a chain C = (xk, xk+1, k, `, g, b), we have valg(C) /∈ Gg before
the call and if C is enqueued in Qb, vala(C) /∈ Ga before the call; else, valb(C) /∈ Gb before the
call i.e. every call to Adapt is “safe”. In order to prove the above statements, we will prove that
at the time a chain C is enqueued in Qall, valg(C) =⊥ and if C is a chain enqueued in Qb for
some b ∈ {1, 5, 6, 10}, then valb(C) /∈ Gb; else, valb(C) =⊥ when C was enqueued. Similarly, if
a chain C is enqueued in Qmid, then just before the assignment that precedes C being enqueued
occurs, we will prove that valg(C) =⊥ and valb(C) =⊥. We also need to prove properties of
equivalent chains in order to prove that if a chain equivalent to C has been completed before C,
then C ∈ CompletedChains when it is dequeued. All of this put together will help us prove that
ForceVal does not “overwrite” (Theorem 5.38). While the structure explained above is similar
to the structure of the proof in [CHK+14], the major difference is in how we prove the properties
of chains at the time they are enqueued. This is due to the fact that we separate enqueueing from
completion in our simulation.

Properties of Equivalent Chains

Claim 5.24. Consider a good execution of H2. Suppose that at some point in the execution, two
partial chains C and D are equivalent. Then there exists a sequence of partial chains C1, . . . , Cr
such that

• C = C1 and D = Cr, or else D = C1 and C = Cr,

• for r ≥ 2, Ci = next(Ci−1) and Ci−1 = prev(Ci) for all i ∈ {2, . . . , r},

• for r ≥ 3, C2, . . . , Cr−1 is table-defined,
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• D = (valρj (C), valρj+1(C), j) where valρj (C) 6=⊥ and valρj+1(C) 6=⊥ for some ρ ∈ {+,−},

• C = (valσk(D), valσk+1(D), k) where valσk(D) 6=⊥ and valσk+1(D) 6=⊥ for some σ ∈ {+,−}.

Proof. By definition, C ≡ D implies that we can apply next and prev finitely many times to get
D from C. Since BadP does not occur, we have that the relation ≡ is symmetric and hence, ≡
is an equivalence relation. The chains C1, . . . , Cr represent the sequence where either next or prev
is repeatedly applied to C or D to derive the shortest sequence and since BadP does not occur, if
Ci = next(Ci−1), then Ci−1 = prev(Ci) and vice versa. Since each Ci for all i ∈ {2, . . . , r − 1} is
such that next(Ci) 6=⊥ and prev(Ci) 6=⊥, Ci is table-defined for all i ∈ {2, . . . , r− 1}. The last two
bullet points follows from the definition of the procedures val+(·) and val−(·) and the existence of
the sequence of chains C1, . . . , Cr.

Claim 5.25. Consider some point in a good execution of H2 and assume that x 6∈ Gj before
every call to ForceVal(x, ·, j) prior to this point in the execution. Then, if the partial chains
C = (xk, xk+1, k) with k ∈ {1, 5, 9} and D = (x′m, x

′
m+1,m) with m ∈ {1, 5, 9} are equivalent at this

point in the execution, then C ∈ CompletedChains if and only if D ∈ CompletedChains.

Proof. Consider the case where C has just been placed in CompletedChains after being adapted. By
Claim 5.24, the chains equivalent to C at this point are exactly those chains (vali(C), vali+1(C), i)
where i ∈ {0, . . . , 10}. Hence, if C and D are equivalent and k,m ∈ {1, 5, 9}, then both C,D ∈
CompletedChains (by definition of the simulator). Since BadP does not occur and ForceVal does
not overwrite (by assumption), vali(C) does not change during a good execution of H2 and hence,
this property continues to hold even after C,D ∈ CompletedChains.

Properties of Enqueued Chains

Recall that {1, 5, 6, 10} are “bad” set uniform positions.

Claim 5.26. Say a chain C = (xk, xk+1, k, `, g, b) is enqueued to be completed in Qb. Then at the
time C is enqueued, valg(C) =⊥ and valb(C) /∈ Gb.

Proof. Say C = (x1, x2, 1, 4, 3, 6) where g = 3 and b = 6. Such a chain C is enqueued in Q6, only if
x2 /∈ G2, by construction of the simulator. Otherwise, EnqNewChains(2, x2) is not called. Since
x2 /∈ G2 when enqueued, val+3 (C) =⊥ at the time C is enqueued.

Similarly, by construction of the simulator, a chain C is enqueued in Qb only if valb(C) 6=⊥ and
valb(C) /∈ Gb. So, we have val3(C) =⊥ and val6(C) /∈ G6 at the time the chain C is enqueued. The
other cases are analogous.

Effects of a Call to ForceVal

For the following claims, note that g, b ∈ {`− 1, `+ 2} and g 6= b.

Claim 5.27. In a good execution of H2, let x`−1 /∈ G`−1 (respectively x`+2 /∈ G`+2) immediately
before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b). Then, before the call to ForceVal(x`, ·, `)
(respectively ForceVal(x`+1, ·, ` + 1)) in that Adapt call, we have x` /∈ G` (respectively x`+1 /∈
G`+1).

Proof. The proof follows exactly as in Lemma [CHK+14, Lemma 3.26(a)].
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Corollary 5.28. In a good execution of H2, consider a call to Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b)
and assume that adapting is “safe” for all chains C that were dequeued from Q1,Q5,Q6,Q10, Q∗all or
Qmid before this Adapt call. Then, before the call to ForceVal(x`, ·, `) and ForceVal(x`+1, ·, `+
1) that occurs in the call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b), we have x` /∈ G` and x`+1 /∈ G`+1

respectively.

Proof. The proof follows immediately from Claim 5.27.

Claim 5.29. Consider a good execution of H2. Suppose that x`−1 /∈ G`−1 (respectively x`+2 /∈
G`+2) immediately before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b). Then, if C is a table-
defined chain before the call to Adapt, vali(C) for i ∈ {1, . . . , 10} stays constant during the call to
ForceVal(x`, ·, `) (respectively ForceVal(x`+1, ·, `+ 1)).

Proof. The proof follows exactly as in Lemma [CHK+14, Lemma 3.26(b)].

