
Algorithms in HElib

Shai Halevi (IBM) Victor Shoup∗(NYU)

Abstract

HElib is a software library that implements homomorphic encryption (HE), specifically
the Brakerski-Gentry-Vaikuntanathan (BGV) scheme, focusing on effective use of the Smart-
Vercauteren ciphertext packing techniques and the Gentry-Halevi-Smart optimizations. The un-
derlying cryptosystem serves as the equivalent of a “hardware platform” for HElib, in that it
defines a set of operations that can be applied homomorphically, and specifies their cost. This
“platform” is a SIMD environment (somewhat similar Intel SSE and the like), but with a unique
cost metrics and parameters. In this report we describe some of the algorithms and optimiza-
tion techniques that are used in HElib for data movement and simple linear algebra over this
“platform.”

Keywords: Homomorphic Encryption, Implementation, SIMD

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department of
Interior National Business Center (DoI/NBC) contract number D11PC20202. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

∗Work partially done in IBM Research.

Contents

1 Introduction 1

2 Background and Notation 2

3 Permutations and Shift-Networks 3
3.1 Shift Networks . 3
3.2 Benes Networks . 4
3.3 General Benes Networks . 5
3.4 Balancing Depth and Cost in Benes Networks . 6
3.5 Hypercube networks . 7

4 Replication and Linear Algebra 9
4.1 Running- and Total Sums . 10
4.2 Replication . 10

4.2.1 Full replication . 10
4.2.2 A Shallower Full Replication Procedure . 11

4.3 Matrix/Vector Multiplication . 12
4.4 Computing norms and traces . 13

5 Hypercubes in the Underlying “Platform” 14
5.1 Implementing Linear Rotations and Shifts . 14
5.2 Permuting the Hypercube . 16
5.3 Linear Algebra on the Hypercube . 16

1 Introduction

Homomorphic encryption (HE) [17, 8] enables performing arithmetic operations on encrypted data
even without knowing the secret decryption key. All HE schemes to date roughly follow the outline
of Gentry’s first candidate from 2009, in which fresh ciphertexts are “noisy” to ensure security and
this noise grows with every operation until it becomes so large so as to cause decryption errors.
This results in a “somewhat homomorphic” encryption scheme (SWHE) that can only evaluate low-
depth circuits, which can then be converted to a “fully homomorphic” encryption scheme (FHE)
using bootstrapping. Currently, the most asymptotically efficient SWHE schemes that we have are
the RLWE-veriants of Brakerski-Gentry-Vaikuntanathan scheme [6] and Brakerski’s scale-invariant
scheme [4], and the NTRU-based scheme [12, 15]. All these schemes work in polynomial rings, and
use rings of the form Rp = Z[X]/(F (X), p) as their native plaintext space, with F a cyclotomic
polynomial and p an integer.

Smart and Vercauteren observed [18] that (for a prime p) an element in this native plaintext space
can be used to encode a vector of values from a finite field Fpd , for some integer d that depends on F
and p, and that homomorphic operations then induce the corresponding element-wise operation on
the encrypted vectors. Gentry, Halevi, and Smart showed [10] how to use the SV “ciphertext packing”
technique to perform asymptotically efficient computation, where a (wide enough) T -gate arithmetic
circuit can be evaluated homomorphically in time T · polylog(k), with k the security parameter.
Crucial to obtaining this asymptotic efficiency is the use of automorphisms as a technique to move
values between the different “slots” in a given plaintext vector, following [16, 6].

Turning to software implementations, HElib [11] is an open-source C++ library that implements
the BGV scheme, focusing on effective use of ciphertext packing and the GHS optimizations. It
includes an implementation of the BGV scheme itself with all its basic homomorphic operation,
and also some higher-level procedures implementing the GHS data-movement procedures and simple
linear algebra. This report is focused on these higher level procedures and the various optimizations
that went into implementing them.

A useful analogy to keep in mind is to think of the lower-level of HElib as implementing an
“assembly language” which is executed on a “hardware platform” given by the underlying HE scheme.
The “platform” defines a set of operations that can be applied homomorphically and the cost of these
operations; our goal in the current work is to provide efficient implementation of simple routing and
linear-algebra procedures over that “platform.” Since the homomorphic operations define element-
wise operations on the vector of plaintext values, the “platform” defines for us a SIMD environment
(somewhat similar to things like Intel’s SSE, the Motorola/IBM AltiVec architecture, and the like).
Hence the focus of this work is the design of efficient algorithms over this SIMD architecture.

We note that although SIMD hardware architectures are quite common in practice (cf. [19]), we
were unable to find much algorithmic literature concerning asymptotic efficiency in such environ-
ments. This is perhaps related to the fact that common hardware architectures have vectors with
only a handful of entries (for example an SSE register can hold at most 32 8-bit values). On the
other hand, the plaintext arrays in HElib often hold a few hundred plaintext slots (sometimes even a
few thousand), making asymptotic treatment of SIMD algorithms more relevant. Another difference
between the “platform” provided by HE and the common hardware SIMD platforms is their cost
metrics: in HElib we need to optimize for two parameters, namely time and noise-magnitude. These
correspond roughly to size and depth of the corresponding SIMD circuits, but the correspondence is
not quite one-to-one since different operations have different time and noise behavior.

Contents of this report. In Section 2 we describe some details of the “platform” that we get
from the underlying HE scheme, and introduce our notations. Then in Section 3 we describe the
implementation and optimizations of the GHS permutation techniques. In particular we describe

1

there a generalization of Benes networks to handle networks of arbitrary width, extending earlier
work of Chang and Melham [7], and also our approach for optimizing the GHS “hypercube networks.”

In Section 4 we describe our procedures for computing running- and total-sums of a vector,
for replicating the entries of a vector, and for performing a matrix-vector multiplication. We also
describe there procedures for computing the norm and trace functions on the individual plaintext
slots.

Finally in Section 5 we give another level of detail, showing how the vectors that we get from
our HE “platform” may not simply be linear arrays, but rather, may be hypercubes for which some
dimensions may be slightly defective in their functionality. We explain these complications in detail
and show how they affect the permutation and linear-algebra procedures from the previous sections
(and also how to implement linear arrays on top of these hypercubes).

2 Background and Notation

The characteristics that define the “hardware platform” for HElib are common to many contemporary
HE schemes, including the ring-LWE variants of BGV [6] and Brakerski’s scale-invariant scheme [4],
the NTRU-based HE scheme [12, 15], and maybe even some LWE-based schemes [5]. Two salient
characteristics of these cryptosystems are the following:

Growing noise. All contemporary SWHE schemes use noisy ciphertexts, where a fresh ciphertext
includes a noise component that grows with each homomorphic operation, until it is so large that
it causes decryption errors. However, different operations have very different noise-growth behavior.
For example, multiplication increases the noise much more than addition.

