
Some security bounds for the DGHV scheme

Franca Marinelli (f.marinelli@studenti.unitn.it)
Department of Mathematics, University of Trento, Italy

Riccardo Aragona (riccardo.aragona@unitn.it)

Department of Mathematics, University of Trento, Italy

Chiara Marcolla (chiara.marcolla@unitn.it)

Department of Mathematics, University of Trento, Italy

Massimiliano Sala (maxsalacodes@gmail.com)

Department of Mathematics, University of Trento, Italy

Abstract

The correctness in decrypting a ciphertext after some operations in the DGVH
scheme depends heavily on the dimension of the secret key. In this paper we compute
two bounds on the size of the secret key for the DGHV scheme to decrypt correctly
a ciphertext after a fixed number of additions and a fixed number of multiplication.
Moreover we improve the original bound on the dimension of the secret key for a
general circuit.

Keywords: Public-key cryptography, Fully Homomorphic Encryption,
Somewhat Homomorphic Encryption, DGVH scheme.

1 Introduction

Fully Homomorphic Encryption (FHE) allows to perform computation of
arbitrary functions on encrypted data without being able to decrypt. The
first construction of an FHE scheme was described by Gentry in his PhD the-
sis [Gen09] in 2009. The first Gentry’s FHE scheme [Gen09,Gen10] proceeds
in three steps. First, one constructs a Somewhat Homomorphic Encryption
(SHE) scheme, namely which is able to decrypt correctly only a limited num-
ber of operations. The second step is to express the encryption function by a
low-degree polynomial (squash). Then, one applies the bootstrapping to reduce
the noise and to compact the ciphertext.

31/I/2014 .

2 Some security bounds for the DGHV scheme

Nowadays three main families of FHE schemes are:

1. Gentry’s scheme [Gen09,Gen10], based on hard problems on ideal lattices,
and implemented in [SV10,GH11].

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the
integers [DGHV10], based on the approximate GCD problem, and imple-
mented in [CMNT11]. A batch version of this scheme has been proposed
in [CCK+13].

3. Brakerski and Vaikuntanathan’s (BV) scheme based on the Learning with
Errors (LWE) problem [BV11a] or Ring Learning with Errors (RLWE)
problem [BV11b]. Other implementations are in [NLV11,BGV12,GHS12].

For a survey articles see [Sil13,Vai11].

In this paper we focus on the SHE of the DGHV scheme [DGHV10], whose
description we recall in Section 2. As already said, in SHE schemes if the size
of noise remains below a certain threshold, then one can decrypt correctly the
ciphertext. This threshold is dependent on the dimension of the secret key. In
Section 3, first we compute two bounds on the size of the secret key which
permit respectively to decrypt correctly a ciphertext after performing a cer-
tain number of homomorphic either additions or multiplications (Lemma 3.2).
Then, in Lemma 3.3 we improve slightly the bound on the secret key for a
general circuit, claimed in Lemma 3 in [DGHV10]. Finally, in Subsection 3.3
we show explicitly that in Evaluate algorithm we cannot reduce the ciphertext
modulo the public key element x0 as observed in [DGHV10].

2 Preliminary

2.1 Homomorphic Encryption

Let λ be the security parameter. An homomorphic public key encryption
scheme E = (KeyGen,Encrypt,Decrypt,Evaluate) is a quadruple of probabilistic
polynomial-time (PPT) algorithms as follows.

• KeyGen(λ) = (sk, pk),
it takes as input a security parameter λ and outputs a pair of keys (sk, pk),
where sk is called the secret key and pk is called the public key.

• Encrypt(pk,m) = c, where m ∈ F2,
it takes as inputs pk and a message m, that is a bit, and outputs a
ciphertext c.

• Decrypt(sk, c) = m ∗,
it takes as input sk and a ciphertext c and outputs a bit m ∗.

• Evaluate(pk, C, (c1, . . . , ct)) = cf ,

CGC

3

it takes as input a public key pk, a circuit C and a t-upla of ciphertexts
c = (c1, . . . , ct), where ci = Encrypt(pk,mi) and outputs a ciphertext cf .

A fully homomorphic scheme is a scheme E = (KeyGen,Encrypt,Decrypt,
Evaluate) having the following property: if Decrypt(sk, ci) = mi, then

Decrypt(sk, c1 + c2) = m1 +m2 and Decrypt(sk, c1 · c2) = m1 ·m2

More generally, whenever we have finitely many additions and multiplications,
that is, a t-input circuit C, then

Decrypt(sk,Evaluate(pk, C, c1, . . . , ct)) = C(m1, . . . ,mt)

Another requirement of FHE, called ciphertext compactness, is that the size of
ciphertexts is bounded and independent of the circuit C. To define formally
FHE, we need the following definitions given in [DGHV10].

