
Kangaroos in Side-Channel Attacks

Tanja Lange1, Christine van Vredendaal1,2, and Marnix Wakker2

1 Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
tanja@hyperelliptic.org, c.v.vredendaal@tue.nl

2 Brightsight B.V.
Delftechpark 1, 2628 XJ Delft, The Netherlands

wakker@brightsight.com

Abstract. Side-channel attacks are a powerful tool to discover the cryp-
tographic secrets of a chip or other device but only too often do they
require too many traces or leave too many possible keys to explore. In
this paper we show that for side channel attacks on discrete-logarithm-
based systems significantly more unknown bits can be handled by using
Pollard’s kangaroo method: if b bits are unknown then the attack runs
in 2b/2 instead of 2b. If an attacker has many targets in the same group
and thus has reasons to invest in precomputation, the costs can even be
brought down to 2b/3.
Usually the separation between known and unknown keybits is not this
clear cut – they are known with probabilities ranging between 100% and
0%. Enumeration and rank estimation of cryptographic keys based on
partial information derived from cryptanalysis have become important
tools for security evaluations. They make the line between a broken and
secure device more clear and thus help security evaluators determine how
high the security of a device is. For symmetric-key cryptography there
has been some recent work on key enumeration and rank estimation, but
for discrete-logarithm-based systems these algorithms fail because the
subkeys are not independent and the algorithms cannot take advantage of
the above-mentioned faster attacks. We present ε-enumeration as a new
method to compute the rank of a key by using the probabilities together
with (variations of) Pollard’s kangaroo algorithm and give experimental
evidence.

Keywords: Side-channel attacks, template attacks, key enumeration,
rank estimation, discrete logarithms, Pollard-kangaroo method, precom-
putation

1 Introduction

In security evaluations it is important to investigate how well cryptographic
implementations fare against side-channel attacks (SCA’s). Numerous of these

This work was supported by the Netherlands Organisation for Scientific Re-
search (NWO) under grant 639.073.005. Permanent ID of this document:
c1c4c98f98c7ca3cb1b1f4208b95e8b8. Date: January 29, 2015.

2 Tanja Lange, Christine van Vredendaal, Marnix Wakker

attacks are known: In this paper we will be most interested in the Template
Attacks introduced by Chari, Rao and Rohatgi [3]. These attacks are among the
strongest possible attacks in the sense that they extract all possible information
of the samples S measured from a secret-key operation. They assume access to
an identical device as used by the target and use it to produce precise multi-
variate characterizations of the noise of encryptions with different keys. By a
process of iterative classification they then attempt to derive the key used when
measuring S. At each iteration a few bits are added to the templates. Each set
of a few bits is called a subkey.
In [3] iterative classification was performed until only a few candidates for the
key were left. We however accept being left with a larger number of possibilities
of which we are 100% sure that they are the likeliest keys according to our at-
tack results and then continue to enumerate the remaining keys. This might be
faster than continuing to attack and hoping to get more significant results. The
motivation for this approach is the guy in the security evaluation lab. He starts
his template attack and if he were to spend a long enough time he might find
the key. However if he is able to enumerate 2b keys, then the lab guy might as
well stop the measurements after reducing the space of the remaining keys to an
interval of size 2b. By pruning the space further he will only risk throwing out
the actual key even though he could have enumerated it. Another motivation for
our approach is that there are some implementations where it does not matter
how long the guy stays in the lab, the power traces will not give away more
information. In this case we will still have a (larger) space of possibilities we
need to enumerate based on all the information we were able to get.
When we have the results of such a SCA we can take two approaches. The first is
the black-box approach of key enumeration. A key enumeration algorithm takes
the SCA results as input and return keys k in order of likelihood. The position
of a k in such an ordering is called its rank r. For symmetric-key cryptogra-
phy some research has been done on this subject. Pan, van Woudenberg, den
Hartog and Witteman [10] described a sub-optimal enumeration method with
low storage requirements and an optimal method that required more storage.
Veyrat-Charvillon, Gérard, Renauld, and Standaert [17] improved the optimal
algorithm to require less storage and be able to enumerate more keys faster.
The second way of looking at a SCA result is the white-box approach of rank es-
timation. This method is particularly relevant for security evaluation labs. Using
modern technology it is feasible to enumerate 250 to 260 keys, but when a key
is ranked higher, we can only say that its rank is higher than ∼ 260 (the rank
at which the memory is exceeded). For security evaluations of the encryption
algorithm however more accuracy is required. A rank estimation algorithm is
able to extract information about the rank r of k without enumerating all the
keys. For symmetric cryptography like AES such an algorithm was put forth by
Veyrat-Charvillion, Gérard and Standaert in [18].

Our contribution in this paper is to extend these works to public-key cryp-
tography, specifically Elliptic-Curve Cryptology (ECC [9]). Using the (partial)
information from a template attack on the subkeys of a key k used in Diffie-

Kangaroos in Side-Channel Attacks 3

Hellman Key Exchange, k might be recovered by enumerating the most likely
candidates. Contrary to the assumptions in the previously mentioned algorithms,
the information on the subkeys is not independent for ECC and therefore we can-
not use the existing algorithms. On the bright side, in ECC we are working with
cyclic groups and we can use this structure to speed up enumeration. This way,
enumeration can be interpreted as finding the solution to the Discrete Logarithm
Problem (DLP) by using partial information on the subkeys. We present our own
algorithm which utilizes Pollard’s kangaroo methods (see [11], [12], [5], [14], [16])
to enumerate with an error margin ε. In trade for this error margin we are able
to enumerate a space of ` keys in O(

√
`) group operations.