Plaintext vectors. The plaintext space of these schemes can be viewed as a vector space over some
finite field (or a module over a finite ring). This means that each native plaintext of the cryptosystem
corresponds to a vector of plaintext values that the application cares about. The underlying field (or
ring) and the dimension of the vector are both derived from some parameters of the cryptosystems;
see, e.g., [10, Appendix c.2] (in the full version) for a description. When using such cryptosystems for
specific homomorphic computation, we are typically faced with a 2-parameter optimization problem,
trying to minimize both the noise-growth and the running time. In a typical scenario we would first
choose the system parameters, which determine the maximum allowable level of noise, and then try
to minimize the running time subject to this fixed bound on the noise. Consequently most of the
optimization procedures that we describe in this work has the form of optimizing the running time
subject to some depth constraints.

In Table 1 we summarize the available homomorphic operations, their effect on the noise, and
their running time. For each parameter (noise and time) we divide the operations into expensive,
moderate, and cheap. We often think of the cheap operations as essentially for free, the expensive
operations as costing one unit (of either time or noise), and the moderate operations as having a cost
of 1/2 unit. We remark that the cost in Table 1 (and even the operations themselves) are merely an
approximation, see Section 5 for some more details.

We would like to draw the reader’s attention to the “moderate” noise-growth of the multiply-by-
constant operation, and stress that we have to pay this “moderate” cost even if we are multiplying
by a constant zero-one vector. This is different than other (additively) homomorphic schemes where
multiplication by zero or one is really “for free.” In our implementation we extensively use multipli-
cations by zero-one vectors to extract from a given vector only some of the entries but not others. We
refer to this operation as multiplicative masking (or masking, for short). We also note that using ro-

2

Operation Time Noise Comments

Addition cheap cheap element-wise addition of vectors
Constant-add cheap cheap element-wise addition of a constant vector
Multiplication expensive expensive element-wise multiplication of vectors
Constant-multiply cheap moderate element-wise multiplication by a constant vector
Rotation expensive cheap cyclic rotation of vector by any amount
Frobenius expensive cheap element-wise Frobenius map, X 7→ Xpn

Table 1: Homomorphic operations and their cost

tations and multiplicative masking we can implement shifts with zero-fill, which would be expensive
in terms of running time and moderate in terms of noise.

Some notations. Throughout this report we use [n] for the set {0 . . n − 1}, and use zero-based
indexing for vectors. For two vectors u, v, we use u+ v and u× v to denote entry-wise addition and
multiplication.

3 Permutations and Shift-Networks

The core of the GHS homomorphic data-routing techniques [10] is the use of Benes-like networks to
arbitrarily permute the slots in a ciphertext (which is needed to allow different slots to interact with
each other). In this section we describe our implementation and optimizations of the GHS techniques.
We begin by introducing the notion of a shift network, and the shift-network minimization problem.

3.1 Shift Networks

A shift network is a method to realize an arbitrary permutation in terms of rotations, multiplicative
masking, and additions. We begin by describing an arbitrary permutation in terms of a single “shift
column”: for an arbitrary permutation π : [n] → [n], the shift-column corresponding to π is a
vector shπ that describes for each index i the distance that i needs to travel under π. In formula,
we have shπ[i] = π(i)− i (subtraction over the integers).

We note that a shift-column gives us a simple way of applying π to an arbitrary vector v using
shift operations, multiplicative masking, and additions. Namely, for every value δ that appears in
shπ we first construct a mask mδ which is 1 in the entries where shπ[i] = δ and 0 elsewhere. We
then extract from v only these entries (by multiplying mδ × v) and shift the result by δ positions,
and finally add up all the resulting vectors. Namely the permuted vector is obtained by

w ←
∑
δ∈shπ

(mδ × v)� δ

where × denote entry-wise multiplication and � denotes shift. The running-time cost of this imple-
mentation of π is proportional to the number of distinct values in shπ. Specifically if shπ contains t
distinct non-zero values then this implementation would perform t shift operations (and some other
cheap operations that we ignore). Hence we define the cost of shπ as the number of distinct non-zero
values in it. The cost of this operation in terms of noise is roughly a single multiply-by-constant
(since adding the resulting vector has almost no effect on the noise).

If we use rotations instead of shifts, then we can apply a similar procedure but this time use a

3

mask m′δ which is 1 in the entries where shπ[i] = δ (mod n) and 0 elsewhere, then set

w ←
∑
δ

(m′δ × v)�> δ

where �> denotes rotation. The running-time cost of the implementation would then be related to
the number of distinct non-zero values in shπ modulo n, and the cost in terms of noise will be a single
multiply-by-constant (since rotations and additions are cheap). We thus also define the reduced cost
of shπ as the number of distinct non-zero values in it modulo n.

A shift network N is a sequence of shift-columns, namely, an n × d matrix (for some d), with
each column representing a permutation. If the d columns represent the permutation π1, . . . , πd then
the network as a whole represents the composed permutation π = πd ◦ · · · ◦ π1. We say that d is the
depth of the shift network, and the columns of N are the levels of the network. The (reduced) cost
of the network N is just the sum of the (reduced) costs of all levels.

A shift network for π implies an algorithm for applying π to vectors, just by applying each πi in
turn using its shift vector. If the network has depth d and reduced cost c, then this implementation
of π takes c multiplicative masks, c rotations, and O(c) additions, and has depth of d multiplicative
masking operations, d rotations, and O(d) additions.

The Cheapest-shift-network (CSN) problem. Of course there are many different shift net-
works that implement the same permutation, and given a target permutation π we want to find
the cheapest network for it. In our setting, we typically think of the depth as a constraint and
the (reduced) cost as the quantity that we optimize for. Hence we get the following optimization
problem:

Input: A permutation π over [n] and a depth-bound B.

Output: A shift-network for π of depth at most B, minimizing the (reduced) cost.

We note that the bound parameter really does matter. For example, most permutations require
a cost-Ω(n) depth-1 solution, but every permutation has a cost-O(

√
n) depth-2 solution (and more

generally cost O(d · n1/d) depth-d solution). Even the unbounded version of this problem (with
B =∞) seems interesting, but in our case we are typically more interested in the bounded version.
We do not know of an efficient procedure for finding the least-cost network for a given permutation
and depth-bound, and speculate that it is a hard problem. Below we show, however, that when
restricting ourselves to a certain natural class of solutions we can efficiently find the least-cost solution
in this class.

3.2 Benes Networks

A Benes network for a permutation π is a special kind of shift network, which is rather cheap and
can be constructed efficiently from any permutation. We begin by reviewing basic Benes network
construction for n = 2r, then describe the generalization of Chang and Melham [7] to arbitrary n
and our optimization of the Chang-Melham construction for our setting.

For n = 2r, a Benes network for a permutation π on [n] is a shift network of depth 2r − 1,
where every level in the network has a cost at most 2. Such a network decomposes π into 2r − 1
permutations: π = σr−1 ◦ · · ·σ1 ◦ σ0 ◦ τ1 · · · ◦ τr−1, where the action of each σk and τk is to move any
i ∈ [n] to either i, i+2k, or i−2k. Moreover, each σk and τk consists of 2r−1−k separate permutations
on different 2k+1-intervals of indexes. This is a network of depth 2r− 1 = O(log n) and cost at most
4r − 2 = O(log n), hence it corresponds to a fairly efficient permutation algorithm.

