
Zeroizing Without Low-Level Zeroes:

New MMAP Attacks and Their Limitations1

Jean-Sébastien Coron2 Craig Gentry3 Shai Halevi3 Tancrède Lepoint4

Hemanta K. Maji5,6 Eric Miles6 Mariana Raykova7 Amit Sahai6,8

Mehdi Tibouchi9

June 15, 2015

Abstract

We extend the recent zeroizing attacks of Cheon, Han, Lee, Ryu and Stehlé (Eurocrypt’15)
on multilinear maps to settings where no encodings of zero below the maximal level are available.
Some of the new attacks apply to the CLT13 scheme (resulting in a total break) while others
apply to (a variant of) the GGH13 scheme (resulting in a weak-DL attack). We also note the
limits of these zeroizing attacks.

Keywords: Cryptanalysis, Hardness Assumptions, Multilinear Maps.

1This work subsumes and extends the previous works [13, 8].
2University of Luxembourg. jean-sebastien.coron@uni.lu
3IBM Research
4CryptoExperts. tancrede.lepoint@cryptoexperts.com. This work has been supported in part by the European

Union’s H2020 Programme under grant agreement number ICT-644209.
5Purdue University
6University of California, Los Angeles and Center for Encrypted Functionalities. hemanta.maji@gmail.com,

enmiles@cs.ucla.edu, amitsahai@gmail.com
7SRI International. mariana@cs.columbia.edu. This work has been supported in part from NSF Award 1421102.
8Research supported in part from a DARPA/ONR PROCEED award, a DARPA/ARL SAFEWARE award, NSF

Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a
Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of
Naval Research under Contract N00014-11-1-0389. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

9NTT Secure Platform Laboratories. tibouchi.mehdi@lab.ntt.co.jp

Contents

1 Introduction 1
1.1 Impact of Our Attacks . 1
1.2 Limitations of Zeroizing attacks . 2

2 Background and Overview 3
2.1 A Brief Description of the GGH13 and CLT13 Schemes 3

2.1.1 The GGH13 scheme . 3
2.1.2 The CLT13 Scheme . 4
2.1.3 Common Properties . 4

2.2 Overview of Existing Attacks . 5
2.3 Extending the CHLRS Attack . 6

2.3.1 GGH13 vs. CLT13 . 6
2.3.2 Orthogonal encodings . 7
2.3.3 More than one monomial . 7
2.3.4 Using Cayley-Hamilton . 7

2.4 Attack Limitations . 8

3 A Unified Attack against CLT13-Based Schemes 9
3.1 Sufficient conditions for the attack to succeed . 10
3.2 Attacking the Boneh-Wu-Zimmerman “Immunized” Variant 12
3.3 Attacking the Garg-Gentry-Halevi-Zhandry Countermeasure 14
3.4 Attacking GGHRSW Obfuscation for Simple Branching Programs 16
3.5 Attacking Recent Circuit-Obfuscation Schemes . 19

4 A Weak-DL Attack on Matrix-GGH13 22
4.1 The Updated Weak-DL Attack. 23

5 Conclusions 25

References 25

A A Refined Generic Model 26

B Hardness Assumption with Binding Variables 27
B.1 Attacking Simplified Binding Variables . 28

1

1 Introduction

The GGH13 [10] and CLT13 [7] “approximate multilinear maps” candidates suffer from zeroizing
attacks, where encodings of zero at levels below the top (zero-test) level can be exploited to recover
information that should have been hidden by the encoding scheme. The essence of these attacks is
using successful zero tests to obtain equations over the base ring (Z or Z[X]/F (X)), then solving
these equations to get the desired information. First presented in the context of the GGH13
candidate [10], such attacks were recently extended by Cheon et al. [6] also to the CLT13 candidate,
where they were shown to be particularly devastating, leading to a total break (when they can be
mounted).

As explicitly discussed in [6], however, these attacks seem to depend on the availability of
low-level encoding of zeros. This limits the applicability of these attacks, especially since several
high-profile applications of multilinear maps (such as for obfuscation [11]) do not reveal such low-
level zero encodings.

In this work we show that it is possible to “zeroize without low-level zeroes”: that is, we extend
the attacks from [6] and apply them against both CLT13 encodings and a matrix variant of GGH13
encodings, even in settings where no low-level encodings of zero are available to the adversary. Our
extension to the attacks from [6] to avoid low-level zero encodings was also observed independently
and concurrently by Boneh, Wu, and Zimmerman [4]. We further systematize the new attacks and
show that they can overcome recent proposals to “immunize” against them [12, 4]. In particular,
our attacks also deal with cases where more than one monomial is needed to get a zero, and
with modifications of the CLT13 and GGH13 schemes that use matrix-based encodings with the
encoded values embedded in the eigenvalues of the matrix. Before describing our zeroizing attacks,
we discuss the impact and limitations of these attacks.

1.1 Impact of Our Attacks

Broken Assumptions and Constructions. The most direct consequence of our work is that
more hardness assumptions and constructions from the literature are broken. Prior to our work,
the attacks of [6] already broke several assumptions and constructions using CLT13 encodings
because they provided low-level encodings of zero. Our work extends to new assumptions and
constructions, even where no low-level encodings of zero are available. For example, our extensions
can be used to break instances of the meta-assumption of Pass et al. [21] (using either GGH13 or
CLT13 encodings), even when used without low-level encodings of zero. Furthermore, we show that
natural attempts to “immunize” CLT13 or GGH13 encodings by removing low-level encodings of
zero [12, 4] fail. In particular, the assumptions used by Gentry et al. [15, 14] are broken, even when
“immunized” using the technique from [4]. Perhaps more surprisingly, we also show that simplified
variants of certain obfuscation schemes can be broken:

• We show that the GGHRSW branching-program obfuscation procedure from [11], imple-
mented over the CLT13 scheme [7], can be broken when it is applied to branching programs
with a very specific “decomposable” structure. See Section 3.4.

• We also show that the simplified circuit obfuscation scheme of Zimmerman [22, Appendix A]
and Applebaum-Brakerski [1] can be broken when applied to very simple circuits (e.g., point
functions).

1

Generic multilinear model. Zeroizing attacks provide concrete examples of ways in which
GGH13 and CLT13 encodings fail to realize the generic multilinear model. That is, they provide
natural examples of information that is learnable from certain combinations of CLT13 and GGH13
encodings, but is not learnable in the generic multilinear model. Such attacks of course do not
affect the validity of security proofs within the generic multilinear map model, but they illustrate
flaws in the model itself when applied to GGH13 and CLT13 encodings.

However, as discussed in more detail below, zeroizing attacks have their limitations, and thus
it is important to explore alternative generic models that give the adversary more power, in the
hope that they will provide better approximation to the adversarial capabilities against current
multilinear-map candidates. Some early attempts along this line can be found in [20, 1]. In the
current work we suggest another direction for alternative generic models that would incorporate
information learnable by the adversary using zeroizing attacks; see Appendix A.

Subsequent work. Following our work, Badrinarayanan et al. introduced in [2] a generic model
that captures all known zeroizing attacks (including ours) by regarding the creation of any encoding
of zero as a complete break of the system, and showed how to securely obfuscate evasive functions
in this model.

Coron, Lepoint, and Tibouchi recently proposed in [9] a new version of the CLT13 scheme
(denoted CLT15), with a modified zero-testing procedure that seems to avoid zeroizing attacks
altogether. No polynomial-time attacks are currently known against this version, hence assumptions
and constructions that are broken by [6] and our work when instantiated by CLT13 may still hold
when using CLT15.

For GGH13, the graded decisional Diffie-Hellman assumption from [10] was broken by Hu and
Jia [18], in the same settings for which the initial zeroizing attack [10] applies (i.e., in the presence
of low-level encodings of zero).

1.2 Limitations of Zeroizing attacks

Potent as they are, zeroizing attacks have their limitations. For example, so far we do not have
attacks on any of the NC1 obfuscation candidates in the literature. Moreover the “dual-input
straddling sets” technique of [3] and its variants that are used in several obfuscation schemes [5, 3,
22] appear to be effective in thwarting these attacks. See more details in Section 2.4.

Successful zero tests are necessary. Our work demonstrate that some attacks are possible
even if we only have top-level encoded zeros, but crucially all of these attacks depend on successful
zero tests to get equations over the base ring. Some constructions or assumptions may not provide
these top-level zeros, and in that case it is plausible that the GGH13 and CLT13 candidates
could even provide semantic security [16] of the encoded values. Even more, as far as we know
the standard generic multilinear-map model could provide a good approximation of GGH13 and
CLT13 in settings where top-level encoding of zeros are not available.

The equations must be simple. In zeroizing attacks, each successful zero-test provides the
adversary one equation over the base ring, and the attack relies on the attacker’s ability to solve
the resulting system of equations. The successful attacks detailed in our paper (as well as those
from [10, 6]) arise in situations where the adversary has substantial freedom in creating top-level
encodings of zero, and can exploit this freedom to obtain “a simple system of equations” over the
base ring that can be solved using linear algebraic techniques.

There are many cases, however, in which the available encodings are constructed such that only

2

very particular combinations of them yield a top-level encoding of zero, and those combinations
do not seem to yield efficiently solvable system of equations. Two such examples, illustrated in
Section 2.4, are obfuscation schemes that rely on Barrington’s theorem, and schemes that use the
“dual-input straddling sets” technique.

We believe that long-term understanding of the security offered by current multilinear map
candidates will require tackling long-standing questions about which kinds of systems of nonlinear
equations are feasible to solve efficiently, and which are not.

2 Background and Overview

2.1 A Brief Description of the GGH13 and CLT13 Schemes

We begin with a brief description of the GGH13 and CLT13 schemes, omitting many details that
are irrelevant for the attacks in question. Both these schemes implement graded encoding schemes
where “plaintext elements” are encoded in a way that hides their value but allows to add and
multiply them, and also allows to test if a degree-k expression in these values is equal to zero
(where k is the “multi-linearity parameter”).

2.1.1 The GGH13 scheme

For GGH13 [10], the plaintext space is a quotient ring Rg = R/gR where R is the ring of integers in
a number field and g ∈ R is a “small element” in that ring. The space of encodings is Rq = R/qR
where q is a “big integer”. An instance of the scheme relies on two secret elements, the generator
g itself and a uniformly random denominator z ∈ Rq. A plaintext element (which is a coset
a = α + gR) is encoded “at level one” as u = [e/z]q where e is a “small element” in the coset a
(i.e., e = α + gr for some r ∈ R). More generally, a level-i encoding of the coset a has the form
u = [e/zi]q for a small e ∈ α+ gR.

Addition/subtraction of encodings at the same level is just addition in Rq, and it results in an
encoding of the sum at the same level, so long as the numerators do not wrap around modulo q.
Similarly multiplication of elements at levels i, i′ is a multiplication in Rq, and as long as the
numerators do not wrap around modulo q the result is an encoding of the product at level i+ i′.

The scheme also includes a “zero-test parameter” in order to enable testing for zero at level k.
Noting that a level-k encoding of zero is of the form u = [gr/zk]q, the zero-test parameter is an
element of the form pzt = [hzk/g]q for a “somewhat small element” h ∈ R. This lets us eliminate
the zk in the denominator and the g in the numerator by computing [pzt · u]q = h · r, which is
much smaller than q because both h, r are small. If u is an encoding of a non-zero α, however, then
multiplying by pzt leaves a term of [hα/g]q which is not small. Testing for zero therefore consists of
multiplying by the zero-test parameter modulo q and checking if the result is much smaller than q.

