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Abstract. We present new ideas for decreasing the size of secure memory needed for hardware imple-
mentations of hash-sequence based signatures proposed recently by Buldas, Laanoja and Truu (in the
following referred to as BLT). In their scheme, a message m is signed by time-stamping a concatena-
tion m/||z: of the message and the one-time pseudo-random password z; intended to sign messages at a
particular time ¢. The signature is valid only if the time-stamp points to the same time ¢. Hence, the
one time passwords cannot be abused after their use.

To efficiently and securely implement such a scheme at the client side, dedicated hardware is needed
and thereby, the solutions that save the (secure) memory and computational time are important. For
such schemes, the memory consumption directly depends on the efficiency of the hash sequence reversal
algorithms. The best known reversal algorithm for the BLT scheme uses O(log? £) memory. This means
that for a signing key that is valid for one year (i.e. £ ~ 225 with one-second time resolution), the device
needs to store about 252 = 625 hash values which for SHA-256 hashing algorithm means about 20 K
bytes of secure memory. Another problem with hash sequence reversal algorithms is that they mostly
assume that the signature device is always connected to the computer or has an independent power
supply. This is a serious limitation for smart-card implementations of the scheme.

We show first that a mini Public Key Infrastructure in the signature device can be used to lower the
memory consumption about twice. There is a master key (i.e. a hash sequence) that is used to certify
short term (about five minutes) signing keys so that a signature consists of a “short term certificate”
which is a hash chain in the master hash tree (used to authenticate the master hash sequence), and a
hash chain that is used to authenticate a particular hash value z: in the sequence.

We also discuss how to implement hash sequence signatures in devices that have no power supply
and are not regularly connected to computers, such as smart-cards which are often used as personal
digital signature devices. General-purpose cryptographic smart-cards also have many restrictions that
limit the use of hash sequence signatures. For example, their hashing speed is relatively low: up to 500
hashing steps per second; their secure memory is of limited size, etc. This all combined with irregular
usage patterns makes the use of hash sequence signatures questionable. We show why the hash sequence
signature (in its original form) cannot be used as the CA signature in the mini PKI solution.

Finally, we propose a new type of hash sequence signature that is more suitable for smart-card imple-
mentations.

1 Introduction

Keys are the most vulnerable components of any digital signature solution. Key exposure is not
only dangerous to the key owner but also to the parties that rely on digital signatures as potential
evidence to protect their rights. The validity (integrity) of digital signatures that use traditional
public-key based mechanisms depends on assumptions that some private keys are secure. On one
hand, instant revocation of keys is necessary to protect the signer. On the other hand, the possibility
of instant revocation makes the signature verification procedure very complex, because one has
to prove that the key was not revoked at the time of creating the signature. This means that
many additional confirmations (such as OCSP responses, time-stamps, etc.) must be added to the
signature. If instant revocation is possible, the signature key can be revoked immediately after
signing and hence, verification mechanisms must be very precise in determining the chronological



order of the signing and the revocation events. Due to the evidentiary function of signatures, this
order should also be provable to third parties decades after the document has been signed. The
public-key time-stamping solutions such as that proposed in RFC3161 do not eliminate this problem
because the validity of time-stamps also depends on the validity of (some) keys.

Traditional electronic signature schemes are also vulnerable to quantum-computational attacks
[10, 11, 20] against public-key systems like RSA. Quantum attacks may soon be practical and it is
reasonable to take them into account when designing long-term solutions for digital signatures. This
is why it becomes more and more important to study alternative schemes that are not vulnerable
to quantum attacks.

Considering these two goals (secret-independent integrity and quantum immunity), the so-called
hash function based digital signatures are becoming an increasingly popular subject to study. The
history of such signature schemes goes back to early 80-ties. Hash function based signatures were
first studied by Lamport [14,15] and Merkle [16]. Lamport (one-time) signatures were designed
for signing a message bitwise. For each bit of the message, two secret random numbers rg and rq
are chosen and their one-way images f(rg) and f(r1) published as the public key. For signing the
corresponding bit b € {0,1} of the message, the random number 7, is revealed. Obviously, the
key pair f(rg), f(r1) can only be used once and must be immediately revoked after the use. The
signature can be made more efficient if the message is hashed before signing and the bits of the
hash are signed. Merkle proposed the use of hash trees for more efficient publishing and verifying
the public keys of the Lamport signature. Haber et al [12] showed how to use hash functions for
time-stamping so that the validity of time-stamps does not depend on any secrecy assumptions,
hence providing the Lamport scheme with a key-independent revocation check mechanism. It was
proven in [6, 5] that the hash function based time-stamps cannot be back-dated if the hash function
used is collision resistant.

