
Privacy-preserving Context-aware Recommender Systems:
Analysis and New Solutions

Qiang Tang and Jun Wang

APSIA group, SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

{qiang.tang, jun.wang}@uni.lu

April 9, 2015

Abstract. Nowadays, recommender systems have become an indispensable part of our
daily life and provide personalized services for almost everything. However, nothing is
for free – such systems have also upset the society with severe privacy concerns because
they accumulate a lot of personal information in order to provide recommendations. In
this work, we construct privacy-preserving recommendation protocols by incorporating
cryptographic techniques and the inherent data characteristics in recommender systems.
We first revisit the protocols by Jeckmans et al. at ESORICS 2013 and show a number of
security and usability issues. Then, we propose two privacy-preserving protocols, which
compute predicted ratings for a user based on inputs from both the user’s friends and a
set of randomly chosen strangers. A user has the flexibility to retrieve either a predicted
rating for an unrated item or the Top-N unrated items. The proposed protocols prevent
information leakage from both protocol executions and the protocol outputs: a somewhat
homomorphic encryption scheme is used to make all computations run in encrypted form,
and inputs from the randomly-chosen strangers guarantee that the inputs of a user’s friends
will not be compromised even if this user’s outputs are leaked. Finally, we use the well-
known MovieLens 100k dataset to evaluate the performances for different parameter sizes.

1 Introduction

As e-commerce websites began to develop, users were finding it very difficult to make the
most appropriate choices from the immense variety of items (products and services) that these
websites were offering. Take an online book store as an example, going through the lengthy
book catalogue not only wastes a lot of time but also frequently overwhelms users and leads
them to make poor decisions. As such, the availability of choices, instead of producing a
benefit, started to decrease users’ well-being. Eventually, this need led to the development of
recommender systems (or, recommendation systems). Informally, recommender systems are a
subclass of information filtering systems that seek to predict the ’rating’ or ’preference’ that a
user would give to an item (e.g. music, book, or movie) they had not yet considered, using a
model built from the characteristics of items and/or users. Today, recommender systems play an
important role in highly rated commercial websites such as Amazon, Facebook, Netflix, Yahoo,
and YouTube. Netflix even awarded a million dollars prize to the team that first succeeded in
improving substantially the performance of its recommender system. Besides these well-known
examples, recommender systems can also be found in every corner of our daily life.

In order to compute recommendations, the service provider needs to collect a lot of personal
data from its users, e.g. ratings, transaction history, and location. This makes recommender
systems a double-edged sword. On one side users get better recommendations when they
reveal more personal data, but on the flip side they sacrifice more privacy if they do so. Privacy
issues in recommender systems have been surveyed in [4, 17, 29]. The most widely-recognized
privacy concern is about the fact the service provider has full access to all users’ inputs (e.g.
which items are rated and the corresponding ratings). Weinsberg et al. showed that what has
been rated by a user can already breach his privacy [34]. The other less well-known yet equally
serious privacy concern is that the outputs from a recommender system can also lead to privacy
breaches against innocent users. Ten years ago, Kantarcioglu, Jin and Clifton expressed this

concern for general data mining services [16]. Recently Calandrino et al. [7] showed inference
attacks which allow an attacker with some auxiliary information to infer a user’s transactions
from temporal changes in the public outputs of a recommender system. In practice, advanced
recommender systems collect more personal information (e.g. context information such as
location and social surroundings) than ratings, and they inevitably cause more severe privacy
concerns.

1.1 State-of-the-Art

Broadly speaking, existing privacy-protection solutions for recommender systems can be di-
vided into two categories. One category is cryptographic solutions, which heavily rely on
cryptographic primitives (e.g. homomorphic encryption, zero knowledge proof, threshold en-
cryption, commitment, private information retrieval, and a variety of two-party or multi-party
cryptographic protocols). For example, the solutions from [2, 8, 9, 12–15, 20, 24, 25, 28, 32, 36] fall
into this category. More specifically, the solutions from [2, 8, 9, 12, 15, 20, 32] focus on distributed
setting where every individual user is expected to participate in the recommendation computa-
tion, while those from [13, 14, 24, 25, 28, 36] focus on partitioned dataset, where several organi-
zations wish to compute recommendations for their own users by joining their private dataset.
These solutions typically assume semi-honest attackers and apply existing cryptographic prim-
itives to secure the procedures in standard recommender protocols. This approach has two
advantages: rigorous security guarantee in the sense of secure computation (namely, every user
only learns the recommendation results and the server learns nothing) can be achieved, and
there is no degradation in accuracy. The disadvantage lies in the fact that these solutions are all
computation-intensive so that they become impractical when user/item populations get large.

The other category is data obfuscation based solutions, which mainly rely on adding noise to
the original data or computation results to achieve privacy. The solutions from [5, 19, 21–23, 26,
27, 31, 35] fall into this category. These solutions usually do not incur complicated manipulations
on the users’ inputs, so that they are much more efficient. The drawback is that they often lack
rigorous privacy guarantees and downgrade the recommendation accuracy to some extent.
With respect to privacy guarantees, an exception is the differential privacy based approach
from [19] which does provide mathematically sound privacy notions. However, cryptographic
primitives are required for all users to generate the accumulated data subjects (e.g. sums and
covariance matrix).

1.2 Our Contribution

While most privacy-preserving solutions focus on recommender systems which only take into
account users’ ratings as inputs, Jeckmans, Peter, and Hartel [14] moved a step further to propose
privacy-preserving recommendation protocols for context-aware recommender systems, which
include social relationships as part of the inputs to compute recommendations. Generally the
protocols are referred to as the JPH protocols, and more specifically they are referred to as JPH
online protocol and JPH offline protocol respectively. Interestingly, the JPH protocols make use
of the recent advances in somewhat homomorphic encryption schemes [6]. In this paper, our
contribution is three-fold.

Firstly, we analyze the JPH protocols and identify a number of security issues. The first
issue is that the somewhat homomorphic encryption scheme has been used in very naive way
in the JPH online protocol, so that the semi-honest server can learn which user has rated which
items and the actual ratings. The second issue is that a user’s private information may be
leaked through his friend’s output in the JPH online protocol. A privacy breach occurs when
the attacker has learned a predicted rating for the friend. The third issue is that the encrypted
division method used in the JPH protocols may leak unnecessary information about a user’s
friends. The fourth issue is that a group of users can mount key recovery attacks against
the server to recover its private key in the JPH offline protocol, thus these users can decrypt
everything protected by the private key. The fifth issue with the JPH protocols is that in each

2

protocol execution predicted ratings are required to be computed for all items, namely not only
for unrated items but also already-rated items. This incurs not only computational overhead
but also unnecessary information leakage.

Secondly, we revise the prediction computation formula from [14] by incorporating inputs
from both friends and strangers. This change not only aligns the formula with standard recom-
mender algorithms [18] but also enables us to avoid the cold start problem of the JPH protocols.
Security wise, it helps us prevent potential information leakages through the outputs of friends.
We then propose two privacy preserving protocols. One enables a user to check whether a spe-
cific unrated item might be of his interest, and the other returns the Top-N unrated items.
Therefore, we provide more flexible choices for users to discover their interests in practice. Both
protocols are secure against envisioned threats in our threat model.