4

Decomposing a permutation into a Benes network can be done via a recursive procedure. In
the first step, we decompose π = σ ◦ ρ ◦ τ , with ρ consisting of two separate permutation over the
top half and bottom half of the network, and then we recurse on two halves of ρ. Computing the
decomposition π = σ ◦ ρ ◦ τ can be done using the greedy “looping algorithm.” Denote m = n/2 =
2r−1, S0 = {0 . .m− 1} and S1 = {m. . n− 1}. We seek a decomposition as above such that:

(P1) σ and τ map each i ∈ S0 to either i or i+m, and each i ∈ S1 to either i or i−m;

(P2) ρ consists of two permutations on S0 and S1 separately.

We construct an undirected graph G with n nodes on each side, Li, Ri for i ∈ [n], then add an edge
from Li to Rπ(i) for each i ∈ [n] (call these “permutation edges”), and also add edges from each Li
to Li+m and each Ri to Ri+m when i < m (called “conflict edges”).

It is easy to see that G is 2-colorable. Indeed, a simple algorithm to 2-color the graph is to
start at any node, trace out a path that must lead back to the starting node, alternates between
permutation and conflict edges. This creates an even-size circle that we can color with two colors,
then remove from G and repeat the procedure on the smaller graph.

Once we have a two coloring of G with each vertex ν colored by C(ν) ∈ {0, 1}, we define σ and
τ as follows: For each left vertex Li we interpret a color of 0 as τ sending i to the top half and color
of 1 as τ sending i to the bottom half. So we have τ(i)← i if i ∈ S0 and C(Li) = 0 or if i ∈ S1 and
C(Li) = 1, and otherwise τ(i)← i±m.

Similarly for each right vertex Ri we interpret a color of 0 as σ receiving i from the bottom half
and color of 1 as σ receiving i from the top half. Hence we have σ−1(i)← i if i ∈ S0 and C(Li) = 1
or if i ∈ S1 and C(Li) = 0, and otherwise σ−1(i)← i±m.

for i ∈ S0: τ(i)← i+ C(Li)m, σ−1(i)← i+ (1− C(Ri))m;
for i ∈ S1: τ(i)← i− (1− C(Li))m, σ−1(i)← i− C(Ri)m.

(1)

Setting the permutations τ and σ determines also the middle permutation ρ (which must satisfy
property (P2)) and we can then recurse on the two halves of ρ.

We stress that in our setting it is crucial that the shift amounts for the permutations σk, τk are
always exactly ±2k and 0, regardless of the permutation π. Indeed, in the above we recurse on two
different halves of ρ, and subsequent steps recurse on a large number of different permutations. Had
the shift amounts depended on the actual permutations, we would have had a higher cost for the
shift-columns that implement ρ.

3.3 General Benes Networks

Chang and Melham [7] proposed a generalization of Benes networks that works for any n, not just
a power of two. Below we describe this generalization and then optimize it for our setting.

Note that the procedure above for decomposing π = σ ◦ ρ ◦ τ work for any even n. When n
is odd, we instead break the network into two “nearly equal” parts, namely one part of size bn/2c
the other of size dn/2e. Suppose that we let the top part be the smaller of the two, so we set
m = bn/2c, S0 = {0 . .m−1} and S1 = {m. . n−1}. Chang and Melham observed that we can adapt
the procedure from above for decomposing π = σ ◦ ρ ◦ τ with properties (P1) and (P2) simply by
insisting that the last index, n− 1, is mapped to itself by both σ and τ , and applying the procedure
from above to all the other indexes. Formally, we construct a graph G as above but only put the
conflict edges Li—Li+m and Ri—Ri+m for i < m (which means that none of these edges touches Ln−1
or Rn−1), and then add a special conflict edge between Ln−1 and Rn−1. The rest of the algorithm
works without any change, and correctness follows from the exact same arguments.

5

𝜏 𝜏 𝜌 𝜎 𝜌 𝜎

Figure 1: An illustration of the two different ways to decompose a size-5 permutation as π = τ ◦ρ◦σ.

Now that we can partition both even- and odd-size networks, we can again recurse and construct
a “generalized Benes network” of depth d = 2dlog ne−1 for any permutation. However, we no longer
have the property that each level of the network only has shift amounts 0 and ±m for a single shift
amount m, so we can no longer bound the cost of the network by 2d.

Trying to bound the cost of the resulting network, we observe that all the sub-permutations at a
certain level of the network are almost of the same size. specifically they have size either dn/2ke or
bn/2kc. It follows that each level has at most four non-zero shift amounts, namely ±dn/2k+1e and
±bn/2k+1c, so we can bound the cost of the network by 4d. Unfortunately this bound still implies
a factor-of-2 slowdown when n is not a power of two. Below we describe another optimization that
allows us to recover the original bound of 2d.

Further optimizations. To reduce the cost further, we observe that there are two different options
for how to split the network when n is odd, and that these two options result in different shift amounts
in the shift-vectors for σ and τ . Specifically, above we made the bottom part larger, which meant
setting the shift amount to m = bn/2c and fixing σ(n− 1) = τ(n− 1) = n− 1 by adding a conflict
edge between Ln−1 = Rn−1. However we can also make the top half larger, then we set the shift
amount to m = dn/2e and fix σ(m − 1) = τ(m − 1) = m − 1 by adding a conflict edge between
Lm−1 = Rm−1. An illustration of the two bipartite graphs and the corresponding decompositions
of π that we get for a size-5 permutation can be found in Figure 1.

This observation gives us the freedom to choose the shift amounts that are used in partitioning
odd-size subnetworks to either bn/2c or dn/2e, as needed to be compatible with the even-size sub-
networks in that level (if any). Thus we can recursively decompose any permutation π on [n] for
arbitrary n as π = σr−1 ◦ · · ·σ1 ◦σ0 ◦ τ1 ◦ · · · τr−1, where r = dlog2 ne and the action of each σk and τk
is to move any i ∈ [n] to either i or i±∆k, with the “shift amount” ∆k :=

⌈
bn/2r−1−kc/2

⌉
. We get

a shift network for π of depth 2dlog2 ne − 1 and a cost of 2 for each level, which means a (4 log n)-
approximation for the unbounded cheapest-shift-network problem. As we said above, however, in our
application we typically care more about the bounded cheapest-shift-network problem. In the next
section we describe a method for incorporating the bounded depth into the algorithm.

3.4 Balancing Depth and Cost in Benes Networks

In our application to HE we often need to consider trade-offs between depth and cost in constructing
shift networks. One natural way to enforce a depth constraint is to start from a solution to the
unbounded CSN problem (such as a Benes network), and then “collapse” several consecutive levels
into one, thereby reducing the depth at the price of increasing the cost.

