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Abstract. In this paper we detail techniques that can be used to ana-
lyze and attack an AES implementation on an FPGA from the primary
(i.e., external) side of a switched-mode power supply. Our attack only
requires measurements of the duty cycle of the power supply, and then
increases the signal-to-noise ratio (SNR) though averaging, deconvolu-
tion and wavelet based detrending. The result is an exploitable source
of leakage that allows a secret key to be determined from low-frequency
power measurements. The techniques and procedures provide a general
approach to performing differential power analysis (DPA) from a single
point of information for any single hypothesized intermediate value, sug-
gesting their potential for improving other types of side-channel analysis.

Keywords: Side-Channel Analysis, DPA, Switched-Mode Power Sup-
ply, Deconvolution, Detrending, Wavelets

1 Introduction

Side-channel analysis was first proposed as a method of extracting cryptographic
keys by Kocher [11], who noted that the time required to compute an RSA sig-
nature could reveal a private key. Further work demonstrated that one could de-
termine cryptographic keys by observing the power consumption over time [12].
Two types of attacks were proposed. The first was inspecting a single power con-
sumption trace, referred to as Simple Power Analysis (SPA), and a statistical
treatment of a set of traces, referred to as Differential Power Analysis (DPA).
It was later shown that one could use the same treatment on traces taken using
electromagnetic probes [7, 16], where the equivalent attacks are typically referred
to as Simple Electromagnetic Analysis (SEMA) and Differential Electromagnetic
Analysis (DEMA), respectively. With adequate sampling rates, proximity, and
absence of countermeasures, side-channel attacks have been practically demon-
strated on a wide variety of devices ranging from small single purpose chips [2,
6, 10] to large general purpose SoCs and CPUs [8, 15, 19].

If we consider an implementation of a cryptographic algorithm in a tamper
resistant enclosure, one could assume that no meaningful power or electromag-
netic measurements can be made. While examples of such metal cases that leak



information are present in the literature [8], we shall assume that this avenue
of attack is not available to an attacker. Alternatively, an attacker could try
to determine the power consumption of the entire device by focusing on the
external power supply. For example, the primary (i.e., external) line of the inter-
nal switched-mode power supply (SMPS) that supplies its internal components.
The nature of an SMPS means that its power consumption over time is not
directly correlated with the power consumption of a device it is powering. One
might assume that the combination of a secure enclosure and an SMPS would
be sufficient to protect a device from side-channel analysis.

In this paper, we describe a key extraction attack only using duty cycle
information taken from the primary side of an SMPS, where the measurements
reduce the information from a trace to a single value that summarizes the leakage
for a period of time. We show how leakage can be detected and then exploited
to allow cryptographic keys to be retrieved. We provide experimental results
showing how our attack can be applied at some distance from the device, i.e. an
attacker does not need direct access to a device, but could, for example, monitor
it from a wall-mounted transformer. In the first results we describe, we show
how a straightforward DPA can be applied using a moderately large number of
acquisitions. We then demonstrate how acquisitions can be treated using wavelets
to improve the signal-to-noise ratio in our acquisitions, significantly reducing the
number of acquisitions required to conduct our attack. We conclude with some
discussion of how these methods could also be applied to other types of side-
channel analysis.

The remainder of this paper is organized as follows. In Section 2 we describe
how a switched-mode power supply operates, why leakage is visible on the pri-
mary side of the power supply, and the basic phenomenon that allows one to
detect power usage on its secondary side. In Section 3, we describe how we can
validate the efficacy of different measurement techniques and how to work around
the constraints imposed on how we measure power usage on the secondary side
of an SMPS from its primary side. In Section 5, we discuss results on validating
the efficacy of the proposed measurement techniques. In Section 5, we discuss re-
sults on performing a key extraction using the proposed measurement technique
in addition to other signal processing techniques required to make the attack
successful. We conclude in Section 6.

