
A Very Compact FPGA Implementation of LED and PHOTON

N. Nalla Anandakumar1,2, Thomas Peyrin1 and Axel Poschmann1,3

1 Division of Mathematical Sciences, School of Physical and Mathematical Science,
Nanyang Technological University, Singapore

2 Hardware Security Research Group,
Society for Electronic Transactions and Security, India

3 NXP Semiconductors, Germany
nallananth@gmail.com, thomas.peyrin@gmail.com, aposchmann@gmail.com

Abstract. LED and PHOTON are new ultra-lightweight cryptographic algorithms aiming at resource-
constrained devices. In this article, we describe three different hardware architectures of the LED and
PHOTON family optimized for Field-Programmable Gate Array (FPGA) devices. In the first architecture
we propose a round-based implementation while the second is a fully serialized architecture performing
operations on a single cell per clock cycle. Then, we propose a novel architecture that is designed
with a focus on utilizing commonly available building blocks (SRL16). This new architecture, organized
in a complex scheduling of the operations, seems very well suited for recent designs that use serial
matrices. We implemented both the lightweight block cipher LED and the lightweight hash function
PHOTON on the Xilinx FPGA series Spartan-3 (low-cost) and Artix-7 (high-end) devices and our new
proposed architecture provides very competitive area-throughput trade-offs. In comparison with other
recent lightweight block ciphers, the implementation results of LED show a significant improvement of
hardware efficiency and we obtain the smallest known FPGA implementation (as of today) of any hash
function.

Keywords: FPGA, lightweight cryptography, LED, PHOTON, SRL16.

1 Introduction

Lightweight devices such as RFID tags, wireless sensor nodes and smart cards are increasingly common
in applications of our daily life. These smart lightweight devices might manipulate sensitive data and thus
usually require some security. Classical cryptographic algorithms are not very suitable for this type of ap-
plications, especially for very constrained environments, and thus many lightweight cryptographic schemes
have been recently proposed (block ciphers [20, 30, 16, 11, 39, 36, 5] or hash functions [2, 19, 6]). The main fo-
cus of lightweight cryptography research has been on the trade-offs between cost, security and performance
in terms of speed, area and computational power. These primitives can be implemented either in software
or in hardware platforms such as Field-Programmable Gate Array (FPGA) and Application Specific Inte-
grated Circuit (ASIC). Compared to ASICs, FPGAs offer additional advantages in terms of time-to-market,
reconfigurability and cost.

Recently, Guo et al. proposed the lightweight block cipher LED [20] and the lightweight family of hash
functions PHOTON [19], for which the hardware performance has only been investigated on ASICs. LED is based
on AES-like design principles with a very simple key schedule. The internal unkeyed permutations of PHOTON
can also be seen as an AES-like primitive. Up to now, no design space exploration of LED on FPGAs has been
published. The proposed architecture is suited for the applications where low-cost FPGAs are deployed such
as FPGA-based RFID tags [15] and low-power FPGAs [38] are deployed for battery powered applications
such as FPGA-based wireless sensor nodes [14]. Hence, they represents popular platforms (FPGA-based RFID
tags, FPGA-based wireless sensor nodes) for lightweight cryptographic applications.

Our contributions. In this study, we propose three architectures optimized for the implementation of
the LED block cipher and the five different flavors of the PHOTON hash functions family on FPGAs. The first
architecture computes one round per clock cycle, while the second is based on the architecture presented
in LED [20] and PHOTON [19] for ASIC, and adapted in this paper to FPGA with slight modifications. Our
most interesting contribution is the third architecture, also serial by nature, which performs the LED and
PHOTON computations based on shift registers (SRL16), thanks to a non-trivial scheduling of the successive
operations. This structure is actually strictly better than the second one since it achieves lower area and
better throughput.

We emphasize that the goal of this paper is to cover a wide variety of new implementation trade-offs
offered by crypto primitives using serialized or recursive MDS (Maximum Distance Separable) matrices (for
which LED and PHOTON are the main representatives), on a wide variety of different Xilinx FPGA families,

ranging from low-cost (Spartan-3) to high-end (Artix-7). Using our novel architecture, based on SRL16, one
requires only 77 slices for LED-64 and 112 slices for PHOTON-80 on a Xilinx Spartan 3 (XC3S50) device, and 40
slices for LED-64 and 58 slices for PHOTON-80 on an Artix-7 (XC7A100T) device (while achieving reasonable
throughput of 9.93 Mbps and 22.93 Mbps for LED-64, 6.57 Mbps and 18.33 Mbps for PHOTON-80). To the best
of our knowledge, it represents the most compact hash function implementations on FPGAs.

The article is structured as follows. First we provide the description of LED and PHOTON in Section 2.
Then, we provide in Section 3 and Section 4 our architectures and FPGA implementations of LED and
PHOTON respectively. We finally draw conclusions in Section 5.

2 Algorithms descriptions

In this section, we describe the different versions of LED block cipher [20] and the PHOTON [19] family of hash
functions.

2.1 LED

LED is a 64-bit block cipher based on a substitution-permutation network (SPN). It supports any key lengths
from 64 to 128 bits. In this article, we will focus on a few main versions: 64-bit key LED (named LED-64) and
128-bit key LED (named LED-128). The number of rounds N depends on the key size, LED-64 has N = 32
rounds while LED-128 has N = 48 rounds.

One can view the 64-bit internal state as a 4 × 4 matrix of 4-bit nibbles and the round function as an
AES-like permutation composed of the following four operations:

• AddConstants: the internal state is bitwise XORed with a round-dependent constant (generated with an
LFSR);

• SubCells: the PRESENT [7] S-box is applied to each 4-bit nibble of the internal state;
• ShiftRows: nibble row i of the internal state is cyclically shifted by i positions to the left;
• MixColumnsSerial: each nibble column of the internal state is transformed by multiplying it once with

MDS matrix χ4 (or two times with matrix χ2, or four times with matrix χ).

χ =


0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

 ; (χ)2 =


0 0 1 0
0 0 0 1
4 1 2 2
8 6 5 6

 ; (χ)4 =


0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2


4

=


4 1 2 2
8 6 5 6
B E A 9
2 2 F B


The key schedule of LED is very simple. In the case of LED-64, the key K is repeatedly XORed to the

internal state every 4 rounds (with whitening key operation). In the case of LED-128, the key K is divided
into two 64-bit subparts K = K1||K2, each XORed alternatively to the internal state every 4 rounds. The
4-round operation between two key addition is called a step.

2.2 PHOTON

In this section we describe the PHOTON family of hash functions, for which five versions exist with digest sizes
of 80, 128, 160, 224 and 256 bits. PHOTON is based on the sponge construction. First, after padding, the input
message is divided into blocks of r-bit each. At each iteration, the t-bit internal state (t = r + c) absorbs
the incoming message block by simply XORing it to the r-bit bitrate part (the remaining c-bit part is called
the capacity). Then, after the absorption of the message block, one applies a t-bit permutation P to the
internal state. Once all message blocks have been processed the squeezing phase starts. During this phase,
for each iteration r′ bits are output from the internal state and the permutation P is applied. One continues
to squeeze until the proper digest size n is reached.

The PHOTON internal permutation P is also AES-like and consists of 12 rounds. The internal state is
represented as a (d× d) matrix of s-bit cells and each round is defined as the application of 4 operations:

• AddConstants: the internal state is bitwise XORed with a round-dependent constant (generated with an
LFSR);

• SubCells: the S-box is applied to each s-bit nibble of the internal state (the PRESENT S-box [7] if s = 4,
the AES S-box [9] if s = 8);

• ShiftRows: nibble row i of the internal state is cyclically shifted by i positions to the left;
• MixColumnsSerial: each nibble column of the internal state is transformed by multiplying it once with

MDS matrix χd (or two times with matrix χd/2, ... , or d times with matrix χ).

The values of t, c, r, r′, s and d depend on the hash output size n and we give in Table 1 the 5 versions of
PHOTON (we refer to [19] for the various matrices χ depending on the PHOTON versions). Note that one always
uses a cell size of 4 bits, except for the PHOTON-256/32/32 version for which one uses 8-bit cells.

Table 1. The 5 versions of PHOTON parameters

r r′ c s d t

PHOTON-80/20/16 20 16 80 4 5 100

PHOTON-128/16/16 16 16 128 4 6 144

PHOTON-160/36/36 36 36 160 4 7 196

PHOTON-224/32/32 32 32 224 4 8 256

PHOTON-256/32/32 32 32 256 8 6 288

3 LED implementations

In this section, we present three different architectures for the FPGA implementation of the lightweight
block cipher LED. The first one is a round-based implementation, while the second one is a fully serialized
implementation, performing operations on a single cell during each clock cycle. The third one is a novel
architecture, also fully serial, but based on the SRL16s and aiming at the smallest area possible. As we are
interested in the performance of the plain LED core, we did not include any I/O logic implementation such
as a UART interface.

