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Abstract. Motivated by the development of Side-Channel Analysis (SCA)
countermeasures which can provide security up to a certain order, de-
feating higher-order attacks has become amongst the most challenging
issues. For instance, Threshold Implementation (TI) which nicely solves
the problem of glitches in masked hardware designs is able to avoid first-
order leakages. Hence, its extension to higher orders aims at counter-
acting SCA attacks at higher orders, that might be limited to univariate
scenarios. Although with respect to the number of traces as well as sensi-
tivity to noise the higher the order, the harder it is to mount the attack,
a d-order TI design is vulnerable to an attack at order d + 1.
In this work we look at the feasibility of higher-order attacks on first-
order TI from another perspective. Instead of increasing the order of re-
sistance by employing higher-order TIs, we go toward introducing struc-
tured randomness into the implementation. Our construction, which is
a combination of masking and hiding, is dedicated to TI designs and
deals with the concept of “affine equivalence” of Boolean functions. Such
a combination hardens a design practically against higher-order attacks
so that these attacks cannot be successfully mounted. We show that
the area overhead of our construction is paid off by its ability to avoid
higher-order leakages to be practically exploitable.

1 Introduction

Side-channel analysis (SCA) attacks exploit information leakage related to cryp-
tographic device internals e.g., by analyzing the power consumption [11]. Hence,
integration of dedicated countermeasures to SCA attacks into security-sensitive
applications is essential particularly in case of pervasive applications (see [9,17,
20]). Amongst the known countermeasures, masking as a form of secret sharing
scheme has been extensively studied by the academic communities [8,12]. Based
on Boolean masking and multi-party computation concept, Threshold Implemen-
tation (TI) has been developed particularly for hardware platforms [15]. Since
the TI concept is initially bases on counteracting only first-order attacks, triv-
ially higher-order attacks, which make use of higher-order statistical moments
to exploit the leakages, can still recover the secrets. Hence, the TI has been ex-
tended to higher orders [3] which might be limited to univariate settings [18]. In
addition to its area and time overheads, which increase with the desired secu-
rity order, the minimum number of shares also naturally increases, e.g., 3 shares
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for the first-order, 5 shares for the second-order, and at least 7 shares for the
third-order security.

Contribution: In this work we look at the feasibility of higher-order attacks
on first-order secure TI designs from another perspective. Instead of increasing
the resistance against higher-order attacks by employing higher-order TIs, we
intend to introduce structured randomness into a first-order secure TI. Our goal
is to practically harden designs against higher-order attacks that are known to
be sensitive to noise.

Concretely, we investigate the PRESENT [7] S-box under first-order secure
TI settings that is decomposed into two quadratic functions thereby allowing the
minimum number of three shares. By changing the decompositions during the
operation of the device we can introduce (extra) randomness to the implemen-
tation. In particular we present different approaches to find and generate these
decompositions on an FPGA platform and compare them in terms of area and
time overheads. More importantly, we examine and compare the practical eval-
uation results of our constructions using a state-of-the-art leakage assessment
methodology [10] at higher orders.

Our proposed approach which can be considered as a hiding technique is
combined with first-order TI which provides provably secure first-order resis-
tance. Therefore, although such a combination leads to higher area overhead, it
brings its own advantage, i.e., practically avoiding the feasibility of higher-order
attacks.

Outline: The remainder of this article is organized as follows: Section 2 recapit-
ulates the concept of TI. We also briefly introduce the S-box decomposition for
TI and affine equivalence in case of the PRESENT S-box. In Section 3 different
approaches to find and exchange affine equivalent functions are presented and
compared. Practical evaluation of our construction is given in Section 4. Finally,
we conclude our research in Section 5.

2 Background

2.1 Threshold Implementation

We use lower-case letters for single-bit random variables, bold ones for vectors,
raising indices for shares, and lowering indices for elements within a vector. We
represent functions with sans serif fonts, and sets with calligraphic ones.

Let us denote an intermediate value of a cipher by x made of s single-bit
signals 〈x1, . . . , xs〉. The underlying concept of Threshold Implementation (TI) is
to use Boolean masking to represent x in a shared form (x1, . . . ,xn), where x =
n⊕

i=1

xi and each xi similarly denotes a vector of s single-bit signals 〈xi
1, . . . , x

i
s〉.

