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Abstract. Homomorphic encryption has progressed rapidly in both efficiency and versatility since its
emergence in 2009. Meanwhile, a multitude of pressing privacy needs — ranging from cloud computing
to healthcare management to the handling of shared databases such as those containing genomics data
— call for immediate solutions that apply fully homomorpic encryption (FHE) and somewhat homo-
morphic encryption (SHE) technologies. Further progress towards these ends requires new ideas for the
efficient implementation of algebraic operations on word-based (as opposed to bit-wise) encrypted data.
Whereas handling data encrypted at the bit level leads to prohibitively slow algorithms for the arith-
metic operations that are essential for cloud computing, the word-based approach hits its bottleneck
when operations such as integer comparison are needed. In this work, we tackle this challenging prob-
lem, proposing solutions to problems — including comparison and division — in word-based encryption
via a leveled FHE scheme. We present concrete performance figures for all proposed primitives.
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1 Introduction

A fully homomorphic encryption scheme (FHE scheme) is one which permits the efficient evaluation
of any boolean circuit or arithmetic function on ciphertexts [21]. One easily checks that we can model
a universal set of gates using addition and multiplication over any non-trivial ring convenient to
us. Gentry introduced the first FHE scheme [9, 10] in 2009; this lattice-based scheme was the first
to support the efficient evaluation of arbitrary-depth boolean circuits. This was followed by a rapid
progression of new FHE schemes (e.g., [25, 4, 24]). In 2010, Gentry and Halevi [11] presented the
first actual FHE implementation along with a wide array of optimizations to tackle the infamous
efficiency bottleneck of FHE schemes. Further optimizations for FHE which also apply to somewhat
homomorphic encryption (SHE) schemes followed including batching and SIMD optimizations; see,
e.g., [12, 23, 13]. Nevertheless, bootstrapping [10], relinearization [5], and modulus reduction [5, 4]
remain as indispensable tools for most HE schemes.

Most relevant to the present work, López-Alt, Tromer and Vaikuntanathan proposed SHE and
FHE schemes (which we denote LTV) based on the Stehlé and Steinfeld variant of the NTRU scheme
[24]; LTV supports inputs from multiple public keys [19]. Bos et al. [1] introduced a variant of the
LTV FHE scheme along with an implementation. The authors of [1] modify the LTV scheme by
adopting a tensor product technique introduced earlier by Brakerski [3] thereby providing a security
reduction to that of standard lattice-based problems. Their scheme affords enhanced flexibility by
use of the Chinese Remainder Theorem on the message space and obviates the need for modulus
switching. Doröz, Hu and Sunar propose another variant of the LTV scheme in [8], putting forward
a batched, bit-sliced implementation that features modulus switching techniques.

With these improved primitives as a springboard, homomorphic encryption schemes have been
used to build a variety of higher level security applications. For example, Lagendijk et al. [15]
give a summary of homomorphic encryption and MPC techniques to realize key signal processing
operations such as evaluating linear operations, inner products, distance calculation, dimension



reduction, and thresholding. Meanwhile SHE tools, developed mainly to achieve FHE, have not
been sufficiently explored for use in applications in their own right. In [20] for instance, Lauter
et al. consider the problems of evaluating averages, standard deviations, and logistic regression
which provide basic tools for a number of real-world applications in the medical, financial, and
advertising domains. The same work also presents a proof-of-concept Magma implementation of an
SHE scheme, offering basic arithmetic functionality, based on the ring learning with errors (RLWE)
problem proposed earlier by Brakerski and Vaikuntanathan. Later, Lauter et al. show in [16] that
it is possible to implement genomic data computation algorithms where the patients’ data are
encrypted to preserve patient privacy. The authors used a leveled SHE scheme which is a modified
version of [18] where they omit the costly relinearization operation. In [2] Bos et al. show how to
privately perform predictive analysis tasks on encrypted medical data. These authors use the SHE
implementation of [1] to provide timing results. Around the same time, Graepel et al. demonstrate
in [14] that it is possible to homomorphically execute machine learning algorithms in a service
while protecting the confidentiality of the training and test data. They, too, provide benchmarks
for a small scale data set to show that their scheme is practical. Cheon et al. [7] present a method
along with implementation results to compute encrypted dynamic programming algorithms such as
Hamming distance, edit distance, and the Smith-Waterman algorithm on genomic data encrypted
using a somewhat homomorphic encryption algorithm.

2 Motivation

With word size message domains we gain the ability to homomorphically multiply and add integers
via simple ciphertext multiplications and additions, respectively. This significant gain comes at a
severe price. We can no longer homomorphically compute a zero test via direct evaluation of a
standard boolean comparator circuit, since the input bits are no longer accessible via our homo-
morphic evaluation operations. The same applies to more complex operations such as comparison
evaluations, thresholding and division. Division, in particular, requires heavy computations and is
challenging to evaluate in either bit or higher characteristic encryption. Therefore, it is commonly
avoided by selecting division free algorithms or by postponing the computation to the client side
after decryption whenever possible.

Our Contribution. In this work we present an array of solutions to improve the versatility of
higher characteristic SHE/FHE schemes along with new abilities, specifically:

– We compare three approaches to field inversion, each with its advantages; these naturally lead
to algorithms for division, zero test and equality checking. The first method is exact but slower;
the others produce rational approximations, which we scale to integers. Our approach based on
Newton-Raphson iterations also gives us an algorithm for square roots. Our convergence-based
approach performs better when the characteristic is large due to their amenability to residue
number system-based optimizations. Particularly valuable by-products include comparison cir-
cuits and threshold functions.