We have also investigated the performance of the LED cipher with different trade-offs. Indeed, the diffusion
matrix being serial in LED, one can view the MixColumnsSerial diffusion layer as a single application of (χ)4,
or two successive applications of (χ)2 or four successive applications of (χ).

We have implemented both LED versions (the 64-bit key version LED-64 and the 128-bit key version LED-
128) in VerilogHDL and targeted Xilinx FPGAs Spartan-3 [23] and Artix-7 [25]. We used Mentor Graphics
ModelSimPE for simulation purposes and Xilinx ISE v14.4 WebPACK for design synthesis. In Xilinx ISE the
design goal is kept balanced and strategy is kept default (unlocked) and the synthesis optimization goal is
set to area.

3.1 Round-based

We give in Figure 1 the block diagram of the round-based implementation of LED. Naturally, the data register
(Dreg) is updated after every round operation. The keys are selected according to the key length (K1 is
loaded without modification every four rounds in LED-64, while K1 and K2 are loaded alternatively every
four rounds for LED-128). Table 2 provides the detailed results of our round-based FPGA implementations
of LED with three different approaches concerning the computation of the diffusion matrix: we compute χ4

by either applying 4 times the matrix χ, or by applying 2 times the matrix χ2, or by directly applying the
entire matrix χ4. As expected, the last option provides a higher throughput (since we directly compute the
entire diffusion matrix), but for the price of higher resource consumption. In contrary, the first option allows
to save resources, but at the expense of a lower throughput. The second option offers a trade-off in between.

We also added in Table 2 a comparison with known round-based FPGA implementations of other
(lightweight) block ciphers on the same FPGA device. One can see that our LED-64 and LED-128 proposed
round-based implementations outperform all the previous works in term of area.

3.2 Serialized

Our first serialized implementation of LED is derived from the architecture proposed in [20] for ASICs, but
with some architectural modifications for the MCS state operations in order to improve the performance.
This implementation stores the data and key in the registers (FF) and it has a 4-bit wide datapath, i.e. only
4 bits are processed in one clock cycle (see Figure 2). It consists of 4 states: Init, Sbox, Srow and MCS:

The Init state initial data and key values are stored in the data registers and key registers, respectively.

The Sbox state is for the simultaneous execution of the SubCells (SC) operations, AddConstants (AC)
operations and XORing the roundkey (AK) every fourth round. It requires 16 clock cycles.

The Srow state is for the execution of the ShiftRows operation. It can be performed in 3 clock cycles with
no additional hardware cost, because it just shifts the row positions of the state matrix.

Fig. 1. Architecture of the LED round based encryption module

Table 2. FPGA round-based implementation results of LED block cipher with different approaches for diffusion matrix
computation.

Design
MDS

Block Key
No. of No. of No. of Clock Max. freq T/put Eff.

FPGA Device
approach

Size Size
slices FFs LUTs Cycles (MHz) (Mbps) (Mbps/slices)

(bits) (bits)

(χ) 64
64 170 74 326 32 78.78 157.56 0.93

Spartan-3 XC3S50-5

128 199 76 391 48 78.79 104.8 0.53

(χ)2 64
64 198 74 379 32 87.63 175.3 0.89

128 227 76 444 48 87.63 116.54 0.51

LED
(χ)4 64

64 204 74 391 32 98.67 197.35 0.97

our paper 128 233 76 456 48 98.7 131.2 0.56

(Section 3.1)
(χ) 64

64 102 74 206 32 282.77 565.54 5.50

Artix-7 XC7A100T-3

128 158 76 261 48 282.43 376.57 2.39

(χ)2 64
64 110 74 216 32 290.46 580.97 5.28

128 163 76 281 48 291.89 389.18 2.40

(χ)4 64
64 136 74 231 32 334.85 669.7 4.92

128 168 76 292 48 333.73 444.97 2.65

PRESENT [35] 64 128 202 — — 32 254 508 2.51 Spartan-3 XC3S400-5

AES [17] 128 128 17,425 — — — 196.1 25,107 1.44 Spartan-3 XC3S2000-5

AES [8] 128 128 1800 — — — 150 1700 0.90 Spartan 3

ICEBERG [37] 64 128 631 — — — 254 1016 1.61 Virtex-II

SEA [31] 126 126 424 — — — 145 156 0.37 Virtex-II XC2V4000

The MCS state is for the execution of the MixColumnsSerial operation. It calculates the result fully
serialized, that is one cell in each clock cycle. It first calculates the topmost cell of the leftmost column (cell
00) by storing the result in the last row of the rightmost column (cell 33) in Figure 2. At the same time, the
entire state array is shifted to the left by one position, where the leftmost cells in every row are shifted into
the rightmost cells of the row located on top. This way in the subsequent clock cycle the topmost cell of the
second column is processed, leading to a serialized row-by-row calculation of the MixColumnsSerial.

It is to be noted that during the MixColumnsSerial operation in the architecture proposed in [20], the
result is stored in the last row of the leftmost column (cell 30), leading to a serialized column-by-column
calculation. Our new architecture is strictly better as it saves both area and time: As the leftmost column
requires only 1-input FFs instead of 2-input FFs the area requirement is reduced significantly. Our proposed
architecture has similarities with the work from [33], regarding the way the storing and rotating of matrices
are implemented. Furthermore, it takes only 16 clock cycles to perform the MixColumnsSerial instead of the
usual 20 clock cycles [20]. This new architecture is applicable to all AES-like permutations that use a serialized
MixColumns operation and we will also use it for the PHOTON implementations described in Section 4.

This serialized architecture of LED requires 35 clock cycles to perform one round, resulting in a total latency
of 1120 clock cycles for LED-64 and 1680 clock cycles for LED-128. Therefore, we have reduced the latency by
128 clock cycles for LED-64 and by 192 clock cycles for LED-128, respectively, when compared to the design

Fig. 2. A serialized architecture of the LED encryption module

proposed in [20]. We give in the first row of Table 3 the detailed results of our serialized implementations.
For a (χ) version of the diffusion matrix computation, we obtain for LED-64 and LED-128 140 slices and 167
slices respectively, while the throughput reaches 9.11 Mbps and 5.2 Mbps, respectively. One can see that
LED-64 and LED-128 seem to require much less area than most ciphers [27, 21, 10, 28] while having a higher
throughput than SIMON [3]. Furthermore, an increased throughput can be reached by scaling the datapath
to 16 bits and by computing the diffusion matrix in a less serial manner, i.e. by applying two times (χ)2 or
direct (χ)4. Moreover, our proposed serialized implementations when using directly (χ)4 outperforms most
ciphers [28, 3] implementations in terms of throughput per area ratio (Eff.). Using device-dependent building
blocks, such as BRAMs and DSPs, are a great way to enhance performance and optimize implementations
for a specific target device. However, it also, obviously, makes a fair comparison of the hardware costs (area)
much more difficult. Therefore we do not use any additional building blocks and instead compare the number
of slices. In the next section we will explain how to further reduce area and latency.

3.3 Serialized using SRL16s

Our second serialized implementation of LED is based on the use of a building block of Xilinx Spartan-3
FPGAs called SRL16s [24]. More precisely, SRL16 are look up tables (LUT) that are used as 16-bit shift
registers that allow to access (or output) bits of its internal state in two ways (as shown in Figure 3): the
last bit of its 16 stages (Q15) is always available, while a multiplexer allows to access one additional bit from
any of its internal stages.

Fig. 3. LUT configured as a shift register

The Configurable Logic Blocks (CLBs) are the basic logic units in an FPGA. Each CLB has four slices,
but only the two at the left-hand of the CLB can be used as shift registers. Spartan-3 FPGAs can configure
some LUTs as a 16-bit shift register without using the flip-flops available in each slice. When a shift register

Table 3. FPGA serialized implementation results of LED block cipher with different approaches for diffusion matrix
computation.

Design
MDS

Data- Block Key
Area No. of No. of Clock Max. freq T/put Eff.

