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Abstract. Identity Based Encryption (IBE) has been constructed from bilinear pairings,
lattices and quadratic residuosity. The latter is an attractive basis for an IBE owing to the
fact that it is a well-understood hard problem from number theory. Cocks constructed the
first such scheme, and subsequent improvements have been made to achieve anonymity
and improve space efficiency. However, the anonymous variants of Cocks’ scheme thus
far are all less efficient than the original. In this paper, we present a new universally-
anonymous IBE scheme based on the quadratic residuosity problem. Our scheme has
better performance than the universally anonymous scheme from Ateniese and Gasti
(CT-RSA 2009) at the expense of more ciphertext expansion. Another contribution of this
paper is a modification to a variant of the space-efficient scheme by Boneh, Gentry and
Hamburg (FOCS 07) that results in an IND-ID-CPA secure IBE scheme with comparable
efficiency to Cocks, but with reduced ciphertext expansion.

1 Introduction

Identity-Based Encryption (IBE) is centered around the notion that a user’s public key can be efficiently
derived from an identity string and system-wide public parameters. The public parameters are chosen
by a Trusted Authority (TA) along with a master secret key, which is used to extract secret keys for
user identities. IBE was first proposed by Shamir [2]. The first secure IBE schemes were presented by
Cocks [3] (based on the quadratic residuosity problem), and Boneh and Franklin [4] (based on bilinear
pairings). More recently, there have been IBE constructions based on worst-case lattice problems [5,6].
Ciphertext expansion in Cocks’ scheme is large, which has hindered its practicality. Nevertheless, it
is notable as being one of the few known IBE constructions based on number-theoretic assumptions.
The quadratic residuosity problem on which it is based has been well studied, and is held to be a hard
problem. Since it relies on such a standard assumption, Cocks’ scheme has been subject to research
efforts to derive more powerful primitives such as anonymous IBE or Public-key Encryption with
Keyword Search (PEKS) [7]. It is known that Cocks’ scheme is not anonymous.

The notion of anonymity stems from that of key privacy put forward by Bellare et al. [8]. An
IBE scheme is said to be anonymous if an adversary cannot distinguish which identity was used to
create a ciphertext, even if the adversary gets to choose a pair of identities to distinguish between.
Anonymous IBE is a useful primitive because it can be used to facilitate searching on encrypted data,
to allow anonymous broadcasts to be made in a network, and to act as a countermeasure against traffic
analysis. A multitude of anonymous IBEs have been constructed based on both pairings and lattices
including [4, 6, 7, 9].

Anonymous variants of Cocks’ IBE scheme whose security relies on the quadratic residuosity assump-
tion have already been proposed in the literature [10–12]. The most efficient in terms of ciphertext size
is due to Boneh, Gentry and Hamburg [11]. However, encryption time in their scheme is quartic in the
security parameter, and thus has poor performance. The PEKS scheme in [10] performs better but still
requires many Jacobi symbol computations when used as an anonymous IBE. The most time-efficient
anonymous IBE to date was presented at CT-RSA 2009 by Ateniese and Gasti [12]. Their construction
has similarly-sized ciphertexts to Cocks’ original scheme while there is a drop of approximately 30%
in performance compared to Cocks according to our experimental results (for a 1024-bit modulus used
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to encrypt a 128-bit symmetric key; note that IBE is typically used as part of a KEM-DEM). While
this is still practical, it is desirable to obtain an anonymous IBE from quadratic residuosity whose
performance is on par with the original Cocks scheme, especially for time-critical applications.

1.1 Universal Anonymity

Ateniese and Gasti’s scheme also enjoys the property of universal anonymization, first introduced at
Asiacrypt 2005 by Hayashi and Tanaka [13]. This property allows any party to anonymize a ciphertext
without access to the secret key of the recipient. An illustrative application involves disparate systems
distinguished by whether they need to know the intended recipient of encrypted data. Regulations may
stipulate that some systems learn the recipient’s identity. At some suitable point prior to sending the
encrypted data to less trusted systems, the encrypted data can be anonymized by any party without
knowledge of the secret key.

1.2 Contributions

We present a new universally anonymous IBE from quadratic residuosity whose performance closely
matches that of the original Cocks scheme. Our work builds upon techniques presented in [14], especially
the homomorphic property identified therein, to construct a universally anonymous variant of Cocks’
scheme that achieves better performance than [12]. Unfortunately, the size of ciphertexts in our scheme
is double that of Cocks, and almost double that of [12]. However, we obtain anonymity using a different
approach which we believe to be conceptually simpler. We prove this system ANON-IND-ID-CPA secure
in the random oracle model and provide both an analytical and experimental comparison between our
approach and that of [12].

Another contribution of this paper is a security assessment of a scheme by Jhanwar and Barua [15],
which in turn is a variant of the non-anonymous IBE system from [11]. We consider an alternative
parameter setting that gives us IND-ID-CPA security. The resulting scheme outperforms the original
Cocks scheme, and is slightly more space-efficient. Although the same ideas do not readily allow us to
construct an anonymous IBE, the performance benefits provide good motivation for pursuing this in
future work. Performance measurements from this scheme are reported along with the others in Section
4. However, due to space constraints, the details of this scheme are deferred to Appendix C.

1.3 Overview of Main Construction

As pointed out in previous works, the main obstacle to achieving anonymity for variants of Cocks’
scheme is a property that is unconditionally satisfied for ciphertexts produced under a certain identity
id. This property holds with probability negligibly close to 1/2 with respect to any other identity id′.
Thus, it is possible for an adversary to readily distinguish the recipient’s identity by checking whether
this property holds.

We provide an informal description here to highlight the intuition behind our approach. Let N = pq

be an integer where p and q are prime. Let x ∈ Z. We write

(
x

N

)
to denote the Jacobi symbol of x

mod N .
As in [12], we let H : {0, 1}∗ → Z∗N [+1] be a full-domain hash. A message bit is mapped to an

element of {−1, 1} via a mapping ν : {0, 1} → {−1, 1} with ν(0) = 1 and ν(1) = −1.
An overview of the Cocks scheme is as follows. The Trusted Authority (TA) generates two large

primes p and q, which constitute the master secret key. It outputs the public parameters N = pq. For
any identity id, the public key corresponding to that identity is computed as a = H(id). It will be
shown later that given p and q, it is easy to derive an integer r ∈ ZN with

r2 ≡ a mod N or r2 ≡ −a mod N.

Such an r is a secret key for identity id. Now encryption of a message m ∈ {0, 1} under identity id
is straightforward: an encryptor samples two integers t1, t2 ∈ Z∗N uniformly at random subject to the
condition that (

t1
N

)
=

(
t2
N

)
= ν(m).



It then computes a ciphertext (c := t1 + at−1
1 , d := t2 − at−1

2 ). Decryption is also simple: set e := c if

r2 ≡ a mod N ; otherwise set e := d. Then we decrypt by computing ν−1

((
e+ 2r

N

))
. However, to

simplify the description, we will focus our attention on the first component of a ciphertext, namely c.
In fact, the properties that we will consider concerning such c with respect to a hold analogously for d
with respect to −a.