2 Switched-Mode Power Supplies

Switched-mode power supplies (SMPS) have gained popularity over the past
35 years because of their efficiency, low operating temperature and size (when
compared to other power supplies such as linear regulators). Their efficiency
stems from their switching characteristic, when operating an SMPS will repeat-
edly connect and disconnect the input, or primary, to the load, or secondary, to
power a device. Many SMPS configurations have been developed to achieve var-
ious performance characteristics. By modulating the width of a pulse of the full
input voltage, and low-pass filtering that pulse, an SMPS can control the sec-
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ondary voltage level and adjust according to changing load characteristics. The
trade-offs associated with using an SMPS include a more complex design and
high-amplitude, high-frequency voltage spikes caused by switching. The injected
voltage spikes on the power line need to be filtered, adding further complexity.

The nature of an SMPS might lead one to conjecture that power measure-
ments from its primary side contain only minimal information about the power
consumed on its secondary side. One attack strategy might be to integrate over
time a measurement of power on the primary side, and incorporate an accurate
efficiency characterization of the SMPS, to approximate the energy consumed
on the secondary side. Yet another argument could state that the ground, or re-
turn line, on the primary side, never disconnects from the secondary side, hence
measuring the return power on the primary side could contain power usage in-
formation from the secondary side, albeit with reduced resolution because of the
required capacitance on the primary side.

While the above arguments do not allow for effective DPA-based key extrac-
tion in practice, monitoring the return line has been demonstrated to expose leak-
age with potential to extract keys in low-noise environments. High-amplitude,
high-frequency spikes on the input lines, that typically manifest as noise in a
side-channel attack, nonetheless provide power usage information through their
locations in time. Furthermore, given that the spikes are high in amplitude and
frequency, they can be observed through noisy environments, filtering, over dis-
tance, and through shielding.

2.1 Voltage Spike Interpretation and Detection

When operating, an SMPS generates voltage spikes on its primary side. The
cause of these voltage spikes stem from a combination of the fundamental mode
of operation of an SMPS, and unavoidable practical physical attributes found
in all electrical circuits (specifically, switching and inductance). SMPS switching
causes sudden changes in current flow through parasitic inductance of the circuit
that, in turn, induces a voltage. The magnitude of the induced voltage follows
the relationship

V (t) = L
d I(t)

dt
,

where V is voltage, t is time, L is inductance and I is current. Obviously, a
sudden change in current, such as the switching from an SMPS, generates a very
large multiplier applied to the inductance that in turn generates a very large
induced voltage spike.

While electrical circuits contain parasitic inductance, a major contributor
to the inductance responsible for inducing voltage spikes on the primary side
comes from the required capacitance on the primary side, which is used to quickly
provide current when the SMPS switches on. The equivalent series inductance of
the resulting capacitor becomes part of the circuit that passes the sudden inrush
and sudden stops in current. Figure 1 shows a common electrically equivalent
model of a capacitor with its parasitic contributors.
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Fig. 1. Electrical model of capacitor where C is the capacitance, DLR is the dielectric
leakage resistance, ESR is the equivalent series resistance, ESL is the equivalent series
inductance.

Figure 2 shows a sample voltage signature of a tapped power source feeding
an SMPS. At the beginning of each spike, the voltage either suddenly dips or
rises, followed by ringing due to the resonance of the circuit feeding the SMPS.
The tapped line connects to a high-pass filter before connecting to an oscilloscope
to remove the DC bias and any ripple caused by the SMPS. From the direction
of the initial peak, one can easily identify the first spike as an on event and
the second spike as an off event. One can also notice the magnitude difference,
allowing an oscilloscope trigger to be set on either an on or off event. We describe
why some of these differences occur in Appendix A.

Fig. 2. Voltage trace on primary side of an SMPS showing an on event followed by an
off event.
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3 Leakage Detection

A powerful approach for determining if the power consumption of a device relates
to the data it is manipulating, referred to as Test Vector Leakage Assessment
(TVLA), has been proposed by Goodwill et al. [9]. In summary, TVLA uses
a t-test to evaluate leakage from comparing acquired signals when a device is
processing specific inputs and/or cryptographic keys, which provides a clear
indication of leakage.