If we make use of a precomputation table like was proposed in [1] we can reduce
the expense per key to O(3

√
`) operations. This improvement of Pollard’s meth-

ods lends itself particularly well to use in side-channel attacks. The creation of
the precomputation table costs O(

3
√
`2) group operations and a specific table can

only be used to speed up solving of DLPs in one particular group and interval
length. So creating the table is only useful if we want to perform an attack a lot
of times on the same length interval of a certain subgroup, but this is a fairly
common scenario since many smart card vendors implement the NIST P-256
curve for which the curve equation and the base point are standardized. This
means that security evaluation labs can create the most commonly needed tables
beforehand and re-use them every time an attack is performed on an implemen-
tation for this curve.
We end this introduction with noting that even though the results in this paper
are posed in the setting of elliptic curves, the techniques are applicable to solving
a DLP in any cyclic group.

2 Background

This section gives a short description of methods to solve the Discrete Loga-
rithm Problem (DLP) in a group of prime order n. The “square-root methods”
solve this problem on average in O(

√
n) group operations. We will use additive

notation since the main application is to is to solve the DLP on an elliptic curve
E over a finite field Fp but the methods work in any group. Let P,Q ∈ E(Fp)
be in a cyclic group; the goal is to find an integer k such that Q = kP .

2.1 A Short History of Discrete Logarithm Algorithms

A well known method is Shanks’ Baby-Step-Giant-Step (BSGS) method [13].
It uses a table to find collisions between baby steps 0P, P, . . . , (m − 1)P and
giant steps Q− 0P,Q−mP,Q− 2mP,Q− 3mP, . . . , where m ≈

√
n. This finds

k = k0+k1m as the collision of k0P and Q−k1mP in O(m) steps. A drawback of
this method it that it has a storage requirement of m elements, which is a more
serious limitation than O(m) computation. If the discrete logarithm k is known
to lie in an interval [a, b] of length ` then choosing m ≈

√
` gives a runtime of

O(
√
`).

4 Tanja Lange, Christine van Vredendaal, Marnix Wakker

The Pollard-ρ method [11] gives a solution to the storage problem. It uses
a deterministic random walk on the group elements with the goal of ending
up in a cycle (which can be detected by Floyd’s cycle finding algorithm). The
walk is defined in such a way that the next step in the walk depends solely on
the representation of the current point and that a collision on the walk reveals
the discrete logarithm k. Van Oorschot and Wiener [16] introduced a parallel
version of the Pollard-ρ method which gives a linear speed-up in the number of
processors used. They use distinguished points: a point is a distinguished point
if its representation exhibits a certain bit pattern, e.g., has the top 20 bits equal
to zero. Whenever one of the parallel random walks reaches such a point it
is stored on a central processor. A collision between two of these distinguished
points almost surely reveals the value of the key. This method is an improvement
over BSGS in that the storage requirements are minimal, but the algorithm is
probabilistic and it cannot be adapted to search an interval efficiently.

Pollard’s kangaroo method solves the latter problem. It reduces the storage
to a constant and is devised to search for the solution of a DLP in an interval
of length `. The mathematical ingredients, the algorithm and improvements are
the topic of the remainder of this section.

2.2 Mathematical Aspects of Kangaroos

To adequately explain Pollard’s kangaroo method we first have to dive into the
notion of a mathematical kangaroo. We define a kangaroo by the sequence of
its positions Xi ∈ 〈P 〉. Its starting point is X0 = s0P for a certain starting
value s0 and the elements that follow are a pseudo-random walk. The steps (or
rather jumps) of a kangaroo are additions with points from a finite set of group
elements S = {s1P, . . . , sLP}.

The step sizes si are taken such that their average is s = β
√
` for some scalar

β. To select the next step we use a hash function H : 〈P 〉 → {1, 2, . . . , L} and
we compute the distance by defining d0 = 0 and then updating it for every step
as follows

di+1 = di + sH(Xi), i = 0, 1, 2, . . . ,

Xi+1 = Xi + sH(Xi)P, i = 0, 1, 2,

This results in a kangaroo which after i jumps has travelled a distance of di and
has value (s0 + di)P .

2.3 Pollard’s Kangaroo Method

The original algorithm that Pollard presented in [11] works as follows: Suppose
we know that the value k in Q = kP is in the interval [a, b] of length ` = b−a+1.
We introduce two kangaroos. The first one is the tame kangaroo T and we set
it down at the point bP . We tell him to take N = O(

√
`) jumps and then stop.

The point at which he stops and how far the kangaroo travelled to get there
are recorded. This information can be seen as a trap meant to catch the second

Kangaroos in Side-Channel Attacks 5

kangaroo. The trap consists of the endpoint XN = (b+ dN)P and the travelled
distance dN . Then a second, wild, kangaroo W is let loose at the unknown
starting point X ′0 = Q = kP following the same instructions determining jumps.
The crucial fact upon which this algorithm is based is that if at any point the path
of the wild kangaroo crosses with that of the tame one, meaning that they land
on the same point, their remaining paths are the same. So if the wild kangaroo
starts jumping and crosses the tame one’s path, then there is a jump M at which
X ′M = XN . From this we have (k + d′M)P = (b + dN)P and k = b + dN − d′M
and we will detect this collision since X ′M+j = XN+j , so the wild kangaroo will
eventually meet the tame one.