– Further, we introduce a new technique to perform constant division which is used to adjust
the precision on-the fly. When the ciphertext is decrypted the rounded message is recovered.
This technique can be used either individually or to remove the excess bits of the numbers after
arithmetic operations. Basically, we show how the numbers are affected by the noise levels,
parity of the messages so that they round up or down when they are decrypted.
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– We discuss the usage of residue number system (RNS) representation for proposed arithmetic
operations to achieve a large message space. The operations that output encodings of rational
approximations are not compatible with such economies: slight differences in such pre-rounded
values can produce vastly different images under the CRT.

– We summarize with an overall comparison of word-wise homomorphic algebraic operations vis
a vis their bit-wise counterparts for 32-bit integer domain.

– We implement the proposed methods using an LTV-based homomorphic encryption library and
provide the execution times.

3 FHE Background

An FHE scheme is an encryption method where one is capable of performing these two primitive
operations: Decrypt(c1 + c2) = b1 + b2 and Decrypt(c1 · c2) = b1 · b2 (where ci is the corresponding
encryption of bi). In general, all operations are performed over a ring of the form R = Zq[x]/〈F (x)〉
with a prime modulus q and an irreducible polynomial F (x) with small coefficients. The schemes
also specify an error distribution χ over R, typically a truncated discrete Gaussian distribution,
for sampling random polynomials that are B-bounded where B � q. The term B-bounded means
that the coefficients of the polynomial are selected in the range [−B,B] according to distribution
χ: for g ← χ, we have ‖g‖∞ ≤ B. There are usually four primitive functions, namely Keygen,
Encrypt, Decrypt and Eval. Among these, Eval involves homomorphic multiplication, which creates
significant noise growth in ciphertexts and in order to cope with this, there are also several noise
cutting operations.

For advanced algebraic operations, we will build homomorphic circuits involving only additions
and multiplications, hence our proposed algorithms are not designed for a particular FHE scheme.
However, there are some optimization techniques that are specific to the LTV-variant DHS scheme
that we used in our experiments.

3.1 DHS Variant of LTV Scheme and FLaSH Library

In 2012 López-Alt, Tromer and Vaikuntanathan proposed a leveled multi-key FHE scheme (LTV)
[19]. The scheme is based on a variant of the NTRU encryption scheme proposed by Stehlé and
Steinfeld [24]. The LTV scheme uses a new operation called relinearization and existing techniques
such as modulus switching for noise control. In this work, we use a customized single-key version of
LTVproposed by Doröz, Hu, and Sunar [8] along with key size reduction techniques. In this section,
we describe an instance L of FLaSH, the software library of the DHS scheme.

Initially, there are three necessary parameters for the setup: message domain p, the multiplicative
depth d of the circuit C to be evaluated and the initial noise factor B. Then we need to select our
ring R = Zq[x]/〈F (x)〉, however our scheme follows a leveled FHE approach, hence we need a
decreasing sequence of moduli, q0 > q1 > · · · > qd for each level of C. We start with picking a
prime q that is large enough to cover the noise in the ciphertext and use qi = qd−i+1 for each
circuit level i, i.e. we have a sequence of prime powers, qd+1 > qd > · · · > q. Then we pick a secure
degree n for F (x), following the analysis from [8] with respect to the bound on the Hermite factor
for a given security level. Once parameters n and q are set and a polynomial F (x) of degree n is
fixed (e.g., F (x) = xn + 1 or the mth cyclotomic polynomial Ψm(x) with ϕ(m) = n), computations
are performed in the ring Ri = Zqi [x]/〈F (x)〉 for each level i of the evaluation circuit. We write
L = FLaSH(C, p, d, B) where
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– L.Keygen first samples polynomials from B-bounded error distribution χ: f ′ ← χ and g ← χ.
Then it sets the secret key f = pf ′ + 1, computes the public key h = pgf−1 and finally the
evaluation keys ζτ = hsτ + peτ +wτf2 where sτ , eτ ← χ, w is the relinearization block size and
τ ∈ [0, dlog q0/ logwe − 1]. All operations in this step are performed in ring R0.

1

– L.Encrypt(m) = hs+ pe+m where s← χ and e← χ in R0.
– L.Decrypt(c(i)) =

[
dfc(i)cqi

]
p

where c(i) is the ith level ciphertext and the balancing operation

d·cqi reduces coefficients modulo q to lie between −q/2 and q/2. The last operation [·]p reduces
the result modulo p to find the encrypted message. The operations are performed in Ri.

– L.Add(c
(i)
1 , c

(i)
2 ) = c

(i)
1 + c

(i)
2 in Ri.

– L.Mult(c
(i)
1 , c

(i)
2 ) = c

(i)
1 · c

(i)
2 in Ri.

– L.Relin(c(i)) =
∑

τ ζτ c
(i)
τ in Ri where c(i)(x) =

∑
τ w

τ c
(i)
τ (x) expands ciphertext c as a com-

bination of polynomials with all coefficients in [0, w − 1] for τ ∈ [0, dlog qi/ logwe − 1]. This
operation simulates the homomorphic multiplication with the secret key, hence corrects the
encryption mask hs after each multiplication, in addition to reducing the noise.

– L.ModSwitch(c(i)) = bc̃(i)/qep decreases the noise by log q bits by dividing the ciphertext coef-
ficients by q. The operation b·ep refers to rounding so as to match all parities with respect to
message domain p.