One of the tests in TVLA is to determine whether there are statistically
significant differences in the mean traces of two sets of traces, one acquired with
a fixed plaintext and the other with random plaintexts. One would typically
randomly interleave acquisitions so that environmental effects are the same for
both sets and there are no erroneous indications of leakage, caused, for example,
by the least significant bit of a variable used to count the number of acquisitions.
In applying this, one would take two sets of data, and conduct Welch’s t-test
point-by-point to determine whether there is evidence against the null hypothesis
that the sets are the same.

Consider two sets of acquisitions, of n1 and n2 samples, respectively. We
can compute their respective sample means, x̄1 and x̄2, and respective sample
standard deviations, σ1 and σ2. One can then compute a t-statistic using Welch’s
t-test

α =
x̄1 − x̄2√
σ2
1

n1
+

σ2
2

n2

, (1)

where the result is distributed over a t-distribution with ν degrees of freedom,
i.e., α ∼ t(ν). In practice, one would use the asymptotic result where the t-
distribution is equivalent to the standard normal distribution, so ν does not
need to be defined.

Goodwill et al. propose that observing α > 4.5 indicates the presence of
leakage. Specifically, an α > 4.5 gives the probability of indicating leakage where
no leakage is present, often referred to as a Type I error, of approximately 1×105.
However, repeating an experiment can mitigate this problem. The probability
of no leakage being indicated where leakage is present, often referred to as a
Type II error, is not defined but, again, repeating an experiment can mitigate
this problem. To detect side-channel leakage that could be used to conduct an
attack, one would typically use this test on a set of power consumption traces
where the t-statistic is computed in a point-wise manner. That is, one can test
for leakage at each point in time using two sets of acquisitions.

In our case, large portions of a cryptographic operation can affect a single
on–off switching period because of the low-frequency content of the SMPS duty
cycle. Indeed, depending on the algorithm and SMPS, the execution of an entire
block cipher, or multiple instances of a block cipher, including input and or
output data can all affect a single SMPS duty cycle. If one were to compare
the power usage between a set of random inputs and a set of fixed inputs, as
described by Goodwill et al. [9], power dependencies attributed to the input and
output data would add together with other leakages, making it impossible to
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determine if exploitable leakage is present. The multi-dimensional, but single-
point, result of translating power usage on the secondary side of an SMPS to its
duty cycle requires the use of targeted vectors, similar to the approach described
by Mizaki and Hayashi [14].

To construct a TVLA-like test for leakage detection we target the middle of
a cryptographic operation, while having inputs and outputs that are indistin-
guishable from random values via some side-channel. For example, to evaluate an
AES encryption operation one would target a middle round of the block cipher.
For that round, the round key and state maintain a minimal Hamming distance
between the input and output and low Hamming weight of both states. We give
further details on how we constructed the required plaintexts in Appendix B.

The resulting set of plaintexts can be randomly interleaved with random
plaintexts to provide a good method of detecting leakage using the methods de-
scribed by Goodwill et al. The test accentuates any leakage caused by Hamming
weight or Hamming distance in the implementation of a round of AES. We note
that a specific secret key must accompany the plaintexts, so such a test requires
the ability to set the secret key in the targeted device. Furthermore, if this ver-
sion of TVLA reveals a leak, the results do not specifically reveal a particular
type of leak, or indicate how to exploit the leakage to determine a secret key.
However, by using the same technique, one can generate more specific plaintexts,
with associated secret keys, to help isolate where and how a leakage manifests.