Van Oorschot and Wiener [16] also presented a parallel version of this al-
gorithm which even for just two kangaroos gives an improvement. Here instead
of one trap, multiple traps are set: a fraction 1/w of the group elements which
satisfy a certain distinguishing property D are defined as the distinguished set.
Here w is taken to be α

√
`, where α is some small constant (usually smaller

than 1). A central server then records the distance and location of any kangaroo
reaching a point in D. We again have a wild and a tame kangaroo. Instead of
starting at the end of the interval however, the tame kangaroo now starts in the
middle at some point cP . Instead of finishing their entire paths, the kangaroos
now jump alternately. Whenever one of them jumps to a distinguished point,
their relevant information (position, distance, offset of starting point, kangaroo
type) = (Xi, di, ci, Y) is recorded in a hash table which hashes on the Xi. When
two kangaroos of different types have been recorded in the same entry of the
hash table, we can derive the answer to the DLP.
Let us analyze this algorithm. The distance between the two kangaroos at the
starting position is at most (a − b + 1)/2 = `/2 and on average `/4. If we take
s = β

√
`, then the average number of jumps needed for the trailing kangaroo

to catch up to the starting point of the front kangaroo is `/4s. Now we use
that the probability of missing the front kangaroo’s trail after passing its start-
ing point for i steps is (1 − 1/s)i ≈ e−i/s (we can use this approximation as s
is large) and get that it takes s steps on average to hit the trail. Lastly, both
kangaroos have to hop far enough to hit a distinguished point. If 1/w is the
fraction of group elements that are distinguished, then w steps are needed on
average before hitting a distinguished point. The total average number of steps
is the 2(`/4s+ s+w) = 2(α+ β + 1/4β)

√
`, in which α and β can be optimized

experimentally.
This algorithm can be improved even further by using 3 or 4 kangaroos (see [5]),
but in this paper we consider the 2-kangaroo version.

2.4 Pollard’s kangaroo method with precomputation

Pollard’s kangaroo method can be sped up using precomputation. Bernstein and
Lange [1] suggest to first produce a table of T distinguished points. Selecting the
distinguished-point property and creating the table is then similar to setting a
trap at every distinguished point in a desert, then sending a bunch of kangaroos
into said desert and recording in a table which traps are most popular. Then

6 Tanja Lange, Christine van Vredendaal, Marnix Wakker

when we are ready to send in the wild kangaroo we really want to trap we already
know where he is most likely to fall in.
The algorithm works as follows. In the precomputation phase we start a lot
of walks from random values yP and continue these walks until they reach a
distinguished point at (y+d)P . We record (y+d, (y+d)P) in the precomputation
table T . We keep starting new walks until T different distinguished points are
found (or sample for longer and keep the most popular ones). As [1] notes, these
walks should be independent from Q.
In the main computation phase we start random walks that are dependent on
Q. We let a kangaroo on X ′0 = Q hop until it reaches a distinguished point. If
this point is in the table we have solved our DLP. If not we start a new walk at
Q+xP for some small random x. For each new walk we use a new randomization
of Q and continue this way until a collision is found.

If enough DLPs in this group need to be solved so that precomputation is
not an issue — or if a real-time break of the DLP is required — they propose
to use T ≈ 3

√
` precomputed distinguished points, walk length w ≈ α

√
`/T , i.e.,

w ≈ α 3
√
`, with α an algorithm parameter to be optimized, and a random step

set S with mean s ≈ `/4w. This means that the precomputed table T takes

O(
3
√
`2) group operations to create but can be stored in ≈ 3

√
`. This reduces the

number of group operation required to solve a DLP to O(3
√
`) group operations,

essentially a small number of walks.

3 ε-Enumeration

Now that we have the mathematical background covered, we continue to enu-
meration in side-channel attacks. Our goal is to enumerate through SCA results
and give a rank estimation for a key similar to what was done in [17] and [18] for
SCAs on implementations of symmetric cryptography. To do this we first have
to model the result of SCA on ECC.

3.1 The Attack Model

We will assume a template attack like Chari, Rao and Rohatgi performed in [3].
In this attack we use our own device to make a multivariate model for each of
the possibilities for the first bits of the key. When we then get a power sample of
the actual key, we compute the probability of getting this shape of power sample
given the template for each possible subkey. These probabilities will be our SCA
results.
We can iterate this process by taking a few bits more and creating new templates,
but making these requires a lot of storage and work. At the same time, they will
either confirm earlier guesses or show that the wrong choice was made. At each
iteration we only include the most likely subset of the subkeys from the previous
iteration. Discarding the other possibilities creates a margin of error that we
want to keep as small as possible.
In Chari [3] the aim was to recover all the bits of the key with a high success rate.

Kangaroos in Side-Channel Attacks 7

Our goal is to minimize the overall attack time — the time for the measurements
plus the time for testing (and generating) key candidates. We do not require to
only be left with a couple of options at the end of the attack of which one is
correct with a high probability. We accept ending the experiments being left
with a larger number of possibilities of which we are close to 100% sure that
they are the likeliest keys according to our attack results. After this we wish
to enumerate them in the order of their posterior probabilities. We show how
this can be faster than continuing to measure and hoping to get more significant
results.
The results of the measurement and evaluation can be visualized as depicted in
figure 1.

Fig. 1. The graphical representation the SCA result

We will call this visualization the enumeration tree. It consists of three sec-
tions. The first section consists of the subkey bits that we consider recovered.
After the iterations of the template attack all options but one were discarded.
Section II consists of the subkeys that we have partial information on, but not
enough to reduce the number of likely subkeys to one. The last section consists of
the subkeys that we have very little to no information on. It contains all possible
subkeys per layer.
The idea is that each node ni,j in the representation is located in the i’th level
(starting with 1 at the root) and corresponds to the j’th choice for subkeys
ki,1, ki,2 . . . ,. For each node ni,j there is an associated subkey ki,j and a poste-
rior probability qi,j . This is the probability that subkey i is equal to ki,j given
that the path up to its parent node is correct. So if the nodes on the path to
ni,j are n1,x1

, n2,x2
, . . . , ni−1,xi−1

, ni,j , then the probability qi,j associated with
this node is

qi,j = Pr[ki = ki,j |k1 = k1,x1
, k2 = k2,x2

, . . . , ki−1 = ki−1,xi−1
]. (1)

Then we can also associate with each node a probability pi,j that represents
the posterior probability of the key consisting of the subkeys represented by the

8 Tanja Lange, Christine van Vredendaal, Marnix Wakker

nodes leading up to it (including itself). This probability is then

pi,j = qi,j ·
i−1∏
h=1

q1,xh . (2)

In sections I and II the subkeys that were discarded during the attack and
are not in the model might have a combined small probability pε. We assume
that these probabilities are negligible (otherwise more nodes should be included
in section II or the transition between section I and II should have moved closer
to the root) and thus assume that the sum of the probabilities pi,j of each level
of the tree is 1.