It was observed by Galbraith? that for any integer c generated as above, it is an invariant that(
c2 − 4a

N

)
= 1.

We expect this to hold with probability negligibly close to 1/2 for random a. Hence, an adversary
has a non-negligible advantage attacking anonymity. In the XOR-homomorphic variant from [14], the
integer c is replaced by a polynomial c(x) = c1x+ c0 in the quotient ring Ra = ZN [x]/(x2− a). We can
generalize the above test for polynomials in Ra. Define

GT(a, c(x), N) =

(
c20 − c21a

N

)
.

Now we define two subsets Ga = {c(x) ∈ Ra : GT(a, c(x), N) = 1} and Ḡa = {c(x) ∈ Ra :
GT(a, c(x), N) = −1} of Ra. In addition, the set of legally generated ciphertext polynomials (i.e. those
in the image of the encryption algorithm) is denoted by the set Sa. It is shown in [14] that Sa ≈

C
Ga

(computationally indistinguishable) even given access to the secret key r. It is also shown that Ga is a
multiplicative group in Ra and Sa is a subgroup of Ga.

The main idea behind our construction is to allow anonymized ciphertexts to be elements of Ḡa half
of the time and Ga the other half. Therefore, the adversary cannot use Galbraith’s test to distinguish
identities. The main problem however is that we don’t know what a “ciphertext” in Ḡa decrypts
to without knowing the secret key. We can show that a random element in Ḡa can be sampled by
multiplying any fixed element in g(x) ∈ Ḡa by a uniformly random element of Ga. Our idea is to derive
this fixed element g(x) from the user’s identity using a hash function (modelled as a random oracle in
the security proofs), and then multiply it by an encryption of the desired message, which lies in Sa. Since
Sa and Ga are computationally indistinguishable, the resultant element c′(x) is also computationally
indistinguishable from a random element in Ḡa. It can also be shown that the homomorphic property
holds even between polynomials in Ḡa and Ga. Therefore, c′(x) is an encryption of the desired message
XORed with whatever g(x) decrypts to. Since the decryptor can determine what g(x) decrypts to, she
can recover the message.

1.4 Related Work

Di Crescenzo and Saraswat [10] constructed an anonymous variant of Cocks’ scheme. In fact their con-
struction is an instance of Public-Key Encryption with Keyword Search (PEKS), a primitive introduced
in [7] which allows a sender to encrypt a message with a set of hidden keywords such that a decryptor
can only determine whether a specific keyword W appears in the ciphertext if she holds a secret key
for W (the secret keys are computed by the TA). The scheme from [10] requires 4k elements of ZN
where k is the length of keywords represented as binary strings. Also, encryption requires 4k Jacobi
symbol evaluations. PEKS captures anonymous IBE as a special case. Two keywords W

(0)
id and W

(1)
id

representing the messages 0 and 1 respectively are associated with each identity id. Accordingly, secret
keys for W

(0)
id and W

(1)
id constitute a secret key for identity id.

Boneh, Gentry and Hamburg (BGH) [11] constructed the first space-efficient variant of the Cocks
scheme. The size of ciphertexts using their anonymous scheme is quite practical; an `-bit message
requires a ciphertext whose size is log2N + ` + 1 bits, which contrasts with 2` · log2N bits in Cocks.
However, encryption in their scheme is time-consuming. Encryption time is dominated by the generation
of ` + 1 primes which are needed to help satisfy ` + 1 equations of the form Rx2 + Sy2 ≡ 1 mod N .
It is reported in [11] that a 1024-bit prime generation takes 123.6 ms on a 2.015 GHz AMD dual-core
Athlon64. To encrypt a 128 bit key, one would expect the total time to be on the order of 16 seconds
on the same machine since 128 + 1 primes must be generated. However, the authors give a variant that
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instead requires primes of length log2

√
N bits at the expense of an increase in ciphertext length. On

the same benchmark machine, a time of 11 ms is reported for a 512-bit prime generation, which brings
the total time down to ≈ 1.4 seconds. However, this variant is not anonymous.

While we have not implemented the constructions in [11], we believe they are significantly slower
than the scheme in [12] and the one presented in this work. Encryption time is quartic in the security
parameter as opposed to cubic for standard number-theoretic schemes. A variant of the non-anonymous
BGH construction appeared in [15]. The authors of that work claim their variant achieves higher
performance for both encryption and decryption as a trade-off for increased ciphertext size, which is
2 · log2 d

√
`e + 2` bits for an `-bit plaintext. We describe in Appendix C why their proof of security

only goes through if a sender encrypts log λω(1) bits where λ is the security parameter. While this fact
hinders the space efficiency of the scheme, our experiments show that its performance is on par with
Cocks for a similar level of security. Therefore, it is arguably the most practical IBE based on quadratic
residuosity, lowering ciphertext size without hindering performance.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter λ, written negl(λ), if it is asymptot-
ically bounded from above by the reciprocal of all polynomials in λ.

For a probability distribution D, we denote by x
$←− D that x is sampled according to D. If S is a

set, y
$←− S denotes that y is sampled from x according to the uniform distribution on S.

The set of contiguous integers {1, . . . , k} for some k > 1 is denoted by [k]. Let D1 and D2 be
distributions. We write D1 ≈ D2 to denote the fact that D1 and D2 are statistically indistinguish-
able. In addition, we write D1 ≈

C
D2 to denote the fact that both distributions are computationally

indistinguishable.

2.2 Security Definition for Anonymous IBE (ANON-IND-ID-CPA)

An IBE scheme is said to be anonymous if any PPT adversary has only a negligible advantage in the
following game. This is referred to as ANON-IND-ID-CPA security. At the beginning of the game,
the adversary A is handed the public parameters. It then proceeds to make queries for secret keys
corresponding to identities id1, . . . , idq1 for some integer q1 that is polynomial in the security parameter.
Then it sends to the challenger two identities id∗0 and id∗1 such that id∗0 6= id∗1 6= idi for 1 ≤ i ≤ q1.
It also sends two messages m0 and m1. The challenger samples a bit b uniformly, and sends the
encryption of mb under id∗b to A. In the final phase, A is allowed to query secret keys for further
identities idq1+1, . . . , idq1+q2 where q2 is polynomial in the security parameter, and id∗0 6= id∗1 6= idq1+i
for 1 ≤ i ≤ q2. Finally, A outputs a guess b′ and is said to win if b′ = b.

2.3 Quadratic Residues and Jacobi Symbols

Let m be an integer. A quadratic residue in the residue ring Zm is an integer x such that x ≡ y2

mod m for some y ∈ Zm. The set of quadratic residues in Zm is denoted QR(m). If m is prime, it is
easy to determine whether any x ∈ Zm is a quadratic residue. If m is an odd prime number, we can
define the Legendre symbol as a function of any integer x ∈ Z with respect to m as

(
x

m

)
=


1 if x ∈ QR(m)

−1 if x 6≡ 0 mod m and x /∈ QR(m)

0 if x ≡ 0 mod m

.