4 Attacking the Primary Side of an SMPS

In this section we describe an instance of our attack, and how to detect and
exploit the observed leakage to extract cryptographic keys. In our instance, we
targeted a SASEBO-GII [17] where the on-board FPGA was powered by an
SMPS, and the only side-channel that we observed was the primary side of the
SMPS. Table 1 provides the specifications of the SASEBO-GII and associated
SMPS. The SMPS sets its output voltage based on a connected resistor RSET.
An RSET of 27.4 Ohms was used to set the SMPS output to 1.2 Volts. The
SMPS was then configured to mate with the CN1 connector on the SASEBO-
GII board, providing power to the FPGA core. The sense resistors R1 and R2
were bypassed, and the resulting voltage between test points TP2 and TP4 was
1.17 Volts. The AES implementation used was the reference design provided
with the SASEBO board.

4.1 Leakage Detection

The first experiments we conducted were to determine how leakage occurred
and how it could be exploited. For a series of AES encryption operations, the
input to each operation was randomly chosen as either a targeted or random
plaintext using the method described in Section 3. An oscilloscope was used
to acquire a voltage trace from the source powering the SMPS, and a trigger
was included in our implementation such that we could take acquisitions while
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Table 1. SASEBO-GII and associated SMPS

SASEBO-GII

FPGA Xilinx Virtex 5 LX50
Algorithm AES-128

SMPS Providing Power to FPGA Core

Manufacturer Texas Instruments
Part Number PTH08000W
Input Voltage Range 4.5 Volts – 14 Volts → set to 4.5 Volts Input
Output Voltage Range 0.9 Volts – 5.5 Volts
Switching Frequency 300 kHz
Input Capacitor 100 uF Electrolytic
Set Resistor (RSET) 27.4 kOhms Metal Film → 1.2 Volts Output

the AES was being computed. Predictably, the SMPS switching events did not
synchronize with the AES encryption execution. However, any load variation on
the SMPS secondary side can only affect subsequent duty cycles of the SMPS,
so the oscilloscope was set to collect a trace long enough to record multiple duty
cycles after the AES encryption operation. Initially, over 25 cycles were recorded.
Analyzing the differences in the time between on and off events one could readily
observe a t-statistic larger that 4.5.

To exploit this leakage, one could further treat the acquired data to maximize
the observed leakage. For example, if we let

c = number of duty cycles directly after trigger,

w = weight vector of c elements, and

d = delay after trigger before first on event.

Then we use c determined the number of duty cycles to process in each trace, w
for the weight of each duty cycle, and d as a maximum delay threshold before
excluding a trace and its associated data. For each acquired trace, if less than
d, a w weighted sum of c duty cycles provided a single number representing a
relative power draw of the load.

Using targeted vectors, as described in Section 3, we collected a total of 1.3×
105 traces comprising approximately 216 targeted inputs and 216 random inputs.
Setting d = 2.08µs reduced the targeted and random sets to approximately 4×
104 traces. Setting c = 4 and w = [ 0.91 −0.41 0.027 −0.071 ]T on the reduced
sets, (1) gave a t-statistic of 18.58, yielding a confidence level of 1−5.639×10−71

that the measured duty cycles reflect a change in cryptographically sensitive
information within an AES encryption operation. This provides insight into how
this side channel leaks since, for this instance, every other cycle is inversely
correlated to the leakage.

Variants of the above approach can be considered, such as setting a thresh-
old to determine inclusion for each duty cycle within each trace and weighting
appropriately, or setting an early threshold for duty cycles that potentially rep-
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resent too much activity before an AES encryption operation, etc. However, the
approach described in the next section provides a more substantial increase to
the t-statistic, allowing our analysis to move from leakage detection to extracting
a secret key.

4.2 Improving the Signal-to-Noise Ratio

The experiments described in Section 4.1 provided confidence that measuring
duty cycles from the primary side of an SMPS can expose leakage from a device
on the secondary side. In order to strengthen the coupling between the SMPS
duty cycle and the power required to encrypt a specific input, we repeatedly
sent the same message to the AES engine. This also allowed us to trigger an
oscilloscope when an SMPS event occurred, as we no longer needed know when
an individual AES encryption operation was occurring. Furthermore, rather than
measuring the full duty cycle from a recorded voltage trace, the triggered on
event was shifted to allow only the off event to be recorded with a high time
resolution. Given that this provided a fixed reference in time for the on event,
an oscilloscope could generate an average trace on-the-fly to provide an average
location of the off event.