FPGA Device
approach

path Size Size
(slices) FFs LUTs Cycles (MHz) (Mbps) (Mbps/

(bits) (bits) (bits) slices)

(χ) 4 64
64 140 151 255 1120 159.43 9.11 0.07

Spartan-3 XC3S50-5(χ)2

128 167 216 302 1680 137.34 5.2 0.03

8 64
64 169 157 332 608 157.43 16.6 0.10

(χ)4

128 203 219 388 912 142.01 9.97 0.05

LED
16 64

64 180 162 342 352 137.5 24.99 0.14

our paper 128 219 227 414 528 128.73 15.6 0.07

(Section 3.2)
(χ) 4 64

64 37 52 78 1120 378 21.6 0.58

Artix-7 XC7A100T-3

128 40 57 82 1680 368 14.02 0.35

(χ)2 8 64
64 58 95 135 608 380.3 40.03 0.69

128 61 104 141 912 356.5 25.02 0.41

(χ)4 16 64
64 78 110 162 352 367.4 66.8 0.86

128 82 175 188 528 375.6 45.53 0.56

(χ) 16 64
64 111 80 215 640 119.62 11.96 0.11

Spartan-3 XC3S50-5

128 122 72 233 960 118.25 7.88 0.06

(χ)2 8 64
64 77 44 148 768 119.19 9.93 0.13

128 86 48 167 1152 120.75 6.71 0.08

LED
(χ)4 16 64

64 119 76 228 256 119.27 29.82 0.25

our paper 128 127 70 248 384 117.87 19.65 0.15

(Section 3.3)
(χ) 16 64

64 51 45 113 640 303.9 30.39 0.60

Artix-7 XC7A100T-3

128 59 55 121 960 308.5 20.57 0.35

(χ)2 8 64
64 40 36 100 768 275.2 22.93 0.57

128 50 40 107 1152 302.64 16.81 0.34

(χ)4 16 64
64 63 43 133 256 284.83 71.21 1.13

128 69 53 138 384 286.5 47.75 0.70

PRESENT [40] 64 128 117 — — 256 114.8 28.46 0.24 Spartan-3 XC3S50-5

HIGHT [40] 64 128 91 — — 160 163.7 65.48 0.72 Spartan-3 XC3S50-5

xTEA [27] 64 128 254 — — 112 62.6 35.78 0.14 Spartan-3 XC3S50-5

PRESENT [21] 64 80 271 — — — — — — Spartan-3E XC3S500

SIMON [3] 128 128 36 — — — 136 3.60 0.10 Spartan-3E XC3S500

AES [10] 128 128 184 — — 160 45.6 36.5 0.20 Spartan-3 XC3S50-5

AES [28] 128 128 393 — — 534 — 16.86 0.04 Spartan-3 XC3S50-5

is described in generic HDL code with the global reset signal, it has no impact on shift registers and synthesis
tools infer the use of the SRL16s. Moreover, SRL16 is present in almost all XILINX FPGA families and [22]
describes a way to use SRL16s on ALTERA devices.

We have investigated possible area reductions by scaling the 64-bit implementation to an 8-bit (when
using (χ)2) and 16-bit datapath (when using χ and (χ)4) using SRL16s. As MixColumnsSerial requires 16-
bit inputs (4 times 4-bit) in every clock cycle, but each SRL16 only allows access to 2 bits, we have to use
eight and sixteen SRL16s to store the state, respectively.

Figure 4 shows the block diagram for the SRL16s based implementation of LED with 8-bit datapath when
using (χ)2. It consists of 4 states: Init, SrSc, Re-update and MCS, where the content of each SRL16 is
indicated in Table 4 for all the state operations. We also give in Table 7 and 8 of Appendix A the SRL16
content for 16-bit datapath implementations when using χ and (χ)4 respectively.

The Init state: initial data and key values are stored in the data SRL16s and key SRL16s, respectively. A
special ordering of the nibbles is required as shown in Table 4 and in Figure 4.

The SrSc state: performs ShiftRows, SubCells, AddConstants and AddRoundKey simultaneously by clever
memory (SRL16) addressing schedule. Table 4 depicts in bold the bits that are selected in every clock
cycle to achieve this. The round operation starts by bitwise XORing the incoming data with the round
key and round constants, then applying this result to two S-boxes (8-bit datapath) or four S-boxes (16-bit
datapath), respectively. The first nibbles processed are 00 and 11 (8-bit datapath) and 00, 11, 22, and 33
(16-bit datapath), respectively. In order to perform ShiftRows, SubCells, AddConstants and AddRoundKey
operations on the whole state, it takes 8 clock cycles (clk 9-16 in Table 4) using an 8-bit datapath, and 4
clock cycles (clk 5-8 in Table 8) using a 16-bit datapath, respectively.

The Re-update state: when using the 8-bit datapath, the 8-bit output from the S-boxes needs to be
duplicated within the SRL16s. This is because the MixColumnsSerial operation reads four input vectors
simultaneously and thus the leftmost bits of the SRL16s must be used. 8 clock cycles (clk 17-24 in Table 4)
are required for this step. Note that this state only applies to 8-bit datapath, this is why it is not present in
Table 7 and 8 of Appendix A.

Fig. 4. The block diagram for the SRL16s based implementation of LED with 8-bit datapath when using (χ)2

The MCS state: the 4 x 4-bit input data is read from the bits indicated in bold in Table 4. It starts with
the four 4-bit blocks 00, 11, 22 and 33, and using (χ)2, the resulting 8-bit output is stored in the SRL16s
labeled as 00′, 10′ (and 20′, and 30′, respectively) to indicate the indices of the next round. In the next clock
cycle, the input data is 01, 12, 23, and 30, and the corresponding result is labeled as 01′, 11′ (and 21′, and
31′) and so on. In total 8 clock cycles (clk 25-32) are required to complete the MixColumnsSerial layer using
(χ)2, 4 clock cycles (clk 9-12 in Table 8) when using (χ)4, and 16 clock cycles (clk 9-24 in Table 7) when
using (χ), respectively. The next round starts with the SrSc state (clk 9) and inputs 00′ and 11′.

Concerning the key incorporation, we give in Table 9 (resp. Table 10) of Appendix A the SRL16s positions
for the key when using 8-bit datapath with (χ)2 (resp. when using (χ)4 or (χ) for the 16-bit datapath).

For the 8-bit datapath, four and eight SRL16s are required in order to store the entire 64-bit and 128-bit
key, respectively. The keys are always read 8-bit at a time from the 4-bit blocks indicated in bold in Table 9
with a grey background in Figure 4. Then, the key blocks of SRL16s are rotated by one position. Eight clock
cycles (clk 17-24 in Table 9) are required for the 8-bit datapath, but extra 8 clock cycles (clk 25-32 in Table 9)
are required for 64-bit key blocks so as to reach the initial position. The next AddRoundKey starts with the
SrSc state (clk 17 in Table 9) and inputs 00′ and 11′.

We have used sixteen SRL16s in order to store the 64-bit or 128-bit key for the 16-bit datapath. Initially,
the key values are stored in the key SRL16s 4 times for the 64-bit (2 times for the 128-bit). 16 clock cycles
(clk 1-16 in Table 10) are required for this step. The keys are read 16-bit at a time from the 4-bit blocks of
SRL16s by selecting address taps based on the ShiftRows position (clk 17-20 in Table 10). After every 16-bit
keys read, the key blocks of SRL16s are rotated by one position. The next AddRoundKey starts with the
SrSc state (clk 17 in Table 10) and inputs 00′, 11′, 22′ and 33′.

For the 8-bit datapath, 24 clock cycles are required in order to complete one round of LED (clk 9-32 in
Table 4), resulting in a total latency of 768 clock cycles for LED-64 and 1152 clock cycles for LED-128. Table 3
shows the detailed results of our implementations of LED based on SRL16s for various MDS matrix compu-
tation approaches. Our design (χ)2 only occupies 77 slices for LED-64 and 86 slices for LED-128 respectively,
with a corresponding throughput of 9.93Mbps and 6.71Mbps respectively. The throughput can be increased

Table 4. Content of SRL16s for one round of LED when using (χ)2 for the 8-bit datapath. Every cell of the content
shows the index of a nibble of the state. Printed in bold is the input to the subsequent operation (see also Figure 4).
The indices of the next round are indicated with a ′.

clk content of SRL16s clk content of SRL16s

Init Re-update

1
00

17
01 02 03 20 21 22 23 00 01 02 03 22 23 20 21 00

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11

2
00 01

18
02 03 20 21 22 23 00 01 02 03 22 23 20 21 00 01

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12

3
00 01 02

19
03 20 21 22 23 00 01 02 03 22 23 20 21 00 01 02

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13

4
00 01 02 03

20
20 21 22 23 00 01 02 03 22 23 20 21 00 01 02 03

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10

5
00 01 02 03 20

21
21 22 23 00 01 02 03 22 23 20 21 00 01 02 03 22

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33

6
00 01 02 03 20 21

22
22 23 00 01 02 03 22 23 20 21 00 01 02 03 22 23

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30

7
00 01 02 03 20 21 22

23
23 00 01 02 03 22 23 20 21 00 01 02 03 22 23 20

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31

8
00 01 02 03 20 21 22 23

24
00 01 02 03 22 23 20 21 00 01 02 03 22 23 20 21

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32

SrSc MCS

9
00 01 02 03 20 21 22 23 00

25
01 02 03 22 23 20 21 00 01 02 03 22 23 20 21 00′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′

