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Abstract

We show how to compute an existential forgery after querying 4 signatures on chosen messages
for a signature scheme presented at Asiacrypt 2014.

1 Introduction

At Asiacrypt 2014 Hanser and Slamanig [HS14] present a new signature primitive they call structure-
preserving signatures on equivalence classes (SPS-EC). They show how in combination with a type
of commitment scheme it yields a novel approach to constructing attribute-based credential systems
[Cha85]. Whereas previous schemes used zero-knowledge proofs of knowledge of signatures in order
to achieve anonymity, their scheme avoids this by allowing randomization of the signed messages.

The scheme is defined over a bilinear group BG := (p,G1,G2,GT , e, P, P̂ ), that is, a tuple where
G1,G2, and GT are groups of prime order p generated by P, P̂ and e(P, P̂ ), respectively, and e is a
bilinear map e : G1×G2 → GT . Signatures defined over bilinear groups are called structure-preserving
[AFG+10] if public verification keys, signatures and messages are elements of the source groups G1,G2

and signature validity is checked by verifying relations of the form
∏
i

∏
j e(Ai, B̂j)

ci,j = 1.
In an SPS-EC scheme messages are length-` vectors M of elements from G∗1 (i.e. excluding the

neutral element) and from a signature on (M1, . . . ,M`) anyone can derive a signature on ρ ·M :=
(ρM1, . . . , ρM`). We can partition the message space (G∗1)` into classes where two messages M,N are
in the same class if M = ρ ·N for some ρ ∈ Z∗p. Since signatures on one message can be transformed
to signatures on any other message in the same class, signatures can be viewed as signing classes of
messages rather than single messages.

Given its new functionality, the standard unforgeability notion for signatures cannot hold for the
new primitive; however, given signatures for messages from various classes, it should still be hard to
compute one for a new class. Existential unforgeability under chosen-message attacks (EUF-CMA) for
SPS-EC is thus defined as follows in [HS14]: no adversary, after being given the verification key and
an oracle it can query for signatures on messages of its choice, can produce a valid message/signature
pair so that the class of the message is different from that of all queried messages.

Hanser and Slamanig [HS14] present an instantiation of their primitive where signatures consist of
only 4 group elements and keys of `+1 group elements. In the full version they give a proof that their
scheme satisfies EUF-CMA for SPS-EC in the generic group model [Sho97]. This proof is however
flawed, as we show an attack that breaks the notion. In order to compute an existential forgery, it
suffices to make 4 chosen-message queries.
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2 Preliminaries

2.1 Bilinear Groups

An asymmetric bilinear group is a tuple BG = (p,G1,G2, e, P, P̂ ), where p is a prime, G1,G2 and GT

are groups of order p, and P and P̂ generate G1 and G2, respectively. Moreover, e is a bilinear map
e : G1 × G2 → GT such that e(P, P̂ ) generates GT . We assume an algorithm BGGen, which takes as
input a security parameter λ in unary and outputs a bilinear group (p,G1,G2, e, P, P̂ ) where the bit
length of p is λ and there are no efficiently computable homomorphisms from G1 to G2 and vice versa.

We denote the groups G1 and G2 additively (and GT multiplicatively) and elements from G2 with
hats, such as X̂. Moreover, we define G∗i := Gi \ {0} for i = 1, 2.

2.2 Structure-Preserving Signatures on Equivalence Classes

Definition 1 (The equivalence class R). Let ` > 1 and G1 be a group of prime order p. We define
the following equivalence relation on length-` vectors of non-trivial group elements:

R := {(M,N) ∈ (G∗1)` × (G∗1)` | ∃ s ∈ Z∗p : N = s ·M} .

For an element M ∈ (G∗1)` its equivalence class [M ]R is defined as [M ]R := {N ∈ (G∗1)` | (M,N) ∈ R}.