Matrix-GGH13. An unpublished variant of GGH13 (that was meant to protect against zeroiz-
ing attacks) uses matrices of native GGH13 encodings, where the encoded value is an eigenvalue of
the matrix and the zero-test parameter includes also the corresponding eigenvector. This is essen-
tially the same as the GGHZ countermeasure construction from [12, Sec. 7] (which is described in
Section 3.3), except that it uses GGH13 encodings rather than CLT13 encodings.1

1Our attack from Section 3.3 applies for the most part to this GGH13 variant too, except that in this case we
only get a weak-DL attack rather than a complete break; see the full version for details.

3

2.1.2 The CLT13 Scheme

The CLT13 scheme [7] is similar to above, but it relies on CRT representation modulo a composite
integer x0 =

∏n
j=1 pj , where the pj ’s are “large primes”, all of about the same size. We let

CRT (a1, . . . , at) denote the unique element a ∈ Zx0 that is congruent to aj modulo pj for all j.
Also we often use the shorthand CRT (aj)j to denote the same.2

The plaintext space in CLT13 consists of vectors a ∈ Zg1 × · · · × Zgn , where all the gj ’s are
much smaller than their corresponding pj ’s. An instance of the scheme relies on the secrets gj
and pj (with x0 public), and on a secret uniformly random denominator z ∈ Zx0 . Such a vector
a = (α1, . . . , αn) is encoded at level one as [CRT (α1 + g1r1, . . . , αn + gnrn) /z]x0 , where the rj ’s are
all small. More generally a level-i encoding of this vector is of the form [CRT (αj + gjrj)j /z

i]x0 .
Addition/subtraction of encodings at the same level is just addition in Zx0 , and it results in an

encoding of the sum at the same level, so long as the numerators in the different CRT components
do not wrap around modulo their respective pj ’s. Similarly multiplication of elements at levels i, i′

is a multiplication in Zx0 , and as long as the numerators in the different CRT components do not
wrap around modulo their respective pj ’s, the result is an encoding at level i+ i′ of the entry- wise
product of the two vectors.

For zero-testing, let us denote p∗j = x0/pj =
∏
i 6=j pi, and note the following easy corollary of

the Chinese Remainder Theorem:

Proposition 2.1. For all a1, . . . , an ∈ Z, CRT
(
p∗jaj

)
j

=
∑n

j=1 p
∗
jaj (mod x0).

Namely when each CRT component j is divisible by p∗j , then the CRT composition can be
computed just by adding all the CRT components modulo x0.

The zero-test parameter in CLT13 is pzt = [zk ·CRT
(
p∗jhjg

−1
j

)
j
]x0 for small elements hj � pj ,

where g−1
j is computed modulo pj . Multiplying this zero-test parameter by a level-k encoding of

zero, that has the form u = [CRT (gjrj)j /z
k]x0 , yields

[pzt · u]x0 = CRT
(
p∗jhjrj

)
j

=
∑
j

p∗jhjrj .

Since hjrj � pj for all j, then p∗jhjrj = (x0/pj)hjrj � x0, and also the sum is much smaller than
x0. Testing for zero therefore consists of multiplying by the zero-test parameter modulo x0 and
checking if the result is much smaller than x0.

2.1.3 Common Properties

The GGH13 and CLT13 schemes share a very similar structure; here we summarize the common
features that are used in the attacks:

• Each encoding is “associated” with the vector of small integers in the numerator. For GGH13
this is a 1-vector consisting of a single algebraic integer,3 and for CLT13 this is a vector of
n integers in Z. Below we write informally u ∼ (a1, . . . , an) to denote the fact that the
encoding u is associated with the vector of ai’s. Roughly speaking, the goal of the attacks is
to recover the vector (aj)j from the encoding u. Recovering this vector (even if not in full) is
usually considered a break of the scheme.

2We do not assume that the aj ’s are smaller than their corresponding pj ’s.
3The matrix-GGH13 variant has vectors in the numerator rather than a single algebraic integer.

4

• An encoding of zero is associated with a vector divisible by the gj ’s, namely u ∼ (gjrj)j for
some rj ’s.

• Addition and multiplication of encodings acts entry-wise on the vector of integers in the
numerator. Importantly, the addition and multiplication of these vectors is done over the
integers, with no modular reduction. This is because a wrap-around in these operations is an
error condition, and so the parameters are always set to ensure that it does not happen.

• If u ∼ (gjrj)j is an encoding of zero at the top level, then applying the zero-test to u returns
the integer w =

∑
j rjρj , where the rj ’s are the multipliers from the numerator vector and

the ρj ’s are system parameters independent of u.

In other words, applying the zero-test to an encoding of zero yields the inner-product of the
associated vector (sans the gj ’s) with a fixed secret vector. (In GGH13 this is the 1-vector
(h), in CLT13 the vector is (p∗jhj)j .) Importantly, here too the inner product is over the
integers, with no modular reduction.

2.2 Overview of Existing Attacks

The GGH13 Zeroizing Attack. The following “zeroizing” attack on the GGH13 scheme was
described in [10]. It gets as input a level-t encoding of zero u0 ∼ (gr) and many other level-
(k− t) encodings um ∼ (am). Multiplying u0 by any of the um’s yields a top-level encoding of zero
u0um ∼ (gram), and applying the zero-test yields the algebraic integer wm = hram. Note that this
almost recovers the numerators am’s; indeed we have them up to the common factor h′ = hr.

If we also knew the ideal Ig = gR that defines the plaintext space, then being able to recover
the numerator up to a constant is enough to break many hardness assumptions. For example, given
an encoded matrix we could compute its determinant (mod Ig) up to a constant, which would tell
us whether or not the encoded matrix has full rank.

Even when Ig is not explicitly given, Garg et al. described in [10] how it can be recovered
in certain cases using GCD computations. Roughly, we can use GCD to identify and remove the
common factor h′, thereby getting the am’s themselves, except that these are all algebraic integers
so we only have GCD in terms of their ideals. Recovering the ideal Ia = aR is not always useful,
e.g., if Ia and Ig are co-prime then knowing Ia does not tell us anything about our plaintext coset
a + Ig. However if some of the ui’s are themselves encoding of zero, namely ai = gri, then given
enough ideals Iai = griR we could again use GCD calculations to recover the ideal Ig itself, and
then use that knowledge to attack the non-zero encodings among the ui’s. This attack was called in
[10] a “weak discrete-log attack”. Recently, this attack was used by Hu and Jia [18] as a component
in a new attack that breaks the key-exchange protocol from [10].

We note that the GGH13 zeroizing attack does not work against CLT13 encodings, since rather
than a simple product we now have an inner product wm =

∑
j am,jρj , and we cannot use this

to compute GCDs. (For the same reason, this attack does not work against the matrix-GGH13
variant.)

The CHLRS Zeroizing Attack. Cheon, Han, Lee, Ryu and Stehlé recently described in [6]
a major upgrade of the GGH13 zeroizing attack, which can be used to completely break CLT13-
based schemes in some cases, recovering the factorization of x0 and all secret information. To
mount the CHLRS zeroizing attack we need three sets of encoded inputs, which we denote by

5

A = {Ai : i = 1, . . . , n}, B = {B0, B1}, and C = {Cj : j = 1, . . . , n} (with n the dimension of the
numerator vectors). The A’s are all random encoding of zeros, the B’s are the target of the attack,
and the C’s are just helper encodings of random vectors. The levels of these encodings are such
that multiplying Ai ·Bσ ·Cj yields a top-level encoding of zero for any i, σ, j. Below we denote the
numerator vectors associated with these encodings by

Ai ∼ (g1ri,1, . . . , gnri,n), Bσ ∼ (bσ,1, . . . , bσ,n), and Cj ∼ (cj,1, . . . , cj,n).

Multiplying Ai ·Bσ ·Cj yields a top-level encoding of zero, associated with the vector Ai ·Bσ ·Cj ∼
(g1ri,1bσ,1cj,1, . . . , gnri,nbσ,ncj,n). Applying the zero-test we get a four-wise inner product, yielding
the integer wσ[i, j] =

∑n
k=1 ρkri,kbσ,kcj,k. We can write this four-wise inner product in matrix form

as

wσ[i, j] = (ri,1 . . . ri,n)×

 ρ1bσ,1
. . .

ρnbσ,n

×
 cj,1

...
cj,n

 ,
and denote the vector on the left by ai, the matrix in the middle by B′σ, and the vector on the
right by cj . For a fixed σ, let i, j range over 1, . . . , n. This yields an n × n matrix of integers
Wσ = [wσ[i, j]]i,j = A′ × B′σ × C ′, where A′ has the ai’s for rows and C ′ has the cj ’s for columns.
Since the ri,k’s, bσ,k’s, cj,k’s and ρk’s are all random (small) quantities, then with high probability
the matrices are all invertible (over the rationals). Having computed the matrices Wσ, the attacker
now sets

W = W0 ×W−1
1 = (A′B′0C

′)× (A′B′1, C
′)−1 = A′ × (B′0 ×B′1

−1
)×A′−1

.

Observe now that B∗ = B′0 × B′1
−1 is a diagonal matrix with b0,j/b1,j on the diagonal, and thus

the eigenvalues of B∗ are all the ratios b0,j/b1,j . And since W and B∗ are similar matrices, then
also the eigenvalues of W are the b0,j/b1,j ’s. Hence once it computes W , the attacker can find its
eigenvalues (over the rationals) and obtain all the ratios b0,j/b1,j .

These ratios may be enough by themselves to break some hardness assumptions, but for CLT13
it is possible to use them to factor x0, thereby getting a complete break. Specifically, since each
ratio is rational it can be written as u/v = b0,j/b1,j with u, v co-prime integers. Recalling now that
B0, B1 are two encodings at the same level (say, level t) with numerator vectors (b0,1, . . . , b0,n) and
(b1,1, . . . , b1,n), respectively, we get that

uB1 − vB0 = [CRT (ub1,1 − vb0,1, . . . , ub1,n − vb0,n) /zt]x0 .

This means that the j’th CRT component is ub1,j − vb0,j = 0, and with high probability the others
are not, so we get GCD(x0, uB1 − vB0) = pj .

2.3 Extending the CHLRS Attack

In the current work we describe several extensions to attacks of Cheon et al. from [6]; below we
describe these extensions briefly.

2.3.1 GGH13 vs. CLT13

We can also apply these zeroizing attacks to a matrix variant of GGH13, not just to CLT13
encodings, resulting in a “weak discrete-log” attack. This is described in Section 4.

6

2.3.2 Orthogonal encodings

We also note that these attacks do not actually require low-level encoding of zeros. Indeed all we
need is that for every i, σ, j, the product AiBσCj is a top-level encoding of zero, so we could have
the A’s with zeros in a few CRT components, the B’s with zeros in some other components, and
the C’s with zeros in all the CRT components not covered by the A’s and B’s. This observation
was also made concurrently by Boneh et al. [4].