10
00 01 02 03 20 21 22 23 00 01

26
02 03 22 23 20 21 00 01 02 03 22 23 20 21 00′ 01′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′

11
00 01 02 03 20 21 22 23 00 01 02

27
03 22 23 20 21 00 01 02 03 22 23 20 21 00′ 01′ 02′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 20 31 32 10′ 11′ 12′

12
00 01 02 03 20 21 22 23 00 01 02 03

28
22 23 20 21 00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′

13
00 01 02 03 20 21 22 23 00 01 02 03 22

29
23 20 21 00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′ 20′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′ 30′

14
00 01 02 03 20 21 22 23 00 01 02 03 22 23

30
20 21 00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′ 20′ 21′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′ 30′ 31′

15
00 01 02 03 20 21 22 23 00 01 02 03 22 23 20

31
21 00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′ 20′ 21′ 22′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′ 30′ 31′ 32′

16
00 01 02 03 20 21 22 23 00 01 02 03 22 23 20 21

32
00 01 02 03 22 23 20 21 00′ 01′ 02′ 03′ 20′ 21′ 22′ 23′

10 11 12 13 30 31 32 33 11 12 13 10 33 30 31 32 11 12 13 10 33 30 31 32 10′ 11′ 12′ 13′ 30′ 31′ 32′ 33′

to 29.82Mbps by scaling the 8-bit to a 16-bit datapath and by directly computing the (χ)4 matrix. It is
noteworthy to point out that our SRL16 based implementation on Artix-7 FPGA only occupies 40 slices for
LED-64 and 50 slices for LED-128, respectively, with a throughput almost three times increased compared to
Spartan-3 devices.

We also give in Table 3 the performance of existing FPGA implementations of some other lightweight block
ciphers. As can be seen from the table, our work seems to require much less area than most ciphers [40, 27, 21,
10, 28] while having a higher throughput than AES [28] implementations and also yields a better throughput
per area ratio (Eff.) compared to most ciphers [27, 28]. Compared to FPGA implementations of the lightweight
block cipher SIMON [3], we get bigger area requirements but for a higher throughput (and also achieves the
better throughput per area ratio (Eff.) when using direct matrix (χ)4). We remark that HIGHT [40] has a
better throughput per area ratio than LED, but in this article our goal with serialised implementations is
to reduce area, and not to improve throughput per area ratio. More importantly, one can see in the table
that our SRL16 implementation technique both saves area and increases throughput compared to a classical
optimized serial implementation. Therefore, we believe this technique is very interesting in order to implement
serial-matrix based cryptographic primitives in FPGA technology.

4 PHOTON implementations

In this section, we present three different architectures for the FPGA implementation of the lightweight
hash function PHOTON. As in the previous section, the first architecture is a round-based implementation,
the second one a fully serialized implementation, and the third one our new serial architecture based on
SRL16s. The diffusion layer in PHOTON is based on a similar serial MDS matrix as in LED, thus we also
tested different trade-offs concerning its implementation. We have implemented all PHOTON versions (PHOTON-
80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-224/32/32 and PHOTON-256/32/32) in VerilogHDL
and targeted Xilinx FPGAs Spartan-3 [23] and Artix-7 [25]. Again, we used Mentor Graphics ModelSimPE
for simulation purposes and Xilinx ISE v14.4 WebPACK for design synthesis.

4.1 Round-based

In order to fully implement the sponge construction, the input data must be padded according to the sponge
padding rule [19], and this is handled by the padding unit. A 2× 1 multiplexer drives r bits of the data input
from message registers and applies the XOR operation with r bits of the input blocks. After the padding
procedure, this multiplexer operates as a feedback multiplexer in order to apply the 12 rounds of the internal
permutation of PHOTON. The data register Treg is updated every round, that is after processing AddConstants,
SubCells, ShiftRows, and MixColumnsSerial in one clock cycle. Another 2× 1 multiplexer is devoted to drive
either the IV value or the internal state. Finally, during the squeezing phase, r′ bits are output from the
internal state after every application of the permutation P , until the length of the hash digest size n is
reached.

Fig. 5. Architecture of the PHOTON round-based implementations.

The round-based hardware architecture of the PHOTON hash function implementations is shown in Figure 5.
The architectures were optimized for high throughput and minimal FPGA area resource consumption. The
resulting design fits in the smallest Xilinx devices such as Spartan-3 XC3S50 for variants PHOTON-80/20/16,
PHOTON-128/16/16 and Spartan-3 XC3S400 for variants PHOTON-160/36/36, PHOTON-224/32/32 and PHOTON-
256/32/32 (because Spartan-3 XC3S50 has only 768 Slices). The major interest was to examine if this
method is appropriate to obtain a high throughput implementation of PHOTON hash function. In Table 5, our
results are compared to other hardware implementations [1, 4]. One can see that our proposed round-based
implementations outperform all the previous works in terms of throughput per area ratio (Eff.).

4.2 Serialized

Similarly to our work on LED in Section 3.2, we have built a serialized implementation of the different PHOTON
versions. One can see in Figure 6 that our serialized implementation consists of 6 modules: MCS, IO, AC, SC,

Table 5. FPGA round-based implementation results of PHOTON hash function.

Design
MDS

Data-
Area No. of No. of Clock Max. freq T/put Eff.

FPGA Device
approach

path
(slices) FFs LUTs Cycles (MHz) (Mbps) (Mbps/

(bits) slices)

PHOTON-80/20/16
(χ) 100 285 127 565 12 78.53 130.88 0.46 Spartan-3 XC3S50-5

(χ) 100 142 111 336 12 232.65 387.75 2.73 Artix-7 XC7A100T-3

SPONGENT-88 [1] 88 157 — — 45 — 17.78 0.11 Spartan-3

PHOTON-128/16/16
(χ) 144 549 172 1022 12 65.39 87.19 0.16 Spartan-3 XC3S50-5

(χ) 144 204 156 590 12 189.03 252.04 1.24 Artix-7 XC7A100T-3

SPONGENT-128 [1] 136 208 — — 70 — 11.43 0.06 Spartan-3

PHOTON-160/36/36
(χ) 196 846 243 1534 12 61.03 183.09 0.22 Spartan-3 XC3S400-5

(χ) 196 429 207 800 12 155.75 467.25 1.10 Artix-7 XC7A100T-3

SPONGENT-160 [1] 176 264 — — 90 — 8.89 0.03 Spartan-3

PHOTON-224/32/32
(χ) 256 1235 279 2241 12 51.73 137.95 0.11 Spartan-3 XC3S400-5

(χ) 256 616 267 1292 12 150.79 402.11 0.65 Artix-7 XC7A100T-3

SPONGENT-224 [1] 240 322 — — 120 — 6.67 0.02 Spartan-3

PHOTON-256/32/32
(χ) 288 2067 300 3673 12 35.34 94.24 0.05 Spartan-3 XC3S400-5

(χ) 288 865 300 2126 12 112.43 299.81 0.35 Artix-7 XC7A100T-3

SPONGENT-256 [1] 272 357 — — 140 — 5.71 0.02 Spartan-3

CUBEHASH-256 [4] — 2883 — — — 59 50 0.017 Spartan-3 XC3S5000-5

ShR, and Controller. These modules and the general hardware architecture that we propose are almost the
same as the one described in [19] for ASICs. Yet, we applied the same optimization for MixColumnSerial that
we have described for LED in detail in Section 3.2. It takes d · d clock cycles to perform MixColumnsSerial
operation instead of the usual d · (d+ 1) clock cycles [19].

Fig. 6. A serialized architecture of the PHOTON hash function.

Overall, our implementation requires d ·d+ (d− 1) +d ·d clock cycles to perform one round of the PHOTON

internal permutation P , instead of the d · d+ (d− 1) + d · (d+ 1) clock cycles required in [19]. Therefore, we
obtain a total latency of 12 · (2 ·d ·d+d−1) clock cycles, which is 12 ·d clock cycles faster. We give in Table 6
our implementation results for PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-224/32/32
and PHOTON-256/32/32. One can see that when compared to previous FPGA implementations [13, 32, 12, 26,
29], we have greatly reduced the area and increased the throughput (and also obtained a better throughput
per area ratio (Eff.)) as compared to PHOTON-80/20/16 [13] and PHOTON-128/16/16 [32]. Compared to FPGA

Table 6. FPGA serialized implementation results of the PHOTON hash function.

Design
impl. MDS

Data-
Area No. of No. of Clock Max. freq T/put Eff.