Claim 5.30. Consider a good execution of H2. Suppose that x`−1 /∈ G`−1 (respectively x`+2 /∈ G`+2)
immediately before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b). Then, if C is a chain enqueued
in Qall, vali(C) for i ∈ {1, . . . , 10} stays constant during the call to ForceVal(x`, ·, `) (respectively
ForceVal(x`+1, ·, `+ 1)) that occurs in the Adapt call.

Proof. Consider the case that C is equivalent to the chain being adapted. If C is equivalent to the
chain being adapted, then vali(C) stays constant during the calls to ForceVal by definition of the
procedure.

Consider the case where the chain C is not equivalent to the chain being adapted. Then vali(C)
can change during the call to ForceVal(x`, ·, `) only if valρ` (C) = x` for some ρ ∈ {+,−}. This
implies that BadlyCollide+ occurred on the uniform assignment to G`−1(x`−1) that happened in the
Adapt call. This is because C is a chain enqueued for completion in Qall and C is not equivalent
to the chain D = (x`−2, x`−1, ` − 2) by assumption. Now, before the assignment val+` (D) =⊥ and
after the assignment valρ` (C) = val+` (D) 6=⊥ and D is table-defined after the assignment. A similar
argument works for the call to ForceVal(x`+1, ·, `+ 1) when x`+2 /∈ G`+2.

Claim 5.31. In a good execution of H2, consider a call to Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b)
for some Q ∈ {Q1, Q5, Q6, Q10}. Assume that adapting is “safe” for all chains C that were dequeued
from Q1,Q5,Q6,Q10 before this Adapt call. If xa /∈ Ga and xg /∈ Gg (where a is the adapt position
adjacent to the “bad” set uniform position) before the Adapt call, then if C is a chain enqueued
in Qall, vali(C) for i ∈ {1, . . . , 10} stays constant during the call to ForceVal(xa, ·, a) that occurs
in the Adapt call.

Proof. Consider the case where C is equivalent to the chain being adapted. Then, vali(C) stays
constant during the call to ForceVal(xa, ·, a) by definition of the procedure.

Consider a chain C that is not equivalent to the chain (x`−2, x`−1, ` − 2) being adapted. As-
sume that the lemma has held till the Adapt call of the chain D currently being adapted i.e.
ForceVal(xa′ , ·, a′) did not affect vali(C) for any chain C such that C is a chain enqueued in Qall

and a′ is the adapt position adjacent to “bad” set uniform b′ of a chain D′ enqueued in Qb′ and
dequeued before the current Adapt call.

Let D be the chain enqueued in Qb during whose completion the Adapt call occurred. Now,
by construction of the simulator, D is equivalent to (x`−2, x`−1, `− 2) and hence, not equivalent to
C. For vali(C) to change during ForceVal(xa, ·, a) that occurs during the Adapt call, it must be
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the case that vala(C) = vala(D) = xa. For a chain D enqueued in Qb, we have valb(D) /∈ Gb and
valg(D) =⊥ when D was enqueued by Claim 5.26. So, vala(D) =⊥ when chain D was enqueued.

Consider the case where just before the Adapt call of D, we have xb /∈ Gb. Then, vala(D) =⊥
since xb /∈ Gb and xg /∈ Gg by assumption. So, if vala(C) = vala(D) 6=⊥ before the call to
ForceVal(xa, ·, a), then BadlyCollide+ occurred on the uniform assignment to Gb(xb). Consider
the case where just before the Adapt call ofD, we have xb ∈ Gb. So, if vala(C) = vala(D) 6=⊥ before
the ForceVal call, then this occurred during the completion of a chain E that was dequeued before
D. Then, E was dequeued from Qb′ for some b′ ∈ {1, 5, 6, 10} by construction of the simulator.
Consider the last assignment that happened before vala(C) = vala(D) 6=⊥ was true. As stated
above, this assignment must have happened during the completion of a chain E that was dequeued
before D. This assignment can either be (a) a P (↑, x10, x11) or P (↓, x0, x1) assignment, but then
BadP occurred (b) a ForceVal assignment, but by assumption that the lemma has held so far and
by Claim 5.30, this cannot be true. (c) a uniform assignment to Gj(xj), but then BadlyCollide+

occurred.
So, if C is a chain enqueued for completion in Qall, vali(C) for i ∈ {1, . . . , 10} stays constant

during the call to ForceVal(xa, ·, a).

Additional Properties of Enqueued Chains

For the following claim, if a chain C = (xk, xk+1, k, `, g, b) is enqueued in Qmid, then the assignment
Gi(xi) that precedes C being enqueued happens either in lines 125, 147 or 150 of the simulator’s
execution.

Claim 5.32. Consider a good execution of H2. If at the time a chain C = (xk, xk+1, k, `, g, b) is
enqueued in Qmid, no chain equivalent to C has been enqueued for completion and adapting is “safe”
for every chain dequeued from Q1,Q5,Q6,Q10 or Q∗all so far, then valg(C) =⊥ and valb(C) =⊥ just
before the assignment Gi(xi) that precedes C being enqueued. Also, val9(C) = val2(C) =⊥ just
before the assignment Gi(xi) that precedes C being enqueued.

Proof. Say a chain C = (x5, x6, 5, 2, 4, 1) is enqueued in Qmid with g = 4 and b = 1. Then,
the assignment G5(x5) that precedes the enqueueing of C is such that x5 /∈ G5 before the as-
signment, by construction of the simulator. Otherwise, EnqNewMidChains(5, x5) is not called.
Hence, val−4 (C) =⊥ just before the assignment G5(x5) that precedes C being enqueued. Also, since
val−4 (C) =⊥, we have val−1 (C) =⊥.

Before we prove val+4 (C) =⊥ and val+1 (C) =⊥ (and hence, val4(C) =⊥ and val1(C) =⊥), we
make the following observation. If a partial chain (x5, x6, 5) is enqueued in Qmid such that no equiv-
alent chain has been enqueued previously, by construction of the simulator, either (1) val5(D) = x5
for a chain D belonging to Q∗all where val5(D) =⊥ when D was enqueued or (2) val6(E) = x6 for
a chain E enqueued in Q∗all where val6(E) =⊥ when E was enqueued or (3) both. In other words,
either x5 /∈ G5 ∪At5 or x6 /∈ G6 ∪At6 or both when Qenq.Empty() = true in line 6 of the simulator’s
execution after D’s tth query.