3.2 Enumeration in an Interval

The brute-force approach an attacker could take to enumerate the keys is to sort
the nodes of the rightmost layer of section II by posterior probability pij and
then for each choice brute-force all the options in section III. However using the
algorithms from Sections 2.3 and 2.4 we can do better. Enumerating section III
of a node is equivalent to computing the keys in an interval. Therefore we can
use the Pollard-kangaroo algorithms to speed up the enumeration. The downside
of this approach is that without searching the whole interval we can never say
with 100% certainty that the key is not in the interval. However, in return
we are able to speed up enumeration in an interval of size ` to O(

√
`) group

operations or even to O(3
√
`) if we have the luxury of a precomputation table.

We do have to note that even though we will call this process of searching
the interval enumeration, it is a different kind than the enumeration in [17]. In
that algorithm each key enumerated had to be checked for correctness against
the encryption in an exhaustive-search manner. Using the kangaroo algorithms
means that we search for a collision between group elements and only after this
happens we can compute and double-check correctness against the public key
of the cryptosystem attacked. This is much more sophisticated and much faster
than the brute-force approach of having to check every key. The rank r of k now
reflects the number of group operations required to find k after the end of the
experimental session. It also means that we have only O(

√
`) ranks and they are

dependent on the parameters used in the algorithm. To accurately reflect the
uncertainty in this kind of enumeration, we introduce the following definition.

Definition 1. Let the key k̂ that we wish to find have rank r̂. In an ε-enumeration
we check keys in such a way that when we have enumerated up to rank r, then
there is a (1− ε) probability that r̂ > r .

If we want to perform such an ε-enumeration we have to have a stopping
criterion. This criterion dictates how many group operations we have to do in
order to get the probability of having missed our actual key below the ε bound.
We have the following theorem.

Kangaroos in Side-Channel Attacks 9

Theorem 1. Assume that the private key k̂ lies in the interval of size `. Let the
average step size of the kangaroos be s = β

√
`. Let the probability of hitting a

distinguished point be θ = c/
√
` and assume the distinguished points are spread

uniformly over the whole group. Lastly we assume that the hash function H
and the step set in the improved Pollard-kangaroo algorithm of Section 2.3 is
sufficiently random. Then for x > `/(4s) the average probability of not finding k̂
in 2x steps, i.e. x hops per kangaroo, of that algorithm is

ε(x) = e−
x
s+

`
4s2 + (eθ(

`
4s+2−x) − e2θ−

1
s (x−

`
4s))/(s− se(θ−

1
s)). (3)

Proof. Recall that in this algorithm we had 2 kangaroos placed in the interval
and they alternate their jumps. In this proof we analyze the x steps of the back
kangaroo and compute the average probability that it does not collide with the
front kangaroo even though they were both placed in the same interval. First
the back kangaroo needs to catch up to the front one. The number of steps to
do this is on average `/4s. Given that the back kangaroo takes x steps we now
have y = x− `/(4s) steps left on average. To avoid a recorded collision in these
remaining y steps we either have to avoid the trail of the front kangaroo, or hit it
after i steps and avoid distinguished points for the next y− i steps. We assumed
the hash function H to be sufficiently random, so the average probability of
avoiding the trail is (1 − 1/s) for each step taken and the chance of missing a
distinguished point is (1−θ) in each step. Thus we have the average approximate
probability of avoiding detected collisions as follows

(
1− 1

s

)x− `
4s

+

x− `
4s−1∑
i=0

(
1− 1

s

)i
1

s
(1− θ)x−

`
4s−i−2 .

We can approximate the second part of this equation as follows

x− `
4s−1∑
i=0

(
1− 1

s

)i
1

s
(1− θ)x−

`
4s−i−2 ≈ 1

s

x− `
4s−1∑
i=0

e
−i
s e−θ(x−

`
4s−i−2) =

eθ(
`
4s+2−x)

s

x− `
4s−1∑
i=0

e
−i
s eθi.

This in turn then evaluates to

eθ(
`
4s+2−x)

s

x− `
4s−1∑
i=0

(
eθ−

1
s

)i
=
eθ(

`
4s+2−x)

s
·1− e

(θ− 1
s)(x−

`
4s)

1− e(θ−
1
s)

=
eθ(

`
4s+2−x) − e2θ−

1
s (x−

`
4s)

s− se(θ−
1
s)

.

So indeed we have our average probability of

ε(x) =

(
1− 1

s

)x− `
4s

+
eθ(

`
4s+2−x) − e2θ−

1
s (x−

`
4s)

s− se(θ−
1
s)

≈ e−
x
s+

`
4s2 +

eθ(
`
4s+2−x) − e2θ−

1
s (x−

`
4s)

s− se(θ−
1
s)

.

ut

10 Tanja Lange, Christine van Vredendaal, Marnix Wakker

Note that this equation is only valid for values of x > `
4s , otherwise ε(x) = 1.