In [4], a new type of hash function based signature scheme was proposed in which the signature
process involves a signature server. For every time unit ¢, the client has a one-time pseudo-random
password z;, and the passwords are computed using the recurrent scheme z; = f(z411), where f is a

one-way (hash) function. The last element z of the one-way chain z <—f 21 J 29 J ... <—f zp is the
public key of the signer. To sign a message M at time ¢, the signer: (1) combines M with a one-time
password z; that is dedicated for signing messages at time ¢; and (2) sends a hash z = h(M, z)
to the server to obtain a hash-tree based time-stamp Ty (x) for z. The signature (z, z;, Ty (x)) is
considered valid only if ¢ = ' and z; is verified to be the ¢t-th element of the chain. This can be
done by iterating f (exactly ¢ times) on z; and comparing the result with zg (the public key).

For signing messages during the next time unit (¢ + 1), the pre-image z;4; of z; must be found
and released. As the hash function cannot be inverted, the only way is to compute z;41 from the
perviously saved hash values z; with j > ¢t + 1 (the so-called “pebbles”). In order to design an
efficient (hardware) device for such signatures, one has to find efficient ways of gradually releasing
the pre-images of the one-time passwords. Secure memory is a relatively costly resource in hardware
devices and therefore even a slight decrease in memory consumption is valuable. Trivial solutions
are (1) to store the whole chain (i.e. use O(¢) memory) and hence make the traversal possible in
O(1)-time; or (2) to store only z; (i.e. use O(1) memory) and compute the next password in O(¢)
time. The best traversal algorithms by Jakobsson et al [13, 8] proposed a technique with O(log¢)
memory and O(log¢) traversal step.

In [4], the hash sequence has an additional hash tree structure in order to make the verification
procedure more efficient (from O(¥) to O(log ¢) hashing operations), which means that not only the



hash values in the sequence must be released but also the verification (authentication) hash chains
from particular hashes to a root hash value (that is included into the signer’s certificate). Based
on Jakobsson’s hash sequence traversal algorithm [13, 8] they construct a hash-calendar traversal
algorithm that requires O(log?¢) units of memory and O(log? ¢) time per one pre-image.

We propose a new method for signatures of this kind that enables to reduce the memory
consumption about twice. The main idea is to use a mini Public Key Infrastructure in the signature
device, so that there is a master key (i.e. a hash sequence) that is used to certify short term (about
five minutes) signing keys. So, a signature consists of a “short term certificate” which is a hash
chain in the master hash tree (used to authenticate the master hash sequence), and a hash chain
that is used to authenticate a particular hash value z; in the sequence. We point out, though, that
the “pebbling” solutions [13,8,4] as well as the new hierarchical solution are efficient only if the
signature device is constantly up and running, which is not the case for smart-cards often used as
personal digital signature devices.

Therefore, we also discuss how to implement hash sequence signatures in devices that have no
power supply and are not regularly connected to computers. General-purpose cryptographic smart-
cards also have many restrictions that limit the use of hash sequence signatures. For example, their
hashing speed is relatively low: up to 500 hashing steps per second; their secure memory is of
limited size, etc. This all combined with irregular usage patterns makes the use of hash sequence
signatures questionable. We show why the hash sequence signature (in its original form) cannot
be used as the CA signature in the mini-PKI solution. Therefore, we propose a new type of hash
sequence signature that is more suitable for that purpose.

The paper is organized as follows. In Section 2, we describe the state of the art. In Section 3,
we present the hierarchical approach to decrease the memory consumption of hardware/software
implementations of the BLT-type schemes. We also point out that for smart-card solutions, the
hash chain reversal algorithms do not fit very well for the BLT-type signatures if the index 7 of the
password has a direct connection with physical time. In Section 4, we present a new type of hash
sequence signature scheme that is much more suitable for smart-card applications and for which
the traversal algorithms suit well. In Section 5, we discuss several practical use cases of the new
scheme.