Consider a chain C = (x5, x6, 5, 2, 4, 1) which was enqueued in Qmid such that no chain equiv-
alent to C was enqueued previously. Such a chain C is enqueued in Qmid, when x6 ∈ G6,
val5(C) = val5(D) = x5 and x5 ∈ G5 right before C was enqueued (and not earlier) where D
is a chain belonging to Q∗all and x5 ∈ G5 due to the completion of D.

For val1(C) 6=⊥ at the time of the assignment that precedes the enqueueing of C, we need
val+1 (C) 6=⊥. Then, in particular, we have that x7 := val7(C) ∈ G7 and x8 := val8(C) ∈ G8
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(otherwise, val+9 (C) =⊥ implying that val+1 (C) =⊥).
Consider the partial chains C = (x5, x6, 5), C1 = (x6, x7, 6) and C2 = (x7, x8, 7). For val+9 (C) 6=⊥

just before the assignment that precedes the enqueueing of C, we need (1) C1 = next(C), C2 =
next(C1) (and hence, x6 ∈ G6 and x7 ∈ G7) and (2) x5 = val5(D) for a chain D in Q∗all and
(3) x8 ∈ G8 or x8 = val8(E) of a chain E enqueued in Qall. Note that this condition is not true
at the time the simulator finished enqueueing chains in Qall since we have either x5 /∈ G5 ∪ At5 or
x6 /∈ G6 ∪ At6 or both. Hence, the conditions must have been met during the completion of chains
in Qall. Consider the last assignment that was made before all the above conditions were met.

Consider the case that when the last assignment (such that all the conditions listed above
were met immediately after this assignment) happened, the chain C1 was already table-defined.
Now, if the assignment was a P/P−1 assignment, then BadP occurred. It cannot be a ForceVal
assignment since ForceVal does not change the value of a chain enqueued in Qall by Claims 5.30
and 5.31. If it were a uniform assignment to Gi(xi), then, BadlyCollide+ occurred.

Consider the case that when the last assignment (such that all the conditions listed above were
met immediately after this assignment) happened, the chain C1 was not table-defined before the
assignment but table-defined immediately after. Recall that if C1 = (x6, x7, 6) is table-defined then
x6 ∈ G6 and x7 ∈ G7. So, the assignment was either to G6(x6) or G7(x7).

Consider the case that it set G7(x7). If this were a uniform assignment to G7(x7), then
BadlyCollide+ occurred since C1(≡ C) and E are not equivalent as no chain equivalent to C has been
enqueued previously. If this were a ForceVal assignment, then BadlyCollideFV occurred. This is
because 7 is an adapt position only for partial chains that are either of the form (a) X = (x9, x10, 9)
such that (x9, x10, 9, 6, 8, 5) belongs to Q∗all. By assumption for chains in Q∗all, we have val5(X) /∈ G5

before the Adapt call for such a chain or, (b) Y = (x1, x2, 1) such that (x1, x2, 1, 7, 9, 6) is en-
queued in Q6. In this case, the adapt position 7 is adjacent to the “bad” set uniform position
6. By assumption for chains enqueued in Q6, we have val9(Y ) /∈ G9 before the Adapt call for
such a chain. Hence, BadlyCollideFV occurred due to the assignment G5(val5(X)) or G9(val9(Y ))
that occurs in the Adapt call. The analysis for the case when G6(x6) is set is similar. So, the
above conditions are not met for a chain C to be enqueued in Qmid. Hence, for such a chain
C = (x5, x6, 5, 2, 4, 1), val+9 (C) =⊥ just before the assignment that caused C to be enqueued.
Since val+9 (C) =⊥ and val−4 (C) =⊥ before the assignment, we have val4(C) =⊥, val9(C) =⊥ and
val1(C) =⊥ just before the assignment that precedes C being enqueued. The analysis for the case
where C = (x5, x6, 5, 8, 7, 10) is analogous.

Claim 5.33. Consider a good execution of H2. Just before the execution of line 27 during the
simulator’s execution, if adapting is “safe” for every chain dequeued from Q1,Q5,Q6,Q10, Q∗all or
Qmid so far, then it holds that:

i. if x9 ∈ G9, x10 ∈ G10, x1 ∈ G1 such that R.CheckBwd(x10, x9 ⊕ G10(x10), x1) = true, then
(x9, x10, 9) ∈ CompletedChains.

ii. if x1 ∈ G1, x2 ∈ G2, x10 ∈ G10 such that R.CheckFwd(x2 ⊕ G1(x1), x1, x10) = true, then
(x1, x2, 1) ∈ CompletedChains.

iii. if x5 ∈ G5, x6 ∈ G6, then (x5, x6, 5) ∈ CompletedChains.

Proof. We start by proving (i). For a triple (x9, x10, x1), we say that “condition holds” if (x9, x10, x1)
is such that x9 ∈ G9, x10 ∈ G10, x1 ∈ G1 and R.CheckBwd(x10, x9 ⊕G10(x10), x1) = true. Also,
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we refer to the partial chain (x9, x10, 9) as the partial chain associated with the triple (x9, x10, x1).
So, our aim is to prove that for every triple (x9, x10, x1) such that condition holds, the associated
partial chain (x9, x10, 9) ∈ CompletedChains. Assume that the claim has held right before (and
hence immediately after) line 27 of the simulator’s execution while answering the distinguisher’s
(t−1)th query to F(·, ·). Let the distinguisher ask its tth query F(k, x). The aim is to prove that at
line 27 of the simulator’s execution while answering the distinguisher’s tth query to F(·, ·), if a triple
T ∗ = (x9, x10, x1) is such that condition holds, then the partial chain C∗ = (x9, x10, 9) associated
with the triple is such that C∗ ∈ CompletedChains. Note that the distinguisher could have made
queries to P/P−1 between the (t − 1)th and tth queries to F(·, ·); but if those queries resulted in
condition being true, then BadP occurred.

Suppose that there exists a triple T ∗ such that condition holds at line 27 of the simulator’s
execution while answering the distinguisher’s tth query. If condition held at the end of simulator’s
execution while answering the previous distinguisher query, then by assumption that the claim has
held so far, the partial chain C∗ associated with the triple T ∗ is such that C∗ ∈ CompletedChains.
If condition held at the end of the simulator’s execution of the current query t (and not at the end
of the previous query), we differentiate cases where the associated partial chain C∗ was enqueued
for completion during the simulator’s execution while answering the tth query and when it’s not.