FPGA Device
approach approach

path
(slices) FFs LUTs Cycles (MHz) (Mbps) (Mbps/

(bits) slices)

PHOTON-80/20/16

serial (χ) 4 146 137 256 648 100.43 3.10 0.02
Spartan-3 XC3S50-5

SRL16 (χ) 20 112 68 203 360 118.19 6.57 0.06

serial (χ) 4 67 134 167 648 329.51 10.17 0.15
Artix-7 XC7A100T-3

SRL16 (χ) 20 58 89 144 360 329.95 18.33 0.32

serial (χ) 4 82 135 188 648 302.68 9.34 0.11
Virtex-5 XC5VLX50-1

SRL16 (χ) 20 69 89 159 360 285.2 15.84 0.22

PHOTON-80/20/16 [13] 4 149 — — 708 250 7 0.05 Virtex-5

SPONGENT-88 [1] 4 116 — — 900 — .81 0.01 Spartan-3

PHOTON-128/16/16

serial (χ) 4 183 173 317 924 101.60 1.76 0.01
Spartan-3 XC3S50-5

SRL16 (χ) 24 137 79 250 504 115.67 3.67 0.03

serial (χ) 4 84 179 212 924 360.33 6.24 0.07
Artix-7 XC7A100T-3

SRL16 (χ) 24 72 99 137 504 342.36 10.87 0.20

PHOTON-128/16/16 [32] 4 469 — — 948 30.2 .551 0.001 Spartan-3

SPONGENT-128 [1] 4 144 — — 2380 — .34 0.002 Spartan-3

PHOTON-160/36/36

serial (χ) 4 233 257 407 1248 72.4 2.01 0.01
Spartan-3 XC3S50-5

SRL16 (χ) 28 164 138 314 672 122.76 6.58 0.04

serial (χ) 4 117 252 296 1248 328.52 9.47 0.08
Artix-7 XC7A100T-3

SRL16 (χ) 28 89 135 204 672 328.17 17.58 0.20

SPONGENT-160 [1] 4 193 — — 3960 — .2 0.001 Spartan-3

PHOTON-224/32/32

serial (χ) 4 274 311 493 1620 69.04 1.36 0.005
Spartan-3 XC3S50-5

SRL16 (χ) 32 176 135 339 864 123.33 4.57 0.03

serial (χ) 4 130 305 328 1620 382.52 7.55 0.06
Artix-7 XC7A100T-3

SRL16 (χ) 32 96 131 181 864 327.28 12.12 0.13

SPONGENT-224 [1] 4 225 — — 7200 — .11 0.0005 Spartan-3

GRØSTL-224 [26] 64 1276 — — — 60 192 — Spartan-3

PHOTON-256/32/32

serial (χ) 8 327 335 577 924 42.56 1.47 0.004
Spartan-3 XC3S50-5

SRL16 (χ) 48 416 160 806 504 58.95 3.74 0.009

serial (χ) 8 157 331 373 924 132.49 4.59 0.03
Artix-7 XC7A100T-3

SRL16 (χ) 48 159 100 384 504 166.41 10.75 0.07

SPONGENT-256 [1] 4 241 — — 9520 — 0.08 .0003 Spartan-3 XC3S200-5

SHABAL-256 [12] — 499 — — — 100 .8 1.60 Spartan-3 XC3S200-5

BLAKE-256 [29] — 631 — — — — 216.3 0.34 Spartan-3 XC3S50-5

GRØSTL [29] — 766 — — — — 192.6 0.25 Spartan-3 XC3S50-5

JH [29] — 558 — — — — 63.7 0.11 Spartan-3 XC3S50-5

KECCAK [29] — 766 — — — — 46.2 0.06 Spartan-3 XC3S50-5

SKEIN [29] — 766 — — — — 16.6 0.02 Spartan-3 XC3S50-5

SHA-2 [29] — 745 — — — — 137.8 0.19 Spartan-3 XC3S50-5

implementations [1] of the lightweight hash function SPONGENT [6], we get bigger area requirements but for a
much higher throughput per area (Eff.). We will see in the next section that SRL16 based implementations
of PHOTON will lead to lower area and much higher throughput and yield a better throughput per area ratio
(Eff.) than SPONGENT.

4.3 Serialized using SRL16s

As for LED in Section 3.3, we considered a second serialized implementation of PHOTON hash function based on
the use of SRL16s [24]. Our architecture is based on a 20-bit datapath that uses χ. It it is depicted in Figure 7
and consists of 3 states: Init, SrSc and MCS, where the content of each SRL16 is indicated in Table 11 of
Appendix B for all the state operations.

The Init state: after the padding procedure, the IV value is stored into the data SRL16s (z = s · d bits)
using a 3 × 1 multiplexer which drives either the IV input value, updates SrSc state value, or updates MCS

state value.

The SrSc state: it reads the data values from SRL16s by selecting address taps according to the ShiftRows
positions. The round operation starts by bitwise XORing the incoming data with r bits of the message input
if applicable, and then adding the constants (round constants and internal constants). Next, the result goes
through d S-boxes for a z-bit datapath. Finally, the output of the 4-bit S-boxes is given as input to the blocks
00, 11, 22, 33 and 44 of SRL16s for PHOTON-80/20/16, to the blocks 00, 11, 22, 33, 44 and 55 of SRL16s for
PHOTON-128/16/16 and PHOTON-256/32/32, to the blocks 00, 11, 22, 33, 44, 55 and 66 of SRL16s for PHOTON-
160/36/36 and to the blocks 00, 11, 22, 33, 44, 55, 66 and 77 of SRL16s for PHOTON-224/32/32. Thus, it takes

Fig. 7. A serialized architecture of the PHOTON hash function based on SRL16s

d clock cycles (clk 6-10 in Table 11 for PHOTON-80/20/16) for a z-bit datapath to perform AddConstants,
ShiftRows and SubCells operations on the entire state.

The MCS state: the z-bit data is read from the bits indicated in bold in Table 11 for PHOTON-80/20/16. It
starts with the five 4-bit blocks 00, 11, 22, 33 and 44, and using (χ), the resulting 20-bit output is stored in
the SRL16s labeled as 11, 22, 33, 44 and 00′. In the next clock cycle, the input is 01, 12, 23, 34 and 40, and
the corresponding result is labeled as 12, 23, 34, 40, 01′ and so on similar to Table 7. In total 25 clock cycles
(clk 11-35 in Table 11) are required to complete the MixColumnsSerial operation for PHOTON-80/20/16. We
have also implemented the remaining 4 versions of PHOTON using same architecture and give below the MCS

state input(x) SRL16s labeled and output(y) SRL16s labeled for the first clock cycle.

• PHOTON-128/16/16: x = 00, 11, 22, 33, 44, 55; y = 11, 22, 33, 44, 55, 00′

• PHOTON-160/36/36: x = 00, 11, 22, 33, 44, 55, 66; y = 11, 22, 33, 44, 55, 66, 00′

• PHOTON-224/32/32: x = 00, 11, 22, 33, 44, 55, 66, 77 ; y = 11, 22, 33, 44, 55, 66, 77, 00′

• PHOTON-256/32/32: x = 00, 11, 22, 33, 44, 55; y = 11, 22, 33, 44, 55, 00′

d · d clock cycles are required for a z-bit datapath in order to complete the MixColumnsSerial operation.
Overall, we require d + d · d clock cycles to compute a single round. Since PHOTON has 12 rounds, the total
number of cycles required to process one block of message is 12(d+ d · d). Table 6 describes the performance
results of our implementations and compares it with existing FPGA implementations of PHOTON and other
lightweight hash functions. Concerning KECCAK-f[200], perhaps we just add that KECCAK-f[200] is not included
in this table as no FPGA implementation of this function has been published so far. As seen from the table,
our work provides the smallest area among all known implementations of lightweight hash functions while
having a higher throughput and yields a better throughput per area ratio (Eff.) than PHOTON-80/20/16 [13],
PHOTON-128/16/16 [32] and the implementation of SPONGENT [1]. We remark that SHABAL [12] has a better
throughput per area ratio than PHOTON, but in this article our goal with serialised implementations is to
reduce area, and not to improve throughput per area ratio.

5 Conclusion

In this paper, we have analyzed the feasibility of creating a very compact, low cost FPGA implementation of
LED and PHOTON. For both primitives, we studied round-based and serial architectures and we implemented

several possible tradeoffs when computing the diffusion matrix. In particular, we proposed an SRL16 based
architecture, that seems to be very well suited for all cryptographic primitives that use serial matrices. Our
results show that LED and PHOTON are very good candidates for lightweight applications, our implementations
yield for example the best area of all lightweight hash functions implementations published so far. Future work
will include the investigation of side-channel analysis on our implementations and apply countermeasures [18,
34, 33] in order to resist these attacks.