Thirdly, we analyze accuracy performances of the new protocols, and show that for some
parameters the accuracy is even better than some other well-known recommendation protocols,
e.g. those from [18].

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we present preliminaries on nota-
tion and building blocks. In Section 3, we demonstrate the security and usability issues with
the JPH protocols. In Section 4, we propose our new formulation and trust assumptions for
recommender systems. In Section 5, we present two protocols for single prediction and Top-N
recommendations respectively. In Section 6, we present security and accuracy analysis for the
proposed protocols. In Section 7, we conclude the paper.

2 Preliminary

– When X is a set, x $← X means that x is chosen from X uniformly at random, and |X|means
the size of X. If χ is a distribution, then s← χmeans that s is sampled according to χ.

– We use bold letter, such as X, to denote a vector. Given two vector X and Y, we use X · Y to
denote their inner product.

– In a recommender system, the item set is denoted by a vector B = (1, 2, · · · , b, · · · , |B|), and
a user x’s ratings are denoted by a vector Rx = (rx,1, · · · , rx,b, · · · , rx,|B|). The rating value is
often an integer from {0, 1, 2, 3, 4, 5}. If item i has not been rated, then rx,i is set to be 0. With
respect to Rx, a binary vector Qx = (qx,1, · · · , qx,b, · · · , qx,|B|) is defined as follows: qx,b = 1 iff
rx,b , 0 for every 1 ≤ b ≤ |B|.

2.1 Brakerski-Vaikuntanathan SWHE Scheme

Let λ be the security parameter. The Brakerski-Vaikuntanathan public-key SWHE scheme [6] is
parameterized by two primes q, t ∈ poly(λ) ∈Nwhere t < q, a degree n polynomial f (x) ∈ Z[x],
two error distributions χ and χ′ over the ring Rq = Zq[x]/⟨ f (x)⟩. The message space isM = Rt =
Zt[x]/⟨ f (x)⟩. An additional parameter is D ∈N, namely the maximal degree of homomorphism
allowed (and to the maximal ciphertext length). The parameters n, f , q, t, χ, χ′,D are public.

– Keygen(λ): (1) sample s, e0 ← χ and a0 ∈ Rq; (2) compute s = (1, s, s2, . . . , sD) ∈ RD+1
q ; (3)

output SK = s and PK = (a0, b0 = a0s + te0).
– Enc(PK,m): (1) sample v, e′ ← χ and e′′ ← χ′; (2) compute c0 = b0v+ te′′+m, c1 = −(a0v+ te′);

(3) output c = (c0, c1).
– Dec(SK, c = (c0, . . . , cD) ∈ RD+1

q): output m = (c · s mod q) mod t.

Since the scheme is somewhat homomorphic, it provides an evaluation algorithm Eval,
which can multiply and add messages based on their ciphertexts only. For simplicity, we show
how Eval works when the ciphertexts are freshly generated. Let cα = (cα0, cα1) and cβ = (cβ0, cβ1).
Note that the multiplication operation will add an additional element for the ciphertext. This

3

is why the Dec algorithm generally assumes the ciphertext to be a vector of D + 1 elements (if
the ciphertext has less elements, simply pad 0s).

Eval(+, cα, cβ) = (cα0 + cβ0, cα1 + cβ1). Eval(·, cα, cβ) = (cα0 · cβ0, cα0 · cβ1 + cα1 · cβ0, cα1 · cβ1).

When the evaluations are done to a ciphertext and a plaintext message, there is a simpler
form for the evaluation algorithm, denoted as Eval∗. This has been used in [14].

Eval∗(+, cα,m′) = (cα0 +m′, cα1). Eval∗(·, cα,m′) = (cα0 ·m′, cα1 ·m′).

Throughout the paper, given a public/private key pair (PKu,SKu) for some user u, we use
[m]u to denote a ciphertext of the message m under public key PKu. In comparison, Enc(PKu,m)
represents the probabilistic output of running Enc for the message m. When m is a vector of
messages, we use Enc(PKu,m) to denote the vector of ciphertexts, where encryption is done for
each element independently. We use the notation

∑
1≤i≤N[mi]u to denote the result of sequentially

applying Eval(+, ,) to the cipheretxts.

3 Analysis of JPH Protocols

Let the active user, who wants to receive new recommendations, be denoted as user u. Let the
friends of user u be denoted by Fu. Every friend f ∈ Fu and user u assigns each other weights
w f ,u,wu, f respectively, and these values can be regarded as the perceived importance to each
other. Then, the predicted rating for an unrated item b ∈ B for user u is computed as follows.

pu,b =

∑
f∈Fu

q f ,b · r f ,b · (
wu, f+w f ,u

2)∑
f∈Fu

q f ,b · (
wu, f+w f ,u

2)

=

∑
f∈Fu

r f ,b · (wu, f + w f ,u)∑
f∈Fu

q f ,b · (wu, f + w f ,u)
(1)

In the JPH protocols [14], Jeckmans et al. did not explicitly explain their notation [x]u+ y and
[x]u · y. We assume these operations are as [x]u+ y = Eval∗(+, [x]u, y) and [x]u · y = Eval∗(·, [x]u, y).
In any case, this assumption only affects the Insecurity against Semi-honest Server issue for the
JPH online protocol. All other issues still exist even if this assumption is not true.

3.1 JPH Online Protocol

In the online scenario, the recommendation protocol is executed between the active user u, the
server, and user u’s friends. In the initialization phase, user u generates a public/private key pair
for the Brakerski-Vaikuntanathan SWHE scheme, and all his friends and the server obtain a
valid copy of his public key. The protocol runs in two stages as described in Fig. 1.

1. In the first stage, user u sends his encrypted weights to all his friends, who will then add
their parts to the weights and prepare their contributions for computing the final predication
as required by Equation (1).

2. In the second stage, user u and the server run some sort of two-party protocol so that the
server can compute Equation (1) without learning user u’s ratings and letting user u know
his friends’s contributions.

4

User u RS Server Every Friend f ∈ Fu

(PKu, SKu) PKu PKu

wu, f : ∀ f ∈ Fu R f ,Q f ,w f ,u

Stage 1:
∀ f ∈ Fu

∀b ∈ B

[wu, f]u

= Enc(PKu,wu, f)
[wu, f]u−−−−→

[wu, f]u−−−−→
[wu, f + w f ,u]u

= Eval∗(+, [wu, f]u,w f ,u)

[n f ,b]u

= Eval∗(·, [wu, f + w f ,u]u, r f ,b)

[d f ,b]u

= Eval∗(·, [wu, f + w f ,u]u, q f ,b)
[n f ,b]u , [d f ,b]u←−−−−−−−−−

Stage 2:
∀b ∈ B

[nb]u =
∑

f∈Fu [n f ,b]u

[db]u =
∑

f∈Fu [d f ,b]u

ξb
$← Z∗t

[db · ξb]u

= Eval∗(·, [db]u, ξb)
[db ·ξb]u←−−−−−

db · ξb

d−1
b · ξ−1

b

[d−1
b · ξ−1

b]u

= Enc(PKu, d−1
b · ξ−1

b)
[d−1

b ·ξ
−1
b]u−−−−−−−→

[d−1
b]u

= Eval∗(·, [d−1
b · ξ−1

b]u, ξb)

[pu,b]u

= Eval(·, [nb]u, [d−1
b]u)

[pu,b]u←−−−−
pu,b

Fig. 1. JPH Online Protocol

It is worth noting that the friends only need to be involved in the first stage. Despite the
security analysis in the original paper, we observe the following security issues.