2.3.3 More than one monomial

The attack also extends to a setting where more than a single monomial is needed to get a zero.
For example, consider the case where we have not three but six sets of encodings. Similar to before
we have A = {Ai : i = 1, . . . , 2n}, B = {B0, B1}, and C = {Cj : j = 1, . . . , 2n}, but now we also
have Ã = {Ãi : i = 1, . . . , 2n}, B̃ = {B̃0, B̃1}, and C̃ = {C̃j : j = 1, . . . , 2n}. (Note that the indices
i, j now range over [1, 2n], not [1, n]). The new attack requires that AiBσCj + ÃiB̃σC̃j is a top-level
encoding of zero for every i, σ, j. We denote the numerator vectors associated with these encodings
by

Ai ∼ (ai,1, . . . , ai,n), Bσ ∼ (bσ,1, . . . , bσ,n), Cj ∼ (cj,1, . . . , cj,n),

Ãi ∼ (ãi,1, . . . , ãi,n), B̃σ ∼ (b̃σ,1, . . . , b̃σ,n), C̃j ∼ (c̃j,1, . . . , c̃j,n).

We can think of the pairs (Ai, Ãi), (Bσ, B̃σ), (Cj , C̃j) as encodings that are associated with
numerator vectors of twice the dimension, and the CHLRS attack can be applied to these new
“double encodings”. The only difference (other than the larger dimension) is that we can no longer
associate the division-by-gi with any single vector. Instead, applying the zero-test to AiBσCj +
ÃiB̃σC̃j yields a four-wise inner product divided by the gi’s, which we can write in matrix form:

wσ[i, j] = (ai,1 ãi,1 . . . ai,n ãi,n)×



ρ1bσ,1
g1

ρ1b̃σ,1
g1

. . .
ρnbσ,n
gn

ρnb̃σ,n
gn


×


cj,1
c̃j,1

...
cj,n
c̃j,n

 .

Importantly, even though we have division by gi’s, this equation holds over the rationals, without
modular reduction. The attack itself proceeds just as before, and the g−1

i factors conveniently fall

off when we compute B′0 × B′1
−1. This extension can be used to break the “immunized” CLT13

variant from [4].

2.3.4 Using Cayley-Hamilton

In response to the CHLRS attacks, Garg et al. described in [12, Sec. 7] a variant of the CLT13
encoding that uses matrices for encoding, rather than single Zx0 elements (see description in Sec-
tion 3.3 below).

The attacks above apply also to this variant for the most part, but the resulting matrices B′0, B
′
1

are no longer diagonal. Instead they are block-diagonal with the block dimension corresponding
to the dimension of the encoding matrices, and different blocks corresponding to different CRT

7

components (i.e. Bσ mod pj). The eigenvalues of B′0 × B′1
−1 in this case need not be rational

numbers anymore, they can be arbitrary complex numbers, and so the final step in the CHLRS
attack cannot be applied.

However the characteristic polynomial of B∗ = B′0×B′1
−1 is still the product of the characteristic

polynomials of the blocks. We can factor the characteristic polynomial of B∗ to find the block
characteristic polynomials, and then apply these block polynomials to the matrix M = B1 ×B−1

0 .
Applying a block polynomial to M zeros out the corresponding CRT component (by the Cayley-
Hamilton theorem), but not the others (whp), and we can then compute the GCD of x0 and
any matrix element to recover the prime corresponding to the zeroed CRT component. Note this
assumes that the block polynomials are irreducible over Q (which indeed holds for [12, Sec. 7]), so
that they can be efficiently found by factoring B∗’s characteristic polynomial.

The actual procedure that we use differs slightly, in order to handle an unpublished generaliza-
tion of [12, Sec. 7] in which the encoding matrices themselves are constructed to be block-diagonal,
say with block dimension d. With this change B∗ is still block-diagonal, but the block dimension
is now larger by a factor of d, and each polynomial that we want to apply to M is the product
of d factors of B∗’s characteristic polynomial. We do not know of a way to efficiently partition
these factors into the correct sets of size d. Instead, we remove one irreducible factor from B∗’s
characteristic polynomial, and apply the resulting polynomial to M . This has the effect of zeroing
out all CRT components except the one corresponding to the removed factor, so computing the
GCD with x0 recovers the product of all but one of the primes, and dividing x0 by this recovers an
individual prime. Cycling over all irreducible factors, we recover all of the primes.

2.4 Attack Limitations

As sketched in the introduction, zeroizing attacks have their limitations, in that they require zeros
and moreover need the equations that yield these zeros to be “simple.” Two scenarios that seem
outside the scope of these attacks due to “non-simple” equations are discussed next.

Obfuscation using Barrington’s theorem. Consider the obfuscation schemes in the literature
that obfuscate matrix-based branching programs (BP) resulting from Barrington’s theorem [11, 5,
3, 21]. These schemes are designed so that the only way to get a top-level zero encoding is using
the prescribed routines for evaluating the obfuscated circuit on various inputs, so we only need to
examine the type of expressions that arise from such evaluation.

Recall that a matrix-based BP has a sequence of steps, each specified by two matrices and
controlled by an input bit. On a given input, we choose one of the two matrices in each step
(based on the corresponding input bit), then multiply all of the selected matrices in order to get
the result. In the BPs that are generated by Barrington’s theorem, each input bit controls several
steps that are spaced far apart, and so changing the value of that bit changes the selection of all
these matrices. This makes it hard to apply our attacks in this setting, since these attacks require
a multilinear setting where we can get many different zeros by changing just a single variable in
every monomial. Therefore, even though we do get equations over the base ring from top-level
zeros in this scheme, these equations appear to be correlated in a highly non-linear manner, foiling
our attempts to glean useful information from them. (Rather than the individual matrices, one can
consider for each bit position j two tensor products of matrices corresponding to this bit position,
one tensor of the matrices for value 0 and the other for the value 1. Then we can get a multilinear
equations in these tensor vectors, but we do not see how to use them to mount a successful attack.)

8

We contrast this situation with the attack that we describe in Section 3.4, that breaks obfus-
cation of very simple branching programs which are “separable” in the sense that different subsets
of the input bits control different consecutive intervals of steps, thus giving us the simple system
of equations that we need.

Binding variables. The CHLRS attacks and our extensions rely on the ability to partition
the variables into groups (A,B, C above), so that we can independently choose variables from the
different groups and every such choice yields a top-level zero. Several schemes in the literature
use explicit binding variables to make it hard to partition the encodings into independent sets.
For example, the obfuscation schemes of Barak et al. [3] and Zimmerman [22] use “dual-input
straddling sets” to create a “high connectivity” interlocking set of encodings.

These schemes contain, for each pair i, j of input bits, four encoded variables Ui,j,0,0, Ui,j,0,1, Ui,j,1,0,
and Ui,j,1,1, such that obtaining a top-level encoding of zero requires multiplying Ui,j,∗,∗’s that are
consistent with some n-bit input x (i.e., it requires computing some expression ·

∏
i,j Ui,j,xi,xj). This

structure seems to foil attempts of separating the variables into independent sets, since changing
any input bit creates a cascading effect. To illustrate the difficulty of applying the attack in this
setting, we describe in Appendix B. a relatively simple source-group hardness assumption involving
such binding variables, which we do not know how to break even though we are given many low-
level CLT13 encodings of zero. We mention that in some simple cases one can use GCDs to remove
the binding variables and mount the same attack; this is described in Appendix B.1. However we
see no way of extending that attack to the binding variables as they are used in the literature.

3 A Unified Attack against CLT13-Based Schemes

Below we present a general attack on CLT13-based schemes that combines all the ideas from
Section 2.3, and show how this attack can be used against:

• The CLT13 scheme with orthogonal encodings (details omitted), and the proposed modifica-
tions by Boneh et al. [4] and Garg et al. [12, Sec. 7] (that were suggested in response to the
CHLRS attacks);

• Obfuscations of branching programs with specific structure using the iO procedure of Garg
et al. [11]; and

• Obfuscations of simple circuits (such as point functions) when the “simplified iO variant” of
Zimmerman [22, App. A] and Applebaum and Brakerski [1].

Central to our general attack is the notion of a “good attack set,” which roughly plays the role
of the sets A,B, C from Section 2 (together with the zero-test parameter). To define this notion
formally, fix an instance of CLT13 with n secret primes p1, . . . , pn and modulus x0 :=

∏
i pi. An

attack set (of dimension d) consists of three sets of matrices A,B, C ⊂ Zd×dx0 , of sizes |A| = |C| = nd
and |B| = 2, and two vectors s ∈ Z1×d

x0 and t ∈ Zd×1
x0 . These sets are constructed from the

available public parameters and encodings of a given scheme, in such a way that for every choice
of (Ai, Bσ, Cj) ∈ A× B × C, the value

Wσ[i, j] := s×Ai ×Bσ × Cj × t ∈ Zx0

9

Input: A = {Ai}i, B = {Bσ}σ, C = {Cj}j , s, t

1. Compute (nd)× (nd) matrices W0,W1 as Wσ[i, j] := [s×Ai ×Bσ × Cj × t]x0 .

2. Compute W := W0 ×W−1
1 over Q, and M := B0 ×B−1

1 (mod x0).

3. Compute W ’s characteristic polynomial f := charPoly(W) over Q, and factor it into monic
irreducible factors over Q as f = f1f2 · · · fm.

4. For all k ∈ {1, . . . ,m} define Fk := f/fk =
∏
i 6=k fi ∈ Q[X], let dk be the common

denominator of the coefficients of Fk, and set Gk := Fk · dk.

5. Evaluate the Gk’s at the matrix M mod x0, Mk := [Gk(M)]x0 ∀k 6 m.

6. Compute S := {GCD(Mk[i, j], x0) | i, j ∈ [nd]; k ∈ [m]}, and return {x0/q | q ∈ S}.

Figure 1: Our general attack on CLT13-based schemes

is a zero-tested top-level encoding of 0. (The CHLRS attack can be thought as a special case where
all the “matrices” are of dimension d = 1, and we have s = 1 and t = pzt.) Given such an attack
set, the attack proceeds as in Figure 1, where we denote by [z]p the reduction of z modulo p into
the interval [−p/2, p/2), and this notation extends entry-wise to vectors and matrices.

3.1 Sufficient conditions for the attack to succeed

Next we state and prove sufficient conditions on the attack set that ensures that the attack in
Figure 1 succeeds. Specifically, we would like to show that each Mk in step 5 must be zero modulo
all the primes except one, and hence any non-zero entry in it yields a nontrivial factor of x0 (i.e.
the product of those primes).

Referring to the intuition from Section 2.3.4, the matrix W = A × B∗ × A−1 is similar to a
block-diagonal matrix B∗ that has one block for each CRT component. Specifically, the jth block
of B∗ is B∗j = [B0]pj × ([B1]pj)

−1 (inverse over Q). The characteristic polynomial of W is then
the product of the characteristic polynomials of all the blocks. For simplicity, assume the block
polynomials are the irreducible factors fi from Figure 1. Then each Fk is thus the product of all
block polynomials except the kth, and by the Cayley-Hamilton theorem we have that Fk(B

∗
j) = 0

(and therefore also Gk(B
∗
j) = 0) for all blocks j 6= k. But Gk(B

∗
j) = 0 over Q implies that also

Gk(B0 × B−1
1) = 0 (mod pj), so Gk(M) is zero modulo all primes j 6= k. The only thing left

to ensure is that for the last prime pk we get Gk(M) 6= 0 (mod pk), which is the essence of our
sufficient condition. The actual condition in Definition 1 below is slightly more complex, to account
for the case when the block polynomials are reducible over Q.

Definition 1. Fix an attack set (A,B, C, s, t). Let B0, B1,M,W be the matrices from Figure 1,

and let gj := charPoly
(

[B0]pj × [B1]−1
pj

)
over Q. We say that (A,B, C, s, t) is good if:

1. f := charPoly(W) =
∏
j6n gj;

2. B1 is non-singular modulo x0;

3. The common denominators dk from step 4 are all co-prime with x0;

10

4. For any j 6 n and any divisor fk of gj of degree > 1 (possibly fk = gj), denoting Gk = dk·f/fk
as in step 4, we have Gk(M) 6= 0 (mod pj).