Using on-scope averaging allows one to process a large amount of data in
a short period of time by removing the time required to transfer individual
acquisitions to a computer. The larger the number of traces that are averaged,
the greater the efficiency, at the cost of a lower number of unique inputs. The
low frequency information of the SMPS duty cycle translates to convolving high
frequency leakage information on the secondary side with temporal noise. Hence,
on-scope averaging has the potential to provide improvements in increasing a t-
statistic in a fixed amount of time.

Our first experiments incorporated a low-pass filter in an attempt to increase
the voltage spike oscillation period, so that it is greater than the duty cycle jitter.
With such a signal, the average voltage trace converges faster because there are
fewer interfering voltage oscillations after the initial spike. Figure 3 shows a
single low-pass filtered signal. Figure 4 shows the beginning of 100 off events at
a higher time resolution with the mean off event superimposed.

Performing the leakage detection techniques, as described in Section 4.1,
substituting the weighted sums of duty cycles with mean off events yielded a
t-statistic of 92.88σ. Figure 5 shows the resulting means of the two sets and
the resulting t-statistic over time. At this point we had enough confidence to
perform an key recovery attack based on the observed side channel.

5 Side-Channel Attack on Primary Side of SMPS

In order to construct a key extraction attack one would typically need to try
different sets of plaintexts to reveal leakage corresponding to specific leakage
models (as described in Appendix B). Determining a leakage model would fa-
cilitate an attack. However, one may alternatively make an educated guess and
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Fig. 3. Low frequency content of Voltage trace on primary side of SMPS.

attempt an attack. In the case of the SASEBO-GII, the intermediate states that
leak correspond to a leakage model that had already been determined, given
our knowledge of the FPGA. As such, we conducted an attack using correlation
power analysis (CPA) [3] on the Hamming distance across the last round of the
AES encryption operation. In common with many hardware implementation,
the reference AES implementation provided with the SASEBO board updates a
register at the end of each round of AES. The Hamming distance between the
output of two consecutive rounds affects the power consumption of the FPGA
when this register is update. Using the data collection method described in Sec-
tion 4.2, 1.85× 105 unique inputs were required to extract only one byte of the
last subkey. In the following we describe additional signal processing approaches
that were used decrease the number of traces required to conduct an attack.

5.1 Wavelet Based Detrending

Inspecting our analysis of the duty cycles over time revealed a large drift, which
reduces the SNR in a set of acquisition. The observed drift could be caused
by many factors, such as temperature and other physical forces that affect the
electrical characteristics of the load perceived by the SMPS. However, the source
of the drift is beyond the scope of this paper. To increase the SNR we used
detrending techniques before applying a CPA, specifically the discrete wavelet
transform (DWT) [13].

The scaling and wavelet coefficients used were the Daubechies family of
wavelets [4]. The reason for using the DWT with the Daubechies wavelets stems
from the desire to preserve the relative change in mean duty cycle as much as
possible, while removing any drift that can changes slowly and/or quickly. The
Daubechies wavelets provide the maximum number of vanishing moments for a
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Fig. 4. One hundred off switching events and their mean.

given support, which translates to the flattest frequency response of the filters
used in the DWT for a given number of taps [4]. The flatter the frequency re-
sponse in the band of interest, the more preserved the duty cycles remain when
transformed. The fewer taps used in the filters, the faster the DWT can respond
to sudden duty cycle drifts. The accuracy of approximation of a signal f(t),
represented at a resolution j, or fj(t), follows

‖f(t)− fj(t)‖ ≤ C2−jp‖f (p)(t)‖ and

∫ ∞
−∞

f(t)wjk(t)dt ≤ C2−jp

where C is a constant dependent on the scaling and wavelet functions, and p is
the number of vanishing moments of the wavelet function (or number of zeros
at π of the DWT approximation filter) [4, 18]. Figure 6 shows the frequency
response of the DWT filters when using Daubechies wavelets with p = 2 and
p = 8, or db2 and db8, respectively. A compromise exists because the number
of taps is equal to double the value of p. So the better the fit, the less reactive
the DWT becomes to sudden changes in duty cycle drift.