2 Preliminaries and State of the Art

2.1 One-Way Hash Functions

A function f is said to be one-way if, given an output f(z) of a randomly chosen input z, it is
hard to find z’ such that f(2') = f(z). In the following, we also need a somewhat non-standard
one-wayness concept: if f and h are functions with equal domains, then we say h to be f-one-way
if, given an output h(z) of a randomly chosen input z, it is hard to find f(x).

2.2 Server-Based Signatures and Non-Repudiation

The BLT-type signatures [4] must certainly be server-based, i.e. electronic signature solutions in
which a publicly available server participates in the signature creation process. This is because a
reliable publication process is an essential part of the solution. The conventional solutions based
on public-key cryptography assume that users may sign their documents off-line without any com-
munication with servers. For many reasons, server-based signatures are preferable. For example,



they can reduce the computational cost of creating digital signatures, and make it easier to detect
possible abuses of signature keys.

Many different forms of server-based signatures exist. For example, Lamport signatures [14]
are server based, and also the so-called on-line/off-line signatures first proposed in 1989 by Even,
Goldreich and Micali [9] in order to speed up the signature creation procedure, which is usually
much more time consuming than verification. The so-called Server-Supported Signatures (SSS) pro-
posed in 1996 by Asokan, Tsudik and Waidner [1] delegate the use of time-consuming operations of
asymmetric cryptography from clients (ordinary users) to a server. Clients use hash chain authen-
tication [15] to send their messages to a signature server in an authenticated way and the server
then creates a digital signature by using an ordinary public-key digital signature scheme. In SSS,
signature servers are not considered Trusted Third Parties because the transcript of the hash chain
authentication phase can be used as evidence. In SSS, servers cannot create signatures in the name
of their clients. The so-called Delegate Servers (DS) proposed in 2002 by Perrin, Burns, Moreh and
Olkin [17] reduce the problems and costs related to individual private keys. In their solution, clients
(ordinary users) delegate their private cryptographic operations to Delegation Servers that, after
authenticating the clients, sign messages on their behalf.

One of the basic functions of digital signatures is non-repudiation, i.e. potential ability to use the
signature as evidence against the signer. Solutions in which trusted third parties are (technically)
able to sign on behalf of their client are not desirable for non-repudiation because clients may
use that argument to (fraudulently) call their signatures into question. Therefore, solutions that
presume clients having their personal signature devices are preferable to those relying entirely on
trusted parties. As we also want the signatures to be quantum-immune, we cannot use ordinary
digital signature mechanisms (like RSA, DSA, etc.) in the signing devices. One way of avoiding
quantum threats is using one-time hash-chain type password schemes.

One-Time Hash-Password Schemes The main idea behind iterated hash chain authentication
[15] is that the client first generates a chain of hash values (with reverse order of indices). Let £ be
the number of possible authentication sessions (i.e. the number of one-time passwords). Then z, is
a uniformly random seed, and z; <— f(z;4+1) for all i < £. The last element zy = f(z1) in the chain
is the so-called public key, which is published and also given to the server.

Now, the client will use z; in the first authentication session. Server does not know z; before the
client uses it, but as it knows 2y (the public key) it is possible to verify the password by checking
the relation zg = f(z1). After the first session, the server already knows z; and hence it is possible
for the server to check zo used by the client (by the relationship z; = f(22)), etc.

Time-Dedicated Passwords The indices ¢ may also be related to time, i.e. z; is assumed to
be published by the client not before time tg + ¢, where tg is a certain initial time that is also
published together with the public key zg. If now for example a message m and a z; are time-
stamped together, this may be considered as a signature of m. The signature is correct only if
the date of the time-stamp is not later than ¢y + ¢. The signature cannot be forged because all
published passwords z1,...,z; are useless for creating signatures after g + ¢, as no suitable time-
stamps can be obtained any more (at least if the time-stamps were not intentionally back-dated by
the time-stamping authority).

This idea in the context of authentication was first used in the so-called TESLA protocol [18].
However, as it was described by the authors of TESLA, the scheme is not quite suitable for digital



signatures, because of inefficiency of off-line verification. TESLA was designed to authenticate
parties who are constantly communicating with each other. This is not the case for digital signatures
and if one would convert TESLA to autonomous digital signatures, their size would grow to O(¥).