We now analyze the situation of using Pollard’s kangaroo algorithm with
a precomputation table. For this we make a hypothesis on the distribution of
distinguished points and the number of points covered by each walk: Let the
precomputation table T consist of the first found T different distinguished points
Di = tiP . Let the average walk length be w = α

√
`/T and the average step size

of the kangaroos be s ≈ `/(4w) such that the average distance of a walk is
≈ `/4. Since the points in T are different their paths are disjoint. They cover
on average Tw points. Assume that these points are uniformly distributed over
{P, 2P, . . . , γ`P} for some value of γ. In Section 4 we will present experiments
showing that γ = max

1≤i≤T
ti/`− min

1≤i≤T
ti/` is a good fit.

Theorem 2. Let k̂ lie in an interval of size `. Let the average walk length be
w = α

√
`/T and the average step size of the kangaroos be s ≈ `/(4w). Under

the hypothesis made above, T represents tW points distributed uniformly over
{P, 2P, . . . , γ`P} for some value of γ. The average probability that the Pollard-

kangaroo algorithm with precomputation (Section 2.4) does not find k̂ in y inde-
pendent walks of the algorithm is

ε(x) = e
−α2y
γ . (4)

Proof. Under the hypothesis the probability of the wild kangaroo hitting the
trail of one of the table points’ kangaroos is on average (Tw)/(γ`) = α2/(γw) at
each step. Since the walk takes on average w steps the probability of avoiding a
collision is (

1− α2/(γw)
)w ≈ e−α2

γ .

We assume independent walks, so we have that the probability that after y
walks we have not found a collision is

y∏
i=1

e
−α2

γ = e
−α2y
γ .

which is the result we desired. ut

3.3 Further Considerations and Optimizations

Combining Intervals If we have adjacent intervals in the enumeration tree we
might combine these intervals to speed up the search. If they are of the same
length then searching the intervals separately simply means searching twice as
long. Combining two intervals in the kangaroo method reduces the search time
by a factor

√
2. When we do this we do have to take the posterior probabili-

ties of the intervals into account. If we simply combine all adjacent intervals in
the enumeration tree and search them in the order of the subinterval with the
highest posterior probability then it might happen that an interval ranked high

Kangaroos in Side-Channel Attacks 11

separately is not searched because it is not part of some large combined inter-
val. We therefore only combine intervals if they also have subsequent posterior
probabilities. For the precomputation case of the algorithm we also have to take
the availability of tables into account. We only combine intervals if we have a
table and step set corresponding to that newly created interval length.

Restarts We described the general kangaroo algorithm to have the kangaroos
continue along their paths after finding a distinguished point. For the standard
rho method [2] show the benefits of restarting walks after a distinguished point is
found. If we do not use a precomputation table then doing restarts means redoing
the initial phase of the two kangaroos catching up to each other and the error
function will decrease at a slower rate. This is only advantageous if the kangaroos
ended up in a loop they cannot get out. If we detect such a loop, the kangaroo(s)
can be restarted. If ` � n the probability of ending in a loop is very small. On
the other hand, we do not have the problem of the initial catching up phase.
Therefore we restarted walks if they exceeded 20w steps. An advantage of using
the improved Pollard-kangaroo algorithm without precomputation tables is that
there is a probability of finding the solution of a DLP in an adjacent interval
because the kangaroos naturally venture out in the direction of larger discrete
logarithms. This is also an argument against doing restarts. Even though the
current interval was chosen for the good reason of having the highest posterior
probability among those not considered, yet, it is an added benefit that one
might accidentally find a solution in another interval. If the tame kangaroo is
started in interval I1 of size `, but the key was actually in adjacent interval I2,
then after a longer initial catch-up phase there is a probability of collisions. We
could estimate this probability with an error function like we did for I1 to reduce
search time, but the longer the kangaroos jump the bigger the variance gets and
the less accurate the error function is going to be. Therefore we do not advise
to include this extra probability into the considerations.

Parallelization There are two levels at which the ε-enumeration method can be
parallelized: One level is the underlying kangaroo algorithm using distinguished
points; the second level is dividing the intervals over the processors used, i.e.,
we could simply place one interval search on each processor, or we could have
all processors search one of the intervals, or use a combination of the two. Us-
ing multiple processors for a single interval only makes sense if the interval is
sufficiently large and many walks are needed (so rarely with precomputation)
and if the posterior probability is significantly higher. If a lot of intervals have a
similar probability it might be better to search them in parallel.

ε-Rank Estimation Now that we have a definition of ε-enumeration we can
easily extend it to estimating ranks of keys that we cannot ε-enumerate in feasible
time. To do this we have to adapt the attack on the device using the key k̂. When
discarding keys of a too low probability from future templates we do store the

12 Tanja Lange, Christine van Vredendaal, Marnix Wakker

subkey in the enumeration tree with their probabilities. They are however not
included in new templates, so the corresponding branch of the enumeration tree
will not grow any more. After finishing the measurement we can determine with
the error function for each interval with a higher posterior probability than the
one that contains k̂ how many steps we would (on average) take in this interval.

The sum of these quantities is then an estimated lower bound for the rank of k̂.
We can use a similar method to determine an estimated upper bound.

4 Experimental Results

This section presents representative examples of our implementations. We ran
our experiments on a Dell Optiplex 980 using one core of an Intel Core i5 Proces-
sor 650 / 3.20GHz. We re-used parts of the Bernstein/Lange kangaroo C++ code
used for [1]. Our adaptations will be posted at http://www.scarecryptow.org/
publications/sckangaroos. For ease of implementation we used the group F∗p
as was used in [1], which uses a “strong” 256-bit prime (strong meaning that p−1

2
is also prime) and a generator g, which is a large square modulo p. Although in
the previous sections we focussed on elliptic curves, both those and F∗p are cyclic
groups and thus these results hold for both. We set the interval size to ` = 248

and at each run took a random h in the interval for a new DLP.
For the experiments without precomputation we made use of distinguished

points to find the collision, which were recorded in a vector table that was
searched each time a new distinguished point was found. We chose the probability

of landing in a distinguished point to be 2−19 = 25√
`

by defining a point as

distinguished if the least-significant 19 bits in its representation were zero, i.e.,
if the value modulo w = 219 was zero. The step function selected the next step
based on the value modulo 128, the 128 step sizes were taken randomly around√
`.