Given a general Benes network and a bound B, we seek the “optimal way” to collapse consecutive
levels so as to get a depth-B network for the same permutation. Recall that the domain size n

6

determines the depth d of the generalized Benes network, as well as the set of possible shift amounts
that may appear at each level of the network. Our approach is therefore to devise the level-collapse
strategy based only on n and the bound B, rather than re-compute it for each permutation separately.

To compute the optimal level-collapse strategy for given n and B, we use a simple dynamic-
programming approach. Let d = 2dlog2 ne−1 be the depth of a generalized Benes network for size-n
permutations and let Sk be the set of shift amounts that can occur at level k in the network. (That
is, Sk = {0,±∆k} for k ≤ dlog ne and Sk = {0,±∆d−k} for k > dlog ne.)

For each pair of indexes 0 ≤ j1 ≤ j2 < d, we let L(j1, j2) denote the number of possible non-zero
shift amounts that can occur when collapsing levels j1 through j2. (This number is certainly an upper
bound for the cost of the corresponding shift-vector for any particular Benes network, and usually it
is a fairly tight one.) Specifically, L(j1, j2) is the number of distinct non-zero integers in the interval
(−n, n) that can be written as a sum εj1 + εj1+1 + · · ·+ εj2 , with εk ∈ Sk for all k = j1 . . j2. Clearly
the L(j1, j2) values can be computed efficiently (in time quasi-linear in n). Given these values, we
can write a recursive formula for the optimal level-collapsing strategy for a given n,B. Specifically
for each 0 ≤ d′ ≤ d, 0 ≤ B′ ≤ B let Opt(d′, B′) be the cost of the optimal way of collapsing some of
the first d′ columns of the depth-d network so as to get depth B′. Then we have Opt(d′, B′) = 0 if
d′ = 0, Opt(d′, B′) =∞ if d′ > 0 and B′ = 0, and otherwise

Opt(d′, B′) = min
`=1..d′

{
L(d′ − `, d′ − 1) + Opt(d′ − `, B′ − 1)

}
.

In words, we consider collapsing the last ` levels into a single level of cost L(d′ − `, d′ − 1), and then
add to that the optimal cost for the first d′ − ` levels, using the bound B′ − 1 in place of B′.

Since there are only O(d2) values (d′, B′) as above, we can use standard dynamic programming
techniques to compute Opt(d,B) and the collapsing strategy that achieves it.1 We should note here
that any n× d shift network can be collapsed to a network of depth 1 and cost at most 2n− 1 (and
reduced cost at most n− 1).

3.5 Hypercube networks

A different method of constructing shift networks, which is described in [10], is via “hypercube
networks”: If n can be factored as n = ab, then we can impose on [n] a two-dimensional matrix
structure of a rows and b columns, using some appropriate bijective map M : [n] → [a] × [b]. Some
possible choices of the map M include:

CRT order (only when gcd(a, b) = 1): M maps i ∈ [n] to (i mod a, i mod b) ∈ [a]× [b];

Row-major order: M maps 0 . . b− 1 to the first matrix row, b . . 2b− 1 to the second row, etc;

column-major order: M maps 0 . . a−1 to the first matrix column, a . . 2a−1 to the second column,
etc.

Row- and column-major orders may appear more natural, but CRT ordering (when applicable)
has an advantage, because the map M is actually a ring homomorphism (viewing [n], [a], [b] as the
rings Zn,Za,Zb, respectively). As done in [10], we will use the following decomposition lemma from
[14]:

Lemma 1 Let S = [a]× [b] be a set of ab positions, arranged as a rectangular matrix of a rows and b
columns. For any permutation π over S, there are permutations σ, ρ, τ such that π = σ ◦ ρ ◦ τ , where
σ and τ permute positions within each column, and ρ permutes positions within each row. Moreover,
there is a polynomial-time algorithm that given π outputs the permutations σ, ρ, τ .

1This algorithm can be easily adapted to use reduced network costs in place of network costs, when that is the
desired cost metric.

7

Of course, once we decompose π as above, we can apply the same lemma recursively to each
row of ρ, thus imposing an r-dimensional hypercube structure on [n] and decomposing π into 2r− 1
permutations π = π1◦· · ·◦π2r−1, each of which acts along a single dimension.2 We can then construct
Benes networks for the πi’s, collapsing some of the levels within those networks so as to satisfy a
bound B on the overall depth. Optimizing over this class of solutions requires finding the best
splitting of n into factors, the best way to layout the hypercube, and the best strategy for collapsing
the levels of the Benes networks.

So consider n = ab, and a map M : [n] → [a] × [b], which induces a correspondence between a
permutation π on [a] × [b] and its representation π̄ as a permutation on [n]. Furthermore, consider
the natural generalization of the notion of a shift network to an a × b matrix: the entries in such
a network are now of the form (∆i,∆j), and in determining reduced costs, we consider two entries
(∆i,∆j) and (∆i′,∆j′) to be equivalent if ∆i ≡ ∆i′ (mod a) and ∆j ≡ ∆j′ (mod b).

Next, consider a decomposition π = σ ◦ ρ ◦ τ , as in Lemma 1 and let σ̄, ρ̄, τ̄ be the corresponding
permutations on [n]. We can easily translate shift networks for σ, ρ, τ into shift networks for σ̄, ρ̄, τ̄ ;
however, the relationship between the (reduced) costs of the shift for σ, ρ, τ and the (reduced) costs
of the shift networks for σ̄, ρ̄, τ̄ depends on the mapping M used to impose the matrix structure on
[n].

CRT order. Let λa, λb be the CRT coefficients of a, b, respectively. Then a shift amount of
(∆i,∆j) for a permutation on [a]× [b] translates to a shift amount that is congruent to λa∆i+λb∆j
modulo n for a permutation on [n]. Since λa ≡ 0 (mod b) and λb ≡ 0 (mod a), it follows that the
reduced costs of the shift networks for σ̄, ρ̄, τ̄ are equal to the reduced costs for the networks for
σ, ρ, τ . Thus, reduced costs are preserved in the translation; however, unreduced costs may not be
preserved.

Row-major order. A shift amount of (∆i,∆j) for a permutation on [a] × [b] translates to a
shift amount of b∆i+ a∆i for a permutation on [n]. It follows that the unreduced costs of the shift
networks for σ̄, ρ̄, τ̄ are equal to the unreduced costs of the networks for σ, ρ, τ .

For reduced costs, the situation is a bit different. The shift networks for σ, τ have entries of the
form (∆i, 0), which translates to b∆i; it follows that the reduced costs of the shift networks for σ̄, τ̄
are the same as the reduced costs of the shift networks for σ, τ . In contrast, the shift network for ρ
has entries of the form (0,∆j), which translates to ∆j ; it follows that the reduced cost of the shift
network for ρ̄ is equal to the unreduced cost of the shift network for ρ.