– Hidden assumption. Jeckmans et al. [14] did not mention any assumption on the commu-
nication channel between users and the server. In fact, if the communication channel be-
tween any user f and the server does not provide confidentiality, then user u can obtain
[n f ,b]u, [d f ,b]u by passive eavesdropping. Then, user u can trivially recover q f ,b and r f ,b.

– Insecurity against Semi-honest Server. With [d f ,b]u, the server can trivially recover q f ,b, i.e. if
[d f ,b]u = 0 then q f ,b = 0; otherwise q f ,b = 1. After recovering q f ,b, the server can trivially

recover r f ,b =
[n f ,b]u

[d f ,b]u
. The root of the problem is the homomorphic operations have been done

in the naive way, with Eval∗(·, ,) and Eval∗(+, ,).
– Encrypted Division Problems. The first concern is that it may not be able to determine the

predicted rating pu,b. As a toy example, let t = 7. In this case, both ⌊ 2
3 ⌉ = 1 and ⌊ 3

1 ⌉ = 3
link to the index 2 · 3−1 = 3 · 1−1 = 3 mod 7. If pu,b = 3, then user u will not be able
to determine whether the predicted rating is ⌊ 2

3 ⌉ = 1 or ⌊ 3
1 ⌉ = 3. The second concern is

5

that the representation of pu,b in the protocol may leak more information than the to-be
predicted value ⌊ nb

db
⌉. As an example, ⌊ 2

3 ⌉ = ⌊ 3
4 ⌉ = 1. Clearly, giving 2 · 3−1 or 3 · 4−1 leaks

more information than the to-be predicted value 1.
– Potential Information Leakage through Friends. For user u, his friends may not be friends with

each other. For example, it may happen that some friend f ∈ Fu is not a friend of any
other user from Fu . Suppose that the users Fu\ f have learned the the value pu,b or some
approximation of it (this is realistic as they are friends of user u). Then, they may be able to
infer whether user f has rated the item b and the actual rating.

Besides the above security issues, there are some usability issues with the protocol as well.
One issue is that, at the time of protocol execution, maybe only a few friends are online. In
this case, the predicted rating may not be very accurate. It can also happen that pu,b cannot
be computed, because none of user u’s friends has rated item b. This is the typical cold start
problem in recommender systems [1]. The other issue is that the predicted rating needs to
computed for every b ∈ B even if user u has already rated this item. Otherwise, user u may leak
information to the server, e.g. which items have been rated. This not only leaks unnecessary
information to user u, but also makes it very inefficient when user u only wants a prediction for
a certain unrated item.

3.2 JPH Offline Protocol

In the offline scenario, the friends Fu need to delegate their data to the server to enable user u to
run the recommendation protocol when they are offline. Inevitably, this leads to a more complex
initialization phase. In this phase, both user u and the server generate their own public/private
key pair for the Brakerski-Vaikuntanathan SWHE scheme and they hold a copy of the valid
public key of each other. Moreover, every friend f ∈ Fu needs to pre-process R f , Q f , and w f ,u.
The rating vector R f is additively split into two sets S f and T f . The splitting for every rating
r f ,b is straightforward, namely choose r $← Z∗t and set s f ,b = r and t f ,b = r f ,b − r mod t. Similarly,
the weight w f ,u is split into x f ,u and y f ,u. It is assumed that T f and Q f will be delivered to user
u through proxy re-encryption schemes.

Running between user u and the server, the two-stage protocol is described in Fig. 2.

1. In the first stage, user u encrypt the partially-combined weights under PKu and sends the
ciphertexts to the server, which can then compute the encrypted weights between user
u and all his friends. The server encrypts the random weight shares from user u’s friends
under PKs and sends the ciphertexts to user u, who can then compute the encrypted weights
under the server’s public key.

2. In the second stage, user u and the server run some sort of two-party protocol so that the
server can compute Equation (1) without learning user u’s ratings and letting user u know
his friends’ contributions.

This protocol has exactly the same encrypted division, potential information leakage through
friends and usability issues, as stated in Section 3.1. In addition, we have the following new
concerns.

– Explicit Information Disclosure. It is assumed that the Q f values for all f ∈ Fu are obtained
by user u in clear. This is a direct violation of these users’ privacy because it has shown that
leaking what has been rated by a user can breach his privacy [34].

– Key Recovery Attacks against the Server. Chenal and Tang [10] have shown that given a
certain number of decryption oracle queries an attacker can recover the private key of the
Brakerski-Vaikuntanathan SWHE scheme. We show that user u can manipulate the protocol
and recover the server’s private key SKu. Before the attack, user u sets up a fake account u′

and a set of fake friends Fu′ (e.g. through Sybil attacks [11]). The key recovery attack relies
on multiple executions of the protocol, and it works as follows in each execution.
1. User u′ chooses a carefully-chosen ciphertext c and replaces [zb + ξ1,b]s with c. He also

sets ξ1,b = 0 for [−ξ1,b]u.

6

User u RS Server
(PKu, SKu,PKs) PKu,PKs, SKs

T f ,Q f ,wu, f , y f ,u for all f ∈ Fu S f , x f ,u : ∀ f ∈ Fu

Stage 1:
∀ f ∈ Fu

[wu, f + y f ,u]u

= Enc(PKu,wu, f + y f ,u) [x f ,u]s
[wu, f+y f ,u]u−−−−−−−−→

[x f ,u]s←−−−−
[wu, f + w f ,u]s [wu, f + w f ,u]u

= Eval∗(+, [x f ,u]s,wu, f + y f ,u) = Eval∗(+, [wu, f + y f ,u]u, x f ,u)

Stage 2:
∀b ∈ B

[zb]s [ab]u

=
∑

f∈Fu Eval∗(·, [wu, f + w f ,u]s, t f ,b) =
∑

f∈Fu Eval∗(·, [wu, f + w f ,u]u, s f ,b)

ξ1,b
$← Zt

[zb + ξ1,b]s

= Eval∗(+, [zb]s, ξ1,b)

[−ξ1,b]u

= Enc(PKu,−ξ1,b)

[db]s

=
∑

f∈Fu Eval∗(·, [wu, f + w f ,u]s, q f ,b)

ξ2,b
$← Z∗t

[db · ξ2,b]s

= Eval∗(·, [db]s, ξ2,b)

[ξ2,b]u

= Enc(PKu, ξ2,b)
[zb+ξ1,b]s , [−ξ1,b]u−−−−−−−−−−−−→

[db ·ξ2,b]s , [ξ2,b]u−−−−−−−−−−−→
zb + ξ1,b

[zb]u

= Eval∗(+, [−ξ1,b]u, zb + ξ1,b)

[nb]u

= Eval(+, [zb]u, [ab]u)

db · ξ2,b

d−1
b · ξ−1

2,b

[d−1
b]u

= Eval∗(·, [ξ2,b]u, d−1
b · ξ−1

2,b)

[pu,b]u

= Eval(·, [nb]u, [d−1
b]u)

[pu,b]u←−−−−
pu,b

Fig. 2. JPH Offline Protocol

2. When receiving [pu′,b]u′ , user u′ can recover the constant in Dec(SKs, c) because he knows
ab and d−1

b (note that user u′ forged all his friends Fu′).

