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Abstract

In this paper we present a key recovery attack to the scale-invariant NTRU-based some-
what homomorphic encryption scheme proposed by Bos et al [BLLN13] in 2013. The attack
allows us to compute the private key for ¢ > 2 and when the private key is chosen with
coefficients in {—1,0,1}. The efficiency of the attack is optimal since it requires just one
decryption oracle query, showing that if we don’t look for this kind of vulnerabilities in
homomorphic encryption constructions we are likely to choose insecure parameters. The
existence of a key recovery attack means that the scheme is not CCAl-secure. Indeed,
almost every somewhat homomorphic construction proposed till now in the literature is
vulnerable to this kind of attack, hence our result indicates that building CCA1-secure ho-
momorphic schemes is not trivial. We also provide tables showing how the multiplicative
depth is affected when the critical parameter By, is chosen in order to mitigatte the attack.

1 Introduction

The construction of fully homomorphic encryption (FHE) was conjectured in 1978 by Rivest,
Adleman and Dertouzos [RAD78]. Although it was immediately recognized as a very interest-
ing possibility in Cryptography, no concrete construction was known until 2009, when Gentry
used ideal lattices to settle this conjecture [Gen(9].

In short, ciphertexts produced by an FHE scheme can be added or multiplied, in such a
way that we obtain the corresponding addition or multiplication of the respective plaintexts.
The ability to algebraically operate over ciphertexts is of great importance because we can
transform any algorithm into a sequence of additions and multiplications. Therefore, such a
scheme can evaluate any algorithm solely with access to the encryption of its input, and such
that the computation returns the encryption of the output.

Since Gentry’s work, many FHE constructions have appeared in the literature. However,
all the proposals have a common drawback: they are not practical. Initially, the algorithms
involved in the constructions, although having polynomial complexity, have high polynomial
degree, which turned out to be an obstacle to be transposed. Later, asymptotic complexity
became much better, indeed we have now constructions with polylog overhead per operation,
but with terribly high constants.

Although fully homomophic encryption is not practical yet, many constructions have been
proposed recently achieving a somewhat homomorphic encryption (SHE) scheme. These con-
structions are indeed very useful in practice, specially in order to provide security in the sce-
nario of cloud computing. SHE is important also in the implementation of private information
retrieval (PIR) protocols, which can be seen as a building block to the solution for the privacy
problem that emerges when we give our data to the cloud.



In this work, we are going to present a key recovery attack to an efficient scale-invariant
NTRU-based SHE scheme. Gentry’s original construction is based on ideal lattices, which is
a subarea of cryptography whose attention by the cryptology community has increased due
to the advent of post-quantum cryptography, since quantum computers can perform no bet-
ter than classical computers to solve lattices hard problems. Besides that, lattice-based cryp-
tography is supported by worst-case security proofs, what is a strong argument in relation
to conventional average-case security reductions. On the other hand NTRU is a practical
lattice-based cryptosystem that remained without such a security proof for a long time, but
recently this problem was solved [SS13] and NTRU-based cryptosystems appeared back as a
fruitful research area. Lastly, scale-invariant homomorphic encryption was proposed by Brak-
erski [Bral2], presenting a construction that avoids the utilization of modulus switching tech-
nique, considerably simplifying the scheme.

1.1 Notation

An important technicality about the running time of the algorithms that will be presented is
that they are required to be polynomial-time in the size of their input, therefore the security
parameter A must be expressed in unary representation, otherwise the algorithm could have
exponential complexity. Thus, whenever A appears it will mean the unary representation of
the security parameter.

Notation |x] is used to round z to the nearest integer, while notation [z], is used to denote
centralized modular reduction, i.e. reduction modulo g, but with result given in the interval
(—4/2,q/2].

Moreover, when working over a polynomial ring R, if a(z) € R, we use the notation a[i] to
denote the i-th coefficient of the polynomial a(x).