Consider the case where a chain equivalent to C∗ was enqueued in Qall during the simulator’s
execution while answering the distinguisher’s current query. If C∗ = (x9, x10, 9) was enqueued
during the tth query, then (x9, x10, 9) ∈ CompletedChains by construction of the simulator. Note
also that chains in MidEquivChains are not enqueued for completion by the simulator. By definition
of the set MidEquivChains, these chains are such that they are equivalent to a chain of the form
(x5, x6, 5) that has been enqueued for completion. Since BadP does not occur and ForceVal does
not overwrite, the equivalence holds when (x5, x6, 5) ∈ CompletedChains and hence, by Claim 5.25,
such a chain in MidEquivChains is placed in CompletedChains as well. By the same argument, if a
chain equivalent to C∗ has been enqueued for completion, then too C∗ ∈ CompletedChains by the
end of the simulator’s execution of the current query. So, if a chain equivalent to C∗ was enqueued
for completion or was in MidEquivChains during the simulator’s execution while answering the
current query t, then C∗ ∈ CompletedChains.

Consider the case where no chain equivalent to C∗ was enqueued inQall and C∗ /∈ MidEquivChains
during the simulator’s execution while answering the distinguisher’s current query. We differentiate
between the cases where (1) C = next(C∗) 6=⊥, next(C) 6=⊥ when Qenq.Empty() = true in line 6
of the simulator’s execution when answering the distinguisher’s tth query and (2) when it’s not.

Consider the case when C = next(C∗) 6=⊥ and next(C) 6=⊥ at the time the simulator stops
enqueueing chains in Qall i.e. when Qenq.Empty() = true in line 6 of the simulator’s execution
when answering the distinguisher’s tth query. This implies that x10 ∈ G10 and (↑, x10, x11) ∈ P
where x11 := x9 ⊕G10(x10) and hence, C = (x10, x11, 10) is table-defined at the time the simulator
stops enqueueing chains in Qall. Since the triple T ∗ is such that the associated partial chain
C∗ = (x9, x10, 9) was not enqueued for completion and not in MidEquivChains, we have that either
(a) x9 /∈ G9 ∪ At9 or (b) x1 /∈ G1 ∪ At1 when Qenq.Empty() = true in line 6. For the condition
to be true, we need x1 ∈ G1 and x9 ∈ G9 and hence, we have that condition does not hold for
the triple T ∗ when Qenq.Empty() = true in line 6. Consider the case where x1 /∈ G1 ∪ At1. For
x1 ∈ G1 to be true by the end of the simulator’s execution while answering the distinguisher’s tth

query, it must be the case that val1(D) = val1(C) = x1 at some point for a chain D that has been
enqueued in Qall or Qmid. Before analyzing the case that val1(D) = val1(C) = x1 occurs, we make
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the following observations. Firstly, C and D are not equivalent as C ≡ C∗ and no chain equivalent
to C∗ (including itself) has been enqueued. Secondly, for all chains D that have been enqueued in
Qall, val1(D) 6= x1 when enqueued since x1 /∈ G1 ∪ At1. Now, if val1(D) 6= x1 and val1(D) 6=⊥, it
cannot be that val1(D) = x1 at a later point since ForceVal does not overwrite and BadP does
not occur. Hence, if val1(D) = x1 at a later point, then val1(D) =⊥ when enqueued. Similarly, for
all chains D that have been enqueued in Qmid val1(D) =⊥ just before the assignment that precedes
the enqueueing of D by Claim 5.32. Since BadlyHit+ and BadlyHitFV do not occur, val1(D) =⊥ at
the time D is enqueued. Now, if val1(D) = val1(C) = x1, then this is during the completion of some
chain E during the simulator’s execution while answering the distinguisher’s tth query. Consider
the last assignment before val1(D) = val1(C) = x1 was true. This cannot be a uniform assignment
to Gi(xi) since then BadlyCollide+ occurred. This cannot be due to a uniform assignment to P
since then BadP or BadlyCollideP occurred. This cannot be a ForceVal assignment since that
would contradict Claims 5.29, 5.30 or 5.31. The analysis for the case where x9 /∈ G9 ∪ At9 when
the simulator stops enqueueing chains in Qall is analogous. So, if C was table-defined when the
simulator stops enqueueing chains in Qall, then condition does not hold for the triple T ∗ at the end
of the simulator’s execution of the current query.

Consider the case when either next(C∗) =⊥ or C = next(C∗) 6=⊥ and next(C) =⊥ at the time the
simulator stops enqueueing chains in Qall i.e. when Qenq.Empty() = true in line 6 of the simulator’s
execution when answering the distinguisher’s tth query. Now if the triple T ∗ = (x9, x10, x1) is such
that condition holds by the end of the simulator’s execution of the current query, then it must
be the case that next(C∗) 6=⊥ and next(next(C∗)) 6=⊥ by the end of the simulator’s execution. In
particular, it means that the partial chain next(C∗) = C = (x10, x11, 10) where x11 := x9⊕G10(x10)
is table-defined (with val1(C) = x1) by the end of the simulator’s execution. Note that at the
moment that C becomes table-defined either x1 /∈ G1 or x9 /∈ G9 as otherwise either BadP or
BadlyHit+ occurred. Furthermore, immediately before the assignment that causes C to be table-
defined we have either val1(C) =⊥ or val9(C) =⊥ and immediately after the assignment, we have
val9(C) 6=⊥ and val1(C) 6=⊥ by definition. Say val1(C) =⊥ immediately before the assignment
that caused C to be table-defined and val1(C)(= x1) 6=⊥ immediately after. For x1 ∈ G1 to be
true by the end of the simulator’s execution while answering the distinguisher’s tth query, it must
be the case that val1(D) = val1(C) = x1 at some point for a chain D that has been enqueued
in Qall or Qmid. Consider the last assignment before val1(D) = val1(C) = x1 was true. The rest
of the analysis proceeds similarly to the analysis above. The case when val9(C) =⊥ immediately
before the assignment that caused C to be table-defined and val9(C)(= x9) 6=⊥ immediately after
follows in a similar fashion. So, if next(C∗) =⊥ or if next(C∗) 6=⊥ and next(next(C∗)) =⊥ when
the simulator stops enqueueing chains in Qall, then too the condition does not hold for the triple
T ∗ at the end of the simulator’s execution of the current query. Summarizing, if a chain equivalent
to C∗ was not enqueued in Qall and C∗ /∈ MidEquivChains during the simulator’s execution while
answering the distinguisher’s current query, then condition does not hold for the triple T ∗ at the
end of the simulator’s execution of the current query.