It is straightforward to verify that, if c is chosen according to the specifics in [10] then user
u′ (and user u) can recover SKs in a polynomial number of executions. With SKs, user u
can recover the weights from his real friends in Fu and then infer their ratings. It is worth
stressing that this attack does not violate the semi-honest assumption in [14].

7

If a user f has changed his rating, then he needs to update every element in S f . Otherwise, the
server will know which item has been newly rated. Moreover, T f ,Q f need to be delivered to
all f ’s friends through proxy re-encryption schemes. Suppose that, in a certain period, a subset
F′u of users have updated their ratings. If the server somehow learns that user u gets a high
recommendation for an item b′, then it can conclude that some users from F′u have recently
rated b′.

Remark 1. As to the aforementioned key recovery attacks concern, there is one subtlety. In the
original Brakerski-Vaikuntanathan SWHE scheme, the plaintext is Zt[x], while the recommen-
dation protocol only requires the plaintext space to be Zt. It can be argued that the described
attack can be prevented if the server performs a validity check when decrypting [zb + ξ1,b]s: if
the decrypted value does not fall into Zt then output a decryption error. This will invalidate
our attack (and the attack from [10]), but it does guarantee there is no another attack. We leave
a further investigation of this issue as a future work.

4 New Formulation of Recommender System

In this section, we provide a new approach to compute recommendations and define fine-
grained trust assumptions among the participants in a recommender system.

4.1 Computing Predicted Ratings

In our solution, we compute the predicted rating for user u based on inputs from both his
friends and some strangers for both accuracy and security reasons. In reality friends like and
consume similar items, but it might happen that very few friends have rated the item b. If this
happens, the predicated value from Equation (1) may not be very accurate (cold start problem).
In Section 3, we have shown that the private information of user u’s friends might be leaked
through user u’s outputs. This is because the outputs are computed solely based on the inputs
of user u’s friends. It is reasonable to believe that, by taking into account some randomly chosen
strangers, we will mitigate both problems.

When factoring in the inputs from randomly chosen strangers, we will use the simple Bias
From Mean (BFM) scheme for the purpose of simplicity. It is worth stressing that there are a
lot of different choices for this task. Nevertheless, as to the accuracy, this scheme has similar
performance to many other more sophisticated schemes, such as Slope One and Perason/Cosine
similarity-based collaborative filtering schemes [18]. Let the stranger set be Tu, the predicted
value p∗u,b for an unrated item b is computed as follows. Note that rt is user t’s average rating,

namely ⌈
∑

i∈B rt,i∑
i∈B qt,i
⌋.

p∗u,b = ru +

∑
t∈Tu

qt,b · (rt,b − rt)∑
t∈Tu

qt,b
(2)

When factoring in the inputs from the friends, we make two changes to Equation (1) from
Section 3.1. One is to only take into account the weight value from user u. This makes more
sense because how important a friend means to user u is a very subjective matter for u only.
Jeckmans et al. averaged the weights for the purpose of limiting information leakage [14]. The
other is to compute the predication based on both u’s average rating and the weighted rating
deviations from his friends. Let the friend set be Fu, the predicted value p∗∗u,b for an unrated item

b is computed as follows. Note that r f is user f ’s average rating, namely ⌈
∑

i∈B r f ,i∑
i∈B q f ,i
⌋.

p∗∗u,b = ru +

∑
f∈Fu

q f ,b · (r f ,b − r f) · wu, f∑
f∈Fu

q f ,b · wu, f
(3)

In practice, the similarity between friends means that they tend to prefer to similar items.
However, this does not implies that they will assign very similar scores to the items. For

8

example, a user Alice may be very mean and assign a score 3 to most of her favorite items
while her friends may be very generous and assign a score 5 to their favorite items. Using the
Equation (1), we will likely generate a score 5 for an unrated item for Alice, who may just rate a
score 3 for the item even if she likes it. In this regard, Equation (3) is more appropriate because

ru reflects the user’s rating style and
∑

f∈Fu q f ,b·(r f ,b−r f)·w f ,u∑
f∈Fu q f ,b·w f ,u

reflects the user’s preference based on
inputs from his friends.

Based on the inputs from the strangers and friends, a combined predicted value pu,b for an
unrated item b can be computed as pu,b = ρ · p∗u,b + (1−ρ) · p∗∗u,b for some 0 ≤ ρ ≤ 1. Due to the fact
that cryptographic primitives are normally designed for dealing with integers, we rephrase the
formula as follows, where α, β are two integers.

pu,b =
β

α + β
· p∗u,b +

α
α + β

· p∗∗u,b (4)

4.2 Threat Model

As to communication, we assume all communications are mediated by the RS server and
the communication channels are integrity and confidentiality protected. Instead of making a
general semi-honest assumption on all participants, we distinguish the following.

1. Threat from semi-honest RS server. In the view of all users, the RS server will follow the
protocol specification but it may try to infer their private information from openly collected
transaction records.

2. Threat from a semi-honest friend. In the view of a user, none of his friends will collude with
the RS server or another party to breach his privacy. We believe the social norm deters
such colluding attacks, and the deterrence comes from the fact that once such a collusion
is known to the victim user then the friendship may be jeopardized. Nevertheless, we still
need to consider possible privacy threats in two scenarios.

– In the view of f ∈ Fu, user u may attempt to learn his private information when running
the recommendation protocol. In the view of user u, his friend f ∈ Fu may also try to
infer his information as well.

– In the view of f ∈ Fu, user u’s output (e.g. a new rated item and predicted rating value)
may be leaked. If another party obtains such auxiliary information, then user f ’s private
information may be at risk. For example, the Potential Information Leakage through Friends
security issue in Section 3.1 falls into this scenario.

3. Threat from strangers. We consider the following two scenarios.
– In the view of user u and his friends, a stranger may try to learn their private information.
– In the view of a stranger, who is involved in the protocol execution of user u, user u

may try to learn his private information.

5 New Privacy-Preserving Recommender Protocols

In this section, we propose two privacy-preserving protocols: one for the active user to learn the
predicted rating for an unrated item, and the other is for the active user to learn Top-N unrated
items. Both protocols share the same initialization phase.

In the initialization phase, user u generates a public/private key pair (PKu,SKu) for the
Brakerski-Vaikuntanathan SWHE scheme and sends PKu to the server. For the purpose of
enabling strangers to validate his public key, user u asks his friends to certify his public key
and puts the certification information on the server. In addition, user u assigns a weight wu, f
to each of his friend f ∈ Fu. All other users perform the same operations in this phase. Besides
the user-specific parameters, the global system parameters should also be established in the
initialization phase. Such parameters should include α, β which determine how a predicated
rating value for user u is generated based on the inputs of friends and strangers, and they
should also include the minimal sizes of friend set Fu and stranger set Tu.

9

Before describing the new protocols, it is worth stressing our design principle first. We require
that all inputs (namely, q f ,b, qt,b, r f ,b, rt,b for all f ∈ Fu and t ∈ Tu) are freshly encrypted locally
in each computation step. This seemingly unnecessary procedure makes the protocols immune
to the vulnerabilities of the JPH online protocol (where r f ,b and q f ,b are directly multiplied to
other ciphertexts). Moreover, instead of giving user u the predicted ratings, we only return a
yes/no answer in the single prediction protocol and the Top-N list in the Top-N protocol. This
reduces potential information leakages.