A linear function L(.) can be trivially applied over the shares of x as L(x) =
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n⊕
i=1

L(xi). However, the realization of non-linear functions, e.g., an S-box, over

Boolean masked data is challenging. Following the concept of TI, if the algebraic
degree of the underlying S-box is denoted by t, the minimum number of shares
to realize the S-box under the first-order TI settings is n = t + 1. Further, such
a TI S-box provides the output y = S(x) in a shared form (y1, . . . ,ym) with
m ≥ n shares (usually m = n) in case of Bijective S-boxes. In case of a bijective
S-box (e.g., of PRESENT) the bit length of x and y (respectively of their shared
forms) are the same.

Each output share yj∈{1,...,m} is given by a component function fj(.) over a
subset of the input shares. To achieve the first-order security, each component
functions fj∈{1,...,m}(.) must be independent of at least one input share.

Since the security of masking schemes is based on the uniform distribution
of the masks, the output of a TI S-box must be also uniform as it is used as
input in further parts of the implementation (e.g., the SLayer output of one
PRESENT cipher round which is given to the next SLayer round after being
processed by the linear PLayer and key addition). To express the uniformity
under the TI concept suppose that for a certain input x all possible sharings

X =
{

(x1, . . . ,xn)|x =
n⊕

i=1

xi
}

are given to a TI S-box. The set made by

the output shares, i.e.,
{(

f1(.), . . . , fm(.)
)
|(x1, . . . ,xn) ∈ X

}
, should be drawn

uniformly from the set Y =
{

(y1, . . . ,ym)|y =
m⊕
i=1

yi
}

as all possible sharings

of y = S(x).
This process so-called uniformity check should be individually performed for

∀ x ∈ {0, 1}s. We should note that if an S-box is a bijection and m = n, each
(x1, . . . ,xn) should be mapped to a unique (y1, . . . ,yn). In other words, in this
case it is enough to check whether the TI S-box forms also a bijection with
s · n input (and output) bit length. For more detailed information we refer the
interested reader to the original article [15].

2.2 S-Box Decomposition

Since the nonlinear part of most block ciphers, i.e., the S-box, has algebraic
degree of t > 2, the number of input and output shares n,m > 3, which
directly affects the circuit complexity and its area overhead. Therefore, it is
preferable to decompose the S-box S(.) into smaller functions, e.g., g ◦ f(.), each
of them with maximum algebraic degree of 2. It is noteworthy that if S(.) is a
bijection, each of the smaller functions (here in this case g(.) and f(.)) must also
be a bijection. Such a trick helps keeping the number of shares for input and
output at minimum, i.e., n = m = 3. However, it comes with the disadvantage
of the necessity to place a register between each two consecutive TI smaller
functions to avoid the glitches being propagated. Although such a composition
is feasible in case of small S-boxes (let say up to 6-bit permutations [5]), it
is still challenging to find such decompositions for 8 × 8 S-boxes. As stated
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before, the target of this work is an implementation of PRESENT cipher, which
involves a 4× 4 invertible cubic S-box (i.e., with the algebraic degree of 3) with
Truth Table C56B90AD3EF84712. Therefore, all the representations below are
coordinated based on 4-bit bijections.

In [16], where the first TI of PRESENT is presented, the authors gave a
decomposition of the PRESENT S-box by two quadratic functions, i.e., each of
which with the algebraic degree of 2. Later the authors of [4] and [5] presented a
systematic approach which allows deriving the TI of all 4-bit bijections. In their
seminal work they provided 302 classes of 4-bit bijections, with the application
that every 4-bit bijection is affine equivalent to only one of such 302 classes.
Based on their classification, the PRESENT S-box belongs to the cubic class
C4266 with Truth Table 0123468A5BCFED97. It other words, it is possible to write
the PRESENT S-box as S : A′ ◦ C4266 ◦A, where A′(.) and A(.) are 4-bit bijective
affine functions. Therefore, given the uniform TI representation of C4266 one can
easily apply A(.) on all input shares and A′(.) on all output shares to obtain a
uniform TI of the PRESENT S-box.