The proof of (ii) follows exactly along the lines of the proof of (i) given above.
The proof of (iii) is as follows. Let D ask its tth query F(k, x). Just before the simulator returns

Gk(x) in line 27, let the lemma be false and let this be the first time that the lemma does not hold
implying that there exists x5 ∈ G5, x6 ∈ G6 such that (x5, x6, 5) /∈ CompletedChains.

If the lemma has held so far, in particular it has held right before (and immediately after)
line 27 of the simulator’s execution while answering D’s (t − 1)th query to F(·, ·). Note that the
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distinguisher could have made queries to P/P−1 between the (t−1)th and tth queries to F(·, ·); but
those queries cannot result in x5 ∈ G5 or x6 ∈ G6.

So, x5 ∈ G5, x6 ∈ G6 such that (x5, x6, 5) /∈ CompletedChains happened during the simulator’s
execution while answering D’s tth query. Now, if (x5, x6, 5) were enqueued for completion during
the tth query then (x5, x6, 5) ∈ CompletedChains. If a chain equivalent to (x5, x6, 5) were enqueued
for completion during the tth query, then (x5, x6, 5) ∈ CompletedChains. This is because equivalent
chains are placed in CompletedChains simultaneously since BadP does not occur and ForceVal
does not overwrite. So, for x5 ∈ G5, x6 ∈ G6 such that (x5, x6, 5) /∈ CompletedChains to be true,
the simulator did not enqueue this partial chain. (Note that chains of the type (x5, x6, 5) are not
added to MidEquivChains.)

Let x6 ∈ G6, and say an assignment occurs such that before the assignment x5 /∈ G5, but
after the assignment x5 ∈ G5 leading to the creation of a partial chain of the form (x5, x6, 5) with
x5 ∈ G5, x6 ∈ G6. (The analysis for the other case is analogous.) Such an assignment can happen
only by completion of a chain in Q1, Q5, Q6, Q10 or completion of a chain in Q∗all. We analyze
these next.

Case 1: An assignment happens to G5(x5) during the completion of a chain C enqueued in Qb where
b ∈ {1, 5, 6, 10} and x6 ∈ G6 before this assignment. Now, if x6 ∈ G6 before assignment causing
x5 ∈ G5, then either x6 ∈ G6 before D’s t-th query or x6 ∈ G6 due to the completion of a chain
D enqueued in Q1, Q5, Q6, Q10 and dequeued before C. Again, by construction of the simulator,
chains C that are enqueued in Qb are such that either val5(C) ∈ At5 or val5(C) ∈ G5 at the time C
was enqueued and similarly, chains D that are enqueued in Qb are such that either val6(D) ∈ At6
or val6(D) ∈ G6 at the time D was enqueued. Since BadP does not occur and ForceVal does not
overwrite, val5(C) = x5 ∈ At5 (since x5 /∈ G5 before this assignment) and val6(D) = x6 ∈ G6 ∪ At6.
And so, (x5, x6, 5) is enqueued for completion by construction of simulator.

Case 2: An assignment happens to G5(x5) during the completion of a chain C in Q∗all and x6 ∈ G6

before this assignment. If x6 ∈ G6 ∪ At6 and x5 ∈ At5 when the simulator enqueues chains in Qall,
then (x5, x6, 5) is enqueued for completion in Qall. Else, (x5, x6, 5) is enqueued for completion in
Qmid.

This completes the proof.

Claim 5.34. Consider a good execution of H2. If a chain C = (xk, xk+1, k, `, g, b) belongs to Q∗all
such that at the time C is enqueued, adapting is “safe” for every chain dequeued from Q1,Q5,Q6,Q10,
Q∗all or Qmid so far, then valb(C) =⊥ and valg(C) =⊥ at the time C is enqueued.

Proof. Say C = (x9, x10, 9, 3, 2, 5) is enqueued where the query preceding the chain’s enqueue-
ing is G1(x1) where val1(C) = x1. Then, by definition of simulator, x1 /∈ G1 as otherwise,
EnqNewChains(1, x1) is not called. So, val+2 (C) =⊥. Now, we claim that val−5 (C) /∈ G5. This is
because if val−5 (C) ∈ G5, then val−6 (C) ∈ G6 since otherwise, val−5 (C) =⊥. This implies that the
partial chain (x5, x6, 5) where x5 = val−5 (C) and x6 = val−6 (C) is such that x5 ∈ G5 and x6 ∈ G6.
Hence, by Lemma 5.33, we have that (x5, x6, 5) ∈ CompletedChains since no new Gi assignments
have been issued between the moment the simulator returned the answer (line 27 of its execution)
and the moment when a chain C is enqueued in Qall. However, since BadP does not occur, this
means that x1 ∈ G1 contradicting the first statement. Thus, we have that val−5 (C) /∈ G5. Now,
val+5 (C) =⊥ since val+2 (C) =⊥. So, val5(C) /∈ G5.

Since C is not enqueued in Q1,Q5,Q6,Q10, we have val5(C) =⊥ when C is enqueued. So
val2(C) =⊥ and val5(C) =⊥, where g = 2 and b = 5. The other cases are analogous.
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ForceVal(x, ·, j) does not Overwrite Gj(x)

Lemma 5.35. Consider a good execution of H2. Let C = (xk, xk+1, k, `, g, b) be a partial chain
enqueued in Q1,Q5,Q6 or Q10. At the moment C = (xk, xk+1, k, `, g, b) is dequeued, assume that
adapting is “safe” for every chain C ′ in Q∗all or Qmid dequeued so far. Then,

• At the moment C = (xk, xk+1, k, `, g, b) is dequeued, C ∈ CompletedChains, or

• Just before the call to Adapt for C, valg(C) /∈ Gg and vala(C) /∈ Ga (where a is the adapt
position adjacent to the “bad” set uniform position b).