Column-major order. This situation is analogous to row-major order, except that now the
reduced costs of the shift networks for σ̄, τ̄ are equal to the unreduced costs of the shift networks for
σ, τ , while the reduced cost of the shift network for ρ̄ is equal to reduced cost of the shift network
for ρ.

The above observations suggest a recursive formulation to obtain a network of optimal cost for
domain size n satisfying a bound B on the depth of the network. Starting from an initial domain
size n, bound B, and cost metric to optimize (reduced/unreduced cost), we compare using size-n
generalized Benes network to all splits n = ab and all possible ways of allocating our depth budget
B to the three recursive subproblems. We use row/column ordering for the a× b matrix when trying
to minimize the unreduced cost, and CRT ordering when trying to minimize the reduced cost and
have gcd(a, b) = 1. We then recursively solve the three subproblems, trying to optimize either the
reduced or unreduced cost, as needed according to the rules from above.

Let SplitRcost(n,B), SplitUcost(n,B) denote the best reduced/unreduced cost for a side-n net-
work with depth-bound B, and similarly let BenesRcost(n,B),BenesUcost(n,B) be the best (re-

2Clearly, a Benes network of width n = 2r is a special case of this construction. Unfortunately, we do not know of
a generalization of Lemma 1 along the lines of the generalized Benes networks from [7].

8

Cyclotomic field Vector size Shift-network depth Shift-network cost Time

m = 4369 n = 256 3 60 4.1 sec
7 35 2.6 sec

10 31 2.8 sec∗
m = 8191 n = 630 5 37 5.0 sec

7 30 4.3 sec
9 28 4.0 sec

m = 21845 n = 1024 5 66 21.2 sec
7 45 18.3 sec∗
9 41 16.7 sec∗

Table 2: Timing results for permutations in various vector sizes. The starred lines indicate that we
had to choose larger parameters because of the larger depth.

duced/unreduced) cost of a generalized Benes for these parameters. Then we have:

SplitUcost(n,B) =

min

 BenesUcost(n,B),

min
ab=n

B1+B2+B3=B

(
SplitUcost(a,B1) + SplitUcost(b, B2) + SplitUcost(a,B3)

)  ;

SplitRcost(n,B) =

min



BenesRcost(n,B),

min
ab=n,gcd(a,b)=1
B1+B2+B3=B

(
SplitRcost(a,B1) + SplitRcost(b, B2) + SplitRcost(a,B3)

)
,

min
ab=n,gcd(a,b)6=1
B1+B2+B3=B

(
SplitRcost(a,B1) + SplitUcost(b, B2) + SplitRcost(a,B3)

)
,

min
ab=n,gcd(a,b)6=1
B1+B2+B3=B

(
SplitUcost(a,B1) + SplitRcost(b, B2) + SplitUcost(a,B3)

)


.

Since there are only polynomially many (n,B) pairs, we can again use dynamic programming to solve
these recursions efficiently. We note that to count the total number of rotations required to implement
a permutation on a domain of size n, the relevant quantity is the reduced cost of the network, i.e.,
SplitRcost(n,B). However, in calculating this reduced cost we need to know the unreduced cost of
some of the subproblems that arise in the above calculation.

Performance results. An illustrative timing results for some settings of the parameters are given
in Table 2.

4 Replication and Linear Algebra

Since our “platform” works natively on vectors of plaintext values, it seems natural to provide support
for simple vector and linear algebra operations. In this section we describe algorithmic issues in our
implementation of these operations. We begin with some basic operations for computing running
sums and total sums, and then continue to replication and matrix-vector multiplication.

9

4.1 Running- and Total Sums

The “running sums” function w ← RS(v) outputs a vector w such that w[i] =
∑i

k=0 v[k] for i ∈ [n].
The “total sums” function w ← TS(v) outputs a vector w such that w[i] =

∑n−1
k=0 v[k] for i ∈ [n].

Both of these functions are implemented using a “repeated doubling” approach whose running time
and depth is O(log n) additions and rotations/shifts.

Below is the code for these procedures, note that the running-sums procedure uses shifts with
zero-fill (which can be implemented using rotations and multiplicative masking), while total-sums
uses rotations. Below we denote by numBits(n) is the number of bits in n, and bitj(n) is the jth
bit of n (with bit 0 being the low-order bit). The invariant throughout the total-sums procedure
is that w[i] =

∑e−1
k=0 v[i − k mod n] for i ∈ [n]; moreover, at the end of loop iteration j, the binary

representation of e consists of bits j . .numBits(n)− 1 of n.

RS(v):

1 w ← v, e← 1
2 while e < n do
3 w ← w + (w � e), e← 2 · e
4 return w

TS(v):

1 w ← v, e← 1
2 for j ← numBits(n)− 2 down to 0 do
3 w ← w + (w>>>e), e← 2 · e
4 if bitj(n) = 1 then
5 w ← v + (w>>> 1), e← e+ 1
6 return w

We stress that although these two procedures are quite similar, the total-sum procedure uses only
rotations and additions that are “cheap” in terms of noise, while the running-sums procedure uses
shifts that induce “moderate” noise growth via the requisite masks.

4.2 Replication

Typical homomorphic computation has gates with large fan-out, which require that we replicate
some plaintext values many times. We have not (yet) implemented a completely generic replication
method (such as the ones from [10]), but we describe procedures that we did implement for efficient
replication in a few interesting special cases.

Replicating a single value. We begin with a procedure for replicating a single entry across
the entire array. This procedure uses multiplicative masking to extract the entry, then total-sums to
replicate it across the vector. It has both running time and depth of O(log n) additions and rotations
and a single multiplicative masking.

4.2.1 Full replication

In full replication we take a vector v and produce vectors w1, . . . , wn such that for i = 1 . . n, wi has
v[i] in all positions. A naive solution just repeats the single-element replication n times, resulting
in running time of O(n log n) additions and rotations, and n masks; and depth O(log n) “cheap”
additions and rotations and one “moderate” masking.

We now describe a faster simple recursive procedure that uses just O(n) additions, rotations,
and masks, but has depth O(log n) multiplicative masking operations. Later we present a hybrid
algorithm with the same linear running time, but with masking depth of just O(log log n).

A simple recursive procedure. Consider first the case of n = 2`, in this case it is easy to apply
a divide-and-conquer approach, where in each stage we double the number of vectors while halving

10

the number of distinct values in each vector. The following diagram illustrates this approach on a
vector of size 4:

0123

0101

0000 1111

2323

2222 3333

Implementing this approach, we have a recursive procedure that takes as input a vector w and
an integer h = 0 . . ` (and is invoked initially with w = v and h = `). The input vector w consists of
2`−h repetitions of the same size-2h vector (which we call u). The procedure computes two vectors
wL, wR, with wL consisting of 2`−h+1 repetitions of the first half of u, and wR consisting of 2`−h+1

repetitions of the second half of u, and then concatenates the lists obtained by processing wL and
wR, with h decreased by 1. The recursion stops when h = 0 and the singleton list 〈w〉 is returned.