As stated in [5] C4266 can be decomposed into two 4-bit quadratic bijections
belonging to the following combinations of classes: (Q12 ◦ Q12), (Q293 ◦ Q300),
(Q294 ◦ Q299), (Q299 ◦ Q294), (Q299 ◦ Q299), (Q300 ◦ Q293), and (Q300 ◦ Q300).
However, the uniform TI of the quadratic class Q300 with 3 shares can only
be achieved if it is again decomposed in two parts. Therefore, the above de-
compositions in which Q300 is involved need to be implemented in 3 stages if
the minimum number of 3 shares is desired. Excluding such decompositions we
have four options to decompose the PRESENT S-box in two stages with 3-share
uniform TI since the PRESENT S-box is affine equivalent to C4266.

For the sake of simplicity – as an example – we consider the first decompo-
sition, i.e., Q12 ◦Q12, which indicates that it is possible to write the PRESENT
S-box as S : A′′ ◦Q12 ◦A′ ◦Q12 ◦A, where all three A′′(.), A′(.), and A(.) are 4-bit
affine bijections. Thanks to the classifications given in [5] a uniform first-order
TI of Q12 can be achieved by direct sharing. For Q12:0123456789CDEFAB we can
write

e = a, f = b + bd + cd, g = c + bd, h = d, (1)

with 〈a, b, c, d〉 the 4-bit input, 〈e, f, g, h〉 the 4-bit output, and a and e the least
significant bits.

The component functions of the uniform first-order TI of Q12 can be derived
by f i,j

Q12
(〈ai, bi, ci, di〉, 〈aj , bj , cj , dj〉) = 〈e, f, g, h〉 as

e =ai, f = bi + bjdj + cjdj + djbi + djci + bjdi + cjdi,

g =ci + bjdj + djbi + bjdi, h = di. (2)

The three 4-bit output shares provided by f2,3
Q12

(., .), f3,1
Q12

(., .) and f1,2
Q12

(., .) make
a uniform first-order TI of Q12. Since the affine transformations (A,A′,A′′) do
not change the uniformity, by applying them on each 4-bit share separately we
can construct a 3-share uniform first-order TI of the PRESENT S-box. Figure 1
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Fig. 1. A first-order TI of the PRESENT S-box

shows the graphical view of such a construction, and the detailed formulas of
the component functions are given in Appendix A.

2.3 Affine Equivalence

In order to find such affine functions we give a pseudo code in Algorithm 1
which is mainly formed following [6]. The algorithm is based on precomputation
of all 4 × 4 linear functions, i.e. 20 160 cases, each of which is represented by
a 4 × 4 binary matrix with columns (c0, c1, c2, c3). Hence, each affine function
A(.) is considered as a matrix multiplication followed by a constant addition
A(x) = [c0 c1 c2 c3] · x⊕ c.

Algorithm 1: Find affine equivalent triples

Input : L4: all 4× 4 linear permutations,
S: targeted S-box,
F, G: targeted functions

Output: A: all (A,A′,A′′) as S : A′′ ◦ G ◦ A′ ◦ F ◦ A
A ← ∅
for ∀L ∈ L4, ∀c ∈ {0, 1}4 do

form affine A by L and constant c
for ∀L′ ∈ L4, ∀c′ ∈ {0, 1}4 do

form affine A′ by L′ and constant c′

c′′ ← G
(
A′

(
F
(
A
(
S−1 (0)

))))
c′′1 ← G

(
A′

(
F
(
A
(
S−1 (1)

))))
⊕ c′′

c′′2 ← G
(
A′

(
F
(
A
(
S−1 (2)

))))
⊕ c′′

c′′3 ← G
(
A′

(
F
(
A
(
S−1 (4)

))))
⊕ c′′

c′′4 ← G
(
A′

(
F
(
A
(
S−1 (8)

))))
⊕ c′′

form affine A′′−1
by columns (c′′1 , c

′′
2 , c
′′
3 , c
′′
4 ) and constant c′′

if ∀y ∈ {0, 1}4 \ {0, 1, 2, 4, 8}, G
(
A′

(
F
(
A
(
S−1 (y)

)))) ?
= A′′−1

(y) then

derive affine A′′ as the inverse of A′′−1

A ← A∪
{

(A,A′,A′′)
}

end

end

end
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Table 1. The number of existing affine triples for different compositions

Decomposition No. of Triples #(A) #(A′) #(A′′) #(L) #(L′) #(L′′)

Q12 ◦ Q12 147 456 384 36 864 384 48 2 304 48
Q294 ◦ Q299 229 376 512 57 344 448 56 3 584 64
Q299 ◦ Q294 229 376 448 57 344 512 64 3 584 56
Q299 ◦ Q299 200 704 448 50 176 448 56 3 136 56

Given the PRESENT S-box and f = g = Q12 the algorithm finds 147 456
such 3-tuple affine bijections (A,A′,A′′). Table 1 lists the number of found affine
triples for each of the aforementioned decompositions.