Proof of Lemma 5.35. Assume that the lemma has held until the moment that a chain C =
(xk, xk+1, k, `, g, b) is dequeued. Note that if the lemma has held until now we have that for every
call to ForceVal(x, ·, j) so far, x /∈ Gj by Corollary 5.28.

Consider the case that at the moment C was dequeued there is a chain D equivalent to C
that was dequeued before C. Now, if D was dequeued before C, then D ∈ CompletedChains by
construction of the simulator. If C and D are equivalent chains such that D ∈ CompletedChains,
then C ∈ CompletedChains by Claim 5.25.

Let us consider the case where no chain equivalent to C was dequeued before C was dequeued.
Say C /∈ CompletedChains when dequeued. Note that if we prove valg(C) /∈ Gg and vala(C) /∈ Ga
at the time C was dequeued, we have that valg(C) /∈ Gg and vala(C) /∈ Ga just before the call to
Adapt for C since otherwise BadP or BadlyHit+ occurred.

By Claim 5.26, we have that valg(C) =⊥ at the time C was enqueued. If valg(C) ∈ Gg at the
time C was dequeued, then this was due to the completion of a chain D which was enqueued in
Qb′ where b′ ∈ {1, 5, 6, 10} due to the same distinguisher query as C and dequeued(and completed)
before C such that valg(C) = valg(D) 6=⊥.

Consider the last assignment that was made before valg(C) = valg(D) 6=⊥ was true. This
cannot have been a uniform assignment to Gi(xi) since that implies that BadlyCollide+ occurred.
This is because C and D are not equivalent(by assumption) and C and D are both enqueued for
completion in Qall and either valg(C) =⊥ or valg(D) =⊥ before the assignment(otherwise this is not
the last assignment before valg(C) = valg(D) 6=⊥) and valg(C) = valg(D) 6=⊥ after the assignment.

The assignment cannot have been of the form P (↓, x0, x1) = (x10, x11) or P (↑, x10, x11) =
(x0, x1) since then BadP occurred. The assignment cannot have been a ForceVal query. This is
because from Claims 5.31 and 5.30 we have that ForceVal does not change vali(C) for a chain
C enqueued in Qall (including those enqueued in Q1, Q5, Q6, Q10) during completion of chains in
Q1, Q5, Q6, Q10.

Now, consider the argument for vala(C) /∈ Ga when C is dequeued. By Claim 5.26, we have that
valb(C) /∈ Gb and valg(C) =⊥ at the time C was enqueued, implying that vala(C) =⊥ when C was
enqueued (where a is the adapt position adjacent to “bad” set uniform position). The argument
for this case follows similar to the one above for valg(C).

Lemma 5.36. Consider a good execution of H2. Let C = (xk, xk+1, k, `, g, b) be a partial chain in
Q∗all. At the moment C = (xk, xk+1, k, `, g, b) is dequeued, assume that adapting is “safe” for every
chain C ′ in Qmid dequeued so far. Then,

• At the moment C is dequeued, C ∈ CompletedChains or,

• Just before the call to Adapt for C, val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2.
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Proof. Recall that g, b ∈ {`−1, `+2} and g 6= b. Assume that the lemma has held until the moment
that a chain C = (xk, xk+1, k, `, g, b) is dequeued. Note that if the lemma has held until now we
have that for every call to ForceVal(x, ·, j) so far, x /∈ Gj by Lemma 5.35 and Corollary 5.28.

Let us consider the case that at the moment C was dequeued, a chain D equivalent to C was
dequeued before C. Now, if D was dequeued before C, then D ∈ CompletedChains by construction
of the simulator. If C and D are equivalent chains such that D ∈ CompletedChains, then C ∈
CompletedChains by Claim 5.25.

Consider the case that no chain equivalent to C was dequeued before C was dequeued. Note
also that if we prove val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2 at the time C was dequeued, we have
that val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2 just before the call to Adapt for C since otherwise
BadP or BadlyHit+ occurs.

From Claim 5.34, we have that val`−1(C) =⊥ and val`+2(C) =⊥ at the time the chain C is
enqueued. Let us consider the case where val`−1(C) ∈ G`−1 at the time C was dequeued. If
val`−1(C) ∈ G`−1 at the time C was dequeued, then this was due to the completion of a chain D
which was enqueued in Qall (including Q1,Q5,Q6,Q10) as a result of the same distinguisher query
as C and was dequeued(and completed) before C such that val`−1(C) = val`−1(D) 6=⊥ at the time
C was dequeued.

Consider the last assignment that was made before val`−1(C) = val`−1(D) 6=⊥ was true.
This cannot have been a uniform assignment to Gi(xi) since that implies that BadlyCollide+ oc-
curred. This is because C and D are not equivalent(by assumption) and either val`−1(C) =⊥ or
val`−1(D) =⊥ before the assignment(otherwise this is not the last assignment before val`−1(C) =
val`−1(D) 6=⊥) and val`−1(C) = val`−1(D) 6=⊥ after the assignment.

The assignment cannot have been of the form P (↓, x0, x1) = (x10, x11) or P (↑, x10, x11) =
(x0, x1) since then BadP or BadlyCollideP occurred. The assignment cannot have been a ForceVal
assignment since ForceVal does not change vali(C) for a chain C enqueued in Qall during com-
pletion of chains in Q1,Q5,Q6,Q10 by Claims 5.31 and 5.30 and 5.35. Similarly, ForceVal that
occurs during the completion of chains in Qall does not change vali(C) for a chain C enqueued in
Qall by Claim 5.30 as the current lemma has held thus far.

The argument for val`+2(C) /∈ G`+2 when C was dequeued is analogous.

Lemma 5.37. Consider a good execution of H2. Let C = (xk, xk+1, k, `, g, b) be a partial chain
enqueued in Qmid. Then,

• At the moment C is dequeued, C ∈ CompletedChains, or

• Just before the call to Adapt for C, val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2.

Proof. Assume that the lemma has held until the moment that a chain C = (xk, xk+1, k, `, g, b) is
dequeued. Note that if the lemma has held until now we have that for every call to ForceVal(x, ·, j)
so far, x /∈ Gj by Lemmas 5.35, 5.36 and Corollary 5.28.