RecursiveReplicate(w, h) :

1 if h = 0 then return 〈w〉
2 else

set mask[i] = bith−1(i) for i ∈ [n] // choose half the entries
3 w1 ← mask× w, w0 ← w − w1

4 wL ← w0 + (w0>>> 2h−1), wR ← w1 + (w1<<< 2h−1)
5 return RecursiveReplicate(wL, h− 1) || RecursiveReplicate(wR, h− 1).

It is easy to adapt this procedure for the case where n is not a power of 2. In this case, suppose
2` is the largest power of 2 not exceeding n. By multiplying by appropriate masks, we can construct
vectors v1 and v2, so that v1 equals v in the first 2` positions and is 0 everywhere else, and v2 equals
v in the last n − 2` positions and is 0 everywhere else. We apply RecursiveReplicate(v1, `), which
gives us vectors w0, . . . , w2`−1, where wi is v[i] is the first 2` positions, and 0 everywhere else. Since
2` > n/2, we can fill out the rest of each wi as required at a cost of one mask, rotation, and addition
per output vector. We apply the very same procedure to v2<<< 2`, but we only need to process the
first n− 2` vectors produced by RecursiveReplicate.

One easily verifies that the running time of this algorithm is O(n) additions, rotations, and
multiplicative masking; its depth is O(log n) additions, rotations, and masking.

4.2.2 A Shallower Full Replication Procedure

We now describe a modification of RecursiveReplicate that retains the same running time bound,
while achieving a masking depth of O(log log n), rather than O(log n). This is done by replacing the
top levels of the recursive algorithm by flatter but more time-consuming procedure (similar to the
naive solution from the beginning of Section 4.2.1), and only switch back to the recursive procedure
for the bottom few levels. We show that with a judicious choice of the number of levels to flatten,
the overall running time remains O(n), while the masking depth decreases to O(log log n). Again,
assume for simplicity that n = 2` is a power of two, and let k be a parameter, whose value we will
choose to be log2 log2 n+O(1).

We partition the entries in the input vector v into n/2k blocks, each of size 2k, with block i
consisting of positions i2k . . (i+1)2k−1. In the first stage of the algorithm we use a “naive procedure,”
similar to the single-entry replication, to construct vectors vi, i = 0 . . n/2k − 1, where vi consists
of the entries in block i repeated n/2k times. (With our choice of the parameter k ≈ log log n, this
“naive part” does most of the replication work, giving us n/ log n vectors with only log n distinct
values in each.)

11

Each vi is produced using the naive procedure, whose running time and depth are both
O(log(n/2k)) additions and rotations, and a single multiplicative masking. Since we have to re-
peat this procedure for each vi, the total running time of this first stage is n/2k · log(n/2k) addi-
tions and rotations, and O(n/2k) masks. With our choice of k ≈ log logn we get running time of
n/ log n · log(n/ log n) = O(n).

For the second stage, we simply apply Algorithm RecursiveReplicate to (vi, k) for i = 0 . . n/2k−1.
The running time of the second stage is O(n) additions, rotations, and masks; its depth is k =
O(log log n) additions, rotations, and masks.

For example, if n = 8 and k = 1, the block size would be 2, and the first stage would produce 4
vectors. This is as illustrated in the following diagram:

01234567

01010101

00000000 11111111

23232323

22222222 33333333

45454545

44444444 55555555

67676767

66666666 77777777

4.3 Matrix/Vector Multiplication

We now proceed to describe our matrix-vector multiplication implementation, namely implementing
the operation w ← Av where we consider w, v as column vectors. The vectors are always encrypted,
and the matrix that could either be encrypted or in plaintext. The main difference between the two
cases is in the cost of moving the data-movement operations that are required to move the matrix
entries around. When the matrix is encrypted, it would be important how it is represented because
a change of representation requires expensive data movement techniques. If it is in the clear, then we
consider changing its representation to be almost for free. We consider first the case of an encrypted
matrix, which is given to us in either row-major order or column-major order, and later consider the
case of a plaintext matrix that we can represent in any convenient order.

Matrix in column-order. Assume that we are given the columns of the matrix as vectors of our
underlying “platform”, A = (c0 | · · · | cn−1), so we have Av =

∑n−1
i=0 v[i]ci. This suggests that we

apply an algorithm for full replication to v, obtaining the vectors v0, . . . , vn−1, and then compute
w ←

∑n−1
i=0 vi × ci. Using the HybridReplicate algorithm in §4.2.2, the running time of this algorithm

will be O(n) additions, multiplications, multiplicative masking, and rotations, and its depth is O(n)
additions, O(log n) rotations, O(log log n) multiplicative masking, and a single multiplication.

Matrix in row-order. Another natural layout of A is where the rows of A are stored as vectors of
the underlying “platform”. In this case we could try to transpose the matrix A so as to be able use
the O(n) algorithm from above (or otherwise rearrange the entries of A), but this seem to require
O(n log n) complexity. However, we can still get a linear-time algorithm, as follows. Suppose the
rows of A are stored as vectors r0, . . . , rn−1. We first compute the vectors pi = v × ri for i ∈ [n].
To complete the calculation, it remains to compute the entries of w by the rule w[i] =

∑
j pi[j]

for i ∈ [n]. Viewing this mapping from p0, . . . , pn−1 to w as a linear map, we may consider the
n×n2 matrix that represents it. But observe: the transpose of this matrix represents the linear map
corresponding to the replication problem; by the “transposition principle” [2, 3], this immediately
gives us an algorithm with the same complexity as any of our algorithms for replication: the algorithm

12

for the transposed problem simply runs the original in reverse, with fan-out and fan-in of addition
exchanging roles, and rotations having their direction reversed, and masking operations unchanged.

Matrix in diagonal order. If the matrix is given to us in plaintext (or if we can pre-process it
arbitrarily before the multiplication), then the best solution is to put it in diagonal order, which
would lets us use the parallel “systolic” multiplication algorithm, cf. [13, Figure 1-35]. (As far as we
know, the first usage of this method in the context of SIMD computation was in the implementations
of Slasa20/ChaCha, see [1, Section 3].) We thank Daniel Bernstein for pointing out to us this method.

In detail, we represent the matrix by n vectors of the underlying “platform” d0, . . . , dn−1 that
contain the generalized diagonals of A. Namely, di = (A0,i, A1,i+1, . . . , An−1,i−1), so di[j] = Aj,j+i,
index arithmetic modulo n). Then the product w = Av can be computed as w ←

∑n−1
i=0 di×(v <<< i),

which takes n rotations, multiplications, and additions, and has depth of one multiplication, one
rotation, and n additions. To see that this gives the right answer, note that the j’th entry in the
result is w[j] =

∑n−1
i=0 di[j] · (v <<< i)[j] =

∑n−1
i=0 Aj,j+i · v[j + i] =

∑n−1
k=0 Aj,k · v[k], as needed.