1.2 Paper organization

This paper is organized as follows. In section 2 we present basic definitions and details about
the security model that will be used. In section 3 we described exactly how the SHE scheme
BLLN is constructed. In section 4 we provide the main contribution of this paper, which is
the key recovery attack and the parameters corrections that are necessary in order to avoid the
attack. Finally, in section 5 we give further information about our implementation and give
our concluding remarks.

2 Fundamentals and security model

In this section we are going to present basic concepts and the security model that we will use
throughout the paper.

Definition 1. We say the an adversary has negligible probability of success, if his probability of success
is less than any inverse polynomial in the security parameter. In other words, for every constant c, the
adversary’s success probability is smaller than n=¢ for large enough values of n. In general, a function
f is called negligible if it holds that for every polynomial p(n), then we have that there exists N such
that f(n) < ﬁ,for all integers n. > N.

A cryptosystem is secure against chosen ciphertext attack (CCA2) if there is no polynomial
time adversary that can win the following game with non negligible probability.
Setup. The challenger obtains (sk, pk) = KEYGEN(\) and sends pk to the adversary A.



Queries. A sends ciphertexts to the challenger, before or after the challenge, that returns
the corresponding plaintexts.

Challenge. The adversary randomly generates two plaintexts mg,m; € P and sends to the
challenger, that chooses randomly a bit b € {0, 1} and computes the ciphertext ¢ = ENCp ().
The challenger sends c to A.

Answer A sends a bit ¥’ to the challenger and wins the game if b’ = b.

If we allow queries only before the challenge, we say that the cryptosystem is secure against
CCAL1 adversaries (lunchtime attacks). As previously described, queries can be interpreted as
an access to a decryption oracle. If instead we only allow access to an encryption oracle, i. e.
the adversary can choose any message that is distinct from mg and m; to be encrypted under
the same key pair, then we say that the cryptosystem is secure against chosen plaintext attacks
(CPA).

In homomorphic encryption, it is impossible to achieve CCA2 security, because the adver-
sary can add an encryption of zero to the encrypted message, or multiply it by the encryption
of one, and send it to the decryption oracle. Many FHE schemes have as public value an en-
cryption of the private key bits, which can be sent to the decryption oracle before the challenge,
what makes such schemes insecure against CCA1 adversaries. Indeed, a key recovery attack
is stronger than an CCA1 attack and Loftus et al [LMSV11] showed that Gentry’s construction
over ideal lattices is vulnerable to it and presented the only SHE proposal that is known to be
CCAL1 secure.

Recently [CT14], Quenal and Tang showed that many SHE schemes are not CCA1 by pre-
senting a key recovery attack. Although the straightforward application of the ideia is not
possible in NTRU-based constructions, we are going to show that a different algebraic trick
can be done.

From now on we are going to work over the same algebraic structure, that is given by
the cyclotomic ring R = Z,[z]/(z? + 1), where d is a power of 2. Cyclotomic rings are be-
ing used in lattice-based cryptography since the breakthrough from Lyubashesky, Peikert and
Regev [LPR10]. Such rings lead to the definition of ideal lattices, that corresponds to the lat-
tices whose points are given by the coefficients of the cosets representative elements. Although
there is no demonstration that ideal lattices maintain the same security guaranties as conven-
tional lattices, but no significant improvement in ideal lattices hard problems complexities has
appeared till now.

An important peculiarity of lattice-based cryptography is the utilization of intermediary
problems, whose solution can be demonstrated to be as hard as solving worst-case problems
like for example GAPSVP, and GAPSIVP,, where 7 is the approximation factor. For instance,
the decision version of the LWE problem can be reduced to GAPSIVP,, with v a polynomial
function in the security parameter. Hence, the LWE problem, detailed in definition 2, only can
be efficiently solved if there is a polynomial solution to worst-case lattice problems.

Definition 2. Given the security parameter A, let d and q be integers depending on \. Let R, = R/qR
and the distribution D over R, be a Gaussian discrete distribution that depends on . Then, the LWE
problem is to distinguish between the following two distributions: (i) (a,b) € R2, where a and b are
chosen according to the uniform distribution and (ii) (a,b) € Rg, where a is uniform but b = as + e,
where s and e are chosen using D.