Theorem 1. For any good attack set (A,B, C, s, t), the algorithm in Figure 1 recovers the secret
primes p1, . . . , pn.

To prove Theorem 1 we use the following lemma:

Lemma 3.1. Let p > 1 and u1, . . . , ut, v1, . . . , vt be integers, s.t. the vi’s are invertible mod p, and
denote wi = [ui · v−1

i]p. If g is a multivariate integer polynomial such that g(u1v1 , . . . ,
ut
vt

) = 0 over
Q, then g(w1, . . . , wt) = 0 (mod p).

Proof. It is enough to prove it for a linear g, since we can replace any non-linear term
∏
i∈I(

ui
vi

)ei

(for some I ⊂ [t] and ei’s) by new variables u′ =
∏
i∈I u

ei
i , v′ =

∏
i∈I v

ei
i , and w′ = [

∏
i∈I w

ei
i]p =

[u′ · v′−1]p, and then prove the same statement on the resulting new polynomial.
Now denote V =

∏
i vi and for each i denote v∗i = V/vi =

∏
j 6=i vj . For a linear g we can write∑

i gi ·
ui
vi

= 0 over Q, so also
∑
giuiv

∗
i = V ·

∑
i gi ·

ui
vi

= 0, and in particular
∑
giuiv

∗
i = 0 (mod p).

Finally, since V is invertible modulo p we get∑
i

giwi =
∑
i

giuiv
−1
i = V −1 ·

∑
i

giuiv
∗
i = 0 (mod p).

Proof of Theorem 1. For all i denote B∗i = [B0]pi × [B1]−1
pi over Q and B̂i = [B0]pi × [B1]−1

pi over
Zpi . Let ti := det([B1]pi) (over Q), and since B1 is non-singular modulo x0 then in particular ti 6= 0
(mod pi). We can therefore write B∗i = B̃i/ti for an integer matrix B̃i, and clearly we also have
B̂i = B̃i · t−1 (mod pi).

Denote the characteristic polynomial of B∗i over Q by gi := charPoly(B∗i). By the first condition
in Definition 1 we have f := charPoly(W) =

∏
j6n gj . Note, however, that the gj ’s are not necessar-

ily irreducible, so there isn’t necessarily a 1-1 correspondence between the gj ’s and the irreducible
factors fk of f .

Fix an index j 6 n and we show that for some k it holds that Gk(M) 6= 0 (mod pj) but
Gk(M) = 0 (mod pi) for all i 6= j. Clearly this gj is divisible by at least one fk (which has degree
> 1), so the last condition of Definition 1 implies that Gk(M) = dk · Fk(M) 6= 0 (mod pj). It
remains to show that for all the other primes pi, i 6= j, we have Gk(M) = 0 (mod pi).

Clearly Fk is divisible by gi for every i 6= j, so the Cayley-Hamilton theorem implies that
Fk(B

∗
i) = 0 (over Q) for all i 6= j, and therefore also Gk(B

∗
i) = 0. Viewing Gk(B

∗
i) as a collection

of multivariate polynomials over the elements of B∗i , and using the facts that B∗i = B̃i/ti and
B̂i = B̃i · t−1 (mod pi), we can apply Lemma 3.1 to conclude that also Gk(B̂i) = 0 (mod pi). And
since M = B̂i (mod pi) then also Gk(M) = 0 (mod pi), as needed.

We have shown that Mk := Gk(M) satisfies Mk 6= 0 (mod pj) but Mk = 0 (mod pi) for all
i 6= j, so there exists an entry z = Mk[a, b] such that z 6= 0 (mod pj) but z = 0 (mod pi) for all
i 6= j. Thus GCD(z, x0) =

∏
i 6=j pi, and x0/GCD(z, x0) = pj .

Below we construct good attack sets for some schemes in the literature. We will repeatedly
use the fact that for a CLT13 encoding u associated with numerator vector u ∼ (rigi + mi)i,
the randomization vector (ri)i∈[n] is nearly uniform for each encoding. Specifically we have the
following, which is proved in [4, Lemma 5.7].

11

Lemma 3.2 ([4]). There exists a prime q = 2Ω(n) which is determined by the CLT13 system
parameters such that, for each encoding, the distribution on (ri mod q)i∈[n] is negl(n)-close to the
uniform distribution on Znq .

3.2 Attacking the Boneh-Wu-Zimmerman “Immunized” Variant

Boneh, Wu and Zimmerman [4] proposed an “immunization” of the CLT13 scheme, which more
generally applies to any composite-order asymmetric graded encoding scheme. At a high level, the
idea is to add two additional slots to the underlying scheme, and use these to maintain functionality
while preventing the possibility of having two encodings that multiply to 0 at the top level.

For purposes of illustration, a BWZ-encoding of plaintext m is given by two CLT13-encodings
[a, a′]: a encodes (m,α, β1) at level z1 and a′ encodes (β2, α, β3) at level z2, where α and the
βi are independent and uniform in the appropriate range. Two additional CLT13-encodings are
given out for zero testing: tL encodes (1, 1, 0) at level z2, and tR encodes (0, 1, 0) at level z1. The
top encoding level is z1z2. One can add and multiply BWZ-encodings component-wise, and given
a BWZ-encoding [a, a′] one can check if it is zero by computing the top-level CLT13 encoding
tL · a − tR · a′. With high probability this will be a CLT13-encoding of (0, 0, 0) iff [a, a′] was a
BWZ-encoding of 0. (Note that [4] can handle a general asymmetric level structure; we chose a
simple one here for clarity.)

The motivation for this scheme is that it will never give out two CLT13-encodings a and b such
that ab is a top-level CLT13-encoding of 0. However, (tL · a− tR · a′) · pzt is still a 2(n+ 2) linear
form in the CRT components of a and a′, and we can extend the Cheon et al. attack to this setting.

Attack Sets. We construct the three sets of matrices A,B, C for the attack on the scheme as
follows. We start with three sets of BWZ-encodings, which can be obtained from the ZMM.Encode
function of [4, Construction 3.1]:

• {[âi, â′i] : i = 1, . . . , 2n′}: âi at level za and â′i at level z′a.

• {[b̂σ, b̂′σ], : σ = 0, 1}: b̂σ at level zb and b̂′σ at level z′b.

• {[ĉj , ĉ′j] : j = 1, . . . , 2n′}: ĉj at level zc and ĉ′j at level z′c.

Here n′ := n+ 2 is the number of slots in each component of a BWZ-encoding (i.e. n is the number
of slots in the “un-immunized” scheme.) The scheme also gives out two other encodings: t̂L at
level z′az

′
bz
′
czT and t̂R at level zazbzczT , where the top CLT13 encoding level is z := zaz

′
azbz

′
bzcz

′
czT .

These encodings have the property that for all i, σ, j: (âib̂σ ĉj , â
′
ib̂
′
σ ĉ
′
j) is a top-level BWZ encoding

of 0, i.e. t̂Lâib̂σ ĉj − t̂Râ′ib̂′σ ĉ′j is a top-level CLT13-encoding of 0.
Then we set

A =

{
Ai =

[
âi 0
0 â′i

]}
B =

{
Bσ =

[
b̂σ 0

0 b̂′σ

]}
C =

{
Cj =

[
ĉj 0
0 ĉ′j

]}
.

Finally we set the vectors s = [t̂L, 1] and t = pzt · [1,−t̂R]T , where

pzt =
[
z · CRT

(
p∗khkg

−1
k mod pk

)
k

]
x0

is the zero-testing parameter of the underlying CLT13 scheme (as explained in Section 2.1.2).

12

Set Properties. Next we show that (A,B, C, s, t) form a good attack set according to Definition 1.
First, we observe that

Wσ[i, j] = s×Ai ×Bσ × Cj × t =
(

[âib̂σ ĉj , â
′
ib̂
′
σ ĉ
′
j] · [t̂L,−t̂R]

)
pzt

and thus each Wσ[i, j] is a zero-tested CLT13-encoding of 0.
Following the intuition from Section 2.3.3, we can write

Wσ[i, j] =
(
ai,1 a

′
i,1 . . . ai,n′ a

′
i,n′
)︸ ︷︷ ︸

ãi

×



ρ1bσ,1
g1

ρ′1b
′
σ,1

g1
. . .

ρn′bσ,n′
gn′

ρ′
n′b
′
σ,n′

gn′


︸ ︷︷ ︸

B̃σ

×


cj,1
c′j,1

...
cj,n′

c′j,n′


︸ ︷︷ ︸

c̃j

where the gi’s are set by the CLT13 scheme and the remaining values are set as follows.
Each ai,k (k ∈ [n′]) is the numerator of the kth CRT component of âi. That is, ai,k = gkra,i,k +

αi,k for independent randomness ra,i,k, where âi encodes plaintext (αi,k)k∈[n′]. Similarly a′i,k, bσ,k,
b′σ,k cj,k and c′j,k are the kth numerators of their respective encodings. Finally the ρk’s contain the

remaining “system parameters”, which here include the CRT components of t̂L and t̂R. Namely,
ρk = p∗khktL,k and ρ′k = −p∗khktR,k, where tL,k and tR,k are the kth numerators of t̂L and t̂R
respectively. Note that this equation holds over Q, without reducing mod x0, because the encodings
are chosen so that ai,kbσ,kcj,ktL,k − a′i,kb′σ,kc′j,ktR,k is a small multiple of gk for every i, j, k, σ.

Now, for σ ∈ {0, 1}, we can write Wσ = Ã × B̃σ × C̃j where Ã has ith row ãi and C̃ has
jth column c̃j . Each Wσ is invertible over Q with high probability, as follows. Clearly B̃σ is
invertible. To see that Ã is invertible, consider its determinant as a non-trivial degree-n polynomial
in the randomizers ra,i,k. Since these are negl(n)-close to uniform over a suitably large field by
Lemma 3.2, Ã’s determinant will be non-zero over Q with high probability by the Schwartz-Zippel
lemma. The same argument shows C̃ is invertible with high probability. Thus we can write
W := W0 ×W−1

1 = Ã× B̃0 × B̃−1
1 × Ã−1.

To prove the first property of Definition 1, we observe that

charPoly(W) = charPoly
(
B̃0 × B̃−1

1

)
=
∏
k∈[n′]

(
λ−

b0,k
b1,k

)(
λ−

b′0,k
b′1,k

)

=
∏
k∈[n′]

charPoly
(
(B0 mod pk)× (B1 mod pk)

−1
)
.

where λ is the characteristic polynomial’s indeterminate.
To prove the second property of Definition 1, we consider each det([B1]pk) as a polynomial

over the randomizers rb,1,k. By Lemma 3.2 and the Schwartz-Zippel lemma, we have det([B1]pk) 6=
0 (mod pk) with probability 1 − negl(n). Then B1 is non-singular mod pk for all k ∈ [n] simulta-
neously with probability 1− negl(n), and thus it is non-singular also mod x0.

To prove the third property of Definition 1, we observe that any value dk in step 4 of Figure 1
is either b1,k or b′1,k for some k ∈ [n′], and these are all co-prime to x0.