The above function can be generalized to positive odd moduli M = mα1
1 . . .m

αk
k where m1, . . . ,mk are

prime, and α1, . . . , αk are positive integers. The generalization is called a Jacobi symbol and is defined
as (

x

M

)
=

(
x

m1

)α1

· · ·

(
x

mk

)αk
.



where

(
x

mi

)
denotes the Legendre symbol of x with respect to mi for 1 ≤ i ≤ k. The subset of

ZM with Jacobi symbol +1 is denoted by J(M); that is, J(M) = {x ∈ Z :

(
x

M

)
= 1}. Naturally,

QR(M) ⊆ J(M).

2.4 Quadratic Residuosity Problem

Let N be a product of two odd primes p and q. The quadratic residuosity problem is to determine,
given input (N, x) ∈ Z2

N where x ∈ J(N), whether x ∈ QR(N), and it is believed to be intractable.

2.5 Blum Integers

Finally, the schemes in this paper make use of Blum integers. A Blum integer is a product of two primes
that are both congruent to 3 modulo 4. As a result, we define BlumGen(1λ) as a PPT algorithm which
takes as input a security parameter λ and outputs two equally-sized primes p and q, whose lengths
depend on λ, such that

p ≡ q ≡ 3 (mod 4).

2.6 Cocks Scheme

Let H : {0, 1}∗ → J(N) be a full-domain hash that sends an identity string id ∈ {0, 1}∗ to an integer in
ZN whose Jacobi symbol is +1. A secret key in Cocks’ system is a Rabin signature for id. Therefore,
to guarantee existential unforgeability of such signatures, the random oracle model is needed.

− Cocks.Setup(1λ):

1. Repeat: (p, q)← BlumGen(1λ).

Note that by definition of BlumGen, we have p ≡ q ≡ 3 (mod 4).

2. N ← pq

3. Output (PP := N,MSK := (N, p, q))

− Cocks.KeyGen(MSK, id):

1. Parse MSK as (N, p, q).

2. a← H(id).

3. r ← a
N+5−p−q

8 (mod N).

Therefore, either r2 ≡ a (mod N) or r2 ≡ −a (mod N).

4. Output skid := (N, id, r)

Remark 1. It is important that this algorithm always output the same square root, since otherwise
N can be factored. To achieve this, one may store the root or calculate it deterministically as done
so above.

− Cocks.Encrypt(PP, id,m):

1. Parse PP as N .

2. a← H(id)

3. Generate t1, t2
$←− Z∗N such that

(
t1
N

)
=

(
t2
N

)
= ν(m) (Recall that ν(m) maps m ∈ {0, 1}

into {−1, 1}).
4. Output ψ := (t1 + at−1

1 , t2 − at−1
2 )

− Cocks.Decrypt(skid, ψ):

1. Parse ψ as (ψ1, ψ2)

2. Parse skid as (N, id, r)

3. a← H(id)



4. If r2 ≡ a (mod N), set d← ψ1. Else if r2 ≡ −a (mod N), set d← ψ2.
Else output ⊥ and abort.

5. Output ν−1(

(
d+ 2r

N

)
)

3 Time-Efficient Universally Anonymous IBE

3.1 Overview of our construction

In order to explain our construction, it is necessary to first describe the XOR-homomorphic variant of
Cocks’ scheme from [14]. Let R = ZN [x] be a polynomial ring over ZN . Let a be an integer in J(N).
Then let Ra be the quotient ring R/(x2 − a). Recall the generalization of Galbraith’s test to the ring
R as follows.

Definition 1 (Galbraith’s Test over R). Define Galbraith’s Test for the ring R as the function
GT : ZN ×R→ {−1, 0,+1} given by

GT(a, c(x), N) =

(
c20 − c21a

N

)
.

Define the subset Ga ⊂ Ra as follows:

Ga = {c(x) ∈ Ra : GT(a, c(x), N) = 1}.

Therefore, this is the subset of Ra that passes Galbraith’s test. Define the subset Ḡa ⊂ Ra as follows:

Ḡa = {c(x) ∈ Ra : GT(a, c(x), N) = −1}.

Correspondingly, this is the subset of Ra that fails Galbraith’s test. Now define the subset Sa ⊂ Ga:

Sa = {2hx+ (t+ ah2t−1) ∈ Ga | h ∈ ZN , t, (t+ ah2t−1) ∈ Z∗N}.

The subset Sa is precisely the image of the following algorithm E which takes as input an integer

a ∈ J(N) (i.e.

(
a

N

)
= 1) along with a message bit m ∈ {0, 1} and produces an element of Sa that

encrypts m. This is central to the XOR-homomorphic variant of the Cocks scheme presented in [14],
which is referred to as xhIBE in that paper. Like Cocks’ original scheme, xhIBE requires a ciphertext to
have two components. As such, E can be viewed as the encryption algorithm for a single component.
Accordingly, to encrypt a message m in xhIBE, the sender runs E(a,m) and E(−a,m) to produce the
first and second component of a ciphertext respectively. A formal description of xhIBE is given in
Appendix A.

Algorithm E(a,m):

1. Choose an integer t
$←− Z∗N uniformly such that(

t

N

)
= ν(m).

2. Choose an integer h
$←− ZN uniformly.

3. Compute c(x)← 2hx+ (t+ ah2t−1) ∈ R
4. Repeat steps 1-4 until (t+ ah2t−1) ∈ Z∗N .

5. Output c(x).

With overwhelming probability, (t+ ah2t−1) will be invertible in ZN .
In addition, we define a decryption algorithm D which takes an integer r ∈ ZN and a polynomial in

R as input, and outputs a bit m ∈ {0, 1}. This is defined as follows:

Algorithm D(r, c(x)):



1. Compute j =

(
c(r)

N

)
∈ {−1, 0,+1}.

2. If j = 0, output ⊥.

3. Else output ν−1(j) ∈ {0, 1}.
Note that for the sake of notational convenience, it is assumed that N is an implicit input in E and D.
Suppose a ∈ QR(N). Then let r ∈ ZN such that r2 ≡ a mod N . It can be shown that D(r, ·) whose
domain is restricted to Sa = image(E(a, ·)) is a group homomorphism (Sa, ∗)→ (Z2,+). Therefore for
m1,m2 ∈ {0, 1}:

D(r, E(a,m1) ∗ E(a,m2)) = m1 ⊕m2.

In fact, for any c(x), d(x) ∈ R with D(r, c(x)),D(r, d(x)) ∈ {0, 1}, it holds that

D(r, c(x)d(x)) = D(r, c(x))⊕D(r, d(x)).

Naturally this means that an XOR homomorphism exists even between elements of Ga and Ḡa.
Let g(x) ∈ Ḡa. Below are some basic facts which we prove in Section 3.3.