The detrending technique follows a simple algorithm, inspired by the wavelet
shrinkage techniques as described in [5]. Perform the DWT, or analysis, with a
chosen filter order for an L number of levels. Set all of the resulting approxi-
mation coefficients to zero, then perform an inverse DWT, or synthesis, on the
remaining detail coefficients. Further enhancements could be made by perform-
ing thresholding (akin to that described in [5]), but on the scaling rather than
detail coefficients.

After detrending the signal using the above method with various ordered
filters at various levels, we were able to extract the last round key with 1.25×105

unique inputs over 4 days. However, each unique trace comprised of 216 averaged
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Fig. 5. Plot (a) shows the mean of the two sets of mean off events: targeted and fixed.
Plot (b) shows the resulting t-statistic.

traces. Using the same data without detrending, we could only extract one sub-
key byte from the last round key. In general analyzing 2 – 4 levels with various
ordered filters worked well, but 3 levels provided the best consistent results.
Figure 7 shows the typical duty cycle drift observed before and after detrending.

5.2 Deconvolution

The next approach we used to increase the SNR of the measured duty cycles
focused on a more accurate PDF of the off events mean. The method follows a
straightforward deconvolution, by observing that a waveform shifted and added
to itself maps to a phase change in the frequency domain. The property comes
directly from the linearity and time shifting properties of the Laplace, Fourier
and z transforms [1]. For the z transform,

Z

[
1

M

M−1∑
m=0

f(nT + kmT )

]
=

1

M

M−1∑
m=0

zkmZ [f(nT )] ,

where f(nT ) is a single off event waveform, T is the sampling period, M is
the number of off events averaged, and k = [k0 k1 · · · kM−1 ]T is a vector of
samples that the mth off event is shifted relative to f(nT ).

The deconvolution technique follows a straightforward series of steps. First,
we align a collection of single off event waveforms to generate a low-noise tem-
plate f(nT ). Take a series of single off event waveforms and average them without
alignment. Divide the frequency response of the averaged non-aligned waveforms
by the frequency response of the template, and calculate the group delay of the
resulting spectrum. One then seeks to identify frequencies that consistently and
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Fig. 6. Plot (a) shows the amplitude of the frequency response of the db2 DWT filters.
Plot (b) shows the amplitude of the frequency response of the db8 DWT filters.

Fig. 7. Plot (a) shows long-term detrending. Plot (b) shows short-term detrending.
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accurately approximate the true delay compared to the template. Finally, per-
form the same division and group delay calculations on the off event waveform
means and detrend. Since deconvolution lifts the concern of voltage spike oscilla-
tions interfering with itself shifted in time, we removed the low-pass filter added
earlier for a more general solution that applies to any type of signal.

By combining the deconvolution and detrending techniques, we were able to
extract the last round key of an implementation of AES with 1.30× 105 unique
inputs over 2 days and 20 hours, with 1,000 averaged traces for each unique
trace. Using the same data with only deconvolution or detrending yielded one
correct sub-key byte from the last round key. No deconvolution or detrending
yielded no correct sub-key bytes.

We present a summary of the results of our attacks in Table 2. The strightfor-
ward approach is one where no signal processing is applied and one can extract
bytes of the key. However, as shown, using detrending and deconvolution allow
for a much more efficient attack.