Efficient Hash Sequence Reversal Considering possible security problems in clients’ general-
purpose computers, the password sequence should be maintained by a dedicated cryptographic
hardware device that generates the random seed, computes the chain and then consecutively reveals
the pre-images. Naive solutions would either require O(¢) amount of memory (if the whole hash
chain is pre-computed and stored in the device) or O(¢) time to compute the next pre-image (if
only the seed is stored ). It was shown by Jakobsson et al [13, 8] that O(log ¢) memory and O(log ¢)
time (per one pre-image) is sufficient. The traversal algorithm of Jakobsson [13] uses O(log¢)
precomputed hash values (called pebbles) as shortcuts for consecutive pre-image computation. By
suitably placing the pebbles, the pre-image computation time can be reduced from O(¢) to O(log ¢).
Even more efficient algorithm was presented by Schoenmakers [19].

Efficiently Verifiable Hash Sequences For some applications, especially for signatures, it should
be possible to verify whether the one-time password z; that was just used is indeed the i-th element
of the chain. An obvious way to do it is to iterate z; exactly 7 times and compare the result with the
public key zy. For long hash sequences, it may take a lot of time, though. Therefore, an additional
hash-tree structure may be used to speed up the process [4]. Let 7 = T%(z1, ..., z;) be the root hash
of a hash tree, created with a hash function h. The public key is then a pair (zq,r). If the one-time
password z; is used, a hash chain from z; to r can be presented to show that z; is in the right place
of the chain. The proof is of size O(log¥), and one only needs O(log /) steps (instead of O(¢)) to
verify it.
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Fig. 1. Hash sequence with an additional hash tree structure (dashed).

Note that h must be f-one way to avoid premature disclosure of one-way passwords. If the tree
and the chain were computed with the same one-way hash function, then the hash chain for z;
would contain zo (the two gray nodes in Fig. 1 would have equal values) and hence zy would be
prematurely disclosed.

Verifiable Reversal is a hash sequence traversal, except that in addition to consecutively revealing
pre-images, the hash chains to the root hash r must be revealed. Therefore, the original algorithm
of Jakobsson (that uses pebbles with one hash value) was modified in [4] by adding to each pebble



a hash chain (consisting of O(log/) hash values) to the global root hash. As there are O(log/)
pebbles, the memory requirement in this algorithm is O(log? ¢).

2.3 The BLT Signature Scheme

Based on the idea of efficiently verifiable hash sequences, Buldas, Laanoja and Truu [4] proposed a
new type of signature scheme (referred to as the BLT-scheme in the following), which is quantum
immune (at least against the known quantum attacks) and in which the integrity of the signatures
does not depend on the secrecy of keys. In the following, we summarize the basic procedures of their
signature scheme as well as some additional procedures related to secure client-side implementations
of the scheme.

Key Generation: The client generates a random seed z; and a key-hash chain 21, 29,..., 2, by
using the recursive relation z;_1 = f(z;) (for all ¢ = ¢...1). Every z; is a one-time password for a
particular time. The client also computes the key hash-tree (Fig. 1) and its root hash r. The client’s
public key consists of zg = f(z1) and 7.

Public Key Certificates: A public key certificate for client is a 5-tuple (ID., zo, 7, to, IDs), where
ID. is the identity of the client, (zp,) is the public key, ¢y is the time when the certificate becomes
valid (i.e. z1 is intended to sign documents at time o+ 1, 25 is for signing at to + 2, etc.), and ID,
is the identity of the signature server that is authorized to serve the client.

The certificate is sent to the signature server and is also published in a way that is not controlled
by the signature server, i.e. the server cannot create or change clients’ certificates. To revoke the
certificate, it is sufficient to send the server a revocation note, after which the server will not create
the signatures any more.

Signing a Document: To sign a message m (or a hash of a message) at time ¢ > ¢y (where
t =tp+1), the client computes = h(m, z;) and sends x together with its identity ID. as a request
to the signature server. The server checks that the certificate of the client has not been revoked
and (if not) creates a hash-tree time-stamp S; for the pair (z,ID.), and sends S; back to the client.