1. g(x)Ga = Ḡa.

2. {h(x)
$←− Ḡa} ≈ {g(x)h′(x) | h′(x)

$←− Ga}.

3. {h(x)
$←− Ḡa} ≈

C
{g(x)h′(x) | h′(x)

$←− Sa}.

Property 3 states that the uniform distribution defined over Ḡa and the distribution of multiplying
g(x) by uniformly random elements from Sa are computationally indistinguishable (without access to
p and q).

We need two hash functions. Like Cocks’ scheme, a full-domain hash H : {0, 1}∗ → J(N) is em-
ployed that maps identity strings to elements of ZN whose Jacobi symbol is +1. Another hash func-
tion H ′ : {0, 1}∗ → R is needed that maps an identity string id to an element g(x) ∈ R such that
GT(H(id), g(x), N) = GT(−H(id), g(x), N) = −1 i.e. the g(x) is taken to pass Galbraith’s test for both
a = H(id) and −a. Roughly speaking, an example of constructing such as hash function using H is

via a form of rejection sampling i.e. to sample g′(x)i
$←− H(id ‖ i) for consecutive integers i > 0 until

GT(a, g′(x)i, N) = GT(−a, g′(x)i, N) = −1. In the security proofs, H is modelled as a random oracle on
J(N) and H ′ is modelled as a random oracle whose response when queried on id is distributed according
to the uniform distribution on ḠH(id) ∩ Ḡ−H(id). To anonymize a ciphertext component (recall that this
discussion is simplified to deal with a single component of a ciphertext corresponding to a = H(id),
the steps are repeated for the case of −a) c(x) associated with an identity id, the following steps are
performed:

1. a← H(id)

2. c′(x)← E(a, 0).

3. Uniformly sample a bit b
$←− {0, 1}.

4. If b = 0, output c′(x)c(x).

5. Else compute g(x)← H ′(id), and output g(x)c(x)c′(x).

Note that the construction is universally anonymous in that anyone can anonymize a ciphertext without
having the secret key for the target identity and without access to the random coins used by the
encryptor.

The decryption function D′ for our construction is defined in terms of D.

D′(r, c(x)) =


D(r, c(x))⊕D(r, g(x)) if c(x) ∈ Ḡa
D(r, c(x)) if c(x) ∈ Ga
⊥ otherwise

3.2 Formal Description

Our scheme is referred to as UAIBE for the remainder of the paper; a formal description is as follows.
Setup(1λ) : On input a security parameter 1λ in unary, generate (p, q) ← BlumGen(1λ). Compute
N = pq. Output public parameters PP = (N,H,H ′) and master secret key MSK = (N, p, q), where H



is a hash function H : {0, 1}∗ → J(N), and H ′ is a hash function H ′ : {0, 1}∗ → R with the property
that for any identity id ∈ {0, 1}∗, a← H(id) and g(x)← H ′(id), it holds that

GT(a, g(x), N) = GT(−a, g(x), N) = −1.

KeyGen(MSK, id) : On input master secret key MSK = (N, p, q) and identity id ∈ {0, 1}∗, perform the
following steps:

1. Compute a← H(id) ∈ J(N).

2. If r ∈ QR(N), compute the square root r = a1/2;

3. Else compute r = (−a)1/2.

4. Output (N, id, r) as the secret key for identity id.

See the description of Cocks’ scheme in Section 2.6 for a convenient way to compute a square root in
ZN deterministically.

Encrypt(PP, id,m): On input public parameters PP = (N,H,H ′), an identity id ∈ {0, 1}∗, and message
m ∈ {0, 1} run:

1. Compute a← H(id) ∈ J(N).

2. Compute g(x)← H ′(id) ∈ R.

3. Compute c(x)← E(a,m).

4. Compute d(x)← E(−a,m).

5. Uniformly sample two bits v1, v2
$←− {0, 1}.

6. If v1 = 1, then set c(x)← c(x) ∗ g(x).

7. If v2 = 1, then set d(x)← d(x) ∗ g(x).

8. Output c := (c(x), d(x)).

Decrypt(skid, c): On input a secret key skid = (N, id, r) and a ciphertext c = (c(x), d(x)), do:

1. Compute a← H(id) ∈ J(N).

2. Compute g(x)← H ′(id) ∈ R.

3. If r2 ≡ a mod N , set e(x) ← c(x). Else if r2 ≡ −a mod N , set e(x) ← d(x). Else output ⊥ and
abort.

4. If GT(r2 mod N, e(x)) = −1, set e(x)← e(x) ∗ g(x).

5. Output D(r, e(x)).

3.3 Security

Lemma 1. Let f(x), g(x) ∈ Ra. Then GT(a, f(x)g(x), N) = GT(a, f(x), N) · GT(a, g(x), N).

Proof. Consider the product v(x) = f(x)g(x) ∈ Ra. We have that v0 = f0g0 + f1g1a and v1 =
f0g1 + f1g0. It is easy to verify that(

(f0g0 + f1g1a)2 − (f0g1 + f1g0)2a

N

)
=

(
(f2

0 − af2
1 )(g20 − ag21)

N

)
= GT(a, f(x), N) · GT(a, g(x), N).

. ut

Lemma 2. Let g(x) ∈ Ḡa. Then g(x) ·Ga = Ḡa.

Proof. By Lemma 1, g(x)h(x) ∈ Ḡa for any h(x) ∈ Ga.
By Lemma 1 in [14], Ga is a multiplicative group in Ra. Hence, |g(x) · Ga| = |Ga|. We claim that

every t(x) ∈ Ḡa can be expressed as g(x)t′(x) for some t′(x) ∈ Ga. Assume the contrary for the purpose
of contradiction i.e. there exists a t(x) /∈ g(x) ·Ga. It follows that t(x) ·Ga∩g(x) ·Ga = ∅. But by Lemma
1, t(x)2 ∈ Ga and g(x)t(x) ∈ Ga. From the commutativity of Ra, we have g(x) · t(x)2 = t(x) ·(t(x)g(x)),
which implies that t(x) ·Ga ∩ g(x) ·Ga 6= ∅, a contradiction. The lemma follows. ut

We include the following result from [14] that is used in the proofs below.



Corollary 1 (Corollary 2, [14]). The distributions {(N, a, t + ah2t−1, 2h) : N ← Setup(1λ), a
$←−

J, t, h $←− Z∗N )} and {(N, a, z0, z1) : N ← Setup(1λ), a
$←− J, z0 + z1x

$←− Ga \ Sa} are indistinguishable
assuming the hardness of the quadratic residuosity problem.

Corollary 2. Let g(x) ∈ Ḡa. Then

1. {h(x)
$←− Ḡa} ≈ {g(x)h′(x) | h′(x)

$←− Ga}.

2. {h(x)
$←− Ḡa} ≈

C
{g(x)h′(x) | h′(x)

$←− Sa}.