Acknowledgements

Authors would like to thank the anonymous reviewers for their helpful comments. The first author wishes to
thank Prof. R. Balsubramanian, Executive Director (SETS) and Sri. S. Thiagarajan, Registrar (SETS) for
their support. Thomas Peyrin is supported by the Singapore National Research Foundation Fellowship 2012
(NRF-NRFF2012-06).

References

1. Marwan Adas. On The FPGA Based Implementation of SPONGENT, 2011. http://ece.gmu.edu/

coursewebpages/ECE/ECE646/F11/project/F11_presentations/Marwan.pdf.
2. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia. Quark: A Lightweight Hash.

Journal of Cryptology, 26(2):313–339, 2013.
3. Aydin Aysu, Ege Gulcan, and Patrick Schaumont. SIMON Says, Break the Area Records for Symmetric Key Block

Ciphers on FPGAs. IACR Cryptology ePrint Archive, 2014, Available at:. http://eprint.iacr.org/2014/237.
4. Brian Baldwin, Andrew Byrne, Mark Hamilton, Neil Hanley, Robert P McEvoy, Weibo Pan, and William P

Marnane. FPGA Implementations of SHA-3 Candidates: CubeHash, Grøstl, LANE, Shabal and Spectral Hash.
In Digital System Design, Architectures, Methods and Tools, 2009. DSD’09. 12th Euromicro Conference on, pages
783–790. IEEE, 2009.

5. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. The
SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology ePrint Archive, 2013, Available
at:. http://eprint.iacr.org/2013/404.

6. Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz, Kerem Varıcı, and Ingrid Verbauwhede. SPON-
GENT: A Lightweight Hash Function. In Cryptographic Hardware and Embedded Systems–CHES, pages 312–325.
Springer, 2011.

7. Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew JB Robshaw,
Yannick Seurin, and Charlotte Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic
Hardware and Embedded Systems-CHES 2007, pages 450–466. Springer, 2007.

8. Philippe Bulens, François-Xavier Standaert, Jean-Jacques Quisquater, Pascal Pellegrin, and Gaël Rouvroy. Im-
plementation of the AES-128 on Virtex-5 FPGAs. In Progress in Cryptology–AFRICACRYPT 2008, pages 16–26.
Springer, 2008.

9. David Canright. A Very Compact S-Box for AES. In Cryptographic Hardware and Embedded Systems–CHES
2005, pages 441–455. Springer, 2005.

10. Junfeng Chu and Mohammed Benaissa. Low area memory-free FPGA implementation of the AES algorithm.
In Field Programmable Logic and Applications (FPL), 2012 22nd International Conference on, pages 623–626.
IEEE, 2012.

11. Christophe De Canniere, Orr Dunkelman, and Miroslav Knežević. KATAN and KTANTAN – A Family of Small
and Efficient Hardware-Oriented Block Ciphers. In CHES 2009, pages 272–288. Springer, 2009.

12. Jérémie Detrey, Pierrick Gaudry, and Karim Khalfallah. A Low-Area Yet Performant FPGA Implementation of
Shabal. In Selected Areas in Cryptography - 17th International Workshop, SAC, pages 99–113. Springer, 2010.

13. Susana Eiroa and Iluminada Baturone. FPGA implementation and DPA resistance analysis of a lightweight
HMAC construction based on photon hash family. In FPL, pages 1–4. IEEE, 2013.

14. Andreas Engel, Björn Liebig, and Andreas Koch. Feasibility Analysis of Reconfigurable Computing in Low-Power
Wireless Sensor Applications. In ARC, pages 261–268. Springer, 2011.

15. Martin Feldhofer, Manfred Josef Aigner, Thomas Baier, Michael Hutter, Thomas Plos, and Erich Wenger. Semi-
passive RFID development platform for implementing and attacking security tags. In ICITST, pages 1–6. IEEE,
2010.

16. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of Lightweight Block Ciphers. In RFID.
Sec, pages 1–18. Springer, 2012.

17. Tim Good and Mohammed Benaissa. AES on FPGA from the Fastest to the Smallest. In Cryptographic Hardware
and Embedded Systems–CHES 2005, pages 427–440. Springer, 2005.

18. Tim Güneysu and Amir Moradi. Generic Side-Channel Countermeasures for Reconfigurable Devices. In Crypto-
graphic Hardware and Embedded Systems–CHES 2011, pages 33–48. Springer, 2011.

19. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of Lightweight Hash Functions. In
Advances in Cryptology–CRYPTO 2011, pages 222–239. Springer, 2011.

20. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED Block Cipher. In Cryptographic
Hardware and Embedded Systems–CHES 2011, pages 326–341. Springer, 2011.

21. Xu Guo, Zhimin Chen, and Patrick Schaumont. Energy and Performance Evaluation of an FPGA-Based SoC
Platform with AES and PRESENT Coprocessors. In Embedded Computer Systems: Architectures, Modeling, and
Simulation, pages 106–115. Springer, 2008.

22. Xilinx Inc. AN 307: Altera Design Flow for Xilinx Users, March, 2013. Available at:. http://www.altera.com/

literature/an/an307.pdf.
23. Xilinx Inc. Spartan-3 Generation FPGA User Guide, August, 2010. Available at:. http://www.xilinx.com/

support/documentation/user_guides/ug331.pdf/.
24. Xilinx Inc. Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 Generation FPGAs, May, 2005.

Available at:. http://www.xilinx.com/support/documentation/application_notes/xapp465.pdf.
25. Xilinx Inc. Xilinx 7 Series FPGAs FPGA User Guide, February, 2014. Available at:. http://www.xilinx.com/

support/documentation/data_sheets/ds180_7Series_Overview.pdf.
26. Bernhard Jungk and Steffen Reith. On FPGA-based implementations of Grøstl. In IACR Cryptology ePrint

Archive, volume 2010, Available at:. http://eprint.iacr.org/2010/260.
27. Jens-Peter Kaps. Chai-Tea, Cryptographic Hardware Implementations of xTEA. In Progress in Cryptology-

INDOCRYPT 2008, pages 363–375. Springer, 2008.
28. Jens-Peter Kaps and Berk Sunar. Energy Comparison of AES and SHA-1 for Ubiquitous Computing. In EUC

Workshops, pages 372–381. Springer, 2006.
29. Jens-Peter Kaps, Panasayya Yalla, Kishore Kumar Surapathi, Bilal Habib, Susheel Vadlamudi, and Smriti Gurung.

Lightweight Implementations of SHA-3 Candidates on FPGAs. In The Third SHA-3 Candidate Conference, 2012.
30. Lars Knudsen, Gregor Leander, Axel Poschmann, and Matthew JB Robshaw. PRINTcipher: A Block Cipher for

IC-Printing. In Cryptographic Hardware and Embedded Systems, CHES 2010, pages 16–32. Springer, 2010.
31. François Macé, François-Xavier Standaert, and Jean-Jacques Quisquater. FPGA Implementation(s) of a Scalable

Encryption Algorithm. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 16(2):212–216, 2007.
32. Pavan Kumar Malka. Compact Hardware Implementation of PHOTON Hash Function in FPGA, 2011. http:

//ece.gmu.edu/coursewebpages/ECE/ECE646/F11/project/F11_presentations/Pavan.pdf.
33. Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing the Limits: A Very

Compact and a Threshold Implementation of AES. In Advances in Cryptology–EUROCRYPT 2011, pages 69–88.
Springer, 2011.

34. Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang, and San Ling. Side-Channel
Resistant Crypto for Less than 2,300 GE. Journal of Cryptology, 24(2):322–345, 2011.

35. Axel York Poschmann. LIGHTWEIGHT CRYPTOGRAPHY: Cryptographic Engineering for a Pervasive World.
In PH. D. THESIS. Citeseer, 2009.

36. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita, and Taizo Shirai. Piccolo:
An Ultra-Lightweight Blockcipher. In Cryptographic Hardware and Embedded Systems–CHES, pages 342–357.
Springer, 2011.

37. François-Xavier Standaert, Gilles Piret, Gaël Rouvroy, and Jean-Jacques Quisquater. FPGA implementations of
the ICEBERG block cipher. Integration, the VLSI Journal, 40(1):20–27, 2007.

38. Tim Tuan, Arif Rahman, Satyaki Das, Steven Trimberger, and Sean Kao. A 90-nm Low-Power FPGA for Battery-
Powered Applications. IEEE Trans. on CAD of Integrated Circuits and Systems, 26(2):296–300, 2007.

39. Wenling Wu and Lei Zhang. LBlock: A Lightweight Block Cipher. In Applied Cryptography and Network Security,
pages 327–344. Springer, 2011.

40. Panasayya Yalla and Jens-Peter Kaps. Lightweight Cryptography for FPGAs. In Reconfigurable Computing and
FPGAs, 2009. ReConFig’09. International Conference on, pages 225–230. IEEE, 2009.