Table 2. A summary of the results presented in Section 5, comparing a straightforward
(no signal processing) with the use of detrending and deconvolution. The Bytes column
represents the number of bytes of AES key that could be extracted from the acquired
traces.

Method Acquisitions Averaging Time / hours Bytes

Straightforward 1.85× 105 216 142 1
Detrending 1.25× 105 216 96 1
Deconvolution 1.30× 105 210 68 1
Detrending & Deconvolution 1.30× 105 210 68 16

6 Conclusions

In this paper we demonstrated that an attacker can derive information from the
duty cycle of the primary side of an SMPS. We first demonstrated how leakage
detection methods can be used and how improving the SNR increases the t-
statistic. This led to a straightforward attack on the primary side of an SMPS
using CPA, but requires a significant number of traces per byte of the subkey
attacked. We then described techniques that could be used to increase the SNR.
Specifically detrending and deconvolving the acquisitions that allowed for the
extraction of a full AES subkey using fewer traces than that required for a single
subkey byte in the straightforward case. Our experimental results demonstrate
that our attack can be applied at some distance from the device, i.e. an attacker
does not need direct access to a device, but could monitor it from a wall-mounted
transformer.

We note the techniques described were used to derive information from an
integrated measurement and could be applied to other side channel attacks using
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other types of signals. For example, by detrending sample points within a trace
over multiple traces, one could remove the influence of hardware blocks operating
asynchronously to the signal of interest. For signals that are difficult to align
because of amplitude noise, yet changing in frequency due from timing jitter,
one could collapse the trace, or portions of the trace, encapsulating a portion of a
cryptographic operation in a single point. For algorithms with masking, one can
derive methods for collapsing each trace, or portions of each trace, sacrificing
SNR for a reduced search space. In many instances, the approach entails the
sacrificing of SNR for some other gain, then performing techniques outlined in
this paper in an attempt to recoup the SNR while maintaining the sought after
advantage.

The approach taken in this paper focuses on reducing the time to extract
an AES key rather than reducing the number of AES encryptions required to
conduct an attack. An approach that focuses on the latter could involve per-
forming a single AES encryption operation for each input data, and allowing
multiple different encryptions to be performed within each SMPS duty cycle.
One could then use the same set of acquisitions measuring the duty cycles to an-
alyze multiple AES encryption operations, but with different weights that would
shift and slide in time at the same rate. Using other techniques, such as principal
component analysis (PCA), one could then find optimal weighting functions to
maximize the information of each duty cycle for multiple inputs.
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A Voltage Spike Interpretation

By deducing the direction of current flow immediately following an SMPS switch-
ing event, one can determine, or predict, more information about the resulting
voltage spike. Consider when an SMPS switches the primary from disconnected
to connected, or on, as in Fig. 8. While disconnected, the secondary side will
drop its potential as energy flows out of the low-pass filter into the load on the
secondary side. On the primary side, current from the source powering the SMPS
flows through the ESL into the capacitor. When the connection to the primary
side reestablishes itself, the lower potential secondary side causes a sudden draw
of current from the primary side that in turn suddenly reverses the flow of cur-
rent through the ESL. The sudden change in current through the ESL induces
a voltage opposite, or against, the voltage applied on the primary side. As such,
an observer monitoring voltage upstream of the SMPS on the primary side will
measure a sudden drop in voltage followed by a recovery based on the capacity
of the capacitor and the capabilities of the source powering the SMPS.

Similarly, consider when an SMPS switches the primary from connected to
disconnected, or off, as in Fig. 9. While connected, the secondary side draws cur-
rent from the capacitor and the source powering the SMPS. When the SMPS dis-
connects from the primary, the current flowing out of the capacitor and through
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Fig. 8. SMPS with primary connecting.

the ESL suddenly changes direction when all the current from the source feeds,
or replenishes, the capacitor. The sudden change in current in turn generates a
voltage aligned, or in addition to, the voltage applied on the primary side. As
such, an observer monitoring voltage upstream of the SMPS on the primary side
will see a sudden increase in voltage followed by a recovery based on the capacity
of the capacitor and the source powering the SMPS.