Proof. (1). From Lemma 2, each element in Ḡa can be represented as g(x)h′(x) for a unique h′(x) ∈ Ga.
Therefore, if h′(x) is sampled uniformly from Ga, then h′(x)g(x) is uniformly distributed in Ḡa.

(2). By Corollary 1, Ga ≈
C
Sa without knowledge of the prime factors of N , and thus this property

follows from (1). ut

Theorem 1. UAIBE is ANON-IND-ID-CPA-secure in the random oracle model assuming the hardness
of the quadratic residuosity problem.

Proof. We prove the theorem by showing that a poly-bounded adversary has a negligible advantage
distinguishing between the following series of games.

Game 0 This is the ANON-IND-ID-CPA game between the challenger and an adversary A with the
scheme UAIBE as described in Section 3.2.

Game 1 The only change in this game from Game 0 is as follows. Let b denote the bit chosen by
the challenger to choose either between the tuples (id0,m0) or (id1,m1) supplied by the adversary.
Let a = H(idb). Instead of encrypting mb, we instead encrypt a random bit b′ ∈ {0, 1} i.e. we have
c(x)← E(a, b′) and d(x)← E(−a, b′).

We argue that if there is an efficient distinguisher A that can distinguish between Game 0 and Game
1, then there is efficient adversary B that can use A to attack the IND-ID-CPA security of xhIBE.
Secret key queries from A are relayed to B’s oracle. When A chooses its challenge tuples (id0,m0) and
(id1,m1), perform the following:

1. If b′ = mb, output a random bit and abort.

2. Else choose challenge identity id∗ = idb.

3. When B’s IND-ID-CPA challenger responds with a challenge ciphertext (c(x)∗, d(x)∗), choose two

random bits u0, u1
$←− {0, 1}: if u0 = 1, set c(x)∗ ← c(x)∗g(x); if u1 = 1, set d(x)∗ ← d(x)∗g(x)

where g(x)← H ′(id∗) (this oracle can be provided by B).

4. Give (c(x)∗, d(x)∗) to A, and output A’s guess.

If A has advantage ε distinguishing games Game 0 and Game 1, then B has an advantage of 1
2
ε.

Game 2 To recap, note that the challenge ciphertexts in Game 1 have the distribution {(c(x), d(x))
$←−

Sa × S−a : a = H(idb), b
$←− {0, 1}}. This is because by definition for any a ∈ J(N), we have Sa =

image(E(a, ·)) and S−a = image(E(−a, ·)). The next step is to replace Sa with Ga. Instead of setting

c(x)← E(a, b′) where a = H(idb), we choose c(x)
$←− Ga.

Corollary 2 1 shows that Sa ≈
C
Ga for any a ∈ J(N) without access to the factorization of N .

We follow a similar argument to the above to “embed” the challenge element from either Sa or Ga.
We handle secret key queries without the factors of N by programming the oracle responses from H.
Suppose the adversary queries the secret key for an identity id′. Assume without loss of generality that
it first queries the random oracle H on id′. On the first such query, we uniformly sample a secret key

r′
$←− Z∗N , set a′ ← r′

2
mod N ∈ J(N), store the tuple (id′, r′, a′) and return a′. This has the correct

distribution and secret keys can easily be extracted. A non-negligible advantage distinguishing Game 1
and Game 2 translates to a non-negligible advantage distinguishing the distributions Sa and Ga, which
contradicts Corollary 2 in [14].
Game 3 The change from Game 2 to Game 3 is similar to that from Game 1 to Game 2, namely
the second ciphertext component d(x) is sampled from G−a instead of S−a where a = H(idb). The
argument for indistuinguishability is analogous to that of the last game.
Game 4 This game is identical to Game 3 except that instead of setting a ← H(idb), we instead set

a
$←− J(N). Furthermore, step 2 of Encrypt is replaced with g(x)← Ḡa ∪ Ḡ−a ∈ R.



Clearly, the adversary has a zero advantage in this game since a ciphertext reveals nothing about
the challenger’s bit b. We now show that a ciphertext in Game 4 is indistinguishable from a ciphertext
in Game 3. Observe that each component of the latter is computationally indistinguishable from a
uniformly random element of the set of units in R. The units in R are precisely those elements u(x)
satisfying

GT(a′, u(x), N) ∈ {−1, 1}
with respect to any a′ ∈ J(N); that is, the set of units is Ga′ ∪ Ḡa′ .

In Game 3, half of the time the ciphertext component c(x) (resp. d(x)) is uniformly distributed in Ḡa
(resp. Ḡ−a) according to Corollary 2, and the other half it is uniformly distributed in Ga (resp. G−a),
by definition of Game 3. Thus, each component is a uniformly random element of the set of units in R.
But similarly, we have that each component of a ciphertext in Game 4 is also uniformly distributed in
the set of units in R. Therefore, both games are indistinguishable to a poly-bounded adversary.

We can conclude that an adversary’s advantage is negligible distinguishing between Game 0 and
Game 4, which implies that its advantage attacking the ANON-IND-ID-CPA security of UAIBE is also
negligible. ut

3.4 Comparison with Ateniese and Gasti’s Construction

Our proposed construction has several advantages. Firstly, it is arguably conceptually simpler than
existing anonymous variants of Cocks’ scheme. Furthermore, like the construction put forward in [12],
it is universally anonymous, which may be useful in settings where messages pass through multiple
systems, some of which need to know the recipient’s identity whereas others should not be privy to
this information. Hence, a trusted proxy can be tasked with anonymizing ciphertexts without access
to the secret key. The scheme is also group-homomorphic for the XOR operation; this is useful in
some settings as discussed in [14], although anonymity must be sacrificed for homomorphic operations
to be performed. Another advantage of our scheme is that it faster run-time performance than other
anonymous IBEs based on quadratic residuosity. We elaborate more on its performance in this section
by comparing it to its nearest rival (in terms of run-tie performance), namely the Ateniese and Gasti
(AG) scheme from [12]. However, the most significant downside of the scheme is its poor space efficiency;
ciphertext expansion is double that of Cocks, and almost double that of AG.

3.5 Analysis of Ateniese and Gasti’s Construction (AG)

Encryption in the AG scheme requires a number of Galbraith test computations per bit of plaintext.
Recall that evaluating a Galbraith test entails a costly Jacobi symbol computation. The main intuition
behind AG is to “embed” a Cocks ciphertext within a sequence of integers Ti. Its position, k, in such
a sequence is distributed according to a geometric distribution with parameter p = 1/2. Furthermore,
the terms T1, . . . , Tk−1 are chosen such that GT(a, Ti, N) = −1 for i ∈ [k − 1]. The intuition behind
this approach is grounded in the fact that Galbraith’s test can be shown (see Section 2.3 in [12]) to
be the “best test” possible in attacking the anonymity of Cocks’ scheme. Since the probability of a
random element in Z∗N passing Galbraith’s test is 1/2, the position of the first element in a random
sequence to pass Galbraith’s test is distributed according to a geometric distribution with parameter
p = 1/2. A hash function is used to generate the sequence of integers based on short binary strings
incorporated in an AG ciphertext. We defer the details to Appendix B, but it sufficient here to note
that ` is a global parameter in AG that determines the number of such binary strings (this is closely
related to the number of Galbraith tests that must be performed on average during encryption).