A SRL16s positions for LED

Table 7. Content of SRL16s after every state of LED when using (χ) for the 16-bit datapath. Every cell of the content
shows the index of a nibble of the state. Printed in bold is the input to the subsequent operation. The indices of the
next round are indicated with a ′.

clk content of SRL16s clk content of SRL16s

Init SrSc

1

00

5

00 01 02 03 00

10 10 11 12 13 11

20 20 21 22 23 22

30 30 31 32 33 33

2

00 01

6

00 01 02 03 00 01

10 11 10 11 12 13 11 12

20 21 20 21 22 23 22 23

30 31 30 31 32 33 33 30

3

00 01 02

7

00 01 02 03 00 01 02

10 11 12 10 11 12 13 11 12 13

20 21 22 20 21 22 23 22 23 20

30 31 32 30 31 32 33 33 30 31

4

00 01 02 03

8

00 01 02 03 00 01 02 03

10 11 12 13 10 11 12 13 11 12 13 10

20 21 22 23 20 21 22 23 22 23 20 21

30 31 32 33 30 31 32 33 33 30 31 32

MCS MCS

9

00 01 02 03 00 01 02 03 11

17

01 02 03 00 01 02 03 11 12 13 10 22 23 20 21 33

10 11 12 13 11 12 13 10 22 11 12 13 11 12 13 10 22 23 20 21 33 30 31 32 00′

20 21 22 23 22 23 20 21 33 21 22 23 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′

30 31 32 33 33 30 31 32 00′ 31 32 33 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′

10

00 01 02 03 00 01 02 03 11 12

18

02 03 00 01 02 03 11 12 13 10 22 23 20 21 33 30

10 11 12 13 11 12 13 10 22 23 12 13 11 12 13 10 22 23 20 21 33 30 31 32 00′ 01′

20 21 22 23 22 23 20 21 33 30 22 23 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′

30 31 32 33 33 30 31 32 00′ 01′ 32 33 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′

11

00 01 02 03 00 01 02 03 11 12 13

19

03 00 01 02 03 11 12 13 10 22 23 20 21 33 30 31

10 11 12 13 11 12 13 10 22 23 20 13 11 12 13 10 22 23 20 21 33 30 31 32 00′ 01′ 02′

20 21 22 23 22 23 20 21 33 30 31 23 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′

30 31 32 33 33 30 31 32 00′ 01′ 02′ 33 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′ 22′

12

00 01 02 03 00 01 02 03 11 12 13 10

20

00 01 02 03 11 12 13 10 22 23 20 21 33 30 31 32

10 11 12 13 11 12 13 10 22 23 20 21 11 12 13 10 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′

20 21 22 23 22 23 20 21 33 30 31 32 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′

30 31 32 33 33 30 31 32 00′ 01′ 02′ 03′ 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′ 22′ 23′

13

00 01 02 03 00 01 02 03 11 12 13 10 22

21

01 02 03 11 12 13 10 22 23 20 21 33 30 31 32 00′

10 11 12 13 11 12 13 10 22 23 20 21 33 12 13 10 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′

20 21 22 23 22 23 20 21 33 30 31 32 00′ 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 04′ 11′ 12′ 13′ 20′

30 31 32 33 33 30 31 32 00′ 01′ 02′ 03′ 10′ 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′ 22′ 23′ 30′

14

00 01 02 03 00 01 02 03 11 12 13 10 22 23

22

02 03 11 12 13 10 22 23 20 21 33 30 31 32 00′ 01′

10 11 12 13 11 12 13 10 22 23 20 21 33 30 13 10 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′

20 21 22 23 22 23 20 21 33 30 31 32 00′ 01′ 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′

30 31 32 33 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′ 22′ 23′ 30′ 31′

15

00 01 02 03 00 01 02 03 11 12 13 10 22 23 20

23

03 11 12 13 10 22 23 20 21 33 30 31 32 00′ 01′ 02′

10 11 12 13 11 12 13 10 22 23 20 21 33 30 31 10 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′

20 21 22 23 22 23 20 21 33 30 31 32 00′ 01′ 02′ 21 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′ 22′

30 31 32 33 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′ 22′ 23′ 30′ 31′ 32′

16

00 01 02 03 00 01 02 03 11 12 13 10 22 23 20 21

24

11 12 13 10 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′

10 11 12 13 11 12 13 10 22 23 20 21 33 30 31 32 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′

20 21 22 23 22 23 20 21 33 30 31 32 00′ 01′ 02′ 03′ 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′ 22′ 23′

30 31 32 33 33 30 31 32 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 00′ 01′ 02′ 03′ 10′ 11′ 12′ 13′ 20′ 21′ 22′ 23′ 30′ 31′ 32′ 33′

Table 8. Content of SRL16s after every state of LED when using (χ)4 for the 16-bit datapath. Every cell of the content
shows the index of a nibble of the state. Printed in bold is the input to the subsequent operation. The indices of the
next round are indicated with a ′.

clk content of SRL16s clk content of SRL16s clk content of SRL16s

Init SrSc MCS

1

00

5

00 01 02 03 00

9

00 01 02 03 00 01 02 03 00′

10 10 11 12 13 11 10 11 12 13 11 12 13 10 10′

20 20 21 22 23 22 20 21 22 23 22 23 20 21 20′

30 30 31 32 33 33 30 31 32 33 33 30 31 32 30′

2

00 01

6

00 01 02 03 00 01

10

00 01 02 03 00 01 02 03 00′ 01′

10 11 10 11 12 13 11 12 10 11 12 13 11 12 13 10 10′ 11′

20 21 20 21 22 23 22 23 20 21 22 23 22 23 20 21 20′ 21′

30 31 30 31 32 33 33 30 30 31 32 33 33 30 31 32 30′ 31′

3

00 01 02

7

00 01 02 03 00 01 02

11

00 01 02 03 00 01 02 03 00′ 01′ 02′

10 11 12 10 11 12 13 11 12 13 10 11 12 13 11 12 13 10 10′ 11′ 12′

20 21 22 20 21 22 23 22 23 20 20 21 22 23 22 23 20 21 20′ 21′ 22′

30 31 32 30 31 32 33 33 30 31 30 31 32 33 33 30 31 32 30′ 31′ 32′

4

00 01 02 03

8

00 01 02 03 00 01 02 03

12

00 01 02 03 00 01 02 03 00′ 01′ 02′ 03′

10 11 12 13 10 11 12 13 11 12 13 10 10 11 12 13 11 12 13 10 10′ 11′ 12′ 13′

20 21 22 23 20 21 22 23 22 23 20 21 20 21 22 23 22 23 20 21 20′ 21′ 22′ 23′

30 31 32 33 30 31 32 33 33 30 31 32 30 31 32 33 33 30 31 32 30′ 31′ 32′ 33′

Table 9. Content of KEY SRL16s after every state of LED-64 when using (χ)2 for the 8-bit datapath. Every cell of
the content shows the index of a nibble of the state. Printed in bold is the input to the subsequent operation (see also
Figure 4). The indices of the next round are indicated with a ′.

clk content of SRL16s clk content of SRL16s

Init Init

1 00 9 00 01 02 03 22 23 20 21 11

2 00 01 10 00 01 02 03 22 23 20 21 11 12

3 00 01 02 11 00 01 02 03 22 23 20 21 11 12 13

4 00 01 02 03 12 00 01 02 03 22 23 20 21 11 12 13 10

5 00 01 02 03 22 13 00 01 02 03 22 23 20 21 11 12 13 10 33

6 00 01 02 03 22 23 14 00 01 02 03 22 23 20 21 11 12 13 10 33 30

7 00 01 02 03 22 23 20 15 00 01 02 03 22 23 20 21 11 12 13 10 33 30 31

8 00 01 02 03 22 23 20 21 16 00 01 02 03 22 23 20 21 11 12 13 10 33 30 31 32

SrSc MCS(Rotate)

17 01 02 03 22 23 20 21 11 12 13 10 33 30 31 32 00 25 12 13 10 33 30 31 32 00 01 02 03 22 23 20 21 11

18 02 03 22 23 20 21 11 12 13 10 33 30 31 32 00 01 26 13 10 33 30 31 32 00 01 02 03 22 23 20 21 11 12

19 03 22 23 20 21 11 12 13 10 33 30 31 32 00 01 02 27 10 33 30 31 32 00 01 02 03 22 23 20 21 11 12 13

20 22 23 20 21 11 12 13 10 33 30 31 32 00 01 02 03 28 33 30 31 32 00 01 02 03 22 23 20 21 11 12 13 10

21 23 20 21 11 12 13 10 33 30 31 32 00 01 02 03 22 29 30 31 32 00 01 02 03 22 23 20 21 11 12 13 10 33

22 20 21 11 12 13 10 33 30 31 32 00 01 02 03 22 23 30 31 32 00 01 02 03 22 23 20 21 11 12 13 10 33 30

23 21 11 12 13 10 33 30 31 32 00 01 02 03 22 23 20 31 32 00 01 02 03 22 23 20 21 11 12 13 10 33 30 31

24 11 12 13 10 33 30 31 32 00 01 02 03 22 23 20 21 32 00′ 01 02 03 22 23 20 21 11′ 12 13 10 33 30 31 32

Table 10. Content of KEY SRL16s when using (χ)4 or (χ) for the 16-bit datapath. Every cell of the content shows
the index of a nibble of the state. Printed in bold is the input to the subsequent operation. The indices of the next
round are indicated with a ′.