5.1 Recommendation Protocol for Single Prediction

When user u wants to figure out whether the predicted rating for an unrated item b is above a
certain threshold τ in his mind, he initiates the protocol in Fig. 3. In more details, the protocol
runs in three stages.

1. In the first stage, user u generates a binary vector Ib, which only has 1 for the b-th element,
and sends the ciphertext [Ib]u = Enc(PKu, Ib) to the server. The server first sends PKu to
some randomly chosen strangers who are the friends of user u’s friends in the system1.
Such a user t can then validate PKu by checking whether their mutual friends have certified
PKu. After the server has successfully found a viable stranger set Tu, it forwards [Ib]u to
every user in Tu. With PKu and (Rt,Qt), user t can compute the following based on the
homomorphic properties. For notation purpose, assume [Ib]u = ([I(1)

b]u, · · · , [I(|B|)
b]u)

[qt,b]u =
∑

1≤i≤|B|
Eval(·,Enc(PKu, qt,i), [I

(i)
b]u)

[Rt · Ib]u =
∑

1≤i≤|B|
Eval(·,Enc(PKu, rt,i), [I

(i)
b]u)

temp =
∑

1≤i≤|B|
Eval(·,Enc(PKu, qt,i), [I

(i)
b]u)

[qt,b · (Rt · Ib − rt)]u = Eval(·, temp,Eval(+, [Rt · Ib]u,−Enc(PKu, rt)))

2. In the second stage, for every friend f ∈ Fu, user u sends the encrypted weight [wu, f]u =
Enc(PKu,wu, f) to the server, which then forwards [wu, f]u and [Ib]u to user f . With PKu, [Ib]u,
[wu, f]u and (R f ,Q f), user f can compute the following.

[q f ,b]u =
∑

1≤i≤|B|
Eval(·,Enc(PKu, q f ,i), [I

(i)
b]u)

[R f · Ib]u =
∑

1≤i≤|B|
Eval(·,Enc(PKu, r f ,i), [I

(i)
b]u)

temp =
∑

1≤i≤|B|
Eval(·,Enc(PKu, q f ,i), [I

(i)
b]u)

[q f ,b · (R f · Ib − r f) · wu, f]u = Eval(·,Eval(·, temp, [wu, f]u),Eval(+, [R f · Ib]u,−Enc(PKu, r f)))

3. In the third stage, user u sends his encrypted average rating [ru]u = Enc(PKu, ru) to the
server. The server first computes [nT]u, [dT]u, [nF]u, [dF]u as shown in Fig. 3, and then compute
[X]u, [Y]u as follows.

temp1 = Eval(·,Eval(·,Eval(·, [dF]u, [ru]u), [dT]u),Enc(PKu, α + β))

1 Due to the small world phenomenon, the population of friends of friends can already be very large (see
[3] and http://sysomos.com/insidetwitter/sixdegrees/). Therefore, such kind of strangers can provide
enough randomness for security. Generally, we can allow the server to choose the strangers randomly.
Then, the server needs to provide a friendship path for the stranger to validate the public key PKu and
we need to assume trust somehow propagates through the chain of friends.

10

temp2 = Eval(·,Eval(·, [nT]u, [dF]u),Enc(PKu, β))

temp3 = Eval(·,Eval(·, [nF]u, [dT]u),Enc(PKu, α))

[X]u = Eval(+,Eval(+, temp1, temp2), temp3), [Y]u = Eval(·,Eval(·, [dF]u, [dT]u),Enc(PKu, α+β))

Referring to Equations (2) and (3), we have p∗u,b = ru +
nT
dT

and p∗∗u,b = ru +
nF
dF

. The ultimate
prediction pu,b can be denoted as follows.

pu,b =
β

α + β
· p∗u,b +

α
α + β

· p∗∗u,b

=
(α + β) · dT · dF · ru + β · nT · dF + α · nF · dT

(α + β) · dT · dF

=
X
Y

Due to the fact that all values are encrypted under PKu, user u needs to run a comparison
protocol COM with the server to learn whether pu,b ≥ τ. Since X,Y, τ are integers, COM is
indeed an encrypted integer comparison protocol: where user u holds the private key sku
and τ, the server holds [X]u, [Y]u, and the protocol outputs a bit to user u indicating whether
X ≥ τ · Y. Many such protocols exist, and that by Veugen [33] is the most efficient one.

User u RS Server Friends Fu, Strangers Tu

(PKu, SKu) PKu
wu, f : ∀ f ∈ Fu α, β

Stage 1
∀t ∈ Tu

Rt,Qt
[Ib]u

[Ib]u−−−→
PKu−−−→

Validate PKu
[Ib]u−−−→

[qt,b]u
[qt,b · (Rt · Ib − rt)]u

[qt,b ·(Rt ·Ib−rt)]u , [qt,b]u
←−−−−−−−−−−−−−−−−−−

Stage 2
∀ f ∈ Fu

PKu,R f ,Q f
[wu, f]u

[wu, f]u
−−−−−→

[wu, f]u , [Ib]u
−−−−−−−−−−→

[q f ,b]u
[q f ,b · (R f · Ib − r f) · wu, f]u

[q f ,b ·(R f ·Ib−r f)·wu, f]u
←−−−−−−−−−−−−−−−−−

[q f ,b]u
←−−−−−

Stage 3
pu,b

[ru]u
[ru]u−−−−→

[nT]u =
∑

t∈Tu [qt,b · (Rt · Ib − rt)]u

[dT]u =
∑

t∈Tu [qt,b]u

[nF]u =
∑

f∈Fu [q f ,b · (R f · Ib − r f) · wu, f]u

[dF]u =
∑

f∈Fu [q f ,b]u

[X]u = [(α + β) · dT · dF · ru +
α · nT · dF + β · nF · dT]u

[Y]u = [(α + β) · dT · dF]u
COM([X]u ,[Y]u ,τ)←−−−−−−−−−−−−−

pu,b =
X
Y

?
≥ τ

Fig. 3. Single Prediction Protocol

11

5.2 Recommendation Protocol for Top-N Items

When the active user u wants to figure out Top-N unrated items, he initiates the protocol in Fig.
4. In more details, the protocol runs in three stages.

1. In the first stage, the server sends PKu to some randomly chosen strangers who can then
validate PKu as in the previous protocol. Suppose that the server has successfully found Tu.
With PKu and (Rt,Qt), user t ∈ Tu can compute [qt,b · (rt,b− rt)]u = Enc(PKu, qt,b · (rt,b− rt)) and
[qt,b]u = Enc(PKu, qt,b) for every 1 ≤ b ≤ |B|. All encrypted values are sent back to the server.

2. In the second stage, to every friend f ∈ Fu, user u sends the encrypted weight [wu, f]u =
Enc(PKu,wu, f). With PKu, [wu, f]u and (R f ,Q f), user f can compute [q f ,b]u and

[q f ,b · (r f ,b − r f) · wu, f]u = Eval(·,Enc(PKu, q f ,b · (r f ,b − r f)), [wu, f]u)

for every 1 ≤ b ≤ |B|. All encrypted values are sent back to the server.
3. In the third stage, user u generates two matrices MX,MY as follows: (1) generate a |B| × |B|

identity matrix; (2) randomly permute the columns to obtain MY; (3) to obtain MX, for every
b, if item b has been rated then replace the element 1 in b-th column with 0.