4.4 Computing norms and traces

Recall that the individual plaintext slots in a HE ciphertext can hold elements from some finite field
Fpd , and that the underlying HE “platform” gives us the Frobenius operations σi(X) = Xpi for
0 < i < d which is applied to all the slots in a SIMD manner. These operations have the same cost
as the rotation operations, namely they are “expensive” in terms of running time but “cheap” in
terms of added noise.

Below we describe how to use the Frobenius operations to compute the norms and traces of the
elements in the slots. Recall that the norm and trace maps are defined as follows:

Norm: N : Fpd → Fp, N(α) :=
∏d−1
i=0 σ

i(α) =
∏d−1
i=0 α

pi = α(pd−1)/(p−1);

Trace: T : Fpd → Fp, T (α) :=
∑d−1

i=0 σ
i(α) =

∑d−1
i=0 α

pi .

Computing traces and norms is often useful. For example, the “field switching” procedure of
Gentry, Halevi, Peikert and Smart [9] relies on computing the trace. Also, computing the norm is
useful in the (quite common) case where we need to compute the “not-equal-to-zero” function. That
is, to map each non-zero slot to 1 while keeping the zero slots as zero, we just need to compute the
function N(X)p−1 (and in the special case p = 2 this is just the norm function itself).

Computing the norm and trace is done directly by their definitions above, as described in the
following code:

Norm(v):

1 w ← v
2 e← 1
3 for j ← numBits(d)− 2 down to 0 do
4 w ← w × σe(w)
5 e← 2 · e
6 if bitj(d) = 1 then
7 w ← v × σ(w)
8 e← e+ 1
9 return w

Trace(v):

1 w ← v
2 e← 1
3 for j ← numBits(d)− 2 down to 0 do
4 w ← w + σe(w)
5 e← 2 · e
6 if bitj(d) = 1 then
7 w ← v + σ(w)
8 e← e+ 1
9 return w

The running time and depth of the norm computation is O(log d) Frobenius powers and multi-
plications, and that of the trace computation is O(log d) Frobenius powers and additions.

13

Cyclotomic field Vector size Operation Time

m = 4369 n = 256 One-Entry Replication 0.3 sec
Full Replication 24.8 sec
Matrix multiply 25.7 sec

m = 8191 n = 630 One-Entry Replication 0.9 sec
Full Replication 192 sec
Matrix multiply 84.3 sec

m = 21845 n = 1024 One-Entry Replication 3.2 sec
Full Replication 800 sec
Matrix multiply 473 sec

Table 3: Timing results for some operations in various vector sizes.

Performance results. An illustrative timing results for some settings of the parameters are given
in Table 3.

5 Hypercubes in the Underlying “Platform”

So far in this report we assumed that the underlying HE “platform” provides us with operations
that rotate (or shift) the plaintext slots as if they are in a linear array. This assumption is not
accurate, however. As described in [10], in general the “platform” gives as a multi-dimensional
hypercube with rotations along each dimension separately. For some parameters we could get a one-
dimensional array, while for others there are more dimensions.3 Moreover, not all these dimensions
are created equal, for some of them we indeed get rotation operations while for others we only get
shift operations (with “garbage-filling”). Of course we can always implement shift with zero-filling
using multiplicative masking and then implement rotations using two zero-fill shifts and addition,
but this incurs a moderate cost in terms of noise and a factor of two in running time. Below we call
dimensions where we get true rotations good dimensions and the others are bad dimensions.

It is possible to implement linear-array rotations and shifts using the “native” rotations along the
different dimensions, and then use the resulting linear rotations in the permutations and linear algebra
routines from above. However this implementation incurs a slowdown factor equals to the number
of dimensions, in terms of both noise and running time. Below we first show how to implement
linear rotations and shifts using the native operations, and then describe more efficient ways of
implementing permutations and linear algebra directly from the hypercube structure, without going
through the linear-array implementation.

5.1 Implementing Linear Rotations and Shifts

Cyclic rotations. The cyclic right-rotation procedure moves the content of the j’th slot to slot
j + k mod n. Hence we can view this operation as adding k to the index of each plaintext slot, all
in parallel. To implement this operation we use a concurrent version of the grade-school addition-
with-carry procedure, using the native rotation-along-a-single-dimension operations.

We think of the rotation amount k (and the indexes) as they are represented in the base corre-
sponding to the sizes of the different dimensions. That is, we number the entries of the hypercube
in lexicographic order, and identify the integer k with the k’th entry in this order. Let r be the

3If the native plaintext space of the HE scheme is Z[X]/(Φm(X), p) then the number of dimensions that we get is
the number of elements in a generating set of the quotient group Z∗m/(p).

14

number of dimensions and fi be the size of the i’th dimension. Then the integer k is represented

by the vector ~e(k) = (e
(k)
1 , . . . , e

(k)
r), where e

(k)
i ∈ [0, fi) is the index along the i’th dimension of the

k’th lexicographic entry of the hypercube. (We also represent each index j in the same fashion.)
We can now think of rotation by k as adding the multi-precision vector ~e(k) to all the vectors ~e(j),
j = 1, . . . , r in parallel.

Beginning with the least-significant digit in these vectors, we use rotate-by-e
(k)
r along the r’th

dimension to implement the operation of e
(j)
r ← e

(j)
r + e

(k)
r mod fr for all j at once. Moving to the

next digit, we now have to add to each e
(j)
r−1 either e

(k)
r−1 or 1 + e

(k)
r−1, depending on whether or not

there was a carry from the previous position. To do that, we compute two rotation amount along the

(r − 1)’th dimension, by e
(k)
r−1 and 1 + e

(k)
r−1, then use a MUX operation to choose the right rotation

amount for every slot. Namely, indexes j for which e
(j)
r ≥ fr − e(k)r (so we have a carry) are taken

from the copy that was rotated by 1 + e
(k)
r−1, while other indexes j are taken from the copy that was

rotated by e
(k)
r−1.

The MUX operation is implemented by preparing a constant mask (denoted mask) that has 1’s in

the slots corresponding to indexes (e1, . . . , er) with er ≥ fr − e(k)r and 0’s in all the other slots, then
computing ~v′ = ~v1 × mask + ~v2 × (1 − mask), where ~v1, ~v2 are the two cubes generated by rotation

along dimension r − 1 by 1 + e
(k)
r−1 and e

(k)
r−1, respectively.

We then move to the next digit, preparing a mask for those j’s for which we have a carry into that

position, then rotating by 1+e
(k)
r−2 and e

(k)
r−2 along the (r−2)’nd dimension and using the mask to do

the MUX between these two ciphertexts. We proceed in a similar manner until the most significant
digit. To complete the description of the algorithm, note that the mask for processing the i’th digit

is computed as follows: For each index j, which is represented by the vector (e
(j)
1 . . . , e

(j)
i , . . . e

(j)
r),

we have maski[j] = 1 if either e
(j)
i ≥ fi − e(k)i , or if e

(j)
i = fi − e(k)i − 1 and maski−1[j] = 1 (i.e. we

had a carry from position i− 1 to position i). Hence the rotation procedure works as follows:

Rotate(~v, k):

1 let (e
(k)
1 , . . . , e

(k)
r) be the kth vector in lexicographic order.