Consider the case that when a chain C is enqueued in Qmid, there is an equivalent chain that has
been enqueued previously. We analyze this scenario in the following two cases. Firstly, consider the
case that when a chain C is enqueued in Qmid, there is an equivalent chain D enqueued previously
and D ∈ CompletedChains when C is enqueued. If C equivalent to D and D ∈ CompletedChains,
then by Claim 5.25, we have that C ∈ CompletedChains.

Consider the case that when a chain C is enqueued in Qmid, no equivalent chain belongs to
CompletedChains but there is a chain D equivalent to C that has been enqueued in Qall or Qmid.
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Now, if C and D are equivalent when C is enqueued, then there exists a sequence of chains
C1, . . . , Cr given by Claim 5.24. Since BadP does not occur and ForceVal does not overwrite
until the moment C is dequeued, we have that C and D are equivalent when D is placed in
CompletedChains. So, by Claim 5.25, C ∈ CompletedChains and hence, C ∈ CompletedChains at the
moment it is dequeued.

Consider the case that no chain equivalent to C was enqueued before C was enqueued. Note
also that if we prove val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2 at the time C was dequeued, we have
that val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2 just before the call to Adapt for C since otherwise
BadP or BadlyHit+ occurs.

Since no chain equivalent to C was enqueued previously, from Claim 5.32, we have that
val`−1(C) =⊥ and val`+2(C) =⊥ immediately before the assignment that caused the chain C is
enqueued. Let us consider the case where val`−1(C) ∈ G`−1 at the time C was dequeued. This
could not have happened at the time C was enqueued since then BadlyHit+ or BadlyHitFV oc-
curred. If val`−1(C) ∈ G`−1 at the time C was dequeued, then this was due to the completion of
a chain D which was enqueued before C was enqueued and dequeued(and completed) after C was
enqueued. By construction of the simulator, this means that D has to be enqueued in Qall (but not
in Q1,Q5,Q6,Q10) or Qmid. Note also that C and D have to be such that val`−1(C) = val`−1(D) 6=⊥
at the time C was dequeued.

Consider the last assignment that was made before val`−1(C) = val`−1(D) 6=⊥ was true.
This cannot have been a uniform assignment to Gi(xi) since that implies that BadlyCollide+ oc-
curred. This is because C and D are not equivalent(by assumption) and either val`−1(C) =⊥ or
val`−1(D) =⊥ before the assignment(otherwise this is not the last assignment before val`−1(C) =
val`−1(D) 6=⊥) and val`−1(C) = val`−1(D) 6=⊥ after the assignment.

The assignment cannot have been of the form P (↓, x0, x1) = (x10, x11) or P (↑, x10, x11) =
(x0, x1) since then BadP or BadlyCollideP occurred. The assignment cannot have been a ForceVal
query since ForceVal does not change vali(C) for a table-defined chain C by Claim 5.29.

The argument for val`+2(C) /∈ G`+2 when C was dequeued is analogous.

Theorem 5.38 (No overwrites). In a good execution of H2, for any call to ForceVal(x, ·, j) we
have x /∈ Gj before the call.

Proof. Combining the result of Lemmas 5.35, 5.36 and 5.37 with Corollary 5.28, we have that for
every call to ForceVal(x, ·, j), x /∈ Gj before the call.

As in [CHK+14], the distinguisher completes all chains, if, at the end of the execution, it emu-
lates a call to EvalFwdComp(x0, x1, 0, 10) for all queries to P(x0, x1) or to (x0, x1) = P−1(x10, x11)
that it made during the execution.

Lemma 5.39. Consider a good execution of H2 in which the distinguisher completes all chains.
Suppose that during the execution P(x0, x1), respectively P−1(x10, x11), is queried by the simu-
lator or the distinguisher. Then, P (↓, x0, x1) = (val+10(x0, x1, 0), val+11(x0, x1, 0)), respectively P (↑
, x10, x11) = (val−0 (x10, x11, 10), val−1 (x10, x11, 10)) at the end of the execution.

Proof. The simulator queries P/P−1 either (1) when it is enqueueing chains in Qall or (2) when it
is completing chains in Q1, Q5, Q6, Q10, Q

∗
all and Qmid. In the second case, when the simulator

has completed the chain, we have the result and it holds even at the end of the execution as
ForceVal does not overwrite by Theorem 5.38 and BadP does not occur. In the first case, where
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the simulator queries P/P−1 when it is enqueueing chains in Qall, the simulator either enqueues
the chain in Qall or places it in MidEquivChains. If the simulator enqueues the chain in Qall, at the
time the simulator completes the chain, the lemma holds and we have the result at the end of the
execution as well since BadP does not occur and ForceVal does not overwrite. If the simulator
places the chain in MidEquivChains, then an equivalent chain C was enqueued for completion in
Qall. Again, since BadP does not occur and ForceVal does not overwrite by Theorem 5.38, we
have that the equivalence holds till C ∈ CompletedChains and that the lemma holds at the end of
the execution as well.

Consider the case where the query P(x0, x1) was made by the distinguisher. Since the distin-
guisher completes all chains, it eventually queries x5 and x6 corresponding to the Feistel evaluation
of (x0, x1, 0) at some point. This implies that x5 ∈ G5 and x6 ∈ G6 at the end of the execu-
tion. One of these two values are queried later by the distinguisher, say x6, and at the moment
if (x5, x6, 5) /∈ CompletedChains, it is enqueued and completed by the simulator and again, by the
argument above, the lemma holds. If (x5, x6, 5) ∈ CompletedChains, then the lemma holds right
after that completion as BadP does not occur and ForceVal does not overwrite.

In the following lemma, we make the randomness p used by R explicit. The randomness p is
a list containing 2 · 22n strings of length 2n. Then R runs deterministically given p. So, whenever
the procedure R.P(x0, x1) is queried, R checks if (↓, x0, x1) ∈ P and if so, answers accordingly.
Otherwise, R reads (x10, x11) := p(↓, x0, x1) and (↓, x0, x1) as well as (↑, x10, x11) are added to P ,
mapping to each other. The procedure R.P−1(x10, x11) is implemented analogously.

Lemma 5.40. Consider a good execution of H2 in which the distinguisher completes all chains.
Then, the number of calls to Adapt by the simulator equals the number of queries to p(·, ·, ·) made
by R.

Proof. The number of queries to p(·, ·, ·) equals half the number of entries in the table P since BadP
does not occur. And for each call to Adapt, there is a corresponding entry in p that was read
while evaluating forward/backward; also two calls to Adapt procedure can’t share the same entry
as otherwise BadP occurred or ForceVal has overwritten contradicting Theorem 5.38.