1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

 column−−−−−−−−−−−−→
permutation

MY =


0 1 · · · 0
0 0 · · · 1
· · · · · · · · · · · ·
1 0 · · · 0

 zeroing
−−−−−−−−−−−→
rated items

MX =


0 1 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
1 0 · · · 0


User u encrypts the matrices (element by element) and sends [MX]u, [MY]u to the server,
which then proceeds as follows.
(a) The server first computes [nT,b]u, [dT,b]u, [nF,b]u, [dF,b]u, [Xb]u, [Yb]u for every 1 ≤ b ≤ |B| as

shown in Fig. 4, in the same way as in the previous protocol. Referring to Equation (4),
we see that ru appears in pu,b for every b. For simplicity, we ignore this term when comparing
the predictions for different unrated items. With this simplification, the prediction pu,b can
be denoted as follows.

pu,b =
β

α + β
· nT,b

dT,b
+
α
α + β

· nF,b

dF,b

=
β · nT,b · dF,b + α · nF,b · dT,b

(α + β) · dT,b · dF,b

=
Xb

Yb

(b) The server permutes the ciphertexts vector (([X1]u, [Y1]u), ([X2]u, [Y2]u), · · · , ([X|B|]u, [Y|B|]u))
in an oblivious manner as follows.

([U1]u, [U2]u, · · · , [U|B|]u) = [MX]u · ([X1]u, [X2]u, · · · , [X|B|]u)T

([V1]u, [V2]u, · · · , [V|B|]u) = [MY]u · ([Y1]u, [Y2]u, · · · , [Y|B|]u)T

The multiplication between the ciphertext matrix and ciphertext vector is done in the
standard way, except that the multiplication between two elements is done with Eval(·, ,)
and the addition is done with Eval(+, ,). Suppose item b has been rated before and
([Xb]u, [Yb]u) is permuted to ([Ui]u, [Vi]u), then Ui = 0 because the element 1 in b-th
column has been set to 0.

(c) Based on some COM protocol, e.g. that used in the previous protocol, the server ranks
Ui
Vi

(1 ≤ i ≤ |B)| in the encrypted form using any standard ranking algorithm, where com-
parisons are done interactively with user u through the encrypted integer comparison
protocol COM.

12

(d) After the ranking, the server sends the ”Top-N” indexes (e.g. the permuted Top-N
indexes) to user u, who can then recover the real Top-N indexes.

User u RS Server Friends Fu, Strangers Tu

(PKu, SKu) PKu
wu, f : ∀ f ∈ Fu α, β

Stage 1
∀t ∈ Tu
∀b ∈ B

Rt,Qt
PKu−−−→

Validate PKu

[qt,b]u
[qt,b · (rt,b − rt)]u

[qt,b ·(rt,b−rt)]u , [qt,b]u
←−−−−−−−−−−−−−−−−−

Stage 2
∀ f ∈ Fu
∀b ∈ B

PKu,R f ,Q f
[wu, f]u

[wu, f]u
−−−−−→

[wu, f]u
−−−−−→

[q f ,b]u
[q f ,b · (r f ,b − r f) · wu, f]u

[q f ,b ·(r f ,b−r f)·wu, f]u
←−−−−−−−−−−−−−−−−

[q f ,b]u
←−−−−−

Stage 3

MX ,My
[MX]u , [My]u−−−−−−−−−−−→

∀b ∈ B :

[nT,b]u =
∑

t∈Tu [qt,b · (rt,b − rt)]u

[dT,b]u =
∑

t∈Tu [qt,b]u

[nF,b]u =
∑

f∈Fu [q f ,b · (r f ,b − r f) · wu, f]u

[dF,b]u =
∑

f∈Fu [q f ,b]u

[Xb]u = [α · nT,b · dF,b + β · nF,b · dT,b]u

[Yb]u = [(α + β) · dT,b · dF,b]u

[MX]u · ([X1]u, [X2]u, · · · , [X|B|]u)T

[MY]u · ([Y1]u, [Y2]u, · · · , [Y|B|]u)T

RANK−−−−→
”Top-N” items
←−−−−−−−−−−−−−−

Top-N items

Fig. 4. Top-N Protocol

The usage of matrix MX in the random permutation of stage 3 guarantees that the rated
items will all appear in the end of the list after ranking. As a result, the rated items will not
appear in the recommended Top-N items.

6 Evaluating the Proposed Protocols

From the analysis in Section 3.2, the JPH offline protocol has a number of security and usability
issues. In particular, on-the-fly updating personal information at the server and for his friends
is a very tedious task in practice. By incorporating inputs from strangers, our protocols can
generate recommendations when many friends are offline. The experiment results, shown
in next subsection, show that we can approximately achieve the functionality of JPH offline
protocol but without incurring these issues.

13

6.1 Parameters and Performances

The selection of the global parameters α, β and the sizes of Fu and Tu can affect the security,
in particular when considering the threat from a semi-trusted friend. If α

α+β gets larger or the
size of Tu gets smaller, then the inputs from friends contribute more to the final outputs of user
u. This will in turn make information reference attacks easier (for user u to infer the inputs of
his friends). However, if α

α+β gets smaller and Tu gets larger, then we will lose the motivation
of explicitly distinguishing friends and strangers in computing recommendations, namely the
accuracy of recommendations may get worse. How to choose these parameters will depend on
the application scenarios and the overall distributions of users’ ratings.

In order to get some rough idea about how these parameters influence the accuracy of
recommendation results. We choose the MovieLens 100k dataset 2 and define friends and
strangers as follows. Given a user u, we first calculate the Cosine similarities with all other
users and generate a neighborhood for user u. Then, we choose a certain number of users from
the neighborhood as the friends, and randomly choose a certain number of users from the rest
as strangers3. For different parameters, the Mean Average Error (MAE) [30] of the proposed
protocols is shown in Table 1. Note that lower MAE implies more accurate recommendations.

PPPPPPPP(|Fu|, |Tu|)
α
α+β 0.5 0.6 0.7 0.8 0.9 1.0

(10, 10) 0.8222 0.8168 0.8158 0.8193 0.8265 0.8444
(20, 10) 0.8075 0.7996 0.7964 0.8009 0.8077 0.8194
(30, 10) 0.8033 0.7896 0.7819 0.7849 0.7871 0.7999
(40, 10) 0.7965 0.7801 0.7728 0.7695 0.7755 0.7814
(50, 10) 0.7909 0.7762 0.7666 0.7623 0.7623 0.7684
(60, 10) 0.7840 0.7722 0.7604 0.7552 0.7559 0.7588
(70, 10) 0.7824 0.7685 0.7538 0.7483 0.7460 0.7506
(80, 10) 0.7818 0.7643 0.7540 0.7432 0.7390 0.7432
(90, 10) 0.7785 0.7598 0.7494 0.7419 0.7356 0.7378
(100, 10) 0.7757 0.7559 0.7448 0.7390 0.7338 0.7312

Table 1. MAE of Experiments

From the numbers, it is clear that the more friends are involved the more accurate recom-
mendation results user u will obtain (i.e. the MAE is lower). There is also a trend that the MAE
becomes smaller when the contribution factor α

α+β becomes larger. According to the accuracy
results by Lemire and Maclachlan (in Table 1 of [18] where the values are MAE divided by 4),
their smallest MAE is 0.752 = 0.188 × 4. From the above Table 1, we can easily get lower MAE
when |Fu| ≥ 70 by adjusting α

α+β .
With respect to the computational complexity of the proposed protocols, we simply count

the number of different computations required. For the single prediction protocol, the numbers
are listed in Table 2. There is the additional cost of COM protocol between user u and the server.
For the Top-N protocol, the numbers are listed in Table 3. There is the additional cost of RANK
protocol between user u and the server. One interesting fact is that, in order to hide the item b,
the single prediction protocol requires more computations from the strangers than the Top-N
protocol. We leave a further investigation of the computational performances as a future work.