The signature for m is (ID,1, 2;, ¢;, S¢), where ¢; is the hash chain which proves that z; is the
i-th element of the key-hash chain.

Verifying a Signature: To verify the signature (ID.,1,z2;,¢;, Sy) on the message m with the
certificate (ID., 2o, r, tg, IDs), the following is checked:

Client identities in the certificate and in the signature coincide.
The key z; and the hash chain ¢; lead to the root hash value r, or that f iterated on z; exactly
1 times leads to zp.

— S is a valid time-stamp on (h(m, z;),ID.).

— Time t extracted from S; satisfies ¢t = ¢y + i, i.e. the correct key was used.

— Server identities in Sy and the certificate coincide, i.e. the server was authorized by the client
to create the signature.



Security: The security of the signature scheme relies on the fact that if z; is used right before
to + ¢ (when z; expires), then it is impossible to abuse z;. If z; is used too early (sufficiently long
before ty + 7), then z; can be abused by anyone who has the signature with z;. So, for the security
of the scheme, it is viable that the signer verifies the signature before disclosing it to other parties.
This guarantees, due to the condition ¢t = to + i that z; is safe to disclose.

Signatures are considered valid only if ¢ = ¢y + ¢, where ¢ is the time indicated by the data
signature (time-stamp) S; obtained from the service. In practical implementations, the value of ¢
depends on the service delay. Hence, t may vary but the values ¢ty and i are fixed before sending
the signature request to the server. Therefore, the equality ¢t = tg + ¢ does not necessarily hold.

The service can be organized so that the delay is predictable and is no more than a few seconds.
Then the client may send several requests in parallel using 4, i+ 1, i+ 2, ..., i+ A, where A is the
maximum accepted service delay. Hence, there is always i’ € [0,..., A] for which ¢ = to + /. The
client keeps the signature with such i’ and deletes the rest.

Hardware Implementation: For better protecting the keys z; against client-side malware, it
would be preferable to hold these keys in dedicated hardware devices. To avoid premature disclosure
of keys, there should be a mechanism that prevents malware from abusing the hardware device, i.e.
making the device disclose future keys. There are two ways how this can be done:

— Independent hardware clock in the signature device that cannot be externally adjusted and
prevents the use of z; earlier than to + i(1 — §) — A, where ¢ is the maximum expected clock
drift per time unit and A is the maximum service delay. The shortcoming of this approach is
that ordinary quartz clocks may drift a few seconds per day, so the yearly drift can be about
10 minutes. More precise clocks might be too expensive for personal signature devices.

— Secure channel between the server and the signature device that enables the server to securely
announce precise time to the signature device, so that there is no need to have a clock in the
signature device itself. The device and the server may have a shared secret key K that is not
known to any programs (and hence, also to malware) running in the client’s computer. To sign
a hash m of a message, the client sends m to the device together with an index i (of the key
z;). The device does not reveal z; directly, but only the request x = h(m, z;) that will be sent
to the signature server. Together with the signature Si(x,ID.), the server also sends to the
client a Message Authentication Code MACk (t). The signature device does not reveal z; and ¢;
before having seen a correct MACk () such that tg+i < ¢, i.e. after z; has already been expired.
This guarantees, assuming that there is no co-operating malware both in the server and in the
client’s computer, that the keys z; are never prematurely exposed.

Memory Consumption Problem: For signing messages during the next time unit (¢ + 1), the
pre-image z;41 of z; must be found and released. As the hash function cannot be inverted, the
only way is to compute z;41 from the perviously saved hash values z; with j > ¢t 41 (the so-called
“pebbles”). Secure memory is a relatively costly resource in hardware devices and therefore even
a slight decrease in memory consumption is valuable. The best backwards traversal algorithms for
hash sequences require O(log ¢) memory, where ¢ is the length of the sequence. In our case, the hash
sequence has an additional hash tree structure in order to make the verification procedure more
efficient (from O(¢) to O(log{) hashing operations), which means that not only the hash values in
the sequence must be released but also the verification (authentication) hash chains from particular
hashes to a root hash value (that is included in the signer’s certificate). The best known algorithm



for such an authenticated hash sequence traversal uses O(log2 ¢) memory. This means that for the
signing key that is valid for one year (i.e. £ ~ 2% key-hash chain elements, assuming one-second
time resolution), the device needs to store about 252 = 625 hash values which for SHA-256 hashing
algorithm means about 20 KB of secure memory.