Let Y be a random variable representing the number of Galbraith tests evaluated in AG per bit of
plaintext. A lower bound for the expected value E[Y ] of Y can be derived as

E[Y ] ≥ 4(1 + (log κ− 1) · 2−`)

where κ is the security parameter. A rough lower bound on the variance Var(Y ) is

Var(Y ) ≥ 22−2`(−8 + 7 · 22` + 21+` − 3 · 22+``).

See Appendix B for the derivations of these inequalities. Ateniese and Gasti found ` = 6 to be a good
compromise between ciphertext size and performance. See Appendix B for supporting analysis. Setting
` = 6 results in a mean number of Galbraith tests per bit of plaintext of ≈ 4.22 with a standard
deviation of ≈ 6.92. Our scheme on the other hand does not require any Galbraith test to be performed
during encryption.



Fig. 1. Average times to encrypt a 128-bit message for Cocks, AG and UAIBE.

4 Experimental Results

To perform an empirical comparison between our scheme and AG, both schemes were implemented in
C using the OpenSSL library. Our implementation was based on code provided by the authors of [12].
Our code is available at [16]. The following experiment was run for each of the four schemes: Cocks,
AG, UAIBE and JB. The latter is a shorthand for our modification to the construction of Jhanwar and
Barua described in Appendix C. Note that JB is not anonymous and its inclusion here is to demonstrate
the fact that it achieves comparable efficiency to Cocks. Hence, AG and UAIBE are the two anonymous
schemes being compared.

1. For each t in the set {1024, 2048, 3072, 4096}:

(a) A modulus N of t bits is generated along with primes p and q that constitute the master secret
key.

(b) The public key a and secret key r are derived for some predefined identity string id. A random
128-bit message m is generated.

(c) The following is repeated 50 times:

i. Encrypt m under identity id to produce ciphertext c.

ii. Decrypt c with secret key r and verify the decrypted message matches m.

iii. The time elapsed performing step 3.(a) and 3.(b) is calculated.

(d) An average over the times calculated in step 3.(c) is obtained.

The code was compiled with optimization flag ’-02’ using GCC version 4.4.5-8 with OpenSSL version
0.9.8o. The benchmarks were executed on a machine with 4 GB of RAM and an Intel Core i5-3340M
CPU clocked at 2.70 GHz. The benchmark machine was running GNU/Linux 3.2.41 (x86-64). Our
implementation however was unoptimized and did not exploit parallelization. For the interested reader,
the implementation of encryption in Cocks, AG and UAIBE involved precomputation of random integers
with Jacobi symbol −1 and +1. This is not needed for JB.

The results of the experiment (average encryption times) are shown in Figure 1. Note that UAIBE
and Cocks exhibit similar performance whereas JB is only marginally less efficient than Cocks. On
the other hand, AG performs notably worse than UAIBE on average. To illustrate the comparison,
encryption and decryption times for all four schemes for the case of a 1024-bit modulus are presented
in Table 1.



Table 1. Encryption and decryption times in milliseconds for a 128-bit message with a key size of 1024 bits, averaged
over 50 runs.

Scheme Encryption -Mean (Std Dev) Decryption - Mean (Std Dev)

Cocks 77.39 (3.05) 13.32 (0.14)
AG 140.35 (19.22) 40.79 (1.68)

UAIBE 79.02 (3.14) 27.52 (0.41)
JB 86.78 (0.93) 21.97 (0.42)

5 Conclusions and Future Work

We have presented a new universally anonymous IBE scheme and shown it be ANON-IND-ID-CPA-
secure in the random oracle model assuming the hardness of the quadratic residuosity problem. We have
shown that the complexity of encryption and decryption is less than that of the universally anonymous
scheme proposed in [12], albeit at the cost of increased ciphertext expansion. We hope to reduce the
size of ciphertexts in future work. Furthermore, due to time constraints we have been unable to give a
performance comparison between the schemes considered here and the original scheme due to Boneh,
Gentry and Hamburg; we hope to explore this also as part of future work.

In addition, this paper identifies an improvement to the work of Jhanwar and Barua [15] that provides
their scheme with IND-ID-CPA security. Our experimental results have shown that this scheme has
comparable performance to the original Cocks scheme, and has reduced ciphertext size. Extending it
so that it also supports anonymity is another goal of future work.

Acknowledgments. The authors would like to thank the anonymous reviewers for their many
helpful comments.
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A XOR-Homomorphic Variant of Cocks’ Scheme

The XOR-Homomorphic variant of Cocks’ scheme from [14] is described below with respect to the
algorithms E and D defined in Section 3.1. The Setup and KeyGen algorithms are identical to those of
the Cocks system, which is presented in Section 2.6. The other algorithms are defined as follows.

xhIBE.Encrypt(PP, id,m) :

1. Parse PP as N .

2. a← H(id).

3. Compute c(x)← E(a,m).

4. Compute d(x)← E(−a,m).

5. Output ψ := (c(x), d(x), a).

The third component a is necessary to perform homomorphic operations. See xhIBE.Add below.

xhIBE.Decrypt(skid, ψ):

1. Parse skid as (N, id, r).

2. Parse ψ as (c(x), d(x), a).

3. If r2 ≡ a mod N and GT(a, c(x), N) = 1, output D(r, c(x)).

4. Else if r2 ≡ −a mod N and GT(−a, d(x), N) = 1, output D(r, d(x)).

5. Else output ⊥.

xhIBE.Add(PP, ψ1, ψ2):

1. Parse ψ1 as (c1(x), d1(x), a)

2. Parse ψ2 as (c2(x), d2(x), a)

3. Output (c1(x) ∗ c2(x) (mod x2 − a), d1(x) ∗R−a d2(x) (mod x2 + a)).

We briefly describe why the scheme is XOR-homomorphic. We will restrict our attention to the first
component of a ciphertext for simplicity, since the situation is analogous for the second component with
respect to −a instead of a. Therefore, we assume that the secret key for identity id is r ∈ Z∗N such that
r2 = a (mod N) where a = H(id). A plaintext bit encoded as an element of {−1, 1} is recovered from a

ciphertext polynomial c(x) by computing

(
c(r)

N

)
. It is easy to see that

(
c′(r)

N

)
=

(
c1(r)

N

)
·

(
c2(r)

N

)
∈

{−1, 1} where c′(x) = c1(x)c2(x) (mod x2 − a) (which is what is computed in xhIBE.Add). Note that
({−1, 1}, ∗) and ({0, 1},⊕) are isomorphic.