2 http://grouplens.org/datasets/movielens/
3 The algorithms are here: https://github.com/thelakers/moophs/blob/master/201504-pp-context-aware-

keyfunctions.py. This might not be very realistic, as the user’s subjective weights may be different from
the similarity calculated based on rating data. Later, we will perform a field test with really users to
validate this.

14

PPPPPPPP(|Fu|, |Tu|)
α
α+β Enc Eval(+, ,) Eval(·, ,)

Friend 1+3|B| 3|B| − 2 3|B| + 2
Stranger 1+3|B| 3|B| − 2 3|B| + 1
Server 3 2|Tu|+ 2|Fu| − 2 9
User u |B| + |Fu| + 1 0 0

Table 2. (Partial) Complexity of Single Prediction Protocol

PPPPPPPP(|Fu|, |Tu|)
α
α+β Enc Eval(+, ,) Eval(·, ,)

Friend 2|B| 0 |B|
Stranger 2|B| 0 0
Server 3 2|Tu|+2|Fu|+ |B|2−|B|−2 |B|2 + 6
User u 2|B|2 + |Fu| 0 0

Table 3. (Partial) Complexity of Top-N Protocol

6.2 Security Analysis

Informally, the protocols are secure due to two facts: (1) all inputs are first freshly encrypted and
then used in the computations; (2) all computations (e.g. computing predictions and ranking)
done by the server and other users are in the encrypted form. As to the single prediction protocol
in Section 5.1, we have the following arguments.

1. Threat from semi-honest RS server. Given the COM protocol is secure (namely, the server does
not learn anything in the process). Then the server learns nothing about any user’s private
input information, e.g. b, τ,Ru,Qu,R f ,Q f ,wu, f ,Rt,Qt for all f and t, because every element is
freshly encrypted in the computation and all left computations are done homomorphically.

Moreover, the server learns nothing about pu,b
?
≥ τ based on the security of COM.

2. Threat from a semi-honest friend. We consider two scenarios.
– Informally, a friend f ’s contribution to pu,b is protected by the inputs from users Fu\ f

and the strangers Tu. Given a randomly chosen unrated item for user u and a randomly
chosen friend f ∈ Fu, we perform a simple experiment to show how f ’s input influences
the predicted rating. We set α

α+β = 0.8 and the (|Fu|, |Tu|) = (30, 10) in all tests, and choose
strangers randomly in every test.

XXXXXXXXXRating Value
Tests

Test 1 Test 2 Test 3 Test 4 Test 5

With f ’s input (r) 4.0351 3.7165 3.9125 3.9125 4.0667
Without f ’s input (r′) 3.7014 4.0343 3.9125 3.9698 3.9556
r − r′ 0.3337 -0.3178 0.0000 -0.0573 0.1111

Table 4. Influence of a Single Friend

The results in 4 imply that a friend f ’s contribution to user u’s output is obfuscated by
the inputs from the stranger set. Simply from the output of user u, it is hard to infer
user f ’s input. Furthermore, it should be clear that the larger the friend set is the less
information of a single friend will be inferred. More test results appear in Appendix I.
Due to the encryption, the friends learn nothing about user u.

15

– For similar reasons, it will be hard for Fu\ f to infer user f ’s data even if they learned
user u’s output at the end of a protocol execution.

3. Threat from strangers. We consider the following two scenarios.
– In the view of strangers, all values are encrypted under user u’s public key, so that they

will not be able to derive any information about the inputs and outputs of user u and
his friends.

– For the strangers involved in a protocol execution, it does not leak much information
for several reasons. Firstly, user u does not know which stranger is involved in the
protocol execution. Secondly, the inputs of a group strangers are blended in the output
to user u. We perform a simple experiment to show how strangers’ inputs influence the
predicted ratings for user u. We set α