13

Proving the fourth property of Definition 1 reduces to showing that, for every k ∈ [n′], both
(b1,kλ− b0,k) and (b′1,kλ− b′0,k) are non-zero modulo pk when setting λ = B0×B−1

1 (mod x0). This
again holds with high probability over the CLT randomizers.

We remark that this attack can be extended to break the assumption of Gentry et al. [14] even
when their encodings are transformed using the above technique from [4]. In general, for this attack
on [4], we only require encodings that “BWZ-multiply” to 0 at the “BWZ-zero-testing-level”; thus
any set of encodings susceptible to the “basic” attack will be susceptible to the attack here after
applying the [4] transformation.

3.3 Attacking the Garg-Gentry-Halevi-Zhandry Countermeasure

Garg, Gentry, Halevi, and Zhandry proposed in [12, Sec. 7] a variant of the CLT13 scheme, that
was designed to resist the CHLRS attack. This variant uses matrices of native CLT13 encodings,
where the encoded value is an eigenvalue of the matrix and the zero-test parameter includes also
the corresponding eigenvector. The CHLRS attack from [6] indeed does not apply to this variant,
but below we show that this variant still gives rise to a good attack set, and thus our new attack
from Figure 1 recovers the secret primes.

The GGHZ variant relies on the same parameters as CLT13, namely we choose ({gi}i, {pi}i,pzt, {zi})
(with x0 :=

∏
i pi and top level corresponding to denominator z∗ =

∏
zi). Let d := 2κ + 1, and

choose a secret matrix T ∈ Zd×dx0 uniformly. An encoding of a plaintext value c at some level is
given by C ∈ Zd×dx0 , where4

C := T ×


$̂ 0̂ . . . 0̂

0̂ $̂ . . . 0̂
...

...

0̂ 0̂ . . . ĉ


︸ ︷︷ ︸

C∗

×T−1 mod x0.

Each $̂ in C∗ is a “native CLT13 encoding” of an independent random value at the given level,
each 0̂ is an independent native encoding of 0, and ĉ is a native encoding of c. For zero-testing,
two dimension-d vectors s, t are provided:

s := [$̂ . . . $̂ 0̂ . . . 0̂ $̂]× T−1 mod x0

t := pzt · T× [0̂ . . . 0̂ $̂ . . . $̂ $̂]T mod x0

where 0̂ and $̂ are CLT13 native “level-zero” encodings (i.e, corresponding to denominator 1). Then
a GGHZ-encoding C as above at the top level level can be zero tested by computing s × C × t =
($̂ · ĉ+ 0̂) · pzt (mod x0) and checking for smallness.

Attack set. The matrix setsA,B, C consist directly of GGHZ-encodings, since these are already in
matrix form. Specifically, we assume that [1, κ] is partitioned into three intervals IA = [1, kA], IB =
[kA + 1, kB], IC = [kB + 1, κ], such that we have GGHZ-encodings

4The attack applies also when one uses many matrices T0, T
−1
0 , . . . , Tκ, T

−1
κ (rather than just T, T−1), so multi-

plication can only be performed in a specific order, as described in [12].

14

• A =
{
Ai = T ×A∗i × T−1 : Ai encoded at level IA

}
i∈[nd]

• B =
{
Bσ = T ×B∗σ × T−1 : Bσ encoded at level IB

}
σ∈{0,1}

• C =
{
Ck = T × C∗k × T−1 : Ck encoded at level IC

}
k∈[nd]

where Ai ×Bσ × Ck is a GGHZ-encoding of 0 for all i, k ∈ [nd] and σ ∈ {0, 1}. The vectors s and
t are the zero testing vectors from the GGHZ scheme.

Attack set properties. We prove that (A,B, C, s, t) form a good attack set according to Defi-
nition 1. We write

Wσ[i, k] = s×Ai ×Bσ × Ck × t
= s× T ×A∗i ×B∗σ × C∗k × T−1 × t = ai ×B∗σ × ck

where ai := s′ × A∗i and ck := C∗k × t′ are dimension-d vectors. The above equality holds over the
integers, not only modulo x0, since all the variables in the final right-hand-side are small compared
to x0.

We denote ai` := ai mod p` and ck` := ck mod p` for i ∈ [nd], ` ∈ [n]. Now we can write
Wσ = Ã× B̃σ × C̃, where Ã is an nd×n2d matrix, C̃ is an n2d×nd matrix, and B̃σ is a n2d×n2d
block-diagonal matrix, defined as follows.

Ã =


a1

1 a1
2 · · · a1

n

a2
1 a2

2 · · · a2
n

...
...

...
and1 and2 · · · andn

 C̃ =


(c1

1)T (c2
1)T · · · (cnd1)T

(c1
2)T (c2

2)T · · · (cnd2)T

...
...

...
(c1
n)T (c2

n)T · · · (cndn)T



B̃σ =


B∗σ mod p1 0 0

0 B∗σ mod p2 0
. . .

0 0 B∗σ mod pn


Using Lemma 3.2 and the Schwartz-Zippel lemma, it can be shown that with high probability over
the randomness in the CLT13 encodings, Ã, C̃, and each B∗σ have full rank nd. Under this condition
each Wσ has rank nd and is thus invertible, so we can write W = W0×W−1

1 = Ã×B̃0×B̃−1
1 ×Ã−1,

where Ã−1 denotes the right inverse of the (non-square, full-rank) matrix Ã. Then we have

charPoly(W) = charPoly
(
B̃0 × B̃−1

1

)
=

n∏
i=1

charPoly
(
[B∗0]pi × [B∗1]−1

pi

)
=

n∏
i=1

charPoly
(
[B0]pi × [B1]−1

pi

)
so the first property of Definition 1 holds. The second property of Definition 1 follows similarly to
the proof for the BWZ attack (Section 3.2). We were not able to prove that the last two properties

15

in Definition 1 hold, but we verified them experimentally by running the attack on several random
instances and checking that they indeed hold in all of them. For the fourth property, we can prove
that it holds under the following natural conjecture:

Conjecture 1. For each i ∈ [n], with high probability over the randomness in the CLT13 encodings,
charPoly

(
[B∗0]pi × [B∗1]−1

pi

)
is irreducible over Q.

We make two remarks about this conjecture. First, we have verified it experimentally. Second, a
work of Kuba [19] shows that among the degree-n univariate integer polynomials whose coefficients
are bounded in absolute value by an integer t, the polynomials that are reducible over Q make
up a roughly 1/t fraction. In particular, a random polynomial with r-bit coefficients is irreducible
over Q with probability roughly 1 − 2−r. Thus provided that charPoly

(
[B∗0]pi × [B∗1]−1

pi

)
is well-

distributed among polynomials with an appropriate coefficient bound, Conjecture 1 should hold.
We note that the relationship between a random polynomial and the characteristic polynomial of
a random matrix has been explored by Hansen and Schmutz [17]. However, their results do not
seem directly applicable here because they study polynomials over a finite field F, and a uniform
degree-n polynomial is irreducible over F only with probability ≈ 1/n.

Assuming Conjecture 1, the fourth property of Definition 1 reduces to showing that for every

prime factor pj of x0,
(∏

i 6=j difi

)
(M) 6= 0 (mod pj) where di, fi, and M are as in Fig. 1. Choose

all values in the CLT13 encodings except for the random values in the jth slot of the encodings
in B0, and call the unchosen values R. With high probability over this choice, each entry of M

is a non-trivial linear polynomial in R, and
(∏

i 6=j difi

)
is a non-trivial degree-(n− 1) polynomial

in M . Thus each entry of
(∏

i 6=j difi

)
(M) is a non-trivial degree-(n− 1) polynomial in R, and is

non-zero modulo pi with high probability by Lemma 3.2 and the Schwartz-Zippel lemma.

3.4 Attacking GGHRSW Obfuscation for Simple Branching Programs

We observe that our unified attack can be applied also to the candidate obfuscation construction
of Garg et al. [11] when instantiated with the CLT13 multilinear maps and applied to branching
programs with specific “partitionable” structure that we define below. We stress that applying
Barrington’s theorem to a circuits does not have the required structure, so as far as we know, the
iO candidate from [11] for NC1 circuits remains plausible.

The GGHRSW Obfuscation Candidate for Branching Programs

Recall that the obfuscator of Garg et al. [11] consists of encoded, randomized versions of two BPs;
one is the BP that we want to obfuscate and the other is a “dummy BP” consisting of only identity
matrices (and hence computing the all-one function). Even though neither program computes a
zero, they are constructed such that their difference on accepting computations yields an encoding
of zero, which can be recognized by zero testing. The core construction from [11] works with
oblivious branching programs. An oblivious branching program of length L over ` input variables
is defined as follows

BP = {(inp(i), Ai,0, Ai,1) : i ∈ [L], inp(i) ∈ [`], Ai,b ∈ {0, 1}w×w},

where the Aiσ’s are invertible matrices and inp(i) is the input bit position examined in step i. The
function computed by this branching program is defined (using some fixed matrix A0 6= I) as

16

fBP,A,I =


0 if

∏L
i=1Ai,xinpi = A0

1 if
∏L
i=1Ai,xinpi = I

undef otherwise.

Let Zp be a ring that we use for randomization, and for each input bit j denote by Ij := {i ∈
[L] : inp(i) = j} the set of steps where the branching program examine the j’th input bit. The
GGHRSW construction, on input an L-step branching program BP over ` input bits, proceeds as
follows:

1. Sample random and independent scalars {αi,0, αi,1, α′i,0, α′i,1 ∈ Zp : i ∈ [L]}, subject to the
constraint that for any input bit j ∈ [`], we have

∏
i∈Ij αi,0 =

∏
i∈Ij α

′
i,0 and

∏
i∈Ij αi,1 =∏

i∈Ij α
′
i,1.

2. Let m = 2L + w. For every i ∈ [n], choose two block-diagonal m × m matrices Di,0, Di,1

where the diagonal entries 1, . . . , 2L are chosen at random ($) and the bottom-right w × w
are the scaled Aj,b’s. Also choose two more m × m matrices D′i,0, D

′
i,1 where the diagonal

entries 1, . . . , 2L are random and the bottom-right w × w are the scaled identity:

Di,b ∼


$

. . .

$

αi,bAi,b

 , D′i,b ∼


$

. . .

$

α′i,bI

 , b ∈ {0, 1}.

3. Choose vectors s and t, and s′ and t′ of dimension m = 2L+ w as follows:

s ∼ (0 . . . 0 $. . . $ s∗) t ∼ ($. . . $ 0 . . . 0 t∗)T

s′ ∼ (0 . . . 0 $. . . $ s′∗) t′ ∼ ($. . . $ 0 . . . 0 t′∗)T

Here s∗, t∗, s′∗, t′∗ ∈ Zwp are uniform up to 〈s∗, t∗〉 = 〈s′∗, t′∗〉, and 0 . . . 0 and $. . . $ are
length-L vectors of zeros and uniform elements of Zp, respectively.

4. Sample 2(L+ 1) uniform full-rank matrices R0, . . . , RL, R
′
0, . . . , R

′
L ∈ Zm×mp .

5. The randomized branching program over Zp is the following:

RNDp(BP) ={
s̃ = sR−1

0 , t̃ = Rnt, s̃′ = s′(R′0)−1, t̃′ = R′nt
′{

D̃i,b = Ri−1Di,bR
−1
i

}
i∈[L],b∈{0,1},

{
D̃′i,b = R′i−1D

′
i,b(R

′
i)
−1
}
i∈[L],b∈{0,1}

}

6. Finally, encode the randomized program using an (L + 2)-level asymmetric multilinear map
scheme. Here we use the CLT13 scheme, choosing x0 =

∏n
i=1 pi, for equal-size primes pi, g =

CRT (gi) for small gi � pi’s, random denominators z0, z1, . . . , zL+1 ∈ Zx0 with z∗ = [
∏
i zi]x0 ,

and an element h with mid-size CRT components, used for the zero-testing parameter pzt =
[hz∗g−1]x0 .