.

clk content of SRL16s clk content of SRL16s

Init Init

1

00

9

00 01 02 03 00 01 02 03 00

10 10 11 12 13 10 11 12 13 10

20 20 21 22 23 20 21 22 23 20

30 30 31 32 33 30 31 32 33 30

2

00 01

10

00 01 02 03 00 01 02 03 00 01

10 11 10 11 12 13 10 11 12 13 10 11

20 21 20 21 22 23 20 21 22 23 20 21

30 31 30 31 32 33 30 31 32 33 30 31

3

00 01 02

11

00 01 02 03 00 01 02 03 00 01 02

10 11 12 10 11 12 13 10 11 12 13 10 11 12

20 21 22 20 21 22 23 20 21 22 23 20 21 22

30 31 32 30 31 32 33 30 31 32 33 30 31 32

4

00 01 02 03

12

00 01 02 03 00 01 02 03 00 01 02 03

10 11 12 13 10 11 12 13 10 11 12 13 10 11 12 13

20 21 22 23 20 21 22 23 20 21 22 23 20 21 22 23

30 31 32 33 30 31 32 33 30 31 32 33 30 31 32 33

5

00 01 02 03 00

13

00 01 02 03 00 01 02 03 00 01 02 03 00

10 11 12 13 10 10 11 12 13 10 11 12 13 10 11 12 13 10

20 21 22 23 20 20 21 22 23 20 21 22 23 20 21 22 23 20

30 31 32 33 30 30 31 32 33 30 31 32 33 30 31 32 33 30

6

00 01 02 03 00 01

14

00 01 02 03 00 01 02 03 00 01 02 03 00 01

10 11 12 13 10 11 10 11 12 13 10 11 12 13 10 11 12 13 10 11

20 21 22 23 20 21 20 21 22 23 20 21 22 23 20 21 22 23 20 21

30 31 32 33 30 31 30 31 32 33 30 31 32 33 30 31 32 33 30 31

7

00 01 02 03 00 01 02

15

00 01 02 03 00 01 02 03 00 01 02 03 00 01 02

10 11 12 13 10 11 12 10 11 12 13 10 11 12 13 10 11 12 13 10 11 12

20 21 22 23 20 21 22 20 21 22 23 20 21 22 23 20 21 22 23 20 21 22

30 31 32 33 30 31 32 30 31 32 33 30 31 32 33 30 31 32 33 30 31 32

8

00 01 02 03 00 01 02 03

16

00 01 02 03 00 01 02 03 00 01 02 03 00 01 02 03

10 11 12 13 10 11 12 13 10 11 12 13 10 11 12 13 10 11 12 13 10 11 12 13

20 21 22 23 20 21 22 23 20 21 22 23 20 21 22 23 20 21 22 23 20 21 22 23

30 31 32 33 30 31 32 33 30 31 32 33 30 31 32 33 30 31 32 33 30 31 32 33

SrSc SrSc

17

01 02 03 00 01 02 03 00 01 02 03 00 01 02 03 00

19

03 00 01 02 03 00 01 02 03 00 01 02 03 00 01 02

11 12 13 10 11 12 13 10 11 12 13 10 11 12 13 10 13 10 11 12 13 10 11 12 13 10 11 12 13 10 11 12

21 22 23 20 21 22 23 20 21 22 23 20 21 22 23 20 23 20 21 22 23 20 21 22 23 20 21 22 23 20 21 22

31 32 33 30 31 32 33 30 31 32 33 30 31 32 33 30 33 30 31 32 33 30 31 32 33 30 31 32 33 30 31 32

18

02 03 00 01 02 03 00 01 02 03 00 01 02 03 00 01

20

00 01 02 03 00 01 02 03 00′ 01 02 03 00 01 02 03

12 13 10 11 12 13 10 11 12 13 10 11 12 13 10 11 10 11 12 13 10 11 12 13 10 11′ 12 13 10 11 12 13

22 23 20 21 22 23 20 21 22 23 20 21 22 23 20 21 20 21 22 23 20 21 22 23 20 21 22′ 23 20 21 22 23

32 33 30 31 32 33 30 31 32 33 30 31 32 33 30 31 30 31 32 33 30 31 32 33 30 31 32 33′ 30 31 32 33

B SRL16s positions for PHOTON-80/20/16

Table 11. Indicates the SRL16s position after every state of PHOTON-80/20/16. Every cell of the content shows the
index of a nibble of the state. Printed in bold is the input to the subsequent operation (see also Figure 7). The indices
of the next round are indicated with a ′.

clk content of SRL16s clk content of SRL16s

Init SrSc

1

00

6

00 01 02 03 04 00

10 10 11 12 13 14 11

20 20 21 22 23 24 22

30 30 31 32 33 34 33

40 40 41 42 43 44 44

2

00 01

7

00 01 02 03 04 00 01

10 11 10 11 12 13 14 11 12

20 21 20 21 22 23 24 22 23

30 31 30 31 32 33 34 33 34

40 41 40 41 42 43 44 44 40

3

00 01 02

8

00 01 02 03 04 00 01 02

10 11 12 10 11 12 13 14 11 12 13

20 21 22 20 21 22 23 24 22 23 24

30 31 32 30 31 32 33 34 33 34 30

40 41 42 40 41 42 43 44 44 40 41

4

00 01 02 03

9

00 01 02 03 04 00 01 02 03

10 11 12 13 10 11 12 13 14 11 12 13 14

20 21 22 23 20 21 22 23 24 22 23 24 20

30 31 32 33 30 31 32 33 34 33 34 30 31

40 41 42 43 40 41 42 43 44 44 40 41 42

5

00 01 02 03 04

10

00 01 02 03 04 00 01 02 03 04

10 11 12 13 14 10 11 12 13 14 11 12 13 14 10

20 21 22 23 24 20 21 22 23 24 22 23 24 20 21

30 31 32 33 34 30 31 32 33 34 33 34 30 31 32

40 41 42 43 44 40 41 42 43 44 44 40 41 42 43

MCS MCS

11

00 01 02 03 04 00 01 02 03 04 11

34

20 21 33 34 30 31 32 44 40 41 42 43 00′ 01′ 02′ 03′

10 11 12 13 14 11 12 13 14 10 22 31 32 44 40 41 42 43 00′ 01′ 02′ 03′ 04′ 10′ 11′ 12′ 13′

20 21 22 23 24 22 23 24 20 21 33 42 43 00′ 01′ 02′ 03′ 04′ 10′ 11′ 12′ 13′ 14′ 20′ 21′ 22′ 23′

30 31 32 33 34 33 34 30 31 32 44 03′ 04′ 10′ 11′ 12′ 13′ 14′ 20′ 21′ 22′ 23′ 24′ 30′ 31′ 32′ 33′

40 41 42 43 44 44 40 41 42 43 00′ 13′ 14′ 20′ 21′ 22′ 23′ 24′ 30′ 31′ 32′ 33′ 34′ 40′ 41′ 42′ 43′

12

00 01 02 03 04 00 01 02 03 04 11 12

35

21 33 34 30 31 32 44 40 41 42 43 00′ 01′ 02′ 03′ 04′

10 11 12 13 14 11 12 13 14 10 22 23 32 44 40 41 42 43 00′ 01′ 02′ 03′ 04′ 10′ 11′ 12′ 13′ 14′

20 21 22 23 24 22 23 24 20 21 33 34 43 00′ 01′ 02′ 03′ 04′ 10′ 11′ 12′ 13′ 14′ 20′ 21′ 22′ 23′ 24′

30 31 32 33 34 33 34 30 31 32 44 40 04′ 10′ 11′ 12′ 13′ 14′ 20′ 21′ 22′ 23′ 24′ 30′ 31′ 32′ 33′ 34′

40 41 42 43 44 44 40 41 42 43 00′ 01′ 14′ 20′ 21′ 22′ 23′ 24′ 30′ 31′ 32′ 33′ 34′ 40′ 41′ 42′ 43′ 44′