B Expected Number of Galbraith Tests in the Ateniese and Gasti
Scheme

Ateniese and Gasti proposed the following approach to anonymize a Cocks ciphertext (c, d) ∈ Z∗N which
has been computed with public key a = H(id), . Two integers k1 and k2 are independently sampled
according to a geometric distribution with parameter 1/2. Two sequences of integers T1, . . . , Tm ∈ Z∗N
and V1, . . . , Vm ∈ Z∗N are randomly generated subject to the condition that for 1 ≤ i < k1 and
1 ≤ j < k2

GT(a, Z1 − Ti, N) = −1 and GT(−a, Z2 − Vj , N) = −1 (B.1)

where Z1 = c+ Tk1 and Z2 = d+ Tk2 . Note that since GT(a, c,N) = 1 and GT(−a, d,N) = 1 by virtue
of (c, d) being a Cocks ciphertext, it obviously holds that GT(a, Z1− Tk1 , N) = GT(−1, Z2− Tk2 , N) =
1. The anonymized ciphertext is outputted as (Z1, T1, . . . , Tm) ∈ (Z∗N )m+1 and (Z2, V1, . . . , Vm) ∈
(Z∗N )m+1. If m is large enough, i.e. polynomial in the security parameter, it can be shown that this
construction is ANON-IND-ID-CPA-secure.

A significant disadvantage of this construction is the fact that 2(m+ 1) elements of Z∗N are needed
per bit of plaintext in comparison to the 2 elements required by Cocks. To address this, Ateniese and
Gasti present a more space-efficient variant.

The main difference in the space-efficient variant is in how the Ti and Vi are generated. A new global
parameter ` ∈ N is fixed. Also, the existence of a hash function G : {0, 1}∗ → ZN is assumed. Let X be
a multi-bit message. Alice chooses a random identifier MIDX when encrypting X. Now to encrypt the
j-th bit of X, she computes a ciphertext

(Z1, α1, . . . , α`) and (Z2, β1, . . . , β`)

where αi, βi ∈ {0, 1}e for i < `, and α`, β` ∈ {0, 1}e
′
. Note that e and e′ > e are fixed global parameters.

The sequences Ti and Vi are generated as follows:

Ti = G(MID ‖ 0 ‖ αi ‖ j) and Vi = G(MID ‖ 1 ‖ βi ‖ j) (B.2)

for 1 ≤ i < ` and
Ti = G(MID ‖ 0 ‖ α` ‖ j) and Vi = G(MID ‖ 1 ‖ β` ‖ j) (B.3)

for i ≥ `. Alice must choose appropriate αi and βi in order to satisfy B.1. When k1 ≤ ` and k2 ≤ `, this
is not too costly because each selection affects only one member of the respective sequence. Moreover,
this will be the case with high probability for sufficiently large `, However, as pointed out in [12], in
the case when either k1 ≥ ` or k2 ≥ `, the cost is exponential in k1 − ` or k2 − ` respectively.

We now compute the average number of Galbraith tests per bit of plaintext. In fact, it suffices to
restrict our attention to a single ciphertext component because we can double the result to obtain the
total number of Galbraith tests.

Now the expected number of Galbraith tests is computed as follows. Let X be random variable
following a geometric distribution with parameter 1/2 over the space {0, 1, 2, . . .}. Denote by Y ′ the
random variable that determines the number of Galbraith tests performed. There are always at least k

Galbraith tests performed, where k
$←− X. Thus,

E[Y ′] ≥ E[X] = 1.

Consider a random variable Z giving the number of tests performed when selecting α1, . . . , α`−1. It
holds that E[Z] = 2 · E[min(X, `− 1)], since there are 2 expected trials per αi for i ≤ k subject to the
constraint that k ≤ `− 1. We calculate E[min(X, `− 1)] as follows:

`−1∑
k=0

k

2k+1
+ (`− 1)

`−1∑
k=0

1

2k+1
= 1− 21−`.

It is necessary to subtract E[min(X, `− 1)] from E[Z] because these particular tests are already incor-
porated into E[X]. Therefore, we now have

E[Y ′] ≥ E[X] + E[Z]− E[min(X, `− 1)] = 2(1− 2−`).

There is a 1/2` chance that k ≥ `. In this case, a single binary string, namely α` ∈ {0, 1}e
′

must be
selected that satisfies k − ` Galbraith tests. Conditioned on k ≥ `, the expected value of k is ` + 1,
and the expected number of trials per selection of α` is therefore 2((` + 1) − `) = 2. Now it remains
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Fig. 2. Dependence on number of Galbraith tests on parameter `

to compute the expected number of selections of α`. It turns out that this is equivalent to the St.
Petersburg lottery. Thus, the expected value is infinite if no bound is set on k and equal to the bound
otherwise, all conditioned on k ≥ `. To preserve security, this bound cannot be polylogarithmic in the
security parameter κ. However, setting it as such allows us to derive a (loose) lower bound on the
number of selections. As a consequence, we formulate a lower bound on the number of selections as

log κ

2`
.

A lower bound on the expected number of tests induced by k ≥ ` is

log κ

2`−1
.

Putting all components together yields

E[Y ′] ≥ 2(1 + (log κ− 1) · 2−`).

A rough lower bound on the variance Var(Y ′) can be calculated in a similar manner as

Var(Y ′) ≥ Var(Z) = 21−2`(−8 + 7 · 22` + 21+` − 3 · 22+``).

Figure 2 shows approximations for the mean and standard deviation based on these lower bounds by
taking the security parameter κ to be 80 (the value used in [12]). The figure supports the empirical
findings of [12] from which ` = 6 was found to be a good compromise between ciphertext size and
performance.

C Variant of the Boneh, Gentry and Hamburg (BGH) Construction
with Improved Performance

We first give an overview of the BasicIBE system proposed in Section 3.1 of [11], which we refer to here
as BGH.



C.1 Boneh, Gentry and Hamburg BasicIBE System (BGH)

Definition 2 (Definition 3.1, [11]). A deterministic algorithm Q that takes a tuple (N,R, S) as
input, where N ∈ Z+ and R,S ∈ ZN , and outputs two polynomials f, g ∈ ZN [x] is said to be IBE
compatible if it satisfies the following conditions:

1. If R,S ∈ QR(N), then f(r)g(s) ∈ QR(N) for all square roots r and s of R and S respectively.

2. If R ∈ QR(N), then f(r)f(−r)S ∈ QR(N) for all square roots r of R.

BGH can be described abstractly with respect to an algorithm Q that meets the conditions of IBE
compatibility in Definition 2. The scheme can handle plaintexts of ` bits where ` is a global parameter. A
user’s identity id is mapped to a set of ` integers R1, . . . , R` via a hash function H : {0, 1}∗×[`]→ J(N);
that is, Ri ← H(id, i) for 1 ∈ [`]. A secret key for id consists of ` integers r1, . . . , r` where ri a square
root of Ri if Ri ∈ QR(N) and a square root of uRi otherwise, where u ∈ J(N) \ QR(N) is part of the
public parameters.