Step sets The goal of this paper is not to find the optimal parameters for the
kangaroo algorithm. The choice of step set is however relevant for usability of
the error function of Theorem 3. As can be seen equation 3 only uses the mean
of the step set and not its actual values, so it is possible to create one that will
not adhere to the error function at all. Even if we choose the step set randomly
it can contain dependencies and this makes the error function less accurate. We
can see this in the top graph of figure 2.

We did 8192 experiments and saw that the error function in blue is a rather
good approximation for the fraction of unsolved DLPs in red for the first 10
million steps of step set S1 of the wild kangaroo and from 25 million onward.
In between these values we see some unexpected behavior. It might be that our
step set contains some dependencies, e.g., it might be that the step set contains
too many steps in a certain equivalence class; meaning that the probability of
missing the trail is larger than (1− 1/s) per step. We were not able to visually
identify what the problem was. By trying a different seed for the random step

http://www.scarecryptow.org/publications/sckangaroos
http://www.scarecryptow.org/publications/sckangaroos

Kangaroos in Side-Channel Attacks 13

Fig. 2. The theoretic function ε(x) for the kangaroo method without precomputations
and the experimental results using two random step sets S1 and S2 with β ≈ 1. Top:
β = 0.978. Bottom: β = 0.971

set we found S2 which behaved nicely according to our expectations as can be
observed in the bottom graph of figure 2. For concrete attacks it is advisable to
run a few tests to check the quality of the step function.

Combining intervals We were able to find similar results for intervals where
we combined two adjacent intervals of length 248 to one of size 249. We observed
the same problem of good and bad step sets. With trying three step sets, we got
a step set that had the error function as an upper bound for the experiments.
These graphs are similar to the graphs before and therefore ommitted. They
did confirm that by combining the intervals we can search twice the keyspace in
approximately

√
2 times the steps.

Using precomputation We again searched for DLPs in an interval of length
248. Our 128 step sizes however were now uniformly chosen between 0 and `/4w
instead of around β

√
` for some β. Each DLP h = gy was chosen randomly and

each walk starting from it was randomized in the interval between y − 240 and
y + 240. For the precomputation we used a table of size N = T = 3

√
` = 216.

We used the first T distinguished points found as table points and computed
γ = 1.923 as max

1≤i≤T
ti/`− min

1≤i≤T
ti/`, for the T table elements of the form gti . We

used an average walklength of w = 215 such that α = 0.5. Using 2097152 experi-
ments we got the results on the top of figure 3. We see that the error function is a
good upper bound for the experimental results. We continued with the same ex-
periment for an interval of length ` = 250. We used a table of T = 104032 ≈ 3

√
`

table points and found γ = 1.853. We used an average step set of w = 216 such
that α ≈ 0.630. Using 2097152 experiments we got the results on the bottom of
figure 3. We again see that the error function is a good approximation for the
experiments.
Other parameters than α and γ can influence the performance of the algorithm.
The error function does not reflect information on the step set other than its

14 Tanja Lange, Christine van Vredendaal, Marnix Wakker

Fig. 3. The theoretic function ε(y) for the kangaroo method with precomputation and
the experimental results using a step set with s ≈ `

4w
. Top: ` = 248. Bottom: ` = 250.

mean, nor on how often distinguished points were found but it relies on the
hypothesis that the table covers about wT points and these are uniformly dis-
tributed over {P, 2P, . . . , γP}.

Considerations about the step set are even more relevant when preparing
the precomputation table by making N > T walks and selecting for T the T
points with the largest number of ancestors (longest walks leading up to them,
distinguished points found with multiplicity).

For the ε-enumeration we suggest to include a parameter σ in the exponent
of the error function ε(y) = eσα

2y/γ that is determined experimentally. After de-
termining the step set and table we can run the algorithm on different randomly
chosen DLPs, much like we did in our experiments, and determine a value for
σ. After this the error function is ready to be used in a security evaluation.

ε-Enumeration The result is that according to our best found results we can
ε-enumerate in an interval of length ` in the steps displayed in table 1.

Table 1. Required group operations for ε-enumeration

ε 1.0 · 10−1 1.0 · 10−3 1.0 · 10−5 1.0 · 10−7 1.0 · 10−9

N = T = 0, σ = 1 4.2 ·
√
` 10.8 ·

√
` 17.6 ·

√
` 24.3 ·

√
` 31.0 ·

√
`

N = T = 3
√
`, σ = 1 18 · 3

√
` 54 · 3

√
` 89 · 3

√
` 124 · 3

√
` 160 · 3

√
`

N = T = 3
√
`, σ = 1.12 16 · 3

√
` 48 · 3

√
` 79 · 3

√
` 111 · 3

√
` 142 · 3

√
`

N = 2T = 2 · 3
√
`, σ = 1 5 · 3

√
` 14 · 3

√
` 23 · 3

√
` 32 · 3

√
` 41 · 3

√
`

N = 2T = 2 · 3
√
`, σ = 1.28 4 · 3

√
` 11 · 3

√
` 18 · 3

√
` 25 · 3

√
` 32 · 3

√
`

N = 8T = 8 · 3
√
`, σ = 1 5 · 3

√
` 14 · 3

√
` 23 · 3

√
` 31 · 3

√
` 40 · 3

√
`

N = 8T = 8 · 3
√
`, σ = 1.40 4 · 3

√
` 10 · 3

√
` 16 · 3

√
` 23 · 3

√
` 29 · 3

√
`

There are a couple of remarks to be made. We took only semi-optimized
parameters. What we mean by this is that we did some experiments to find a
reasonable step set, but as the purpose of our research was not to find the best
parameters for Pollard-kangaroo algorithms, we did not fully optimize the step