Definition 2 (Structure-preserving signature scheme for equivalence relation R [HS14]). An SPS-
EQ-R scheme consists of the following PT algorithms:

BGGenR(1λ), on input security parameter λ, outputs a bilinear group BG. (BG will be an (implicit)
input to all other algorithms.)

KeyGenR(BG, `), on input a bilinear group BG and a vector length ` > 1, outputs a signing and a
verification key (sk, pk).

SignR(sk,M), on input a signing key sk and a vector M ∈ (G∗1)`, outputs a signature σ for the
equivalence class [M ]R.

ChgRepR(pk,M, σ, ρ), on input a public key pk, a vector M ∈ (G∗1)`, a signature on [M ]R for M ,
and a scalar ρ, returns a signature on [M ]R but for representative M ′ = ρ ·M .

VerifyR(pk,M, σ), on input a public key pk, a representative M and a signature σ, outputs 1 for
acceptance and 0 for rejection.

In this work we are not concerned with changes of representatives; we only presented ChgRep for
completeness. Unforgeability of such a scheme is defined as follows.

Definition 3 (EUF-CMA). An SPS-EQ-R scheme (BGGenR,KeyGenR, SignR,ChgRepR,VerifyR) with
message space (G∗1)

` is existentially unforgeable under adaptively chosen-message attacks if for all
probabilistic polynomial-time adversaries A having access to a signing oracle SignR(sk, ·), we have

Pr

[
BG← BGGenR(1λ); (sk, pk)← KeyGenR(BG, `);

(M∗, σ∗)← ASignR(sk,·)(pk)
:

[M∗]R 6= [M ]R ∀M ∈ Q∧
VerifyR(pk,M∗, σ∗) = 1

]
= negl(λ) ,

where Q is the set of queries which A made to the signing oracle.

Another property, class hiding, is also defined for SPS-EQ-R schemes in [HS14], but not considered
here.
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2.3 The Construction from [HS14]

The scheme proposed in [HS14] is defined as follows.1

Scheme 1. BGGenR(1λ): Return BG = (p,G1,G2, e, P, P̂ )← BGGen(1λ).

KeyGenR(BG, `) (for ` > 1): Choose x ← Z∗p, (xi)`i=1 ← (Z∗p)` uniformly at random, set X̂ := xP̂ ,

X̂i := xixP̂ , for i = 1, . . . , `, and output sk := (x, (xi)
`
i=1) and pk := (X̂, (X̂i)

`
i=1).

SignR(sk,M): On input sk = (x, (xi)
`
i=1) ∈ (Z∗p)`+1 and M = (Mi)

`
i=1 ∈ (G∗1)`, choose y ← Z∗p

uniformly at random and output

Z := x
∑`

i=1 xiMi V := y
∑`

i=1 xiMi Y := yP Ŷ := yP̂

VerifyR(pk,M, σ): Given a public key pk = (X̂, (X̂i)
`
i=1) ∈ (G∗2)`+1, a vector M = (Mi)

`
i=1 ∈ (G∗1)`

representing equivalence class [M ]R, and a signature σ = (Z, V, Y, Ŷ ) ∈ G3
1 ×G2, return 1 if the

following equations hold, and 0 otherwise:∏`
i=1 e(Mi, X̂i) = e(Z, P̂ ) e(Z, Ŷ ) = e(V, X̂) e(P, Ŷ ) = e(Y, P̂ )

3 The Attack

Consider the following (deterministic) polynomial-time adversary A against EUF-CMA (Definition 3)
of Scheme 1 for ` = 2:

0. A receives pk = (X̂, X̂1, X̂2) and has access to a signing oracle SignR(sk, ·).

1. A makes a signing query (P, P ) and receives (Z1, V1, Y1, Ŷ1).

2. A makes a signing query (Z1, P ) and receives (Z2, V2, Y2, Ŷ2).

3. A makes a signing query (P,Z1) and receives (Z3, V3, Y3, Ŷ3).

4. A makes a signing query (Z1, Z2) and receives (Z4, V4, Y4, Ŷ4).

5. A outputs (Z4, V4, Y4, Ŷ4) as a forgery for the equivalence class represented by (Z3, Z1).

Proposition 1. Adversary A wins the EUF-CMA game for Scheme 1 with overwhelming probability
over the random choices of the challenger.