Definition 2.1. The scheme E is correct for a given t-input circuit C if, for
any key-pair (sk, pk) output by KeyGen(λ), any t plaintexts m1, . . . ,mt ∈ F2,
and any t ciphertexts ci = Encrypt(pk,mi) for i = 1, . . . , t, it is the case that:

Decrypt(sk,Evaluate(pk, C, (c1, . . . , ct)) = C(m1, . . . ,mt).

Definition 2.2. The scheme E is homomorphic for a class C of circuits if
it is correct for all circuits C ∈ C, whereas E is fully homomorphic if it is
correct for all boolean circuits.

In this paper, we deal with Somewhat Homomorphic Encryption. Infor-
mally, we say that E is a SHE scheme if it has only some homomorphic prop-
erties but it is not fully since

• it can perform a limited number of operations,

• the ciphertexts compactness requirement might be violated.

In the next subsection we see in details the DGHV scheme defined in
[DGHV10].

2.2 The Somewhat Homomorphic DGHV Scheme

Throughout the paper we denote a random choice of an element x in a

set X by x
$←−−− X. Let λ be the security parameter. The DGHV public-key

scheme is the homomorphic encryption scheme

E = (KeyGen,Encrypt,Decrypt,Evaluate),

which uses the five parameters (all depending from λ):

η : the bit-length of the secret key sk,

CGC

4 Some security bounds for the DGHV scheme

γ : the bit-length of the integers in the public key pk,

ρ : the bit-length of the noise in KeyGen,

ρ′ : the bit-length of the noise in Encrypt,

τ : the number of integers in the public key.

In [DGHV10] the authors proved that these parameters must be set as follows:

– ρ = ω(log λ), to protect against brute-force attacks on the noise;

– η ≥ ρ ·Θ(λ log2 λ) to support homomorphism for deep enough circuits to
evaluate the “squashed decryption circuit” (see Sections 3.2 and 6.2 in
[DGHV10]);

– γ = ω(η2 log λ) to thwart various lattice-based attacks on the underlying
approximate-gcd problem (see Section 5 in [DGHV10]);

– τ ≥ γ + ω(log λ) (see Lemma 4.3 in [DGHV10]);

– ρ′ = ρ+ ω(log λ), used as secondary noise parameter.

Hence, a convenient set of parameters is ρ = λ, ρ′ = 2λ, η = O(λ2), γ = O(λ5)
and τ = γ + λ.
For a specific odd η-bit positive integer p, we use the following distribution
over γ-bit integers:

Dγ,ρ(p) = {x = pq + r : q
$←−−− Z ∩ [0, 2γ/p), r

$←−−− Z ∩ (−2ρ, 2ρ)}.

The algorithms of E are defined as follows:

KeyGen(λ) = (pk, sk).
The secret key sk is a random odd η-bit positive integer

sk := p ∈ (2Z + 1) ∩ [2η−1, 2η).

Instead, for the public key, KeyGen works as follows:

(a) for each i = 0, ..., τ , chooses randomly xi ∈ Dγ,ρ(p),
(b) relabels xi so that x0 = pq0 + r0 is the largest,
(c) if x0 mod 2 ≡ 1 and r0 mod 2 ≡ 0, i.e. x0 is odd and r0 is even, then

the public key is the set of numbers chosen in (a):

pk = {x0, x1, ..., xτ}.

Otherwise it restarts from (a).

Encrypt(pk,m) = c.
It chooses:

• a random subset S ⊆ {1, ..., τ},
• a random r′ in Z ∩ (−2ρ

′
, 2ρ

′
)

CGC

5

and computes a ciphertext

c = (m+ 2r′ + 2
∑
i∈S

xi) mod x0.

Decrypt(sk, c) = m∗.
The output m∗ is computes in this way:

m∗ = (c mod p) mod 2.

Evaluate(pk, C, c1, ..., ct) = cf .
Given the (binary) circuit C with t inputs, and t ciphertexts ci, we apply
the (integer) addition and multiplication gates of C to the ciphertexts, per-
forming all the operations over the integers, and return the resulting integer.
Finally the output of Evaluate is a ciphertext cf , that is an integer.

3 Bound on the decryption

For every x ∈ R, let bxc = max{k ∈ Z : k ≤ x} be the floor of x and let
dxe = min{k ∈ Z : k ≥ x} be the ceiling of x. We denote the nearest integer
of x by bxe, in other words

bxe =

 bxc if x− bxc < 1
2

dxe if x− bxc ≥ 1
2
.