3 Design Considerations

This section briefly demonstrates the architecture the PRESENT TI which we
have implemented. Afterwards, different approaches for generating and exchang-
ing affine triples are presented and compared.

3.1 Threshold Implementation of PRESENT cipher

PRESENT is a lightweight symmetric block cipher with a block size of 64 bits
and either 80-bit or 128-bit security level (i.e., key size). The encryption of a
plaintext is based on a Substitution-Permutation (S/P) network always taking 31
rounds and 32 sub-keys to compute the ciphertext (independently of the security
level). The only difference between PRESENT-80 and PRESENT-128 is in the
key schedule function to derive the sub-keys from the initial 80-bit or 128-bit
key. Figure 2 gives an overview of our hardware architecture implemented on
an Xilinx Spartan-6 FPGA. We opted to implement the PRESENT encryption
scheme in a round-based manner along with the 128-bit key schedule variant.
The sub-keys are derived on-the-fly. The substitution layer uses the first-order
TI of the PRESENT S-box shown in Figure 1 and implements 16 S-boxes in
parallel before the permutation is applied bitwise to all 64-bit states. Due to
the additional register stage within the TI S-box each round requires two clock
cycles.

As stated in Section 2.3, given a certain decomposition there exist many
triple affine functions to realize a uniform first-order TI of the PRESENT S-
box. Our goal is to randomly change such affine functions on the fly, that it first
does not affect the correct functionality of the S-box, and second randomizes
the intermediate values – particularly the shared Q12 inputs – with the aim of
hardening higher-order attacks. As shown in Figure 2 all S-boxes share the same
affine triple. In other words, at the start of each encryption an affine triple is
randomly selected, and all S-boxes are configured accordingly. Although it is
possible to change the affines more frequently, we kept the selected affines for
an entire encryption process. To this end, we need an architecture to derive the
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Fig. 2. Architecture of the PRESENT encryption design

affine triples randomly. Below we discuss about different ways to realize such a
part of the design.

3.2 Searching for the Affine Triples

At a first step, we decided to implement Algorithm 1 as a hardware circuit
which searches for the affine triples in parallel to the encryption. The found
affine triples are stored into a “First In, First Out” (FIFO) memory, and prior
to each encryption one affine triple is taken from the FIFO with which the
corresponding part of the TI S-boxes are configured. If the FIFO is empty, the
previous affine triple is used again. Due to the fact that the search is not time-
invariant, i.e., new affine triples are not found periodically, some affines are used
multiple times in a row while others are only used once. Since the efficiency of
SCA countermeasures depends on the uniformity of the used randomness, such
an implementation may not achieve the desired goal (i.e., hardening the higher-
order attacks) if certain affines are used more often that the others. One solution
to find affine triples more often is to run the search circuit with a higher clock
frequency compared to that of the encryption circuit. Although this measure is
limited, it at least alleviates the problem of changing S-boxes not periodically.
On the other hand, if affine triples are found too fast this may cause a FIFO
overflow. In this case either some search results should be ignored or the search
circuit should be stopped requiring some additional control logic.

3.3 Selecting Precomputed Affine Triples

As stated in Table 1, considering the decomposition Q12◦Q12, there exist 147 456
triple affines (A,A′,A′′). Each single affine transformation is a 4-bit permutation,
and it can be represented as a look-up table containing sixteen 4-bit entries which
requires 64 bits of memory. This results in 27 Mbit memory in order to store
all the affine triples. However, the employed Xilinx Spartan-6 FPGA (LX75)
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offers only 3 Mbit storage in terms of general purpose block memory (BRAM).
Therefore, alternative approaches to generate the affine equivalent triples are
necessary.

Instead of storing the affines in a look-up table, in the second option we
represent an exemplary affine A(x) = L · x ⊕ c, with x as a 4-bit vector, L a
4× 4 binary matrix and c a 4-bit constant. In this case, only the binary matrix
and the constant need to be stored which reduces the memory requirements to
20 bits per affine. However, still more than 8 Mbit memory are necessary to store
all affine triples. Therefore, we could store only a fraction of all possible affine
triples. As an example, 16 384 affine triples occupy 60 BRAMs of the Spartan-6
(LX75) FPGA.