α+β = 0.8 and the (|Fu|, |Tu|) = (30, 10). Table 5 shows
the rating differences for 5 unrated items, depending on whether a stranger is involved
in the computational or not. It is clear that very little information about a stranger can
be inferred from user u’s outputs.

```````````Strangers
Unrated Items

Item1 Item2 Item3 Item4 Item5

Stranger1 0.0 -0.0825 0.0 0.0 0.0
Stranger2 0.0 0.0 0.0 0.0 0.0
Stranger3 0.0 0.0211 0.0 0.0 0.0
Stranger4 0.0913, 0.0 0.0 0.0 0.0
Stranger5 0.0 0.0134 0.0702 0.0 0.1375

Table 5. Influence of Strangers

Thirdly, the strangers are independently chosen in different protocol executions, so that
it is difficult to leverage on the accumulated information.

The same analysis applies to the Top-N protocol in Section 5.2. As to user u’s outputs, the
matrices [MX]u, [MY]u randomly permuted the predictions so that the ranking does not leak
any information about the Top-N items.

7 Conclusion

Recommender systems are complex in the sense that many users are involved and contributing
to the outputs of each other. The privacy challenge is big because it is difficult to reach a realistic
security model with efficient privacy-preserving protocols. This work, motivated by [14], tried
to propose a realistic security model by leveraging on the similarity and trust between friends
in digital communities. Compared to [14], we went a step further by introducing randomly
selected strangers into the play and make it possible to protect users’ privacy even if their
friends’ outputs are compromised. Moreover, we adjusted the recommendation formula and
achieve better accuracy than some other well-known recommender protocols [18]. Following
our work, many interesting topics remain open. One is to test our protocols on real dataset.
Another is to implement the protocols and see how realistic the computational performances
are. Another is to adjust the recommendation formula to reflect more advanced algorithms, such
as Matrix Factorizations [20], which however will have different requirements on the involved
user population. Another is to investigate stronger security models, e.g. assuming a malicious
RS server. Yet another topic is to formally investigate the information leakages from the outputs.
Our methodology, namely introducing randomly selected strangers, has some similarity with
the differential privacy based approach [19]. A detailed comparative study will be very useful
to understand their connections.

16



Acknowledgements

The authors are supported by a CORE (junior track) grant from the National Research Fund,
Luxembourg.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of
the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng., 17(6):734–749, 2005.

2. E. Aı̈meur, G. Brassard, J. M. Fernandez, and F. S. M. Onana. Alambic: a privacy-preserving recom-
mender system for electronic commerce. Int. J. Inf. Secur., 7:307–334, 2008.

3. L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four degrees of separation. In Proceedings
of the 4th Annual ACM Web Science Conference, pages 33–42, 2012.

4. M. Beye, A. Jeckmans, Z. Erkin, Q. Tang, P. Hartel, and I. Lagendijk. Social Media Retrieval, chapter
Privacy in Recommender systems, pages 263–281. Springer, 2013.

5. A. Bilge and H. Polat. A scalable privacy-preserving recommendation scheme via bisecting k-means
clustering. Information Processing & Management, 49(4):912 – 927, 2013.

6. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for
key dependent messages. In Advances in Cryptology — CRYPTO 2011, pages 505–524. Springer, 2011.

7. J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov. ”you might also like: ”
privacy risks of collaborative filtering. In 32nd IEEE Symposium on Security and Privacy, S&P 2011.,
pages 231–246, 2011.

8. J. F. Canny. Collaborative filtering with privacy. In IEEE Symposium on Security and Privacy, pages
45–57, 2002.

9. J. F. Canny. Collaborative filtering with privacy via factor analysis. In Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 238–245,
2002.

10. M. Chenal and Q. Tang. On key recovery attacks against existing somewhat homomorphic encryption
schemes. In Progress in Cryptology – LATINCRYPT 2014, page to appear, 2014.

11. J. R. Douceur. The sybil attack. In Peer-to-Peer Systems, First International Workshop, IPTPS 2002, volume
2429 of LNCS, pages 251–260. Springer, 2002.

12. Z. Erkin, M. Beye, T. Veugen, and R. L. Lagendijk. Efficiently computing private recommendations.
In International Conference on Acoustic, Speech and Signal Processing, 2011.

13. S. Han, W. K. Ng, and P. S. Yu. Privacy-preserving singular value decomposition. In Y. E. Ioannidis,
D. L. Lee, and R. T. Ng, editors, Proceedings of the 25th International Conference on Data Engineering,
pages 1267–1270. IEEE, 2009.

14. A. Jeckmans, A. Peter, and P. H. Hartel. Efficient privacy-enhanced familiarity-based recommender
system. In J. Crampton, S. Jajodia, and K. Mayes, editors, Computer Security - ESORICS 2013 - 18th
European Symposium on Research in Computer Security, volume 8134 of LNCS, pages 400–417. Springer,
2013.

15. A. Jeckmans, Q. Tang, and P. Hartel. Privacy-preserving collaborative filtering based on horizontally
partitioned dataset. In 2012 International Symposium on Security in Collaboration Technologies and Systems
(CTS 2012), pages 439–446, 2012.

16. M. Kantarcioglu, J. Jin, and C. Clifton. When do data mining results violate privacy. In The Tenth ACM
SIGMOD International Conference on Knowledge Discovery and Data Mining, pages 599–604. ACM, 2004.

17. S. K. Lam, D. Frankowski, and J. Riedl. Do you trust your recommendations? an exploration of security
and privacy issues in recommender systems. In G. Muller, editor, Emerging Trends in Information and
Communication Security, volume 3995 of LNCS, pages 14–29. Springer, 2006.

18. D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collaborative filtering.
In H. Kargupta, J. Srivastava, C. Kamath, and A. Goodman, editors, Proceedings of the 2005 SIAM
International Conference on Data Mining, SDM 2005, pages 471–475. SIAM, 2005.

19. F. McSherry and I. Mironov. Differentially private recommender systems: building privacy into the
Netflix prize contenders. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 627–636, 2009.

20. V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh. Privacy-preserving matrix
factorization. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
pages 801–812, 2013.

21. R. Parameswaran. A robust data obfuscation approach for privacy preserving collaborative filtering. PhD
thesis, Georgia Institute of Technology, 2006.

17



22. H. Polat and W. Du. Privacy-preserving collaborative filtering using randomized perturbation tech-
niques. In Proceedings of the Third IEEE International Conference on Data Mining, pages 625–628, 2003.

23. H. Polat and W. Du. Privacy-preserving collaborative filtering. International journal of electronic
commerce, 9:9–36, 2005.

24. H. Polat and W. Du. Privacy-preserving collaborative filtering on vertically partitioned data. In 9th
European Conference on Principles and Practice of Knowledge Discovery in Databases, volume 3721 of LNCS,
pages 651–658, 2005.

25. H. Polat and W. Du. Privacy-preserving top-n recommendation on horizontally partitioned data. In
2005 IEEE / WIC / ACM International Conference on Web Intelligence (WI 2005), pages 725–731. IEEE
Computer Society, 2005.

26. H. Polat and W. Du. Svd-based collaborative filtering with privacy. In Proceedings of the 2005 ACM
Symposium on Applied Computing (SAC), pages 791–795. ACM, 2005.

27. H. Polat and W. Du. Achieving private recommendations using randomized response techniques.
In Advances in Knowledge Discovery and Data Mining, 10th Pacific-Asia Conference, PAKDD 2006, pages
637–646. Springer, 2006.

28. H. Polat and W. Du. Privacy-preserving top-N recommendation on distributed data. J. Am. Soc. Inf.
Sci. Technol., 59:1093–1108, 2008.

29. N. Ramakrishnan, B.J. Keller, B.J. Mirza, and A. Y. Grama. Privacy risks in recommender systems.
Internet Computing, IEEE, 5:54–63, 2001.

30. G. Shani and A. Gunawardana. Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapira,
and P. B. Kantor, editors, Recommender Systems Handbook, pages 257–297. Springer, 2011.

31. R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J. Hubaux. Preserving privacy in collaborative
filtering through distributed aggregation of offline profiles. In Proceedings of the third ACM conference
on Recommender systems (RecSys ’09), pages 157–164, 2009.

32. Q. Tang. Cryptographic framework for analyzing the privacy of recommender algorithms. In 2012
International Symposium on Security in Collaboration Technologies and Systems (CTS 2012), pages 455–462,
2012.

33. T. Veugen. Comparing encrypted data. http://bioinformatics.tudelft.nl/sites/default/files/Comparing2011.
34. U. Weinsberg, S. Bhagat, S. Ioannidis, and N. Taft. Blurme: inferring and obfuscating user gender

based on ratings. In P. Cunningham, N. J. Hurley, I. Guy, and S. S. Anand, editors, Sixth ACM Conference
on Recommender Systems, RecSys ’12, pages 195–202. ACM, 2012.

35. I. Yakut and H. Polat. Arbitrarily distributed data-based recommendations with privacy. Data &
Knowledge Engineering, 72(0):239 – 256, 2012.

36. J. Zhan, C. Hsieh, I. Wang, T. Hsu, C. Liau, and D. Wang. Privacy-preserving collaborative recom-
mender systems. Trans. Sys. Man Cyber Part C, 40:472–476, 2010.

Appendix I: More Performance Tests

For every friend fi of user u, randomly choose an unrated item, we compute the predicted
rating difference with and without f ’s input. We set α

α+β = 0.8 and the (|Fu|, |Tu|) = (30, 10) in all
tests, but the strangers are chosen randomly in every test.

```````````Rating Differences
Tests

Test 1 Test 2 Test 3 Test 4 Test 5

W.r.t f1 -0.0616 0.0549 0.0593 -0.2166 0.036
W.r.t f2 -0.0057 -0.2945 0.0 0.0 0.0993
W.r.t f3 0.07080 0.0 0.2037 -0.0351 -0.1788
W.r.t f4 -0.1658 -0.024 0.0124 -0.0558 0.0325
W.r.t f5 -0.2477 -0.004 -0.0671 0.0302 0.2273

Table 6. Influence of Friends

18