– L.Batch(m1,m2, . . . ,mr) =
[∑r

i=1miFi
[
F−1i

]
fi

]
F

packs multiple messages into a single plain-

text polynomial for parallel evaluations as proposed by Smart and Vercauteren [23, 12]. For
this purpose, we select a polynomial F (x) that factors over Fp into r irreducible polynomials
fi(x) each of degree exactly t. Then messages are embedded using the Chinese Remainder The-

orem where Fi = F (x)
fi(x)

. When plaintext space p < n, we use F (x) = Ψm(x), hence we can batch

r = n/t messages into one polynomial, where t is the smallest integer that satisfies
[
pt − 1

]
m

= 0
where m is the cyclotomic degree and ϕ(m) = n. When p > n, we use F (x) = xn + 1 where
[p− 1]2n = 0.

For further details of the scheme, noise growth and security analysis, we refer readers to [8].

4 Beyond Additions and Multiplications

Most homomorphic encryption schemes provide, as basic functionality, addition and multiplication
of ciphertexts which encrypt elements in some ring, with the caveat that multiplication gates are
considerably “more expensive” than addition gates. At face value, this equips us with the ability to
evaluate multivariate polynomials on inputs with a strong preference for low degree polynomials.

In applications such as machine learning, other fundamental operations become essential: di-
vision, zero test, thresholding and comparison. Bit-level encryption excels at functions with
Boolean output but incurs prohibitive cost when required to perform arithmetic even in moderate-
sized message domains. Approaching this from the other end, we seek out algebraically efficient
algorithms for the operations in the above list. Our solutions fall generally into three categories:

– algebraic and exact algorithms;
– approximation-based algorithms with variable precision outputs;

1 Note that due to the choice of moduli qi, all keys can be promoted to the next levels using modular reduction, i.e.
h(i) = [h]qi , f

(i) = [f ]qi and ζ
(i)
τ = [ζτ ]qi , when necessary. This reduces the key size significantly as we do not need

different keys for each level.
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– an ad hoc technique for efficient division of polynomial coeffcients by a prescribed constant.

We begin with three approaches to inversion, which become the basis for more advanced operations
later in the section. Section 5 concludes with a summary of how and when RNS-based techniques
can be employed to parallelize and/or speed up the execution of these tools as well as expand the
message space to avoid overflow.

4.1 Multiplicative Inverse and Division

One of the most difficult, and currently open, questions is how to implement homomorphic division
efficiently. With bit-level encryption, one could implement a parallel division circuit by unrolling
the shift and subtract operations. However the depth of this division circuit would be very high;
the best we can do is to use a costly carry-lookahead subtraction circuit and emulate a serial shift
division algorithm with depth complexity O(n log(n)). In the case of higher characteristic, we run
into the aforementioned comparison and sign-detection problems.

The problem is as follows: Given two inputs a and b which are both defined in Zp, can we
find a polynomial function, P (x, y) say, such that P (a, b) = a/b? This question can be reduced
to this: Can we find a polynomial P (x) such that P (b) = 1/b? Because if there exists such P (x),
then in order to find a/b, we can compute aP (b) = a/b. Furthermore the same polynomial can be
used to execute a simple zero test which we will describe later. In this section we will construct
such a polynomial using three different methods. The first one gives an exact algebraic solution,
but works as a modular operation, whereas the next two use approximation algorithms and they
output real-valued results with respect to a preinitialized precision.

Fermat’s Little Theorem We can obtain a polynomial function via Fermat’s Little Theorem
that permits homomorphic evaluation of the multiplicative inverse b−1 of a number b, modulo p.
Note that a generalization of Fermat’s Little Theorem states that bα ≡ bβ mod p as long as α ≡ β
mod ϕ(p), where b and p are coprime. If we pick p a prime, b can be any number from Zp and it is
known that ϕ(p) = p− 1. It follows that b−1 mod ϕ(p) = bp−2 mod p. Hence we define P (x) = xp−2

and P (x) is defined over Zp.2

Lemma 1 (Modular Inverse and Modular Division). Let L = LTV(p, q) where p ∈ Z is
prime. For c = L.Encrypt(b), we compute c̃ = cp−2. Then L.Decrypt(c̃) = b−1 mod p. For c1 =
L.Encrypt(a), c2 = L.Encrypt(b), if we compute c̃ = c1c

p−2
2 , then L.Decrypt(c̃) = ab−1 mod p.

As we have a polynomial of degree p − 2, this method is not very efficient due to the fact
that we have to compute a homomorphic exponentiation of multiplicative depth O(log(p)). Unless
p is small without further customization this approach will not be very practical. Additionally
note that this method does not provide a multiplicative inverse over real numbers since this is a
modular operation. On the bright side, the output is an exact arithmetic solution, i.e., there is no
approximation, no fractions or precisions to handle. In the next approach we will find the reciprocal,
not simply modulo p, but as a real number using a root finding algorithm.

2 Note that, in case b = 0, we will have P (0) = 0p−2 = 0 mod p.
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Newton’s Root Finding Algorithm We can find the multiplicative inverse of any arbitrary
number b using Newton’s root finding algorithm. The function f(z) = 1/z−b has a root at z = 1/b,
hence if we can find the root of f(z), we obtain the reciprocal for b. Iterations start with an initial

guess z0 and follow by finding zi+1 = zi − f(zi)
f ′(zi)

= zi (2− bzi). Assuming b lies within the range

[0, 2k], we set the initial value z0 to 21−k and fix the number of iterations to µ; the approximation
can be seen in Figure 1a.

For this and upcoming algorithms, we employ variable precision representations. More precisely,
our ciphertexts will encrypt integers which give correct results only when scaled down and rounded
to the nearest integer. We therefore implicitly have a new data type for homomorphic computation.
An ordered pair (c, u), where c = Encrypt(m) and u is a non-negative integer, is viewed as an
encryption of the integer dm/2uc obtained by rounding Decrypt(c)/2u. The integer u specifies the
location of the (binary) precision point; bits to the right of this point are viewed as a sort of noise.
Adding or subtracting two such ciphertexts requires us to align their precision points: for (c, u)
and (c′, u′) with u′ > u, the sum is represented by (c2u

′−u + c′, u′). Likewise, multiplication of
ciphertexts (c, u) and (c′, u′) yields (cc′, u + u′). In what follows, the u + u′ fractional bits of the
corresponding plaintext will be rounded to the nearest integer. Note that, with Zp as our message
domain, we have u ≤ log p.