3.4 Generating Affine Triples On-the-fly

A detailed analysis of the affine triples led to interesting observations. First, the
number of affine triples depends on the components in the underlying decompo-
sition. For instance, in case of Q299 ◦ Q299 448× 448 and in case of Q299 ◦ Q294

448 × 512 affine triples exist (see Table 1). Second, the total number of affine
triples is limited by the number of unique input affines A and the number of
output affines A′′ such that |A| × |A′′| gives the number of corresponding affine
triples. This means that all affine triples of a decomposition can be generated
by combining all A with all A′′. Furthermore, we have observed that all affines A
(for each decomposition) consist of a few linear matrices combined with certain
constants. In particular, in case of the decomposition Q12 ◦ Q12 the 384 input
affines A are formed by 48 binary matrices L each of which combined with 8
different constants c ∈ {0, . . . , 7} or c ∈ {8, . . . , 15}. Indeed the same holds for
the 384 output affines A′′ which are made of 48 binary matrices L′′ by con-
stants c ∈ {0, 1, 4, 5, 10, 11, 14, 15} or c ∈ {2, 3, 6, 7, 8, 9, 12, 13}. Therefore, it is
sufficient to store only all relevant binary matrices L and L′′ in addition to a
single bit indicating to which group their constants belong to. Hence, in total
48×2×(16+1) = 1632 bits of memory (fitting into a single BRAM) are required
to store all necessary data. Even better, by arranging the binary matrices in the
memory smartly the group of the corresponding constants can be derived from
the address where the binary matrix is stored.

Given two input and output affines A and A′′, we need to derive the middle
affine A′. To this end, an approach similar to Algorithm 1 can be used. If we
represent the middle affine as A′(x) = L′ ·x⊕c′, the constant c and the columns
(c′1, c

′
2, c
′
3, c
′
4) of the binary matrix L can be derived as

c′ =Q12
−1 (A′′−1 (S (A−1 (Q12

−1 (0)
))))

(3)

c′1 =Q12
−1 (A′′−1 (S (A−1 (Q12

−1 (1)
))))

⊕ c′ (4)

c′2 =Q12
−1 (A′′−1 (S (A−1 (Q12

−1 (2)
))))

⊕ c′ (5)

c′3 =Q12
−1 (A′′−1 (S (A−1 (Q12

−1 (4)
))))

⊕ c′ (6)

c′4 =Q12
−1 (A′′−1 (S (A−1 (Q12

−1 (8)
))))

⊕ c′ (7)
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Obviously, this requires the inverse of both A and A′′. Since it is not efficient
to derive such inverse affines on the fly, we need to store all binary matrices L−1

and L′′−1 in addition to all L and L′′. Fortunately, all such binary matrices
(requiring 3 kbits) still fit into a single 16-kbit BRAM of Spartan-6 FPGA. It is
noteworthy that the constant of each inverse affine can be computed by L−1 · c.

In summary, at the start of each encryption two L and L′′ (each of which from
a set of 48 cases) are randomly selected, that needs 6 + 6 bits of randomness1.
In addition, 3 + 3 random bits are also required to form constants c and c′′.
As exampled before, one bit of each constant should be additionally saved or
derived from the address of the binary matrix. Therefore – excluding the masks
required to represent the plaintext in a 3-share form for the TI design – in total
18 bits randomness is required for each encryption.

For ASIC platforms, where block memories are not easily available, an alter-
native is to derive the content of binary matrices L and L′′ as Boolean functions
over the given random bits. Hence, a fully combinatorial circuit can provide the
input and output affines followed (as before) by a module which retrieves the
middle affine.

3.5 Comparison

Table 2 gives an overview of the design of the three above-mentioned approaches
to derive the affine triples. The table reports the area overhead, reconfiguration
time, and coverage of the affines’ space. Comparing the first naive approach (of
searching the affine triples in parallel to the encryption) to the approach of pre-
computing affine triples, the logic requirements could be dramatically decreased
at cost of additional memory. In addition, the amount of affine triples that are
covered is limited potentially reducing the security gain. We should note that
the 20 BRAMs used in the “Search” approach are due to the space required to
store all 4 × 4 linear permutations L4 required to run Algorithm 1 (excluding
those required for the FIFO). The last approach where the affine triples are
generated on-the-fly seems to be the best choice. It not only leads to the least
area overhead (both logic and memory requirements) but also covers the whole
number of possible affine triples.