3 NTRU-based somewhat homomorphic encryption

NTRU cryptosystem [HPS98] is an efficient lattice-based cryptographic scheme, but for many
years, the lack of security proof, reducing its security to worst-case lattice hard problems, was



the major concern about its utilization. Stehlé and Steinfeld [SS13] presented such a proof,
replacing original ring Z,[z]/(z? — 1) by the previously described cyclotomic rings Z,[z]/(z¢ +
1), where d is restricted to a power of 2.

In 2012, Lépez-Alt, Tromer and Vaikuntanathan [LATV12] proposed the construction of
multikey fully homomoprhic encryption, called LTV scheme. The difference here is that users
with distinct keys can compute ciphertexts that will be processed by a server in order to obtain
the homomorphic evaluation of a determined function. It means that each user will be able
to decrypt the function evaluation and this strategy can be followed to construct a multiparty
computation scheme.

Dor6z, Hu and Sunar [DHS14] customized LTV scheme, proposing a new construction
called DHS scheme. They implemented homomorphic evaluation of AES using their proposal,
showing that it offers advantage against the BGV scheme [BGV11].

However, LTV scheme is based on non-standard assumptions. In 2013, a scale-invariant
NTRU-based scheme was proposed by Bos et al [BLLN13], abbreviated by BLLN scheme. The
basic scheme, Epqsic, can be described as follows:

Definition 3. Setup. Given the security parameter \ and the ring R = Z[x]/¢pq(x), for a fixed
d, where d is a power of two. Let Dyey and Dey, be distributions on R. SETUP algorithm returns
(t’ d, q, Dkeya Derr)-

Key generation. Given the output of SETUP algorithm, sample polynomials f', g < Dyey and
compute f = [tf + 1], Verify if f is invertible modulo q, otherwise choose a new f'. Compute the
inverse f~1 € Rand h = [tgf~],. The public key is given by pk = h and the private key is given by
sk = f. Algorithm KEYGEN returns (sk, pk).

Encryption. The plaintext space is R/tR, then a message is given by a coset m + tR. Compute
[m]; as the representative element of the coset. Sample s, e <— Deyy and compute the ciphertext

¢ = ENCpi(m) = [|g/t] [m], + e+ hs], .

Decryption. Return the message

m = DEC.i(e) = [[(t/0). [fd]]] -

The security of this scheme is based on an analysis from Gentry et al [GHS12], which in
turn used parameters presented in the work from Lindner and Peikert [LP11], showing that the
scheme is secure as long as the LWE problem parameters d, ¢, o respect the following inequality

oo (R0

When applied with homomorphic schemes, this relation acquires a challenging aspect, because
as the standard deviation increases, less homomorphic operations can be evaluated, since a
larger initial noise would be rapidly propagated, what would require a larger modulus ¢, con-
forming to the circuit level. Thus, as the ratio ¢/o determines the LWE-based cryptography
security, in order to avoid managing the growth of such weakly related functions, for instance
the inter-dependent values of d, ¢ and o, we can fix a sufficiently large minimum value for o,
such that attacks that explore small standard deviations are mitigated [AG11].

Distribution Dy, must be chosen according to Stehlé and Steinfeld description [SS13], such
that the public key is close enough to the uniform distribution and then reveals almost nothing
about the private key. Rigorously, it reveals only a negligible fraction of the secret. Thus, Di.y is
a discrete Gaussian on R, with standard deviation at least (dv/log 8dq)q", for k in the interval
(1/2,1). Furthermore, D, is a w(y/dlog (d))-bounded Gaussian distribution, what makes it
secure based on the LWE problem.




4 Key recovery attack and adjustments

In a key recovery attack, we submit appropriately chosen ciphertexts to a decryption oracle
in order to retrieve information about the private key. If we can do that, then we can also
solve the challenge in the CCA1 game. Consequently, we have that the key recovery attack is
stronger than a CCA1 attack, since if the adversary can calculate the private key having access
to a decryption oracle before the challenge, then he can decrypt the challenge and trivially
solve it.