To encrypt a message m = m1, . . . ,m` ∈ {−1,+1)` under identity id, the sender first generates a
random s ∈ ZN and sets S ← s2. Then for j ∈ [`], the sender obtains (fj , gj) ← Q(N,Rj , S) and

(f̄j , ḡj)← Q(N,uRj , S) where Rj ← H(id, j), and sets cj ← mj ·

(
gj(s)

N

)
and c̄j ← mj ·

(
ḡ(s)

N

)
. The

ciphertext is outputted as (S, c1, . . . , c`, c̄1, . . . , c̄`).
Now it can be deduced from the first condition in Definition 2 that(

g(s)

N

)
=

(
f(r)

N

)

where (f, g)← Q(N,R, S) and r2 = R and s2 = S. Therefore given a ciphertext (S, c1, . . . , c`, c̄1, . . . , c̄`)
and a secret key r1, . . . , r`, a decryptor recovers the j-th bit mj as follows, assuming without loss of
generality that r2j = Rj (replace Rj with uRj and cj with c̄j otherwise): compute (fj , gj)← Q(N,Rj , S),

and set mj ← cj ·

(
f(r)

N

)
.

Correctness and IND-ID-CPA-security follow from Condition 1 and Condition 2 in definition 2 (re-
spectively), as shown in [11].

Boneh, Gentry and Hamburg instantiate Q in their work and therefore obtain a concrete scheme that
is both space-efficient and secure in the random oracle model assuming the hardness of the quadratic
residuosity problem. However, their instantiation of Q is computationally expensive. Running Q is
the primary bottleneck of their system. The essence of their approach entails solving equations of the
form Rx2 + Sy2 = 1 modulo N to yield (x, y) ∈ Z2

N and outputting polynomials f(r) ← xr + 1 and
g(s) ← 2ys + 2. The method they propose to solve such equations involves the generation of primes,
which is the main expense.

C.2 Jhanwar and Burua (JB) Variant

An alternative approach was explored in [15] based on finding a random point (x, y) ∈ Z2
N on the curve

Rx2 + Sy2 = 1 by making use of the following lemma.

Lemma 3 (Lemma 2.1, [17]). Let N be prime. Let R,S ∈ ZN where S ∈ QR(N). Let s be a square
root of S modulo N . Then any solution (x0, y0) ∈ Z2

N to the equation Rx2 + Sy2 = 1 is of the form(
−2st

R+ St2
,
R− St2

s(R+ St2)

)
∈ Z2

N

for some t ∈ Z∗N such that R+ St2 ∈ Z∗N .

In [15], the authors exploit Lemma 3 to generate a random solution to Rx2 + Sy2 = 1 by choosing a
t ∈ Z∗N uniformly at random. However, only the sender, who has access to s, can generate such a solution.
Therefore, it is necessary to incorporate the x-coordinate in the ciphertext per bit of plaintext so that
the receiver can form the polynomial f(r) ← xr + 1. This leads to considerable ciphertext expansion
compared to BGH since 2` elements x1, . . . , x`, x̄1, . . . , x̄` must be incorporated in the ciphertext. To
counteract this considerable blowup in ciphertext size, an optimization is employed in [15] based on a
product formula due to Boneh, Gentry and Hamburg. We refer to the variant of BGH proposed in [15]
by Jhanwar and Barua as JB. The main modifications to BGH employed in JB are as follows.



1. A global parameter κ is derived from ` (see below).

2. A user’s identity is mapped to a single integer R ∈ ZN instead of ` integers R1, . . . , R` in BGH.
Naturally, a secret key also consists of a single integer (a square root of either R or uR).

3. During encryption, the first κ bits are encrypted by (1). choosing integers s1, . . . , sκ, whose squares
are denoted by S1, . . . , Sκ; (2) obtaining solutions (xj , yj) and (x̄j , ȳj) to the equations Rx2+Sjy

2 =
1 and uRx2 + Sjy

2 = 1 respectively via Lemma 3 for i ∈ [κ]; and (3). encrypting the j-th bit

mj ∈ {−1, 1} by setting cj ← mj ·

(
gj(sj)

N

)
and c̄j ← mj ·

(
ḡj(sj)

N

)
where gj(sj) = 2yjsj + 2 and

ḡj(sj) = 2ȳjsj + 2.

4. For j > κ, the j-th bit is encrypted as follows: (1). compute the unique integers j1, j2 ∈ {0, . . . , κ−1}
such that j = j1 · κ + j2; (2). derive the solutions (xj , yj) and (x̄j , ȳj) to the equations Rx2 +
Sj1Sj2y

2 = 1 and uRx2 + Sj1Sj2y
2 = 1 respectively from the solutions (xj1 , yj1) and (xj2 , yj2)

using the product formula (see Lemma 2 in [15]); (3). set sj ← sj1sj2 ; and (4) compute cj and c̄j
in the same manner as the case for j ≤ κ.

Since the product formula allows a decryptor to deduce xj from xj1 and xj2 for j > κ, it follows that
only the integers x1, . . . , xκ and x̄1, . . . , x̄κ need be stored in a ciphertext.

C.3 Security Analysis of JB

The modified BGH system described above is claimed to be IND-ID-CPA secure by Theorem 2 in [15].
We make an important observation here concerning this theorem. Jhanwar and Barua propose setting
κ = d

√
`e to ensure the ciphertext size is kept “small”. However, their argument that Game 5 and Game

6 in the proof of Theorem 2 are indistinguishable in the view of an adversary bounds the probability
of an attacker guessing correctly by 1

2κ
. Hence if ` is polylogarithmic in the security parameter, it

follows that an adversary has a non-negligible advantage distinguishing both games, which invalidates
the proof of security. As a result, to guarantee µ bits of security, it becomes necessary to ensure that
plaintexts consist of at least µ2 bits. Concretely, a plaintext of 800 bytes would have to be encrypted
to guarantee 80 bits of security if the parameter setting proposed in [15] is employed. A more sensible
setting is

κ = min(max(µ,
√
`), `) (C.1)

where µ is the desired security level and ` is the length of a plaintext in bits. Even with this change,
the scheme still provides excellent performance. In concrete terms, we see that to encrypt a 128-bit
symmetric key using a 1024-bit modulus, the ciphertext size is 20,512 bytes (note that κ = 80) in
comparison to 32,768 bytes for Cocks. Furthermore, the scheme outperforms Cocks. The modified
scheme with κ chosen according to Equation C.1 achieves comparable efficiency to Cocks, but with
lower ciphertext expansion. Our experimental results in Section 4 provide a performance comparison.

Anonymity Given the performance benefits of this scheme, a natural question is whether an anony-
mous variant can be constructed. Unfortunately, attempts to exploit the same techniques to construct
an anonymous IBE have not been successful. It may be tempting to start from the anonymous IBE
presented in [11] and incorporate the solutions to the relevant equations in the ciphertext. However, it
then becomes easy for an attacker to tell whose identity was used to create a ciphertext.