We should note that our design needs a single clock cycle to derive the middle
affine A′. Indeed the 114 LUTs (reported in Table 2) are mainly due to realization
of the Equations (3)-(7) in a fully combinatorial fashion.

Further, with respect to the design architecture of the encryption function
(Figure 2) the quadratic component functions ofQ12 are implemented by look-up
tables (LUTs), and the affine functions by fully combinatorial circuits realizing
the binary matrix multiplication (AND operations) and XOR with the constant.
Therefore, given (16+4) bits as the content of the binary matrix and the con-
stant, the circuit does not need any extra clock cycles for configuration. Table 2
also gives an overview of the area and speed overhead of our design compared
to a similar designs. For the first reference, the TI S-box is implemented by the

1 For each selection ∈ {1, . . . 48} reject sampling with 6-bit random should be used.
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Table 2. Area and time overhead of different design approaches

Section/Method/ Resource Utilization Reconfig. Affine Max. Order
Module Logic Memory Time Coverage Freq. of TI

(LUT) (FF) (BRAM16) (Cycles) (Percent) (MHz)

3.2/Search 562 250 20 16 100.0 - -
3.3/Precompute 204 0 60 0 11.1 - -
3.4/Generate 114 20 1 1 100.0 - -

Encryption [this work] 1720 722 0 - - 112 1st
Encryption [16] 641 384 0 - - 218 1st
Encryption [14] 808 384 0 - - 207 1st
Encryption [14] 2245 1680 0 - - 204 2nd

design of [16] (i.e., without any random affine). The second reference implements
both a first-order and a second-order TI S-box for PRESENT in a similar fash-
ion (using Q294 and Q299 instead of Q12) but with fixed affine transformations.
The numbers for the encryption function exclude the PRNG as well as the cir-
cuit which finds/derives the affines. Due to the extra logic to support arbitrary
affines, our design is certainly larger and slower.

4 Evaluation

We employed a SAKURA-G platform [1] equipped with a Spartan-6 FPGA for
practical side-channel evaluations using the power consumption of the device.
The power consumption traces have been measured and recorded by means of
a digital oscilloscope with a 1 Ω resistor in the Vdd path and capturing at the
embedded amplifier of the SAKURA-G board. We sampled the voltage drop at a
rate of 500 MS/s and a bandwidth limit of 20 MHz while the design was running
at a low clock frequency of 3 MHz to reduce the noise caused by overlapping of
the power traces.

4.1 Non-Specific Statistical t-test

In order to evaluate the resistance or vulnerabilities of our designs against higher-
order side-channel attacks we applied the well-known state-of-the-art leakage
assessment metric called Test Vector Leakage Assessment (TVLA) methodology.
This evaluation scheme is based on the Welch’s (two-tailed) t-test and also known
as fix vs. random or non-specific t-test. For further details, particularly how to
apply this assessment tool for higher-order leakages as well as how to implement
it efficiently in particular for large-scale investigations, we refer the reader to [19]
giving detailed practical instructions. In short, we should note that such an
assessment scheme examines the existence of leakage at a certain order without
giving any reference to whether the detected leakage is exploitable by an attack.
However, if the test reports no detectable leakage, it can be concluded that –
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with a high level of confidence – the device under test does not exhibit any
exploitable leakage.

4.2 Results

In this section we present the result of the side-channel evaluations concerning
the efficiency of our introduced approaches to avoid higher-order leakages. In
order to solely evaluate the influence of randomly exchanging the affine triples
we considered a single design in our evaluations. As a reference, the design is kept
running with a constant affine triple2, and its evaluation results are compared to
the case where the affine triples are randomly changed prior to each encryption.
Note that in both cases (constant affine and random affine) the PRNG which
provides masks for the initial second-order masking (with three shares) is kept
active. In other words, both designs – based on the TI concept – are expected
to provide first-order resistance, and their difference should be in exhibiting
higher-order leakages.

In Section 3 we introduced three different approaches to derive affine triples.
Due to the issues and limitation of both first approaches, we have included the
practical evaluation results of only the third option in Section 3.4, i.e., generating
affine triples on-the-fly, which covers all possible affine triples.