Applying this framework to our Newton iterates, we encode/represent z0 = 21−k as (1, k) and
set z̄0 = 1. With ρ = 2k−1, we then represent the rational number z1 = z0(2 − bz0) as (z̄1, 2k)
where z̄1 = z̄0 (2ρ− bz̄0) so decryption gives the rounded value dDecrypt(z̄1)/22kc u z1 after the 2k
fractional bits are removed. Continuing in this manner, we represent z2 = z1(2 − bz1) as (z̄2, 4k)
where z̄2 = z̄1

(
2ρ2 − bz̄1

)
again doubling the number of fractional bits. The general form is then

to represent zi+1 as (z̄i+1, 2
i+1k) where z̄i+1 = z̄i

(
2ρ2

i − bz̄i
)

.

Lemma 2 (Approximate Inverse). Let L = LTV(p, q) and c = L.Encrypt(b) with 0 < b < 2k.

We set c̄0 = 1 and iteratively compute c̄i+1 = c̄i

(
2ρ2

i − cc̄i
)

, where ρ = 2k−1. Then for sufficiently

large µ, L.Decrypt(c̄µ) u (1/b) ρ2
µ−1

mod p. Let d = L.Encrypt(a), we compute d̄ = dc̄µ. Then

L.Decrypt(d̄) u (a/b) ρ2
µ−1

mod p.

The depth of this approximation depends on the number of iterations µ, i.e., it is independent
of p. Consider the equation c̄i+1 = c̄i2ρ

2i − c̄2i c, the depth of the function comes from the product
c̄2i c. Initially c̄0 is a constant, hence the exponent of c in c̄1 becomes 1. In the next iterations, the
exponent of c will be 3, 7, . . .. Thus, after µ iterations, the exponent will be 2µ − 1 and the circuit
depth is µ. This gives a great advantage over the approach based on Fermat’s Little Theorem, when
the inputs come from a small subset of the plaintext space (assuming µ < log(p)). Note that the
algorithm is flexible in the sense that we can keep iterating to increase the precision, or terminate
early if less precision suffices for the application. Once the iterations have been completed, the
precision has changed where the most significant log(ρ2

µ
) bits of the result represent the desired

reciprocal. This means that any further computation requires other operands that will interact with
the reciprocal need to be shifted to align with the segment representing the fractional part. On the
other hand, the down-side of this algorithm is, since we need to fix the precision variable ρ, we
need to have an upper limit for input b. The next algorithm finds an approximate reciprocal using
a convergence algorithm.
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(a) Using Newton’s root finding algorithm,
where b ∈ [0, 64], z0 = 1/32 and µ ∈ {5, 8}.

(b) By convergence, where b ∈ [0, 64] and η ∈
{5, 8}.

Fig. 1: Multiplicative inverse approximation function P (x) = 1/x

Goldschmidt’s Convergence Method We briefly and informally describe how to find the inverse
by convergence as follows: Assume we want to compute the reciprocal 1/b. The algorithm works by
multiplying both the numerator and denominator by a series of values r0, r1, . . . so as to make the
denominator converge to 1. Thus, at the end of the computation the numerator yields the desired
division result:

1

b
=

1

b
· r0
r0
· r1
r1
· · · rη

rη
, b · r0r1 · · · rη → 1 .

The standard approach starts by normalizing 1 and b to become fractions in the unit interval, in
particular b ∈ [12 , 1). Then we can write z = 1 − b where z ∈

[
0, 12
]
. Then setting r0 = 1 + z,

r1 = 1 + z2, . . . , ri = 1 + z2
i

will yield the desired result. We can show that b · r0 ∈ [1 − 2−2, 1],
b · r0r1 ∈ [1− 2−4, 1], b · r0r1r2 ∈ [1− 2−8, 1], etc., with products b · r0 · · · rη converging to one. The
approximated inverse values for different η can be seen in Figure 1b.

Given ` and c = Encrypt(b) and setting σ = 2`, we can mimic the inversion by convergence
algorithm to effect a homomorphic division operation. Our variable precision encoding associates
the ordered pair (c, `) to b′ = b/σ. Next z = 1 − b/σ is represented by (z̄, `) where z̄ = σ − c.
Likewise, our representation for ri = 1 + zi is (r̄i, 2

i`) where decryption of r̄i is close to σ2
i
ri.

Putting this all together, we find that 1/b u r0 · r1 · · · rη/σ is well approximated by P (b)/σ2
η+1

where P (x) =
∏η
i=0

(
σ2

i
+ (σ − x)2

i
)

. So our variable precision approach represents our encryption

of 1/b as (P (c), 2η+1`) where the fractional part of P (c) consists of the last 2η+1` bits.

For the most significant ` bits to stabilize, we need log(`) + log log(`) = O(log(`)) iterations
which also represents the depth of the computation. Now if we cannot estimate the magnitude of
b, due to repeated squaring the power of z will double in precision in every iteration moving bit by
bit closer to the end of the precision window3. Therefore, we will need another O(`) iterations for
the denominator to reach 2i`−1 ≤ br0r1 . . . ri < 2i`. In practice the number of iterations required by
the division by convergence algorithm will depend on the distribution of the data. For uniformly
distributed data of precision `, the expected value of the deviation in the magnitude will be in

3 Note that in the special case of a constant division we can always finish the result in log(b) iterations. Therefore
we can very efficiently divide by small constants with compact representation.
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the order of 2O(log(`)). Therefore, the average case and worst case complexities of the division by
convergence algorithm are in the order of O(log(`)) and O(`), respectively.