In the original paper, BLLN’s authors stated that we can choose f’ and g with coefficients
in {—1,0,1}. But as we are going to show next, when the private key is obtained like that, we
can easily compute it using just one query to the decryption oracle. As an starting remark,
because f = tf’ + 1. we have that f has coefficients in {—¢,0, ¢}, except for the independent
coefficient, which belongs to {—t + 1,1,¢ + 1}.

Theorem 1. Let my = DEC(|q/t?]) be a polynomial that belongs to R/tR, where | q/t*] is a constant
integer polynomial that can easily be computed using the public parameters q and t. Then we have that
f=my+1fort > 2and such that t < q, as necessary to ensure correctness of the SHE scheme.

Proof. We have that DEC(|q/t%]) = [|(t/q).[f-(Lg/t?])]4]]+- Because we are multiplying f by
a constant polynomial, each coefficient of f is multiplied by |¢/t? |. Moreover, if the coefficient
of fis —t, 0 or t, then [f(q/t?)], gives us a number that is in the interval (—q/2, ¢/2], what allows
us to conclude that [f(|q/t?|)]; = f(lg/t?]). Therefore, after multiplying by ¢/q we obtain an
element from {—1,0,1} in R/¢R that corresponds exactly to the coefficients of f’ € R/qR (but
remember that —1 (mod ¢) is different from —1 (mod t), in our case the implementation is
done using NTL library, and then we have that -1 = ¢ — 1 (mod ¢) and —1 =t — 1 (mod t)).
The restriction ¢ > 2 comes from the fact that —1 = 1 (mod 2), then we can’t distinguish
between —1 and 1 in order to compute f. [

Next we present the details of the algorithm. We emphasize that the attack is very fast,
since it needs to perform just one query to the decryption oracle. Also, the ciphertext that we
must submit to the decryption oracle is very simple to construct.

Algorithm 4.1 Attack
INPUT The public parameters (g, t,n).
OUTPUT The private key f.
m; = DEC(|q/t2)).
fori = 0tilln do
if (mys[i] =1 (mod ¢)) then
fli] =t.

fli] = 0.
return f + 1.

We have two remaining challenges: (i) the case ¢ = 2 and (ii) the case that f’ and g are
chosen from Dy, with larger standard deviation. The other two previously mentioned NTRU-
based constructions, for instance LTV and DHS, are exactly in this situation, because we have
that ¢ is in fact restricted to 2 and the private key is not restricted to {—1,0,1}. Considering
that the encoding proposed by Bos at al [BLLN13] depends on the fact that ¢ > 2 (¢ = 1024 for



n | 10g(gmax) | t | Lmax n | 10g(gmax) | t | Lmax
3 2
2048 79 256 2 2048 79 256 1
1024 1 1024 1
2 5 2 5
4096 157 256 3 4096 157 256 3
1024 3 1024 3
2 10 2 10
8192 312 256 7 8192 312 256 6
1024 6 1024 6
2 20 2 18
16384 622 256 13 16384 622 256 13
1024 | 12 1024 | 12
2 37 2 35
32768 1243 256 26 32768 1243 256 25
1024 | 24 1024 | 23
2 71 2 66
65536 2485 256 50 65536 2485 256 48
1024 | 47 1024 | 45

Table 1: Byey = 2 Table 2: By, = 10

example) in order to do operations homomorphically, then it would be important to use private
keys with larger standard deviation. The case ¢t = 2 allows us to homomorphically operate over
bits, but it doesn’t permit us to enjoy the advantages of the integer encoding. Thus it would
be interesting to investigate the practical impact of making the standard deviation wider in
the choice of the private key coefficients. If we keep the same parameters that were chosen in
the original paper, but change the value of By, in order to mitigate the attack just presented,
then we obtain the parameters described in table 1 and table 2, for By, = 2 and Byey = 10
respectively. Furthermore, we have that B, = 60er = 48. For instance, the parameters must
satisfy the following condition:

(1+e)" ' 25 BE (1 + €0)tV + L(E(Biey + 1) + luw,qwBerr))

must be less than A — (¢ (mod t))/2, where €1 = 4(ntByey) ' and V = nt(Byey (2Ber + (¢
(mod t))/2), for Byey and Bey bounds to the absolute value of elements from distribuitions
Dyey and De,,. Lastly, w is the window-size used in the generalized version of the func-
tions PowerOf2 and BitDecomp and ¢,,, = [log,, (¢)] + 2 (details follow in the original pa-
per [BLLN13]).