17

Choose random small vectors rs r′s rt r′t, and random small matrices Ui,b and U ′i,b, and publish
the zero-testing parameter pzt and the obfuscation

O(BP) =



ŝ = [z−1
0 (s̃ + grs)]x0 , t̂ = [z−1

L+1(t̃ + grt)]x0 ,{
D̂i,b = [z−1

i (D̃i,b + gUi,b)]x0
}
i∈[L],b∈{0,1},

ŝ′ = [z−1
0 (s̃′ + gr′s)]x0 , t̂′ = [z−1

L+1(t̃′ + gr′t)]x0 ,{
D̂′i,b = [z−1

i (D̃′i,b + gU ′i,b)]x0
}
i∈[L],b∈{0,1}


.

To evaluate O(BP)(x), compute y = s̃
(∏L

i=1 D̃i,xinp(i)

)
t̃− s̃′

(∏L
i=1 D̃

′
i,xinp(i)

)
t̃′, and output 1 if

y encodes 0 (as determined by pzt).

Attack

Our attack is applicable to branching programs with the following structure: there exists a partition
of the input bits [`] = X1 ∪X2 ∪X3 and the branching program steps [L] = A ∪ B ∪ C such that
A, B and C consist of consecutive steps in the branching program and inp(i) ∈ X1 ∀i ∈ A, inp(i) ∈
X2 ∀i ∈ B and inp(i) ∈ X3 ∀i ∈ C. We consider a branching program BP of length L and input
length `, computing the constant-1 function, that can be written as BP (x) = A(x1)◦B(x2)◦C(x3),
where A(x1), B(x2), and C(x3) are branching programs over positions in the sets A,B, and C
depending on inputs x1, x2, and x3, respectively. We are given the obfuscation:

O(BP) =
(
pzt, ŝ, t̂, ŝ

′, t̂′, {D̂i,b, D̂
′
i,b}i∈[L],b∈{0,1}

)
.

Attack Sets. We construct the sets A, B and C as follows. Let A(x) =
∏
i∈ADi,xinp(i) , A

′(x) =∏
i∈AD

′
i,xinp(i)

. We define similarly B(x), B′(x) and C(x), C ′(x). We note that using O we can com-

pute R0A(x)R−1
|A| =

∏
i∈A D̃i,xinp(i) and R0A

′(x)R−1
|A| =

∏
i∈A D̃

′
i,xinp(i)

, and so on. Let α1, . . . , αmn ∈
{0, 1}|X1| be any set of distinct strings, and similarly for β0, β1 ∈ {0, 1}|X2| and γ1, . . . , γmn ∈
{0, 1}|X3|. We set s = (s̃, s̃′) and t = (t̃,−t̃′)pzt, and define

A =

{
Ãi =

[
R0A(αi)R

−1
|A| 0

0 R0A
′(αi)R

−1
|A|

]}
i∈[(2L+w)n]

B =

{
B̃σ =

[
R|A|B(βσ)R−1

|A∪B| 0

0 R|A|B
′(βσ)R−1

|A∪B|

]}
σ∈{0,1}

C =

{
C̃k =

[
R|A∪B|C(γk)R

−1
L 0

0 R|A∪B|C
′(γk)R

−1
L

]}
k∈[(2L+w)n]

.

Set Properties. We consider the values

W0[i, k] = s× Ãi × B̃0 × C̃k × t = (s×Ai ×B0 × Ck × t− s′ ×A′i ×B′0 × C ′k × t′)pzt.

18

Since W0[i, k] is a zero-tested encoding of zero by the definition of the obfuscated branching
programs, the above equality holds not only mod x0 but also over the integers. W1 is constructed
analogously.

The rest of the attack proceeds in the same manner as the attack on GGHZ encodings from
Section 3.3. Let ai = (s× Ai, s′ × A′i) for i ∈ [(2m+ w)n], ck = (Ck × t× pzt,−C ′k × t′ × pzt) for

k ∈ [(2m+w)n] and X0 =

[
B0 0
0 B′0

]
. We set the matrix Â to have i-th row that is concatenations

of the vectors ai mod pj for j ∈ [n], the matrix Ĉ to have i-th column that is concatenation
of cTi mod pj for j ∈ [n], and the matrix B̂0 to be a diagonal matrix with diagonal consisting
of X0 mod pj for j ∈ [n]. Then we have that W0 = Â × B̂0 × Ĉ. We compute analogously
W1 = Â × B̂1 × Ĉ. We use these matrices as in the attack on GGHZ encodings to break the
underlying CLT13 encodings.

3.5 Attacking Recent Circuit-Obfuscation Schemes

Recently, Zimmerman [22] and Applebaum and Brakerski [1] proposed very similar obfuscation
schemes that handle circuits directly, without needing to transform them first into branching pro-
grams. This scheme operates with MMAP schemes that have composite-order plaintext space, it
was proved secure in a generic MMAPs model, and at the time it was suggested to realize this
scheme over the CLT13 graded encoding scheme [7]. Although the attacks of Cheon et al. serve as
a powerful demonstration that the CLT13 scheme is susceptible to a lot more attacks than those
available in the generic model, it was still not known how to apply these attacks to break the
schemes from [22, 1].

Each of the works [22, 1] contain a “simple scheme” (which is essentially the same in both
works) and then a more complicated variant (which differs between the two papers). Below we
show that the common simple scheme from [22, Appendix A] and [1] can be broken using an attack
similar to the one from 3.2, when instantiated with simple enough circuits. For example, when
that scheme is used to obfuscate point functions, it is possible to recover the secret point from the
obfuscated circuit.

The Circuit-Obfuscation Scheme

We begin with an overview of the scheme from [22, Appendix A]. We omit some details which are
not relevant to the attacks.

The construction uses a “universal circuit” C(y, x) = Cy(x), C : {0, 1}k × {0, 1}m → {0, 1}.
The starting point of this construction is the following simple scheme: obfuscating a circuit Cy is
done by encoding the bits of y and x using a graded encoding scheme, providing for the bits of y
only encoding of the correct bit value (0 or 1) and for the bits of x the encoding of both 0 and 1.
The user can then compute C(y, x) on the encoded bits and check if the answer is zero using the
zero-test. Of course this scheme is insecure, and so several modifications are introduced:

• The scheme uses a composite order multi-linear maps scheme that allows each encoding to
have two slots relative to two different factors Nev, Nchk of the plaintext space. One slot
encodes the bits as before (call it the signal slot and is defined by the value modulo Nev, while
the other slot encodes random elements (call it the control slot) and is defined by the value
modulo Nchk. An encoding of a message m such that m = m1 mod Nev and = m2 mod Nchk

with respect to a set S is denoted as [m1,m2]S .

19

For each bit position i in x, we provide two encodings x̃i,0 = [0, αi]Xi,0 and x̃i,1 = [1, αi]Xi,1
with the same value αi in the control slot and values zero and one in the signal slot. Similarly
for each bit position j in y we encode a random element βj in the control slot together with
the value yi in the signal slot: ỹi = [yi, βi]Y . The encodings of the bits belonging to the
function description y use the same set Y , while the encoding of each input bit b at each
position i of x uses a different set Xi,b.

The obfuscation includes the above encodings ỹi and x̃j together with an encoding of

C̃∗ = [0, C∗]
Y deg(y)

∏
i∈[n](Xi,0Xi,1)deg(xi)Zi

,

where C∗ is computed as C(α1, . . . , αk, β1, . . . , βm), deg(y) is the total degree of C in all of
the variables y1, . . . , ym and deg(xi) is the total degree of the C in the variable xi. The sets
Zi are new sets, which are used in the straddling encoding sets as we explain in the next
paragraph.

To evaluate the program on any specific input x, we choose the appropriate encodings x̃i,xi
together with the encodings ỹi and use them to evaluate the circuit C and obtain C̃ =
[Cy(x), C∗]

Y deg(y)
∏
i∈[k](Xi,xi)

deg(xi) . In order apply the zero test we need to remove the value

in the control slot of the encoding. For this purpose we will subtract the encoding C̃∗.
However, since C̃ and C̃∗ are encoded at different levels, the obfuscation provides the following
additional encodings:

z̃i,b = [δi,b, γi,b]Xdeg(xi)
i,1−b ZiWi

w̃i,b = [0, γi,b]Wi .

These encodings extend the straddling sets to enforce guarantees that each input bit is used
consistently throughout the circuit. More specifically C̃ can be completed to the zero-testing
level using the z̃i,b encodings if and only if it is encoded at a level that has component either

X
deg(xi)
i,0 or X

deg(xi)
i,1 .

Using the above encodings we can compute the following encoding at zero-testing level:

z =

C̃ ∏
i∈[n]

z̃i,xi − C̃∗
∏
i∈[n]

w̃i,xi

 .

We can apply the zero test on z, which encodes 0 if and only if Cy(x) = 0.

• Since the straddling sets for the encodings for the input bits above use different sets Xi,b

for each input position and value, we need one more modification of the scheme to enable
addition operations in the evaluated circuit. Since in the underlying graded encoding scheme
we can add only encodings associated with the same level set, in order to enable addition of
the values encoded in the signal slot in x̃i,b = [b, αi]Xi,b and x̃j,b′ = [b′, αj]Xj,b′ the obfuscation
provides also the following encodings: ũi,b = [1, 1]Xi,b and ũj,b′ = [1, 1]Xj,b′ . The encoding of
the sum of the signal slot values and the auxiliary encoding used for further additions are
computed as

x̃i,bũj,b′ + x̃j,b′ ũi,b = [b+ b′, αi + αj]Xi,bXj,b′ ũi,bũj,b′ = [1, 1]Xi,bXj,b′ .

20

Attack Sets

For our attack we will consider a circuit C that has only multiplication gates and odd number
n of inputs. Our attack can be extended to “universal” circuits for point functions of the form
C(y, x) = Cy(x) = χx⊕y=0. This circuit is described with a point y, it gets as input a point x,
compares the respective bits of x and y and then computes an AND of the results. We can apply
the attack that we describe next using the encoded bits bi = xi ⊕ yi in the role of the input bits.

We split the k bits of the input x into three sets X1, X2 and X3 where X1 contains the first
(k − 1)/2 bits, X2 is the middle bit and X3 are the last (k − 1)/2 bits of the input.

We construct the sets A, B and C as follows:

• A =
{∏

i∈X1
(x̃i,xi z̃i,xi) : at least one of the values {x̃i,xi}i∈X1 encodes 0

}
,

• B =
{
bx(k−1)/2+1

= x̃(k−1)/2+1,x(k−1)/2+1
· z̃(k−1)/2+1,x(k−1)/2+1

: x(k−1)/2+1 ∈ {0, 1}
}

,

• C =
{∏

i∈X3
(x̃i,xi z̃i,xi) : X3 ∈ {0, 1}(k−1)/2

}
.

We have s = 1 and t = pzt. Also M = b0 × b−1
1 .

Set Properties. Let A = {ai}i∈[n+1], B = {b0, b1} and C = {ck}k∈[n+1]. Let u = C̃∗
∏
i∈[n] w̃i,xi .