Lemma 3 (Approximate Inverse). Let L = LTV(p, q) and c = L.Encrypt(b). We compute c̃ =∏η
i=0

(
σ2

i
+ (σ − c)2

i
)

, for a chosen number of iterations η, which depends on the predetermined

precision factor `, with inputs b ∈ [0, 2`] and σ = 2`. We have L.Decrypt(c̃) u (1/b)σ2
η+1−1 mod p.

Let d = L.Encrypt(a), we compute d̃ = dc̃. Then L.Decrypt(d̃) u (a/b)σ2
η+1−1 mod p.

The polynomial P (x) has degree
∑η

i=0 2i = 2η+1−1 requiring a circuit of depth log
(
2η+1 − 1

)
=

η+ 1. As in the previous approximation method, this is also independent of the message space size
p. But both algorithms suffer from the growth in the fractions, i.e. p should be large enough to
cover the magnitude of the end result in order to avoid overflows. Even with small precision, after a
few iteration steps we end up with a large fraction. This is a generic problem in any approximation-
based algorithm where we have to use real numbers. Thus, later in Section 5.2, we propose a method
to make these schemes that require large p more practical using RNS. We also propose another
solution, where we describe a homomorphic constant division method, so that we can adjust the
precision before decryption. This method decreases the magnitude of p on the fly, hence there are
advantages and disadvantages that will be discussed later. (See Section 5.1.)

4.2 Zero Test and Equality Check

We can obtain a polynomial function that permits homomorphic evaluation of a zero test. The test
returns a zero or one depending on whether or not the ciphertext is (or rounds to) an encryption of
zero. Let this polynomial be Z(x). Then we want to have Z(a) = 0 if a is equal to zero, Z(a) = 1
otherwise. We can retrieve this functionality using Fermat’s Little Theorem by computing xp−1

mod p. This can be interpreted as multiplying the input x with its inverse modulo p, which is
xp−2 mod p. Inspired by the same idea, we can create a zero test polynomial by using any inverse
polynomial as follows: Z(x) = xP (x). Then the output will give us a 0 or ω depending on the
chosen inverse finding method.

The zero test may be used trivially to homomorphically perform an equality check on two
messages a, b by computing Z(a− b). Note that this is a much simpler operation than magnitude
comparison which we will address later in Section 4.3.

Lemma 4 (Zero Test and Equality Check). Let L = LTV(p, q) and c = L.Encrypt(b). We
compute c̃ = cP (c). Then L.Decrypt(c̃) = 0 if b = 0 mod p and L.Decrypt(c̃) u ω if b 6= 0 mod p.
Let c1 = L.Encrypt(a) and c2 = L.Encrypt(b), then if we compute c = c1− c2 and c̃ = cP (c), we will
retrieve L.Decrypt(c̃) = 0 if a = b mod p and L.Decrypt(c̃) u ω if a 6= b mod p.

The degree of Z(x) is always one more than the degree of P (x). Thus, the complexity of a
zero test depends on the underlying inverse polynomial. Due to the same reason, the zero test also
suffers from the same problems of the chosen inverse method.

4.3 Thresholding and Comparison

Using the zero test we can compute thresholding operations easily albeit inefficiently. Assume we
want to homomorphically evaluate the check b ≤ t for some data b and threshold t ∈ Zp. As earlier
we are given the encryption of b while t is presumed available as cleartext and again we are seeking
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a polynomial to represent this operation. Let it be T (x, t), then we want T (a, t) = 0 when a < t
whereas T (a, t) = 1 otherwise. We can devise this algorithm by testing the equality over the range
of integers i = 0, . . . , t− 1 and aggregate the result as4 T (x, t) =

∑
i∈[t] (ω − Z(x− i)) where Z(x)

is a zero test polynomial that is described in the previous section. Clearly, we can instead compute
the complement if t is closer to p than to 0.

If we compute it using Fermat’s Little Theorem, although it is not efficient, this presents a viable
and exact technique for evaluating thresholds. A significant positive aspect of the formulation is
that the multiplicative depth of the threshold computation is independent of the threshold constant
t and is the same as the depth of an equality check: O(log(p)). On the other hand, the summation
becomes computationally expensive — with complexity O(t log(p)) — as p and the range of t grow.
Lookup tables and selection of special moduli can be used to increase the efficiency.

Unless p is small without further customization this approach will not be very practical. To gain
some economy over the prime p case, we may chose p to be highly composite p =

∏
i∈[k] pi in such

a way that the zero test simply becomes cϕ(p) = c
∏
ϕ(pi). Then the multiplicative depth complexity

of a zero test (or comparison) becomes
∑

i∈[k] log(pi − 1).

Approximation Methods In order to retrieve a threshold polynomial T (x), we will make use of
the Unit Step Function, i.e H(x) = 0 when x < 0 and H(x) = 1 when x > 0, then we can just
compute T (x) = H(x− t) where t is a fixed cleartext threshold. Furthermore, the same polynomial
can be used to compare two encrypted values a, b by computing H(a−b). We propose two different
methods to create a step function.

For the first approach we will make use of logistic function and the equation is given as follows,

H(x) = lim
k 7→∞

1
1+e−2kx u (ex)2k

(
1 + (ex)2k

)−1
. By limiting k to a small constant, we can get a

smooth approximation and we can use Taylor Series approximation to compute the exponential
function ex u

∑∞
i=1

xi

i! , and we can also use one of the inverse functions that we found in Sec-

tion 4.1. Thus H(x) becomes: H(x) u
(∑∞

i=1
xi

i!