2 Mn ← all-1 mask

3 rotate ~v by e
(k)
r along the rth dimension

4 for i← r − 1 down to 1

5 M ′i ← 1 in the slots j with e
(j)
i+1 ≥ fi+1 − e(k)i+1, 0 in all the other slots

6 M ′′i ← 1 in the slots j with e
(j)
i+1 = fi+1 − e(k)i+1 − 1, 0 in all the outer slots

7 Mi ←M ′i +M ′′i ×Mi+1 // The ith mask

8 ~v ′ ← rotate ~v by e
(k)
i along the ith dimension

9 ~v ′′ ← rotate ~v by 1 + e
(k)
i along the ith dimension

10 ~v ← ~v ′′ ×Mi + ~v ′ × (1−Mi)
11 return ~v

Zero-fill shifts. A non-cyclic zero-fill shift of the linear array by k positions, is implemented very
similarly, except that some positions should be set to zero. It turns out that the only change from
the rotation-by-k procedure is the last step, where we deal with the most significant digit. For a
positive k > 0, every slot j ≥ k gets the content of slot j − k and every slot j < k gets zero. For a
negative k < 0, every slot j < n− |k| gets the content of slot j + |k|, and every slot j ≥ n− |k| gets
zero (with n the number of slots).

For k > 0, this procedure is implemented very similarly to the rotate procedure above, except
that in the last iteration (processing the most-significant digit) we replace the operation of rotate-

by-e
(k)
1 along the 1’st dimension by shift-by-e

(k)
1 along the 1’st dimension (and similarly use shift-by-

15

(1 + e
(k)
1) rather than rotate-by-(1 + e

(k)
1)). For a negative amount −n < k < 0, we use the same

procedure upto the last iteration with amount n + k, and in the last iteration use shift-by-e′ and

shift-by-(1 + e′) along the 1st dimension, for the negative number e′ = e
(k)
1 − f1.

5.2 Permuting the Hypercube

Since the permutation implementation from Section 3 already includes hypercube networks, then
implementing it on top of a hypercube “platform” entails almost no changes. The main difference
from the optimization formula at the bottom of Section 3.5 is that we are forced to use the factor-
ization of n as a hypercube n = n1n2 · · ·nr (but we can further factorize each of the ni’s). Also, in
the optimization problem we need to minimize the reduced cost for networks corresponding to the
good dimensions, and minimize the unreduced cost for the bad dimensions.

5.3 Linear Algebra on the Hypercube

Sums. The total sums algorithm in Section 4.1 is better implemented on a hypercube by running
that algorithm once for each dimension, with n replaced by the size of a given dimension, and the
rotation being replace by a rotation in that dimension. The result is an algorithm whose running
time and depth on a hypercube is essentially the same as that of the original algorithm on a linear
array, without any slowdown factor related the dimension of the hypercube.

Unfortunately, the same cannot be said about the partial-sums procedure, over there there does
not appear to be a better implementation than going through the linear shifts as in Section 5.1.

Replication. The algorithm in Section 4.2 for replicating a single value can also be easily adapted
so that it works one dimension at a time, using one-dimensional rotations in each dimension. The
same holds for the full replication algorithms discussed in that section; however, in the shallower full-
replication procedure, the actual implementation in HElib uses a heuristic to choose the switch-over
parameter from the naive to the recursive algorithm in each dimension.

Matrix-vector multiplication. The diagonal-based algorithm for matrix-vector multiplication
can also be implemented directly using one-dimensional rotations on a hypercube. The idea is
that instead of working with the n rotations of a vector viewed as a linear array, we work with
the n permutations obtained by composing all possible rotations in each dimension. This set of
permutations is “sharply transitive”, meaning that for every i, j in the domain, there is a unique
permutation π in the set such that π(i) = j. It turns out that this property is sufficient to guarantee
correctness.

If the hypercube has dimensions (n1, . . . , nr), then running time of the resulting algorithm is
n multiplications and additions, and n + n/nr + n/(nrnr−1) + · · · rotations along the different
dimensions. This gives 2n rotations in the worst case, but usually much less. Actually, the dimensions
should be sorted to optimize the number of rotations, with all bad dimensions coming before good
ones, and otherwise in ascending order of size. The depth is 1 constant multiplication, r rotations
along the different dimensions, and n additions.

References

[1] D. J. Bernstein. ChaCha, a variant of Salsa20. Workshop Record of SASC ’08: The State of
the Art of Stream Ciphers, 2008. http://cr.yp.to/papers.html#chacha.

16

[2] J. L. Bordewijk. Inter-reciprocity applied to electrical networks. Applied Scientific Research B:
Electrophysics, Acoustics, Optics, Mathematical Methods, 6:1–74, 1956.

[3] A. Bostan, G. Lecerf, and E. Schost. Tellegen’s principle into practice. In Proceedings of the 2003
International Symposium on Symbolic and Algebraic Computation, ISSAC ’03, pages 37–44, New
York, NY, USA, 2003. ACM.

[4] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp.
In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 868–886. Springer, 2012.

[5] Z. Brakerski, C. Gentry, and S. Halevi. Packed ciphertexts in lwe-based homomorphic encryp-
tion. In K. Kurosawa and G. Hanaoka, editors, Public Key Cryptography, volume 7778 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2013.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without boot-
strapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012. Available at
http://eprint.iacr.org/2011/277.

[7] C. Chang and R. Melhem. Arbitrary size benes networks. Parallel Processing Letters,
07(03):279–284, 1997.

[8] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM
Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM, 2009.

[9] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Field switching in BGV-style homomorphic
encryption. Journal of Computer Security, 21(5):663–684, 2013.

[10] C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog overhead. In
”Advances in Cryptology - EUROCRYPT 2012”, volume 7237 of Lecture Notes in Computer
Science, pages 465–482. Springer, 2012. Full version at http://eprint.iacr.org/2011/566.

[11] S. Halevi and V. Shoup. HElib - An Implementation of homomorphic encryption. https:

//github.com/shaih/HElib/, Accessed Feb 2014.

[12] J. Hoffstein, J. Pipher, and J. H. Silverman. Ntru: A ring-based public key cryptosystem. In
J. Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998.

[13] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Array, Trees, Hypercubes.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[14] G. Lev, N. Pippenger, and L. Valiant. A fast parallel algorithm for routing in permutation
networks. IEEE Transactions on Computers, C-30:93–100, 1981.

[15] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[16] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lecture
Notes in Computer Science, pages 1–23. Springer, 2010.

[17] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In
Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

17

[18] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

[19] SIMD. Wikipedia article. http://en.wikipedia.org/wiki/SIMD, accessed Feb 2014.

18