Kangaroos in Side-Channel Attacks 15

set. The results might thus be improved with optimal parameters. We observe
that the higher N is relative to T , the fewer group operations are necessary to
drop below the margin of error. Increasing the value of N improves the function-
ality of the algorithm more than the variables α and γ reflect. This is seen in the
experimental values of σ. It increases as N increases. We also see that increasing
N from T to 2T makes a big difference in the required group operations. The
effect of increasing N even further to 8T does not have the same magnitude.

Although even small speed-ups are always nice, we also have to take the
time it takes to create the tables into account. For N = T it took us just over
9 billion group operations and under 19 minutes to create the table. This is
equal to 1.4

3
√
`2 multiplications. When we increased N to 2T it took about 50

minutes and 3.8
3
√
`2 group operations. Finally, when we took N up to 8T it took

approximately 9 hours and 2.5 million walks of in total 161544244922 ≈ 37.6
3
√
`2

group operations. This is doable for evaluation companies, even if they have to
make a lot of tables, but doing many more might not have enough yield for the
time it takes.

We see that we can determine how many group operations we have to do
on average for different degrees of confidence. If we increase the confidence by a
factor 100 the constant c in c

√
` or c 3

√
` increases linearly. This means that if we

use the N = 8T precomputation table and we do 170 3
√
` steps in an interval of

length 248 we can 2−128-enumerate it in less than 223.5 group operations. This is
a massive improvement over brute-force enumerating all 248 keys in an interval.
The new ranking method that is induced by such an enumeration is also a much
more accurate measure of the security of a device. Security evaluation labs could
more confidently estimate how secure an implementation is.

5 Comparison and Conclusion

This is the first paper studying key enumeration and rank estimates for public
key cryptosystems. Gopalakrishnan, Thériault, and Yao [8] studied key recovery
for ECC if a side-channel attack only provided some bits of the key. In contrast
to our model they assume that the known bits are absolutely correct and do
not discuss the possibility that we might have partial information on a subkey.
If we were to make an enumeration tree of such a result it would solely consist
of sections I and III. Although their assumption makes enumeration a lot easier
it is not very realistic. Often there are too few bits fully recovered to make
searching the remaining key space feasible. Using not only fully recovered bits
but also the partial information we can search an interval smartly and possibly
recover the solution to the DLP where [8] could not. Finally, they do not consider
enumeration and rank computation.

5.1 Comparison

One important assumption of the model covered in this paper so far is that
we have not only information about specific subkeys, but also that these keys

16 Tanja Lange, Christine van Vredendaal, Marnix Wakker

are adjacent and start from the most significant bits. This is true for the very
common case of implementations using windowing methods (including signed
and sliding) starting from the most significant bits. However, we can adjust our
method to the scenarios considered in [8] as we will now discuss.

The first scenario in their paper is that contiguous bits of the key are re-
vealed. These bits can be the most significant bits, the least significant bits or
be somewhere in the middle. So far we considered the first case but our model
can be easily adapted to the others:

– If the least significant bits are revealed, then our tree would get inverted.
Searching section III would then require a slight adaptation of the algorithms
used on it. Searching it with for instance Pollard kangaroo would require
searching in equivalence classes instead of an interval. This adaptation means
the probability of finding our solution ‘accidentally’ in a neighboring interval
becomes zero. Creating tables in the Bernstein/Lange precomputation is still
possible; we would shift each instance of the DLP to the same equivalence
class.

– If bits somewhere in the middle are revealed the model would become more
complicated. We would get a bow-shaped model with 2 sections II and III.
There are 5 sections; the third contains known bits, on the second and fourth
we have partial information and we have no information on the remaining
sections. Enumerating through the sections III would become more compli-
cated, though not impossible.

The second scenario [8] poses is that the information is not on any specific bits,
but on the square-and-multiply chain. In this case the enumeration tree of figure
1 would become a binary tree. Searching the sections is the same as before.

We now present an application that is not mentioned in [8] but is realistic
for an ECC scenario. A common speed up for scalar multiplication using the
base point P is to include P ′ = 2mP in the system parameters, where the
group order n is of length 2m, and compute kP as (k0 + 2mk1)P = k0P + k1P

′.
This halves the number of doublings required to compute kP (see Straus [15])
and reduces the overhead of dummy instructions introduced to perform one
addition per doubling. When such an implementation is attacked, we will know
the MSBs of k0 and k1 with much higher probability than their lower bits.
This results in an enumeration tree of six sections: sections I and IV contain
known bits, for sections II and V we have partial information, and we have
little to no information on sections III and VI. Enumeration in such a structure
is not straightforward with the methods we presented so far. If section III is
small enough, we can brute-force it and use ε-enumeration in section VI, but
realistically sections III and VI have equal size. To compute the key we have to
adapt the kangaroo algorithms to simultaneously hop intervals and equivalence
classes. This is achieved by algorithms for multidimensional DLPs which have
been studied by Gaudry and Schost in [7]. The running time is O(

√
`1`2) if the

section III and VI are intervals of length `1 and `2. An improved version of this
algorithm was presented by Galbraith and Ruprai in [6]. We have not devised

Kangaroos in Side-Channel Attacks 17

an error function for these algorithms, but expect results similar to Theorems 1
and 2.