Fig. 9. SMPS with primary disconnecting.

Discriminating between on and off switching events from the primary side of
the SMPS reduces to a simple check of voltage polarity swing at the beginning of
the voltage spike. Furthermore, the absolute amplitude of the voltage spike and
recovery typically differ between on and off switching events for multiple reasons,
including input voltage level, load and capacitance. The resulting signal allows
for very straightforward triggering logic to capture voltage traces synchronous
to an on or off switching event.

Our measurements taken do not employ any strategic tap location or addi-
tional conditioning on the power going to the primary side of the SMPS. While
some data conditioning can clean the voltage signal to simplify measurements,
such modifications entail more intrusive modifications than a simple direct tap
at the source for the SMPS. Only minimal signal conditioning was used on the
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tapped line fed to a signal recorder. In fact, to emphasize the ability to monitor
power usage from a distance, all measurements taken come from a tap six feet
away from the SMPS and co-located at the output of the power source feeding
its primary side.

B Building Targeted Plaintext Vector and Secret Key

In this section we give a more explicit description of the method we detail in
Section 3 to derive a plaintext vector and secret key. In the attack described in
this paper the leakage from a device during the computation of one, or more,
instances of a block cipher is summed to a single value. The Test Vector Leakage
Assessment (TVLA), proposed by Goodwill et al. [9], uses a t-test to determine
if a fixed input is distinguishable from a random input, as described in Section 3.

For a block cipher, one would want to construct test vectors where, at a
chosen point in the computation, there is a minimal Hamming weight and a
minimal Hamming distance from some previous state. These correspond to the
leakage models typically observed in microprocessors [3], and will maximize the
observed leakage. The chosen vectors, and the resulting ciphertexts, should also
be indistinguishable from random values to avoid erroneous leakage detection.

We consider 128-bit AES as shown in Fig. 10 where a 128-bit plaintext P =
(p0, p1, . . . , p15) is used to compute a ciphertext C = (c0, c1, . . . , c15). These are
typically expressed as matrices:

P =


p0 p4 p8 p12
p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15

 and C =


c0 c4 c8 c12
c1 c5 c9 c13
c2 c6 c10 c14
c3 c7 c11 c15

 .

The plaintext is initially XORed with a first round key k0, equivalent to the
secret key, and then a round function R is applied iteratively with a sequence
of round keys. Each function R takes a state matrix, conducts a series of round
operations (ShiftRows, ByteSub and MixColumns operations) and XORs the
result with a round key (AddRoundKey operation).

In order to generate plaintext vectors and a secret key that can be used to
detect leakage in the middle of a block cipher, one would proceed as follows:

1. Select one of the middle rounds, denoted i.
2. Choose a state s1, see Fig. 10, where x0 = 0.
3. Determine a ki, such that the output of the next round s2 is also equal to
s1.

4. Compute k0, the secret key, from ki, given that the key schedule of AES is
invertible.

5. Given k0 and s1, decipher s1 the required number of rounds to determine
the plaintext P .

6. Note the plaintext P as the first test vector.
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ciphertext

k11R

s2 =


y0 0 0 0
y1 0 0 0
y2 0 0 0
y3 0 0 0

 ki+1R

kiR

s1 =


x0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ki−1R

k1R

k0

plaintext

Fig. 10. The structure of AES, and the states chosen to determine plaintext vectors
and a secret key for leakage detection.

7. Generate remaining entries in the test vector set as follows:
– Choose a state s1, where x0 ∈ {1, . . . , 255}.
– Given k0 and s1, decipher s1 the required number of rounds to determine
the plaintext P .
– Note the plaintext P as another test vector.

The above would allow for 256 distinct plaintext elements to be generated. In
the work described in this paper, two bytes of s1 are varied to allow 216 distinct
plaintext elements to be generated.
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