In the next section, we propose a new method that can reduce the memory consumption about
twice. The main idea is to use a mini Public Key Infrastructure in the signature device, so that
there is a master key (i.e. a hash sequence) that is used to certify short term (about five minutes)
signing keys. So, a signature consists of a “short term certificate” which is a hash chain in the
master hash tree (used to authenticate the master hash sequence), and a hash chain that is used
to authenticate a particular hash value z; in the sequence.

3 Hierarchical Approach

All the solutions use the following approach. We divide the validity period of ¢ seconds into A-
second sub-periods. There are % of such periods. All periods have different password sequences with
independently generated random seed values. Only one period (buffer) is active at any moment of
time. At the same time, the next period may be in the phase of key generation. When a period
ends, the next period is activated by:

— Generating a new A-second password sequence zg <—f 21 <—f 29 <—f <—f ZA-1 <—f zZA, Where z,4 is
a uniformly chosen random element in the domain of f.

— Signing the last hash value of the new sequence by using the so-called master hash sequence of
length %.
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Fig. 2. Hierarchical signature scheme. The upper chain zi, z2, ... is used to sign short-term public keys.



3.1 Buffer without Pipelining

We assume the use of the log? pebbling algorithm of [4] for both chains. Therefore, the memory
requirement (the number of stored passwords) is about:

10g2A+log2£ =2log? A —2log A -log{ + log? ¢ = 2z — 2)\z + \? |

WQhere x =log A and \ = log /. It is easy to see that this quadratic polynomial has global minimum
)‘7 at the point = = % This means that the memory size is decreased by half compared to [4]. For

example, for one-year certificate validity period and one-second time resolution (i.e. £ ~ 225 and
A & 25), and with 256-bit f (i.e. 32 output bytes), the memory size would be about % -32 ~ 10 KB.

3.2 Buffer with Pipelining

We assume again the use of the log? pebbling algorithm of [4] for both chains. In addition, to avoid
delays during the new sequence generation phase, we generate the new sequence in parallel with
using the current one, which means additional memory buffer of size log? A. Therefore, the memory
requirement (the number of stored passwords) is about:

14
210g2A—|—log2Z =3log? A —2log A -log ¢ + log? ¢ = 32% — 2)\z + \? |

where again z = log A and A\ = log/. This time the minimum is % at the point x = %, which
means memory size decrease by a third compared to [4]. Using again the example from the previous

section (i.e. £ ~ 22° and \ =~ 25, 256-bit f), the memory size would be about 2% - 32~ 13 KB.

3.3 Simple Buffer

We may also assume that the lower-level buffer is relatively short and can be used without the
supporting hash tree structure. So, we use the log? pebbling algorithm of [4] only for the upper
chain. Therefore, the memory requirement (the number of stored passwords) is about:

¢
log? — = log? A — 2log A -log { + log?{ = 2® = 2\w + A? ,

where once more x = log A and A = log/. In this case, the memory size is the smaller the larger
A we choose. Hence, we have to specify what the reasonable A is. For example, if we accept one
second delays and the device we have is capable of computing 500 (about 27) hashes per second,
then the reasonable choice of A is 2°. Then for ¢ ~ 2%° and A\ ~ 25, and 256-bit f, the memory size
would be about (25 — 9)? - 32 ~ 8.2 KB.

3.4 Irregular Usage Problem

The solutions above are good if the signature device is constantly powered and running. This is
a reasonable assumption in case of device signatures, but not in the case of personal signatures.
Personal signature devices are not used very often, and so most of the one-time passwords in the
chain will never be used.



Even if we accept that, two problems still remain. Firstly, the hash sequence traversal algorithms
are not intended for irregular usage patterns and become very inefficient if there is a need to catch
up. The time needed for catching up is O(¢). Secondly, the CA signatures must be created at the
seconds intended for that. These seconds are tg + ¢ - A, where A is the length of the sub-period in
seconds. If the validity of the certificates is 10 minutes (i.e. A = 600), and the signature device is
connected to client’s computer right after tg + ¢ - A, then for about 10 minutes, there are no valid
certificates for signing, and hence the client will not be able to sign for almost 10 minutes.