We consider

W0[j, k] = s× aj × b0 × ck × t− u× t = g−1h · (ux1 · ux2 · ux3 − u),

where g−1h, ux1 , ux2 , ux3 and u have the following CRT components:

g−1h = (g−1
1 h1, g−1

2 h2, g−1
3 h3, . . . , g−1

n hn)
ux1 = (g1ρx1,1, g2ρx1,2 + rx1 , g3ρx1,3, . . . , gtρx1,n)
ux2 = (τx2,1, g2τx2,2 + rx2 , τx2,3, . . . , τx2,n)
ux3 = (σx3,1, g2σx3,2 + rx3 , σx3,3, . . . , σx3,n)
u = (g1ψ1, g2ψ2 + r∗, g3ψ3, . . . , gnψn).

The above CRT component correspond to CLT13 encoding of the value in the signal slot except
the the values in the second CRT component which is the control slot. Since ux1 encodes 0 in its
signal slot, all its CRT components are 0 mod pi except the component in the second slot.

Let denote ρ′x1,2 = g2ρx1,2 + rx1 , τ ′y,2 = g2τx2,2 + rx2 , σ′z,2 = g2σx3,2 + rx3 , and ψ′2 = g2ψ2 + r∗.
Then, W0[j, k] equals

g−1h·
(
g1(ρx1,1τx2,1σx3,1−ψ1), (ρ′x1,2τ

′
x2,2σ

′
x3,2−ψ

′
2), g3(ρx1,3τx2,3σx3,3−ψ3), . . . , gn(ρx1,nτx2,nσx3,n−ψn)

)
,

which is a zero-tested encoding of 0 since by construction ψ′2− ρ′x1,2τ
′
x2,2

σ′x3,2 (mod g2). The above

equality holds not only mod x0 but also over the integers since g−1 cancels out and all other
variables are much smaller than x0.

21

We can write the last equality in matrix notations as

W0[j, k] = g−1 ·

ax1︷ ︸︸ ︷(
g1ρx,1 ρ′x1,2 g3ρx1,3 . . . gnρx1,n 1

)

×



h1τx2,1
h2τ

′
x2,2

h3τx2,3
. . .

hnτx2,n
−ψ∗


︸ ︷︷ ︸

Bx2

×



σx3,1
σ′x3,2
σx3,3
...
σx3,n
1


︸ ︷︷ ︸

cx3

where ψ∗ = ψ′2h2 +
∑

i 6=2 giψihi, which depends only on u, g and h and is independent of the values
in B.

We construct matrix A using n + 1 vectors ax1 obtained from the set A and matrix C using
n+ 1 vectors cx3 vectors obtained from C as columns. We thus get the two matrices

W0 = g−1 ·A×B0 × C and W1 = g−1 ·A×B1 × C,

The matrices Wj are invertible with high probability over the encodings’ randomness by the
same argument as in the attack on BWZ (Section 3.2). Hence W = W0×W−1

1 = Ã×B̃0×B̃−1
1 ×Ã−1,

and

charPoly(W) = charPoly
(
B̃0 × B̃−1

1

)
=

n∏
i=1

(
charPoly(b0 × (b1)−1 mod pi)

)
=

n∏
i=1

(charPoly(M mod pi)) ,

which is the first property for our attack sets.
The second through fourth properties of Definition 1 follow via essentially the same argument

as in the attack on BWZ (Section 3.2).

4 A Weak-DL Attack on Matrix-GGH13

Given the GGH13 “weak discrete logarithm” attacks [10], a matrix variant of GGH13 can be
constructed with the aim of avoiding public GGH13 encodings of zero in the public parameters
(fashioned after the “Multilinear Jigsaw Puzzle” techniques in [11]). This variant replaces the
native GGH13 encoding of the values of interest by encoding matrices related to these values (e.g.
have the desired value as an eigenvalue). In Section 3.3, we have shown that a similar GGHZ
countermeasure for CLT can be broken. In this section we show that the matrix GGH13 is also
susceptible to a new “weak-discrete-logarithm” attack.

As in GGH13, we have plaintext space Rg = R/gR where R is the ring of integers in some
number field and g ∈ R, and ciphertext space Rq = R/qR for some integer q. Below we describe the
attack in the “asymmetric” setting where we encode elements relative to subsets of [k] = {1, . . . , k},

22

and use [k] itself as our zero-test level. The secrets associated with an instance of the scheme include
the plaintext-space element g and k random denominators zi ∈ Rq.

Trying to protect against “zeroizing attacks”, one could consider the following solution: we
choose a random small vector s∗ ∈ Rn and invertible matrix T ∈ Rn×nq (for some n), and then
encode α ∈ Rg relative to the set S ⊂ [k] by choosing a random small matrix A∗ such that
s∗ ×A∗ = αs∗ (mod gR), and publishing the matrix

A{S} =

[
T ×A∗ × T−1/

∏
i∈S

zi

]
q

.

For the purpose of zero-test we choose another mid-size random vector t∗ ∈ Rn and publish the
two vectors s = [g−1s∗ × T−1]q and t = [

∏
i zi · T × t∗]q. (The h element from GGH13 is implicitly

defined as h = 〈t∗, s∗〉, which is indeed a mid-size element.) It is easy to see that this provides the
functionality of a graded-encoding scheme, where a level-[k] encoding A[k] can be tested for zero by
checking that ∥∥∥∥[s×A[k] × t

]
q

∥∥∥∥� q.

On the other hand, it seems hard to obtain a native GGH13-encoding of zero even if we are given
matrices A{i} that encode zero, so we could naively hope that the zeroizing attacks from [10] do
not apply. Unfortunately, we show that this is not the case.

4.1 The Updated Weak-DL Attack.

As in the original “weak-discrete-logarithm” attack from [10], we use encodings of “double zeros”
in order to recover the ideal Ig = gR and then use the knowledge of that ideal together with “single
zeros” to attack other encodings. We use below the same “attack set” terminology as in our CLT
attacks.

Attack Sets. As in all other attacks in the current work, we are given three sets of encodings, at
levels corresponding to a partition of [k] so that they product is the top level. Let S1, S2, S3 ⊂ [k]
be disjoint, and their union is [k]. Specifically assume that we are given the following encoding.

• Many level-S1 encodings of zero

AS1 =

AS1
j =

T ×A∗j × T−1/
∏
i∈S1

zi


q

: s∗A∗j = 0 (mod gR)


j

;

• Many level-S2 encodings of zero and the two “target encodings” at level S2 (encoding two
random scalars δ0, δ1 ∈ R)

ZS2 =

ZS2
j =

T × Z∗j × T−1/
∏
i∈S2

zi


q

: s∗Z∗j = 0 (mod gR)


j

,

BS2 =

BS2
σ =

T ×B∗σ × T−1/
∏
i∈S2

zi


q


σ=0,1

,

23

such that s∗B∗σ = δσs
∗ (mod gR) for σ = 0, 1, where the δ’s are small.

• Many level-S3 encodings of nonzero elements

CS3 =

CS3
j =

T × C∗j × T−1/
∏
i∈S3

zi


q

: s∗C∗j = εjs
∗ (mod gR)


j

.

for small scalars εj ∈ R, εj /∈ gR.

Given these encodings, we show how to recover the ratio δ0/δ1 (mod gR). The set ZS2 is only
used to recover (a representation of) the ideal Ig = gR. Below we first assume that we know Ig and
show how to recover the ratio δ0/δ1 (mod gR), and later explain how Ig can be recovered using
ZS2 .

Observe that since the AS1
j ’s are encodings of zero then they cancel the term g−1 in the

vector s. Namely there exist small vectors uj ∈ Rn such that s∗A∗j = g · uj , and therefore[∏
i∈S1

zi · s×AS1
j × T

]
q

= s∗A∗j/g = uj . Let us also denote below vj =
[∏

i∈S3
zi · T × CSj × t

]
q

and notice vj = CS,∗j t∗ (equality in R) and vj is the small. Then for all i, σ, j we get

Wσ[i, j] :=
[
s×AS1

i ×B
S2
σ × C

S3
j × t

]
q

= ui ×B∗σ × vj (equalities over R).

Denote by U, V ∈ Rn×n the matrices with uj ’s as rows and vj ’s as columns, respectively, and
also define the two n× n matrices Wσ = Wσ[i, j]i,j . Then by definition we have Wσ = U ×B∗σ × V
for σ = 0, 1.

Assuming that we know the plaintext space ideal Ig and that W1 is invertible modulo Ig, we
can proceed similarly to the CLT attacks by computing the eigenvalues of W = W0 ×W−1

1 , but
this time modulo Ig, and noting that the ratio δ0/δ1 must be one of these eigenvalues. (If W1

is not invertible modulo Ig, we can still recover the same by finding the roots of the polynomial
p(λ) = λW1 − W0.) This implies that as long as we know the ideal Ig (and can find roots of
polynomials modulo Ig), then similarly to the original “weak-discrete-log” attack from [10] we can
recover any encoded value δ at level S2 up to a multiplicative factor of 1/δ1.

If we are not explicitly given the ideal Ig, then we can use the set ZS2 to recover it. Similarly
to above we define

X`[i, j] :=
[
s×AS1

i × Z
S2
` × C

S3
j × t

]
q

= ui × Z∗` × vj

and then we have X` = X`[i, j]i,j = U × Z∗` × V , with equalities over R
Computing the determinant of all the matrices Wσ and X`, we observe that they are all divisible

by det(UV), and with good probability this is the only common factor. We can therefore take the
GCD (over the ideals) to recover and eliminate the factor det(UV), thereby getting the ideals that
are generated by all the elements t` := det(Z∗`). Recalling that all the Z∗` ’s are singular modulo Ig
(since s∗ × Z∗` ∈ gR), we have that g divides all the t`’s, and again w.h.p. this is the only factor
that divides them all. We therefore can use GCD again to recover the ideal Ig from all the ideals
It` = t`R.

24

5 Conclusions

In this work we extended the recent CHLRS zeroizing attacks to many new settings, and also
illustrated some of the limitations of this attack technique. The underlying message of recent attacks
is that for current multilinear-map candidates, successful zero-tests give the adversary equations
over the base ring (i.e. the integers or the ring of integers in a number field). Understanding the
security of these candidates therefore hinges on a better understanding of which types of systems
of nonlinear equations can be solved efficiently.

References

[1] B. Applebaum and Z. Brakerski. Obfuscating circuits via composite-order graded encoding. In
Y. Dodis and J. B. Nielsen, editors, Theory of Cryptography - TCC’15, Part II, volume 9015
of Lecture Notes in Computer Science, pages 528–556. Springer, 2015. http://eprint.iacr.
org/2015/025.

[2] S. Badrinarayanan, E. Miles, A. Sahai, and M. Zhandry. Post-zeroizing obfuscation: The case
of evasive circuits. Cryptology ePrint Archive, Report 2015/167, 2015. http://eprint.iacr.
org/.

[3] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfuscation against
algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441
of Lecture Notes in Computer Science, pages 221–238. Springer, 2014.

[4] D. Boneh, D. J. Wu, and J. Zimmerman. Immunizing multilinear maps against zeroizing
attacks. Cryptology ePrint Archive, Report 2014/930, 2014. http://eprint.iacr.org/.

[5] Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. In Y. Lindell, editor, Theory of Cryptography - TCC 2014, volume 8349 of
Lecture Notes in Computer Science, pages 1–25. Springer, 2014.