)2κ
P

(
1 +

(∑∞
i=1

xi

i!

)2κ)
. Even though we can

get a threshold polynomial using this approach, it is computationally expensive considering the in-
put to the inverse function has already a large exponent. Therefore, we use another approach which
is constructing a square wave using sine waves. Square wave function S(x) can be approximated as,

S(x) u
∑∞

i=1
sin((2i−1)x)

(2i−1) For sinus values we can use the approximation, sin(x) u
∑∞

j=1
(−1)j−1x2j−1

(2j−1)! .

Embedding this in the previous equation we will have, S(x) u
∑∞

j=1

∑∞
i=1

(−1)j−1(2i−1)2j−2

(2j−1)! x2j−1

The output of the square wave function is in the range of [−0.8, 0.8] in a period, thus we compute

H(x) as: S(x)+0.8
1.6 . The degree of H(x) depends on the upper limit for j. If we define i ∈ [1, α] and

j ∈ [1, β], then the largest exponent of input x, i.e., the degree of H, becomes 2β − 1. Consequently,
the depth of the approximation algorithm becomes dlog (2β − 1)e = dlog βe+1. For different values
of α and β the unit step approximation can be seen in Figure 2.

To make use of this approximation algorithm, we also need to associate message space elements
to discrete samples of the input range [−1, 1] of H(x). Assume we handle elements of precision `
bits and we want to find H(b− t), where b, t ∈ [0, 2`). Then we have an input x = b− t ∈

(
−2`, 2`

)
and we have to normalize it with ω = 2`, so that the normalized value lies in the input range, i.e.

4 Since the zero tests are exclusive, we may aggregate the result using a standard homomorphic addition operation
instead of a boolean OR.
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Fig. 2: Unit step function H(x) for various approximation degrees.

x/ω ∈ (−1, 1). As in the previous approximation methods, we need to represent ` fractional bits
with a binary point placed right after leaving a single bit for the integer part. During evaluation
we need to keep track of the precision point which moves to the left, with each multiplication by x.
Once the evaluation is completed the approximation result resides in the most significant precision
bit(s) ready to be used for subsequent evaluation and the maximum number of fraction bits can be
found in the term with the highest exponent, ω2β−1.

4.4 Square Root

We can find an approximation to the square root of a number by using a root finding algorithm.
As before, we seek a polynomial, R(x) say, such that R(b) =

√
b. The function f(y) = y2 − b

has a root at y =
√
b, hence if we can find the root of f(y), we obtain the square root of b.

If we use Newton’s Root Finding method as in Section 4.1, we can iterate through the values

yi+1 = yi − f(yi)
f ′(yi)

= 1
2

(
yi + b

yi

)
with an initial guess of y0. For the inverse computation b

yi
, we

can use the inverse approximation polynomial that we retrieved before, yi+1 = 1
2 (yi + bP (yi)). In

order to handle fractions, again we need to consider an imaginary precision point. The depth of the
algorithm depends on the number of iterations, κ say; then total depth will be κ times the depth
of the inverse computation P (x). Thus this is a much more costly operation relative to inversion.

5 Making Word Arithmetic More Practical

As mentioned before, most of the proposed methods require a large p. By increasing the size of p,
we incur a high noise growth in the ciphertexts. As a consequence, this leads to the use of larger
coefficient size for the ciphertexts, i.e., the ring R = Zq[x]/〈F (x)〉 with a larger q. Increasing q
affects security, hence this leads to the use of a cyclotomic polynomial with a larger degree, i.e.,
even a larger ring R. So even though increasing our message space gives us freedom to handle
inputs from a much higher characteristic, this also comes with efficiency problems. In this section
we propose two independent methods to make such arithmetic with large p more practical.
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5.1 Constant Division - Adjusting the Precision

Here we introduce a technique that may be used to remove excess bits (at decryption) after division
and thresholding operations. We consider L = FLaSH(C, p, d, B) with private key f = pf ′ + 1 and
public key h = pgf−1 and we will examine decryption using L̃ = FLaSH(C, p̃, d, B) where p̃|p and L̃
uses the same private key f (along with the same n and q-sequence) as does L.

Lemma 5 (Constant Division). Suppose the plaintext m is LTV-encrypted using L as c = c(x) =
hs+ pe+m so that L.Decrypt(c) = m. Suppose p = d · p̃ and q ≡ 1 (mod p). Let u = gs+ fe+ f ′m
and write m = d · m̃ + r where 0 ≤ mi < p, 0 ≤ m̃i < p̃, 0 ≤ ri < d . Then, as long as ‖u‖∞ ≤
(q − 1− 2p)/2p, the scaled ciphertext c̃ = d−1 · c in R satisfies L̃.Decrypt(c̃) =

∑n−1
i=0 m̂ix

i where

m̂i =

{
m̃i, if 0 ≤ ri ≤ d/2 + ui

2‖u‖∞ ;

m̃i + 1, otherwise.

When decrypted we obtain our results with reduced precision afforded by p̃. However, we can
perform deeper computations with as much precision allowed by dp̃. We may choose to divide the
message by any divisor s of d by multiplying it with s−1 ∈ Zq.