4 A New Hash Sequence Signature Scheme

To overcome the irregular usage problem, we propose a new hash sequence signature scheme that
has no predetermined schedule of using the one-time passwords z;, i.e. z; is used to sign the i-
th message and there is no direct relationships between ¢ and the current time. The challenge is
ensuring that z; will not be abused by third parties (to sign more messages) after having been made
public. The main idea is to use the signatures themselves as (server-signed) revocation notes of z;:
the signature request also contains the index ¢ of z;, which is included into the signature. The server
is not allowed to sign two messages with the same index. In case it uses z; (possibly co-operating
with a malicious adversary) twice, the client is able to prove the forgery by showing the original
(older) signature with z;.

The main advantage of the new scheme is that clients can use the one-time passwords whenever
they want to. The signature counter mechanism on the server side prevents malicious verifiers (third
parties that verify signatures) from abusing the already-used passwords. Even if a malicious verifier
co-operates with a malicious server, clients are still capable of defending themselves with the list of
already created signatures or the re-confirmed time-lists (the latter will be introduced in Sec. 4.2).

4.1 Description of the Scheme

Key Generation: The client generates a random seed z; and a key-hash chain 21, 29,..., 2, by
using the recursive relation z;_1 = f(z;) (foralli = £...1). Every hash value is a one-time password.
The client also computes the key hash-tree and its root hash r. The client’s public key consists of
20 = f(z1) and r.

Public Key Certificates: A public key certificate for client contains the identity ID, of the client,
the public key (zp,r), the validity period ¢g...%1, and the identity IDs and connection parameters
of the signature server that is authorized to serve the client.

The certificate is sent to the signature server and is also published in a way that is not controlled
by the signature server, i.e. the server cannot create or change clients’ certificates. To revoke the
certificate, it is sufficient to send the server a revocation note.

Signing a Document: We assume that there is a shared secret authentication key between the
server and the client. This key is used to authenticate the messages sent between them. For every
client, the server stores the number of signatures already created by this client. To sign the i-th
message m (or a hash of a message):

— The client (with identity ID.) computes © = h(m, z;) and sends (z,ID., i) as a request to the
signature server.
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— The server checks that ¢ is consistent with the stored signature count and that the certificate
of the client has not been revoked.

— If the checks were successful, the server obtains a time-stamp Si(x,1D.,i) for (x,ID., ), and
sends Sy(x, 1D, i) back to the client.

— The client stores all the signatures S, (z1,1IDe, 1), St,(z2,ID.,2),... he/she ever creates. This
is necessary for later disputes where client has to deny forgeries created by a malicious server.

The signature for m is (ID., 1, 2, ¢i, S¢), where ¢; is the tree hash chain which proves that z; is the
i-th element of the key hash chain.

Verifying a Signature: To verify a signature (ID., 7, z;, ¢;, S¢) with a certificate (ID., zg, r, to, t1,1Ds)
the following is checked:

— Client identities in the certificate and in the signature coincide.

— The key z; and the hash chain ¢; lead to the root hash value r, i.e. the correct key was used.

— S is a valid time-stamp on (h(m, z;),ID¢, ).

— Server identities in S; and the certificate coincide, i.e. if the server was authorized by the client
to create the signature.

Denying a Forgery: Dishonest third parties in co-operation with the signature server may try to
abuse the one-time keys z; that are already used and public. Say, Sy (2/,ID,., i) (where 2/ = h(m/, 2;))
is a new signature created with z; at time ¢’ > ¢.

Then the client can show the stored signature Si(x,1D,,4) and prove thereby that Sy (z’,ID,, %)
is a server-assisted forgery. The service provider is then fully responsible for the consequences.

In this scheme, the client has to store all the signatures that have been created. For later
availability of the signatures, it is desirable to store the signatures inside the signature device or to
any other medium that is not controlled by the signature server. Note that the memory in which
the signatures are held should not be secret and hence the price of storing the signatures may be
acceptable.