Proof. We analyze the attack. Let BG = (p,G1,G2, e, P, P̂ ) be the chosen bilinear group, (x, x1, x2) ∈
(Z∗p)3 be the challenger’s secret key and let yi ∈ Z∗p be the randomness chosen by the challenger when
answering the i-th signing query, for i ∈ [1, 4]. Then we have:

Z1 := (xx1 + xx2)P V1 := (y1x1 + y1x2)P Y1 := y1P Ŷ1 := y1P̂

Z2 := (x2x21 + x2x1x2 + xx2)P V2 := (y2xx
2
1 + y2xx1x2 + y2x2)P Y2 := y2P Ŷ2 := y2P̂

Z3 := (xx1 + x2x1x2 + x2x22)P V3 := (y3x1 + y3xx1x2 + y3xx
2
2)P Y3 := y3P Ŷ3 := y3P̂

Z4 := (x2x21 + x2x1x2 + x3x21x2 + x3x1x
2
2 + x2x22)P

V4 := (y4xx
2
1 + y4xx1x2 + y4x

2x21x2 + y4x
2x1x

2
2 + y4xx

2
2)P

Y4 := y4P Ŷ4 := y4P̂ (1)

1We denote signatures by (Z, V, Y, Ŷ ) and keys by X̂, X̂i instead of (Z1, Z2, Y, Y
′) and X ′, X ′i, respectively, in [HS14]
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Let us first show that the first winning condition in Definition 3 is satisfied, that is, [(Z3, Z1)]R 6=
[(M1,M2)]R for all (M1,M2) queried to the signing oracle. Every equivalence class [(M1,M2)]R can
be uniquely described by an element from Z∗p, namely

r[(M1,M2)]R := (logP M1/ logP M2) mod p

(where logP Mi for Mi ∈ G∗1 is defined as the value mi ∈ Z∗p such that Mi = miP ).
We thus have to show that r[(Z3,Z1)]R /∈ {r[(P,P )]R , r[(Z1,P )]R , r[(P,Z1)]R , r[(Z1,Z2)]R}. We have:

r[(P,P )]R = 1 =: p1 r[(Z1,P )]R = xx1 + xx2 =: p2 r[(P,Z1)]R = 1/(xx1 + xx2) =: p3

r[(Z1,Z2)]R = (xx1 + xx2)/(x
2x21 + x2x1x2 + xx2) r[(Z3,Z1)]R = (xx1 + x2x1x2 + x2x22)/(xx1 + xx2)

and since x 6= 0:

r[(Z1,Z2)]R = (x1 + x2)/(xx
2
1 + xx1x2 + x2) =: p4 r[(Z3,Z1)]R = (x1 + xx1x2 + xx22)/(x1 + x2) =: p∗

We first show that p∗ 6= pi for all i ∈ [1, 4] when interpreted as polynomials in Zp[x, x1, x2]. (We
multiply each equation with the denominators of both sides.)

1. p1 6= p∗ since x1 + x2 6= x1 + xx1x2 + xx22.

2. p2 6= p∗ since (xx1 + xx2)(x1 + x2) = xx21 + 2xx1x2 + xx22 6= x1 + xx1x2 + xx22.

3. p3 6= p∗ since x1 +x2 6= xx21 +x2x21x2 +2x2x1x
2
2 +xx1x2 +x2x32 = (xx1 +xx2)(x1 +xx1x2 +xx22).

4. p4 6= p∗ since (x1 + x2)
2 = x21 + 2x1x2 + x22
6= xx31 + x2x31x2 + 2x2x21x

2
2 + xx21x2 + x2x1x

3
2 + x1x2 + xx1x

2
2 + xx32

= (xx21 + xx1x2 + x2)(x1 + xx1x2 + xx22).