5.2 Using RNS with Approximation Algorithms

As shown in Sections 4.1 and 4.3, we can efficiently compute divisions and approximate thresholds
using convergence. While asymptotically efficient, both require many levels of multiplication and
a large message space, i.e. p, to prevent overflow. This is where the residue number system (RNS)
can make a significant difference. Since both algorithms use only constant scaling, additions and
multiplication operations and therefore can be used in conjunction with RNS representation. For
this, we create parallel LTV encryptions of the same message by computing its residues using a set
of distinct prime moduli p1, p2, . . . , pk. The product p =

∏
pi should be large enough to contain the

result even after division or thresholding and any subsequent evaluations. This creates k parallel
evaluation paths where the same evaluation is performed including any divisions and threshold
computations. The resulting ciphertexts are decrypted individually. The result is recovered using
CRT. With this approach noise growth can be curbed and parameter sizes can be kept in a rea-
sonable range. Finally, we note that the precision adjustment technique cannot be used along with
RNS since CRT cannot recover from rounding errors that occur during decryption.

6 Comparison with Binary Artihmetic

In this section, we will make an overview of all the proposed methods with comparison to their
binary equivalents. These operations include addition (+), multiplication (∗), division (/), equality
check (=) and comparison (<).

For binary addition we can use a parallel prefix adder such as Kogge-Stone that has a (1 + log k)
depth where k is the bit size of the inputs. For multiplication we can build a Wallace tree multiplier

using full and half adders and the circuit has at least
(

1 + log3/2 k/2
)

multiplicative depth. Both

addition and multiplication are trivial operations in the word domain. Ciphertext addition does not
increase the noise significantly, thus it does not have an effect on the circuit depth. Multiplication
increases the circuit depth by adding only one level. Division is by far the most costly of the four
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arithmetical operations on binary domains. In order to divide a 2k bit number by a k bit divisor,
we can build a binary division circuit that involves k cycles of conditional k-bit subtractions.
For subtraction, we can use the parallel prefix adders with a delay of (1 + log k). The condition
statement adds one level in each step, thus resulting in an overall circuit depth of (k (2 + log k)). For
the last two operations we use simple boolean circuits from [6], where equality check has (log(k))
and less than check has (log(k) + 1) depth.

For 32 bit integer inputs, the parameters that are used in LTV setup can be seen in Table 1.
For further details on selection of the security and noise parameters, we refer users to [8].

Binary Wordwise
Parameters + ∗ = < / + ∗ = < /

log(p) 1 1 1 1 1 32 32 20 20 20
d 6 10 5 6 96 − 1 6 5 5
log(q) 23 24 23 23 28 150 150 100 100 100
log(q0) 161 264 138 161 2716 150 300 700 600 600
n 8190 8190 8190 8190 131070 4096 8192 18432 16384 16384
δ 1.0033 1.0055 1.0028 1.0033 1.0035 1.0062 1.0066 1.0065 1.0063 1.0063
log(w) 3 3 3 3 3 − 30 25 25 25
#ζτ 20 33 17 20 339 − 10 28 24 24

#c(0) 64 64 64 64 64 2 2 ≈ 8 ≈ 16 ≈ 8
r 630 630 630 630 7710 4096 8192 18432 16384 16384

Table 1: Leveled DHS parameters for bit-wise and word-wise encryption. Key to parameters:
log(p): bit size of the plaintext space; d: multiplicative depth of the circuit; log(q): bit size of
the noise cutting factor; n: degree of the polynomial ring; δ: Hermite factor with respect to the
maximum q and n; log(w): bit size of each relinearization block; #ζτ : number of relinearization
blocks/evaluation keys for the first level; #c(0): number of total ciphertexts for two operands; r:
number of message slots in case of batching enabled.

7 Implementation Results

We implemented the proposed division, zero test, thresholding and comparison algorithms using
the leveled single key LTV scheme using Shoup’s NTL library version 9.0.2 [22] compiled with the
GMP 5.1.3 package. Our simulations are performed on an Intel Xeon @ 2.9 GHz server running
Ubuntu Linux 14.04 LTS. Note that the proposed homomorphic algebraic operations in Section 4,
are generic, i.e. they can be implemented using any FHE scheme that supports word size encryption,
but the optimizations defined in Section 5 are LTV-specific. Thus we built our circuits using DHS
software library: FLaSH. For parameter selection we utilized the two Hermite factor analysis using
the formula in [17], i.e. 1.8/ log δ − 110. We used modulus polynomial xn + 1 when p > n for our
message embedding otherwise we used Ψm(x). For the first test, we evaluated word-wise addition
and multiplications. A single 32-bit addition takes 0.8 milliseconds and when batching is enabled
it takes 0.19 microseconds per addition. A 32-bit multiplication runs around 1.1 seconds (including
the modulus reduction), and is followed by a relinearization which takes 1.2 seconds with a block
size of log(w) = 30 bits which gives an amortized time of 0.28 milliseconds per multiplication.
Secondly, we evaluated the division circuits for the two proposed methods. For Newton’s method
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with µ = 5 and inputs in the range [0, 64], we used the RNS method with 4 different 20-bit p values,

because p needs to be larger than 2(k−1)(2
µ−1) = 280. In this test, we have a total execution time

(including ring operations and relinearizations) of 5.1 minutes. Next, we evaluated Goldschmidt’s
division by convergence algorithm for η = 5 and inputs in the range [0, 64], in this case we used 20

different 20-bit p values, because p must be larger than 2`(2
η+1−1) = 2378. We also evaluated the

equality checks (and/or zero check) using both Fermat’s Little Theorem and division by Newton’s
root finding method. We used two different setup (p, d) = (17, 4) and (p, d) = (257, 8) and disabled
batching for this test. For the last test, we computed a comparison with inputs in the range [0, 32]
and α = 5, β = 16. In order to have p > 2`(2β−1) = 2155, we set 8 different 20-bit p values. Total
execution times can be seen in Table 2.