On the other hand, if t = 2 our problem is to find out the sign of each coefficient. Concretely,
if we use ¢/t instead of ¢/t to query the decryption oracle, then we can detect when the co-
efficients of f’ are zero, but when they are 1 or —1, because we are operating modulo 2, then
we always obtain that non-zero coefficients are equal to 1. This computation corresponds to a
partial attack, because it is still necessary to find out the sign of non-zero coefficients. How-
ever, if the distribution Dy is fact Gaussian, then zero elements have higher probability to
appear. In a recent work [MP13], Micciancio and Peikert studied the utilization of uniform dis-
tributions in the intermediary problems LWE and SIS, showing that solving instances of these
problems, even when errors are chosen according to uniform distribuitions in the set {0,1},
remains hard. Although the reduction from LWE to lattice problems still works, obtaining a



CCAl-secure cryptosystem requires a decryption algorithm that “shuffles” the private key co-
efficients. Cyclotomic polynomials are multiplied using the convolution operation, which do
a relatively good job in order to mix the coefficients, but the attack is possible because we can
submit a constant polynomial to the decryption oracle, such that the multiplication returns
just a scaling of the coefficients of f. Modifying the decryption to return an invalid tag for
this kind of ciphertexts is not a good solution, as other queries may still exist. To definitely
solve the problem we must present a scheme that even with a polynomial number of queries
allowed to the adversary, he can not compute the private key.

The moral is that a decryption oracle is very powerful in homomorphic encryption, because
in general, the decryption must be accomplished by a simple operation, in order to have low
multiplicative depth, and also to preserve the homomorphism. Thus decryption usually is
done by applying such simple operations between the ciphertext and the private key, like
for example scalar product and polynomial multiplication. Hence it seems easy to choose an
appropriate value for the ciphertext to obtain information about the private key.

5 Implementation and concluding remarks

We have implemented BLLN scheme using NTL library [NTL] for polynomial ring arithmetic
and using GMP library [GMP] for efficient big number arithmetic. If ¢ = 1024, for example,
it is possible to encode integers as in the original paper [BLLN13] (or as recently presented
by Geihs and Cabarcas [GC14]). This kind of encoding is interesting because it allows com-
putations over big integers instead of over bits or short integers. It is possible also to encode
real numbers in a straightfoward manner, by considering a scaling factor and discarding bits
of precision after multiplications, in order to maintain the scaling factor correct, as pointed
out by Lauter, Alt-Lépez and Naehrig [LLAN14]. In another work from the homomorphic
encryption group at Microsoft Research, they presented an application of BLLN scheme to
protect medical data [BLN14]. Unfortunately, we must choose the private key with a larger
standard deviation, what turns out to decrease the multiplicative depth that the scheme can
homomorphically evaluate.

We also have measured the performance of our implementation. Considering 80 bits of
security, with the configuration given by n = 4096, ¢ a moduli with bit-length equal to 157,
w = 232 and {,,, = 6, the key generation algorithm took 5.37 seconds to run, the encryption
algorithm took 12 ms, while decryption took 10 ms. For homomorphic operations, we have
that addition took 0.08 ms, while multiplication took 511 ms. Interestingly, using w = 2, we
have that /,, , = 9, leading to a larger SwitchKey, turning multiplications considerably slower.
For instance, we have that multiplication took 4.08 seconds to run when w = 2, one order of
magnitude larger than the case where w = 232, These timings were taken in a regular desktop
with 4 Gb of RAM memory and a 2.7 GHz processor.