By the Schwartz-Zippel lemma [Sch80] it follows that for all i ∈ [1, 4] the probability that p∗(x, x1, x2) =
pi(x, x1, x2) for uniformly chosen x, x1, x2 ← Z∗p is negligible. By the union bound we have that the

probability that
∨4
i=1

[
p∗(x, x1, x2) = pi(x, x1, x2)

]
is also negligible, and thus with overwhelming

probability over the challenger’s random choices the class [(Z3, Z1)]R is different from those queried
to the signing oracle.

It remains to show that the second winning condition in Definition 3 is also satisfied, that is,
(Z4, V4, Y4, Ŷ4) is valid for (Z3, Z1). A signature (Z∗, V ∗, Y ∗, Ŷ ∗) on (Z3, Z1), using randomness y∗, is
defined as

Z∗ := (x2x21 + x3x21x2 + x3x1x
2
2 + x2x1x2 + x2x22)P

V ∗ := (y∗xx21 + y∗x2x21x2 + y∗x2x1x
2
2 + y∗xx1x2 + y∗xx22)P

Y ∗ := y∗P Ŷ ∗ := y∗P̂

Thus, (Z4, V4, Y4, Ŷ4) from Equation (1) is a signature on (Z3, Z1) using randomness y4. Since we
showed that with overwhelming probability (over the choice of sk by the challenger) [(Z3, Z1)]R is
different from all queried classes, this means that A outputs a valid forgery.

We conclude by noting that excluding the class [(P, P )]R from the message space would not make
the scheme secure, as the following attack, where a and b are arbitrarily fixed elements from Z∗p, shows.

0. A receives pk = (X̂, X̂1, X̂2) and has access to a signing oracle SignR(sk, ·).

1. A makes a signing query (aP, bP ) and receives (Z1, V1, Y1, Ŷ1).

2. A makes a signing query (Z1, aP ) and receives (Z2, V2, Y2, Ŷ2).
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3. A makes a signing query (aP,Z1) and receives (Z3, V3, Y3, Ŷ3).

4. A makes a signing query (Z1, Z2) and receives (Z4, V4, Y4, Ŷ4).

5. A makes a signing query (bP, aP ) and receives (Z5, V5, Y5, Ŷ5).

6. A outputs (Z4, V4, Y4, Ŷ4) as a forgery for the equivalence class represented by (Z3, Z5).

As above, let (x, x1, x2) ∈ (Z∗p)3 be the challenger’s secret key and let yi ∈ Z∗p be the randomness
chosen for the i-th signing query. Then we have:

Z1 := (xx1a+ bxx2b)P V1 := (y1x1a+ y1x2b)P Y1 := y1P Ŷ1 := y1P̂

Z2 := (x2x21a+ x2x1x2b+ xx2a)P V2 := (y2xx
2
1a+ y2xx1x2b+ y2x2a)P Y2 := y2P Ŷ2 := y2P̂

Z3 := (xx1a+ x2x1x2a+ x2x22b)P V3 := (y3x1a+ y3xx1x2a+ y3xx
2
2b)P Y3 := y3P Ŷ3 := y3P̂

Z4 := (x2x21a+ x2x1x2b+ x3x21x2a+ x3x1x
2
2b+ x2x22a)P

V4 := (y4xx
2
1a+ y4xx1x2b+ y4x

2x21x2a+ y4x
2x1x

2
2b+ y4xx

2
2a)P

Y4 := y4P Ŷ4 := y4P̂

Z5 := (xx1b+ xx2a)P V5 := (y5x1b+ y5x2a)P Y5 := y5P Ŷ5 := y5P̂

The attack is successful, since (Z4, V4, Y4, Ŷ4) is also a signature on (Z3, Z5) with randomness y4.
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