Operation Algorithm (d, log(q), n, δ) Total Time Amortized

Addition Wordwise (0, 150, 4096, 1.0062) 0.8 ms 0.19 µs

Multiplication Wordwise (1, 150, 8192, 1.0066) 2.3 sec 0.28 ms

Division
Newton’s (5, 100, 16384, 1.0063) 5.1 min 18 ms

Goldschmidt’s (6, 100, 18432, 1.0065) 30.4 min 1.27 sec

Equality Check
Fermat’s

(4, 30, 4096, 1.0061) 4 sec -
(8, 52, 12288, 1.0065) 9.09 sec -

Newton’s (6, 100, 18432, 1.0065) 6.08 min 19 ms

Comparison Square wave (5, 100, 16384, 1.0063) 10 min 36 ms

Table 2: Parameters and timings for: Zero Test using Fermat’s Little Theorem with a single
message; Division first using root finding, then convergence algorithm for multiple packed data;
Comparison using Square Wave approximation for multiple packed data.

8 Conclusion

This paper explores advances in word-based homomorphic encryption. Directly addressing the
weakest points of the current word-based approach, we propose an assortment of solutions to chal-
lenging algorithmic bottlenecks that have hampered existing systems from exploiting the full utility
of ring operations in large characteristic. As our starting point, we have proposed three distinct
approaches to inversion. These lead to efficient algorithms for division, zero test, equality check,
thresholding, comparison, and square root, mostly in terms of approximation-based algorithms.
We also introduce an extremely efficient technique for constant division and bring in the Chinese
Remainder Theorem as a tool to improve the scalability of the proposed approximation algorithms.
While many of these operations involve unsurprisingly high degree polynomials (hence require eval-
uation of deep circuits), our implementation experiments give impressive amortized timings when
batching is employed. The most practical use of these techniques remains in applications where
all but a small number of gates are addition and multiplication gates, with approximation based
algorithms applied only just before decryption.

While we have focused on the DHS variant of the LTV scheme, much of what we explore here
is system agnostic and can be adapted to any word-based FHE.
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Appendix

Proof of Lemma 5.

Remark 1. We note that cases 2ri ≡ 0 (mod d) become simpler in the case when distribution χ
generates only polynomials with non-negative coefficients.

Proof. Set q = p`+ 1 and U = `
2 − 1 so that ‖u‖∞ ≤ U . Observe that d′ = q − p̃` is the inverse of

d in Zq and write m′ = d′m.
We begin by expanding f c̃ and, where possible, reducing modulo q to find

c̃ = d′hs+ d′pe+ d′m = p̃gf−1s+ p̃e+ d′m

fc̃ = p̃gs+ p̃fe+ (pf ′ + 1)d′m = p̃gs+ p̃fe+ p̃f ′m+ d′m = p̃u+ d′m .

Next, we substitute m = dm̃+r and d′ = q−p̃` as above: f c̃ = p̃u+d′dm̃+d′r = p̃u+m̃+(q − p̃`) r =
p̃u+ m̃− p̃`r in Zq[x]. So we can write

L̃.Decrypt(c̃) = df c̃cq mod p̃ = dp̃u+ m̃− p̃`rcq mod p̃

That is, m̂ = dMcq mod p̃ where M(x) = p̃u(x)+m̃(x)−p̃`r(x) with coefficients Mi = p̃ui+m̃i−p̃`ri
for 0 ≤ i < n. We will consider various cases and compute dMicq mod p̃ in each case.

First we observe that, in all cases, −q < Mi < q/2. Since ui ≥ −U , m̃i ≥ 0 and ri ≤ d− 1, we
have Mi ≥ −p̃U − p̃`(d−1) = −p̃U − p̃`d+ p̃` = p̃(`−U)− (q−1) > −q since U < ` by hypothesis.
Likewise, ui ≤ U and m̃i < p̃ give Mi < q/2. So the balanced reduction modulo q takes a very
simple form:

dMicq =

{
Mi + q, if Mi ≤ −q/2;

Mi, if − q/2 < Mi ≤ q/2.
(1)

Case 1: ri = 0 : Here, Mi = p̃ui+ m̃i > −p̃U > −q/2 so that dMicq = Mi and dMicq mod p̃ = m̃i .

Case 2: d even, ri = d/2 : First note that Mi is close to our boundary −q/2:

Mi = p̃ui + m̃i −
p`

2
= p̃ui + m̃i −

q − 1

2
.

If ui ≥ 0, we obtain −q/2 < Mi < q/2 and dMicq = Mi. Since d is even, 2p̃ divides q − 1 and we
have dMicq mod p̃ = m̃i. On the other hand, if ui < 0, m̃i < p̃ gives p̃ui + m̃i < 0 and Mi < −q/2
so that dMicq = Mi + q and

dMicq mod p̃ =

(
p̃ui + m̃i −

p`

2
+ p`+ 1

)
mod p̃ = m̃i + 1 .

This dependence on ui is reflected in the statement of the theorem by replacing ri by ri − ui/2U .

Case 3: 0 < ri < d/2 : Since U < `
2 and d ≥ 2, p̃U + p̃`bd−12 c <

q
2 and p̃U + p̃`ri <

q
2 , thus

Mi = p̃ui + m̃i − p̃`ri > − q
2 . So dMicq = Mi and dMicq mod p̃ = m̃i in this case.

Case 4: d/2 < ri < d : Here, we have ui ≤ U , m̃i < p̃, and ri ≥ d+1
2 so that our bound U = `

2 − 1

gives p̃U ≤ p̃ `2 − p̃ and p̃U + (p̃− 1) − p`
2 −

p̃`
2 < − q

2 , thus Mi = p̃ui + m̃i − p̃`ri < − q
2 so that

dMicq = p̃ui + m̃i − p̃`ri + q and dMicq mod p̃ = m̃i + 1. �
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