We have described a key recovery attack on the scale-invariant NTRU-based SHE scheme
to the case where t > 2 and private key coefficients are chosen from {—1,0,1}. This attack
shows that CCA1 security is hard to be achieved in homomorphic encryption. However we
have also provided tables with new parameters that show how they can be changed to mitigate
the attack. As we can see, the multiplicative depth that can be homomorphically evaluated is
not dramatically changed, what constitutes an incentive to keep looking for optimizations to
NTRU-based SHE schemes. Nevertheless, we remark that the assessment of the impact of
key recovery attack for homomorphic encryption is unprecedent, since obtaining private key
information from decryption oracles has become a standard way to find attacks in this area of
research.



References

[AG11]

[BGV11]

[BLLN13]

[BLN14]

[Bral2]

[CT14]

[DHS14]

[GC14]

[Gen09]

[GHS12]

[GMP]

[HPS98]

[LATV12]

[LLAN14]

[LMSV11]

S. Arora and R. Ge. New algorithms for learning in presence of errors. In Luca
Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP (1), volume 6755 of Lecture
Notes in Computer Science, pages 403—415. Springer, 2011.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. Electronic Colloquium on Computational Complexity (ECCC),
18:111, 2011.

J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-based
fully homomorphic encryption scheme. In Martijn Stam, editor, IMA Int. Conf.,
volume 8308 of Lecture Notes in Computer Science, pages 45—64. Springer, 2013.

J. W. Bos, K. Lauter, and M. Naehrig. Private predictive analysis on encrypted med-
ical data. Cryptology ePrint Archive, Report 2014/336, 2014. http://eprint.
iacr.org/.

Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Advances in Cryptology - Crypto 2012, volume 7417 of Lecture
Notes in Computer Science, pages 868-886. Springer, 2012.

M. Chenal and Q. Tang. On key recovery attacks against existing somewhat homo-
morphic encryption schemes. In Latincrypt, Florianépolis-SC, Brazil, 2014.

Y. Dor6z, Y. Hu, and B. Sunar. Homomorphic aes evaluation using NTRU. Cryp-
tology ePrint Archive, Report 2014/039, 2014. http://eprint.iacr.org/.

M. Geihs and D. Cabarcas. On key recovery attacks against existing somewhat
homomorphic encryption schemes. In Latincrypt, Florianépolis-SC, Brazil, 2014.

C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the aes circuit.
IACR Cryptology ePrint Archive, 2012:99, 2012.

GMP website. https://gmplib.org/. Accessed: 2014-10-13.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Lecture Notes in Computer Science, pages 267-288. Springer-
Verlag, 1998.

A. Loépez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In Proceedings of
the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC "12, pages
1219-1234, New York, NY, USA, 2012. ACM.

K. Lauter, A. Lopez-Alt, and M. Naehrig. Private computation on encrypted ge-
nomic data. Technical Report MSR-TR-2014-93, June 2014.

J. Loftus, A. May, N. P. Smart, and F. Vercauteren. On CCA-secure somewhat ho-
momorphic encryption. In In Selected Areas in Cryptography, pages 55-72, 2011.



[LP11]

[LPR10]

[MP13]

[NTL]
[RAD78]

[SS13]

R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Proceedings of the 11th International Conference on Topics in Cryptology: CI-RSA
2011, CT-RSA'11, pages 319-339, Berlin, Heidelberg, 2011. Springer-Verlag.

V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with er-
rors over rings. Advances in Cryptology EUROCRYPT 2010, 6110/2010(015848):1723,
2010.

D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters.
CRYPTO, 8042:21-39, 2013.

NTL website. http://www.shoup.net/ntl/. Accessed: 2014-10-13.

R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy ho-
momorphisms. Foundations of Secure Computation, Academia Press, pages 169-179,
1978.

D. Stehlé and R. Steinfeld. Making NTRUEncrypt and NTRUSign as secure as stan-
dard worst-case problems over ideal lattices. IACR Cryptology ePrint Archive, 2013:4,
2013.