Lastly, it was pointed out to us by a kind anonymous reviewer that there are
attacks on ECC where in fact the subkeys are independent (see e.g. [4,19,20]).
In this case the rank estimation algorithm of [18] is applicable. The methods in
this paper can then still be used as a comparison method; it is more realistic to
compare dependent subkey attacks to independent ones with a ε-rank than the
brute-force rank.

5.2 Conclusion

In summary, we showed that kangaroos can be very useful in making SCA on
ECC more efficient:

– Once section III is below 80 bits and section II not too wide there is no
point in letting the lab guy do further measurements since a standard PC
can casually do the 240 group operations to break the DLP.

– In cases where measurements cannot be pushed further by physical limita-
tions (restricted number of measurements, limits on what templates can be
measured) our improvements allow retrieving the key in some situations in
which previous methods could not.

– Theoretical kangaroos can be used to estimate the rank of the key in white-
box scenarios to determine whether a sufficiently motivated attacker could
mount the attack to break the system and we present error functions to use
in ε-enumeration.

References

1. Daniel J. Bernstein and Tanja Lange. Computing small discrete logarithms faster.
In Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT, volume 7668 of
Lecture Notes in Computer Science, pages 317–338. Springer, 2012.

2. Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. On the correct use of the
negation map in the pollard rho method. In Dario Catalano, Nelly Fazio, Rosario
Gennaro, and Antonio Nicolosi, editors, Public Key Cryptography, volume 6571 of
Lecture Notes in Computer Science, pages 128–146. Springer, 2011.

3. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of
Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

4. Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vin-
cent Verneuil. Horizontal correlation analysis on exponentiation. In Miguel So-
riano, Sihan Qing, and Javier López, editors, Information and Communications
Security - 12th International Conference, ICICS 2010, Barcelona, Spain, Decem-
ber 15-17, 2010. Proceedings, volume 6476 of Lecture Notes in Computer Science,
pages 46–61. Springer, 2010.

5. Steven D. Galbraith, John M. Pollard, and Raminder S. Ruprai. Computing dis-
crete logarithms in an interval. Math. Comput., 82(282), 2013.

18 Tanja Lange, Christine van Vredendaal, Marnix Wakker

6. Steven D. Galbraith and Raminder S. Ruprai. An improvement to the Gaudry-
Schost algorithm for multidimensional discrete logarithm problems. In Matthew G.
Parker, editor, IMA Int. Conf., volume 5921 of Lecture Notes in Computer Science,
pages 368–382. Springer, 2009.

7. Pierrick Gaudry and Éric Schost. A low-memory parallel version of Matsuo, Chao,
and Tsujii’s algorithm. In Duncan A. Buell, editor, ANTS, volume 3076 of Lecture
Notes in Computer Science, pages 208–222. Springer, 2004.

8. K. Gopalakrishnan, Nicolas Thériault, and Chui Zhi Yao. Solving discrete log-
arithms from partial knowledge of the key. In K. Srinathan, C. Pandu Rangan,
and Moti Yung, editors, INDOCRYPT, volume 4859 of Lecture Notes in Computer
Science, pages 224–237. Springer, 2007.

9. Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

10. Jing Pan, Jasper G. J. van Woudenberg, Jerry den Hartog, and Marc F. Witteman.
Improving DPA by peak distribution analysis. In Alex Biryukov, Guang Gong, and
Douglas R. Stinson, editors, Selected Areas in Cryptography, volume 6544 of Lecture
Notes in Computer Science, pages 241–261. Springer, 2010.

11. John M. Pollard. Monte Carlo methods for index computation (mod p). Mathe-
matics of Computation, 32:918–924, 1978.

12. John M. Pollard. Kangaroos, monopoly and discrete logarithms. J. Cryptology,
13(4):437–447, 2000.

13. Daniel Shanks. Class number, a theory of factorization, and genera. In Donald J.
Lewis, editor, 1969 Number Theory Institute, volume 20 of Proceedings of Symposia
in Pure Mathematics, pages 415–440, Providence, Rhode Island, 1971. American
Mathematical Society.

14. Andreas Stein and Edlyn Teske. The parallelized Pollard kangaroo method in real
quadratic function fields. Math. Comput., 71(238):793–814, 2002.

15. Ernst G. Straus. Addition chains of vectors (problem 5125). American Mathe-
matical Monthly, 70:806–808, 1964. URL: http://cr.yp.to/bib/entries.html#
1964/straus.

16. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with crypt-
analytic applications. J. Cryptology, 12(1):1–28, 1999.

17. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in
Cryptography, volume 7707 of Lecture Notes in Computer Science, pages 390–406.
Springer, 2012.

18. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
126–141. Springer, 2013.

19. Colin D. Walter. Sliding windows succumbs to big mac attack. In Proceedings
of the Third International Workshop on Cryptographic Hardware and Embedded
Systems, CHES ’01, pages 286–299, London, UK, UK, 2001. Springer-Verlag.

20. Marc F. Witteman, Jasper G. J. van Woudenberg, and Federico Menarini. De-
feating RSA multiply-always and message blinding countermeasures. In Aggelos
Kiayias, editor, Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track
at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Pro-
ceedings, volume 6558 of Lecture Notes in Computer Science, pages 77–88. Springer,
2011.

	Kangaroos in Side-Channel Attacks
	Introduction
	Background
	A Short History of Discrete Logarithm Algorithms
	Mathematical Aspects of Kangaroos
	Pollard's Kangaroo Method
	Pollard's kangaroo method with precomputation

	-Enumeration
	The Attack Model
	Enumeration in an Interval
	Further Considerations and Optimizations
	Combining Intervals
	Restarts
	Parallelization
	-Rank Estimation

	Experimental Results
	Step sets
	Combining intervals
	Using precomputation
	-Enumeration

	Comparison and Conclusion
	Comparison
	Conclusion