4.2 Storing Time-Lists Instead of Signatures

To save storage, the scheme can be modified by using hashed time-lists. For example, instead of
storing two signatures Sy, (1,1D;, 1) and S, (x2, 1D, 2), the client may store only the second one,
assuming the server signs (t1,z2,1D.,2) at to to confirm that the previous signature was created
(and the previous password z; revoked) at to. To develop this idea further, assume that (when
signing the i-th message m;), the server signs (y;—1, z;, ID., ), where y;_1 is the incremental hash
of the time-list ¢1,...¢;—1 computed by the recursive scheme y; = h(y;—1,t;), yo = ||. After creating
the signature Sy, (yi—1,xi, 1D, ), the server computes y; = h(y;—1,t;) and stores y;. The previous
value y;—1 is no more needed.

The client has to store the time-list ¢1,%2,...,¢;—1 and the last signature Sy, (yi—1, s, IDe,1),
which indirectly confirms that zi,...,z;_1 were revoked at t1,...,t;_1, respectively. If the size of
the signature is 3 KB, the time values are 32-bit integers, and the client generates 500 signatures,
then the storage required on the client side for the time-list and the signature is about 5 KB.

A modification of this scheme is that the server is made responsible for storing the time-list
t1,t9,...,t;—1 while the client only stores and updates the hash y;_1 of the list and keeps only the
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last signature. It is presumed that once the server signed (y;—1, x;, 1D, ), it must be able to present
a time list with ¢ — 1 elements that hashes to y;_1. This further reduces the memory requirements
on the client side.

5 Discussion: Typical Use Cases of Digital Signatures

To lower the memory requirements, one may use a hierarchical scheme (Sec. 3) in which the new
signature scheme is used at the upper level and the ordinary BLT-scheme [4] at the lower level.
Such a two-level scheme solves the irregular usage problem. Every time, the client wants to sign a
message, the signature device can immediately generate a short-term (say, five-minute) certificate
that can then be used to sign messages with the ordinary BLT-scheme. Note that the time-lists
only contain the times at which the short-term certificates were signed, as there is no need for time
lists in the ordinary BLT signature scheme.

The choice of a suitable configuration of a BLT-signature solution highly depends on the par-
ticular usage scenario. We discuss three different use cases of digital signatures and show that there
are suitable solutions for all of them. The use cases we analyse are:

— Personal Digital Signatures: In this case, the signature is typically used not every day and no
more than few times a day which means that the signature is rarely used more than 500 times a
year. Typically, the usage pattern is irregular. The signature device is mostly not connected to
client’s computer. This is the case, where the original BLT-scheme is not quite suitable and the
new scheme can help. For example, if we use the simple buffer scheme (Sec. 3.3) with A = 2°
(i.e. with 8.5 minute certificates) and £ = 22° (one-year validity period), the size of a signature
is 2 KB, and the device is used 500 times, then the required memory size for the device is about
12 KB (8 KB for pebbles + 2 KB for time-lists + 2 KB for the stored signature). If the device
is capable of computing 500 hashes per second, then the signing time is about two seconds: one
second for the generation of a one-time certificate and one second for obtaining a signature from
the server.

— Employee’s Digital Signatures: In this case, many signatures can be created in one day. The
signature device is regularly connected to employee’s computer (during every working day).
Still there are long time periods during which there is no connectivity and that is why the
original BLT-scheme is still not quite suitable. Due to the regular connectivity, we can use a
hierarchical combination of the new scheme (for the upper chain) and the original BLT-scheme.
The certificates can be relatively long term (for one day) and that is why the size of time-lists
is not large (no more than 365 time values per year) which is about 1.5 KB. If we use a dual
version of the simple buffer scheme (Sec. 3.3) with the new scheme (without trees) in the upper
chain and the original BLT-scheme in the lower chain (with trees) and choose A = 26, then
the memory consumption is about 11.5 KB (8 KB for pebbles + 1.5 KB for time-lists + 2 KB
for the stored signature). For the devices capable of computing 500 hashes per second, short
term keys are generated in 1-2 minutes, which is not a problem as this is done just once in the
beginning of the working day.

— Device Signatures: In this case, signatures are created automatically by a computer and the
signature device is constantly connected to the computer. In this case, the original BLT-scheme
or the buffer with pipelining solution (Sec. 3.2) with memory consumption about 13 KB can be
used.
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