[6] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear map over
the integers. In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015, Part I, volume 9056 of Lecture Notes in Computer Science, pages 3–12. Springer, 2015.
http://eprint.iacr.org/2014/906.

[7] J. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers. In
R. Canetti and J. A. Garay, editors, CRYPTO 2013, volume 8042 of Lecture Notes in Computer
Science, pages 476–493. Springer, 2013.

[8] J. Coron, T. Lepoint, and M. Tibouchi. Cryptanalysis of two candidate fixes of multilinear
maps over the integers. Cryptology ePrint Archive, Report 2014/975, 2014. http://eprint.
iacr.org/.

[9] J. Coron, T. Lepoint, and M. Tibouchi. New multilinear maps over the integers. In R. Gennaro
and M. Robshaw, editors, CRYPTO 2015, Lecture Notes in Computer Science. Springer, 2015.
To appear.

25

http://eprint.iacr.org/2015/025
http://eprint.iacr.org/2015/025
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2014/906
http://eprint.iacr.org/
http://eprint.iacr.org/

[10] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In T. Jo-
hansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2013.

[11] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. In FOCS 2013, pages 40–49. IEEE
Computer Society, 2013.

[12] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Fully secure functional encryption without
obfuscation. Cryptology ePrint Archive, Report 2014/666, 2014. http://eprint.iacr.org/.

[13] C. Gentry, S. Halevi, H. K. Maji, and A. Sahai. Zeroizing without zeroes: Cryptanalyzing
multilinear maps without encodings of zero. Cryptology ePrint Archive, Report 2014/929,
2014. http://eprint.iacr.org/.

[14] C. Gentry, A. B. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation from the
multilinear subgroup elimination assumption. IACR Cryptology ePrint Archive, 2014:309,
2014.

[15] C. Gentry, A. B. Lewko, and B. Waters. Witness encryption from instance independent
assumptions. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, volume 8616 of Lecture
Notes in Computer Science, pages 426–443. Springer, 2014.

[16] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[17] J. C. Hansen and E. Schmutz. How random is the characteristic polynomial of a random
matrix? Math. Proc. Camb. Phi. Soc., 114:507–515, 1993.

[18] Y. Hu and H. Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive, Report 2015/301,
2015. http://eprint.iacr.org/.

[19] G. Kuba. On the distribution of reducible polynomials. Math. Slovaca, 59(3):349–356, 2009.

[20] E. Miles, A. Sahai, and M. Weiss. Protecting obfuscation against arithmetic attacks. IACR
Cryptology ePrint Archive, 2014:878, 2014.

[21] R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-secure
multilinear encodings. In CRYPTO 2014, pages 500–517, 2014.

[22] J. Zimmerman. How to obfuscate programs directly. In E. Oswald and M. Fischlin, edi-
tors, Advances in Cryptology - EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 439–467. Springer, 2015. http://eprint.iacr.org/2014/776.

A A Refined Generic Model

The zeroising attacks from [10, 6] and the current work point to the inadequacy of the generic
graded-encoding model as used in recent work. Indeed these attacks are highly algebraic and yet

26

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2014/776

they are not captured by that generic model. The main difference is that in the generic graded-
encoding model the zero-test returns just a 0/1 bit, whereas in the GGH13/CLT13 schemes this
test returns a full ring element.

We therefore propose to augment this generic model as follows: In addition to the standard
interfaces in the graded-encoding model (with some plaintext space R′ = R/gR), we will now also
have a black-box-field over the ring R, except that we cannot directly obtain handles to this black-
box field. Instead, the zero-test would serve as a translation device, letting us move things from
the graded-encoding oracle to the black-box-field oracle.

In more detail, we would have the usual oracles to sample/encode elements in the graded-
encoding scheme and to add and multiply them with the usual semantics. However, with each
encoded element the graded-encoding oracle will also associate a “random element of R” from the
appropriate coset. Namely, with each encoded value α the oracle will also have an associated rα ∈ R
and the intended semantics is that we use α+g · rα to represent the coset α+gR. The oracle keeps
track of the representatives via the addition and multiplication operations of the graded-encoding
scheme, by adding and multiplying the representatives in the ring R.

Then, if the zero-test is called on an encoding of zero with representative g · r ∈ R, then in
addition to the bit 1 the oracle will also give us a handle to the element r ∈ R in the black-box
field. Namely, if we call it on an element which is divisible by g then it will divide by g and move
it to the black-box field.

B Hardness Assumption with Binding Variables

Below we describe a relatively simple source-group hardness assumption involving “binding vari-
ables”, similar to thte ones used, e.g., in [3, 22]. In this assumption we are given many low-level
CLT13 encodings of zero, and yet we do not know how to break it. We stress that this assumption
is not meant to be useful for any crypto applications, its goal is just to highlight the difficulty that
such binding variables pose when trying to mount a zeroizing attack.

This assumption is staged in the “asymmetric multilinear setting” where the levels correspond
to integer vectors rather than to simple integers. (This setting makes it more convenient to enforce
the need to multiply by the binding variables.) It would be interesting either to show how to extend
the attacks so as to break this hardness assumption, or to provide some evidence that this line of
attacks is incapable of breaking it.

The setting in this hardness assumption consists of 4
(
n
2

)
+ 2n+ 1 encoded variables: One is the

target encoding, which is either a zero encoding U∗ ∼ (gir
∗
i , . . . , gnr

∗
n) or an encoding of a random

vector U∗ ∼ (r∗1, . . . , r
∗
n). There are 4

(
n
2

)
binding variables Ui,j,σ1,σ2 and 2n filler variables Vi,σ, all of

them encoding zeros. That is, Ui,j,σ1,σ2 ∼ (g1r
1
i,j,σ1,σ2

, . . . , gnr
n
i,j,σ1,σ2

) and Vi,σ ∼ (g1r
1
i,σ, . . . , gnr

n
i,σ).

The levels of these encodings are designed to ensure that the only way to get an encoding of zero
at the top level is multiply together the target encoding U∗ and other variables that are consistent
with some n-bit string x. Namely, the n filler encodings Vi,xi , i = 1, . . . , n, and the

(
n
2

)
biding

encodings Ui,j,xi,xj , 1 6 i < j 6 n. The level structure of the scheme consists of integer vectors of
dimension 1+2n+

(
n
2

)
, as described below. In this description we let ei denote the i’th unit vector,

with indexing beginning at zero.

• The target variable U∗ is encoded relative to level e0 = (1, 0, . . . , 0).

27

• The filler variable Vi,0 is encoded relative to level (n − 1) · ei (i.e. n − 1 in position i and 0
elsewhere), and the filler variable Vi,1 is encoded relative to level (n− 1) · ei+n.

• Let k be the index of the pair (i, j). Then the levels of all four binding variable Ui,j,∗,∗’s have
1 in position k and also 1’s in two of the four positions i, j, n+ i, n+ j:

– Ui,j,0,0 is encoded at level ek + en+i + en+j ;

– Ui,j,1,0 is encoded at level ek + ei + en+j ;

– Ui,j,0,1 is encoded at level ek + en+i + ej ; and

– Ui,j,1,1 is encoded at level ek + ei + ej .

• The top level (where we perform zero-test) corresponds to the vector

e0 + (n− 1)(

2n∑
k=1

ek) +

(n2)∑
k=1

e2n+k = (1, n− 1, . . . , n− 1︸ ︷︷ ︸
2n entries

, 1, . . . , 1︸ ︷︷ ︸
(n2) entries

).

Recall that multiplying encodings add their levels (as vectors over the integers). So we want to
show that the only way to hit the target level is by adding levels of the input encodings in a manner
consistent with some n-bit string x. Clearly we need to take one from every four Ui,j,∗,∗’s to get all
the ones in the last

(
n
2

)
positions. These

(
n
2

)
vectors contributes a “weight” of 2

(
n
2

)
= n(n − 1) in

positions 1, . . . , n, so we need to add n more fillers to make up the missing “weight” of n(n− 1) in
these positions.

But we cannot add Vi,0 if for some j we used ui,j,1,∗, and similarly cannot add Vi,1 if for some
j we used ui,j,0,∗ (lest we overshoot the n− 1 target in positions i or n+ i). Hence it must be the
case that for every i we used exactly one of Vi,0, Vi,1, and for all i, j if we used Vi,σ1 and Vj,σ2 then
we also use Ui,j,σ1,σ2 .

B.1 Attacking Simplified Binding Variables

The reason that binding variables make it hard to mount zeroizing attacks is that for every input
t = xyz that leads to zero, we no longer get the nice separated expression wt = ax × By × cz
as before, but rather it is multiplied by these variables. Namely rather than the four-wise inner-
product that we use in the attacks in the work, we now have many more vectors that come from
the binding variables, and we cannot partition these vectors in a nice way.

Below we show, however, that in a simplified setting where these vectors are replaced by in-
dividual integers, we can use GCD computations to remove them and then mount the standard
zeroizing attacks. Assume that our zero-tested top-level zeros are given by the following expression:

wt = ax ×By × cz ·
∏
i<j

ui,j,ti,tj . (1)

Let X,Y, Z denote the bit positions belonging to the x, y, z parts of the input, respectively, and
consider a set of inputs that vary x, z and keep y fixed, tk = xkyzk. Since y is fixed then is means
that for i, j ∈ Y we always get the same two bit values for tki , t

k
j (for all k). But for (i, j) ∈ X × Y

and for (i, j) ∈ Y × Z we can have two different values for the pair (tki , t
k
j) for different k’s, and

28

for (i, j) ∈ X × X, (i, j) ∈ X × Z, and (i, j) ∈ Z × Z we can have all four values. Assume that
our collection of inputs is such that for all i, j we have as much variability in the values (tki , t

k
j) as

possible (subject to y being fixed).
Also assume for simplicity that these binding variable are chosen to that for every i, j, the four

variables ui,j,b1,b2 are pairwise co-prime. Then all the wtk ’s have a factor of Uy =
∏
i,j∈Y ui,j,yi,yj ,

but they are very unlikely to have any other common factors. Taking the GCD of all these wtk ’s
can therefore give us Uy.

Assuming that we can have such sets of inputs for every desirable partition of the input bits, we
would be able to compute the product UY for every subset Y ∈ [n]. In particular we can compute
it for every pair {i, j} ⊂ [n], thereby recovering all the variables ui,j,b1,b2 . Then we can go back
to Eqn. (1) and divide out these variables, thus recovering our simpler form and then running the
attacks from above.

29

	Introduction
	Impact of Our Attacks
	Limitations of Zeroizing attacks

	Background and Overview
	A Brief Description of the GGH13 and CLT13 Schemes
	The GGH13 scheme
	The CLT13 Scheme
	Common Properties

	Overview of Existing Attacks
	Extending the CHLRS Attack
	GGH13 vs. CLT13
	Orthogonal encodings
	More than one monomial
	Using Cayley-Hamilton

	Attack Limitations

	A Unified Attack against CLT13-Based Schemes
	Sufficient conditions for the attack to succeed
	Attacking the Boneh-Wu-Zimmerman ``Immunized'' Variant
	Attacking the Garg-Gentry-Halevi-Zhandry Countermeasure
	Attacking GGHRSW Obfuscation for Simple Branching Programs
	Attacking Recent Circuit-Obfuscation Schemes

	A Weak-DL Attack on Matrix-GGH13
	The Updated Weak-DL Attack.

	Conclusions
	References
	A Refined Generic Model
	Hardness Assumption with Binding Variables
	Attacking Simplified Binding Variables