For a query in p(·, ·, ·), consider the case that the query was made in a call to P by the simulator.
Then, this call was either made while the simulator was completing a chain, in which case we
consider the Adapt call that was made right after this query, or, this call was made while the
simulator was enqueueing a chain C in Qall. For this case, consider the chains equivalent to C from
this moment until a chain D equivalent to C is dequeued for completion where D is the first chain
equivalent to C to be dequeued. Since no value is overwritten and BadP does not occur, we can
associate the Adapt call that is called during the completion of chain D to the p query.

Consider the case that the distinguisher made a query to p(·, ·, ·). Since the distinguisher
completes all chains, it eventually makes the corresponding queries to the Feistel and say x5 and
x6 are the corresponding Feistel queries. One of them has to be queried last by the distinguisher
and at this moment consider the chain (x5, x6, 5). If (x5, x6, 5) ∈ CompletedChains, then consider
the first chain equivalent to (x5, x6, 5) that was dequeued and we associate the p query to the
Adapt call that occurred during the completion of this chain. If (x5, x6, 5) /∈ CompletedChains,
then at the moment (x5, x6, 5) is dequeued, consider the first chain equivalent to (x5, x6, 5) that
was dequeued and we associate the p query to the Adapt call that occurred during the completion
of this chain.
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5.4 Indistinguishability of the Second and Third Experiments

We now describe experiment H3. Here, we explicitly consider the randomness z where z is a
table containing an independent uniform bitstring of length n for each i ∈ {1, . . . , 10} and xi ∈
{0, 1}n. Whenever the Feistel construction needs to query the i-th round function on x, it uses
the value z(i, x) instead. In H3(z), the two-sided random function is replaced by the 10-round

Feistel construction Feistel(z), and the distinguisher D interacts with (Feistel(z), Ŝ(z)Feistel
+(z)). The

construction Feistel+(z) defined below contains additional procedures CheckFwd and CheckBwd
that the simulator has access to. Note that the randomness z used by Feistel and Ŝ is the same
and the simulator answers queries to the round functions by running the procedure Ŝ.F(i, x) and
whenever it needs to set Gj(xj) to a random value, it uses the value z(j, xj) instead. The Feistel
construction Feistel(z) is defined as follows:

1 procedure P(x0, x1):
2 for i := 2 to 11 do
3 xi := xi−2 ⊕ z(i− 1, xi−1)

4 P (↓, x0, x1) := (x10, x11)
5 P (↑, x10, x11) := (x0, x1)
6 return (x10, x11)

7 procedure P−1(x10, x11):
8 for i := 9 to 0 do
9 xi := xi+2 ⊕ z(i+ 1, xi+1)

10 P (↓, x0, x1) := (x10, x11)
11 P (↑, x10, x11) := (x0, x1)
12 return (x0, x1)

The construction Feistel+(z) that the simulator has access to contains the following CheckFwd
and CheckBwd procedures in addition to the procedures Feistel.P and Feistel.P−1.

1 procedure CheckFwd(x0, x1, x10):
2 if (↓, x0, x1) ∈ P then
3 (x′10, x

′
11) := P (↓, x0, x1)

4 return x′10
?
= x10

5 return false

6 procedure CheckBwd(x10, x11, x1):
7 if (↑, x10, x11) ∈ P then
8 (x′0, x

′
1) := P (↑, x10, x11)

9 return x′1
?
= x1

10 return false
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5.4.1 Mapping Randomness of H2 to Randomness of H3

Before we describe the mapping, we make the randomness p used by R explicit. The randomness p
is a list containing 2 · 22n strings of length 2n. Then R runs deterministically given p. With regard
to the simulator, let f be a table containing an independent uniform bitstring of length n for each
i ∈ {1, . . . , 10} and xi ∈ {0, 1}n. Then whenever the simulator Ŝ needs to set Gi(xi) to a random
value, it uses the value f(i, xi) instead.

We define a map τ which maps a pair of tables (f, p) where f is the randomness used by
the simulator Ŝ and p is the randomness used by the random two-sided function R either to
the symbol λ in case (f, p) does not lead to a good execution of H2, or to a partial table z.
The description of the map follows along the lines of the map in [CHK+14]. A partial table
z : {1, . . . , 10} × {0, 1}n → {0, 1}n ∪ {⊥} either has an actual entry for a pair (i, x), or a symbol
⊥ which indicates that the entry is unused. This map will be such that H2(f, p) and H3(τ(f, p))
have “exactly the same behaviour” for good (f, p) (where a “good” (f, p) leads to a good execution
of H2). Whenever we refer to executions of H2(f, p) and H3(z) below, we assume that they are
executed for the same distinguisher.

Definition 15. The function τ(f, p) is defined as follows: If (f, p) is good, run a simulation of H2

in which the distinguisher completes all chains. Consider the tables G at the end of this execution,
and for any i and x let z(i, x) := Gi(x) in case x ∈ Gi and z(i, x) :=⊥ otherwise. If (f, p) is not
good, let τ(f, p) := λ.

Lemma 5.41. The probability that a distinguisher D outputs 1 in H2 differs at most by O(q10)/2n

from the probability that it outputs 1 in H3.

Proof. The proof of this lemma follows exactly along the lines of the proof of [CHK+14, Lemma
3.37]. So, the probability that a distinguisher D outputs 1 in H2 differs from the probability that
it outputs 1 in H3 by twice the probability that an execution of H2 is not good. By Lemma 5.23,
this is given by O(q10)/2n.

5.5 Equivalence of the Third and Fourth Experiments

In H3, the distinguisher accesses the random functions through the simulator. In experiment H4,
the distinguisher can instead access them directly.

Lemma 5.42. Suppose that in H3(z) the simulator Ŝ(z) eventually answers a query F(i, x). Then
that query is answered with z(i, x).

Proof. The proof follows exactly as in [CHK+14, Lemma 3.38].

Lemma 5.43 (Indistinguishability of H3 and H4). The probability that a distinguisher outputs 1
in H3 differs by at most by O(q10)/2n from the probability that it outputs 1 in H4.

Proof. The proof follows exactly along the lines of [CHK+14, Lemma 3.38].

References
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