Figure 3 shows two sample traces corresponding to the cases where the affine
triple is constant or random. The main difference between these two traces can be
seen by a large power peak at the beginning of the trace belonging to the random
affines. Such a peak indicates the corresponding clock cycle where the random
affine is selected and the middle affine is computed (as stated in Section 3.5, it is
implemented by a fully combinatorial circuit). The first-order, second-order and
third-order t-test results are shown in Figures 4-6 respectively for both constant
and random affine. As expected, both designs do not exhibit any first-order
leakage confirming the validity of our setup and designs. However, changing
the affine triples randomly could avoid the second- and third-order leakage from
being detectable. This can be seen in Figure 5 and Figure 6. We should highlight
that the evaluations of the design with a constant affine have been performed by
50 million traces while we continued the measurements and evaluations of the
design with random affines up to 200 million traces.

5 Discussions

The scheme, which we have introduced here to harden higher-order attacks, at
the first glance seems to just add more randomness to the design. We should
stress that our approach is not the same as the concept of remasking applied
in [2, 5, 13]. Remasking (or mask refreshing) can be done e.g., by adding two
new fresh random masks r1 and r2 to the input of the TI S-box in Figure 1 as
(x1⊕r1,x2⊕r2,x3⊕r1⊕r2). Since our construction of the PRESENT TI S-box

2 This has been easily done by fixing the corresponding 18 random bits.
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0 6.25 18.75 25

−50

0

50

100

Time [µs]

(a) Constant affine

0 6.25 18.75 25

−50

0

50

100

Time [µs]

(b) Random affines

Fig. 3. Sample traces of the PRESENT encryption function
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Fig. 4. Non-specific t-test: first-order evaluation results
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Fig. 5. Non-specific t-test: second-order evaluation results
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Fig. 6. Non-specific t-test: 3rd-order evaluation results

fulfills the uniformity, such a remasking does not have any effect on the practical
security of the design as both (x1,x2,x3) and (x1 ⊕ r1,x2 ⊕ r2,x3 ⊕ r1 ⊕ r2)
are 3-share representations of x. In contrast, in our approach e.g., the input
affine A randomly changes. Hence the input of the first Q12 function is a 3-share
representation of A(x). Considering a certain x, random selection of the input
affine leads to random A(x) which is also represented by three Boolean shares.
Therefore, the intermediate values of the S-box (at both stages) are not only
randomized but also uniformly shared. As a result, hardening both second- and
third-order attacks which make use of the leakage of the S-box can be justified.
Note that since the S-box output stays valid as a Boolean shared representation
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of S(x) and random affine triples do not affect the PLayer (of the PRESENT
cipher), the key addition and the values stored in the state register, our approach
is not expected to harden third-order attacks that target the leakage of these
modules. However, our construction (which is a combination of masking and
hiding) allows to achieve the presented efficiencies with low number of (extra)
required randomness, i.e., 18 bits per encryption. Indeed, our approach might be
seen as a form of shuffling which can be applied on the order of S-box executions
in a serialized architecture. However, our construction is independent of the
underlying architecture (serialized versus round-based) and allows hiding the
exploitable higher-order leakages in a systematic way.
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A Necessary component functions for a first-order TI of
PRESENT S-box

y1 =f2,3
Q12

(〈a2, b2, c2, d2〉, 〈a3, b3, c3, d3〉) = 〈e, f, g, h〉
e =a2, f = b2 + b3d3 + c3d3 + d3b2 + d3c2 + b3d2 + c3d2,

g =c2 + b3d3 + d3b2 + b3d2, h = d2. (8)

y2 =f3,1
Q12

(〈a3, b3, c3, d3〉, 〈a1, b1, c1, d1〉) = 〈e, f, g, h〉
e =a3, f = b3 + b1d1 + c1d1 + d1b3 + d1c3 + b1d3 + c1d3,

g =c3 + b1d1 + d1b3 + b1d3, h = d3. (9)

y3 =f1,2
Q12

(〈a1, b1, c1, d1〉, 〈a2, b2, c2, d2〉) = 〈e, f, g, h〉
e =a1, f = b1 + b2d2 + c2d2 + d2b1 + d2c1 + b2d1 + c2d1,

g =c1 + b2d2 + d2b1 + b2d1, h = d1. (10)