Throughout the section for every y and m ∈ Z we consider the reduction of y
modulo m in (−m

2
, m

2
].

3.1 Bound on the decryption of fresh ciphertexts

Lemma 3.1. Let (pk, sk) be the output by KeyGen(λ) and let c be the output
by Encrypt(pk,m). If η > log2(2

ρ′ + τ2ρ+1) + 2, then Decrypt(sk, c) = m, that
is, it is able to decrypt correctly c.

Proof. By definition c = (m+2r′+2
∑

i∈S xi) mod x0 is a fresh ciphertext.
In particular we have that:

c =
(
m+ 2r′ + 2

∑
i∈S

xi

)
mod x0

= m+ 2r′ + 2
∑
i∈S

xi − kx0 (for some k ∈ Z)

= m+ 2r′ + 2
∑
i∈S

(pqi + ri)− k(pq0 + r0)

CGC

6 Some security bounds for the DGHV scheme

c = p
(

2
∑
i∈S

qi − kq0
)

+m+ 2r′ + 2
∑
i∈S

ri − kr0.

When we decrypt the fresh ciphertext c, we compute:

(c mod p) mod 2 =
((
m+ 2r′ + 2

∑
i∈S

ri − kr0
)

mod p
)

mod 2.

Since r0 is even, if m+ 2r′ + 2
∑

i∈S ri − kr0 is in [−p
2
, p
2
) then

((
m+2r′+2

∑
i∈S

ri−kr0
)

mod p
)

mod 2 =
(
m+2r′+2

∑
i∈S

ri−kr0
)

mod 2 = m.

So we want that

−p
2
≤ m+ 2r′ + 2

∑
i∈S

ri − kr0 <
p

2
. (1)

Now m+2r′+2
∑

i∈S xi ≡ c mod x0, i.e. m+2r′+2
∑

i∈S xi = c+kx0. Since
we consider the reduction modulo x0 in [−x0

2
, x0

2
), then

k =
m+ 2r′ + 2

∑
i∈S xi

x0
− c

x0
=

⌊
m+ 2r′ + 2

∑
i∈S xi

x0

⌉
. (2)

Since m+ 2r′ � x0, then we can consider m+2r′

x0
< 1

2
. In the worst case of (2),

we have that
∑

i∈S xi = τx0, so we obtain

k =

⌊
m+ 2r′ + 2

∑
i∈S xi

x0

⌉
=

⌊
m+ 2r′

x0
+ 2τ

⌉
= 2τ

Whereas, in the worst case of (1), replacing k with 2τ , we have

p

2
> m+ 2r′ + 2

∑
i∈S

ri − 2τr0.

Considering the number of bits of p, ri and r′, since r0 ∈ (−2ρ, 2ρ), for the
worst case we obtain

2η−1 > 2 · 2ρ′ + 2τ · 2ρ + 2τ · 2ρ = 2 · 2ρ′ + 4τ · 2ρ = 2(2ρ
′
+ τ2ρ+1),

that is, 2η > 4(2ρ
′
+ τ2ρ+1). Then we obtain the bound

η > log2(2
ρ′ + τ2ρ+1) + 2. (3)

CGC

7

3.2 Bound on the decryption of ciphertexts after operations

In this section we present two different bounds on the bit-length of sk such
that DGHV-scheme is homomorphic with respect to either a circuit with only
v addictions or a circuit with only s multiplications.

Lemma 3.2. Let (pk, sk) be the output of KeyGen(λ) and let ca be the out-
put of Evaluate(pk, C, c1, ..., cv) in the addition case, where for i = 1, . . . , v,
Encrypt(pk,mi) = ci. Let cm be the output of Evaluate(pk, C, c1, ..., cs) in the
multiplication case, where Encrypt(pk,mi) = ci, for i = 1, . . . , s .

1. If η > log2(2
ρ′ + τ2ρ+1)+ log2 v+2, then Decrypt(sk, ca) is able to decrypt

correctly ca, that is, Decrypt(sk, ca) = C(m1, . . . ,mv) = m1 + . . .+mv.

2. If η > s
[
log2(2

ρ′ + τ2ρ+1) + 1
]
+1, then Decrypt(sk, cm) is able to decrypt

correctly cm, that is, Decrypt(sk, cm) = C(m1, . . . ,ms) = m1 · . . . ·ms.

Proof. We consider two distinct cases: the sum of v ciphertexts and the
product of s ciphertexts. For both we examine the worst case, that is, the sum
(or the product) of ciphertext having the same error.

1. We suppose that Evaluate takes as input v times the same ciphertext c.
So, we have

c+ ...+ c︸ ︷︷ ︸
v times

= vc = v
(
m+ 2r′ + 2

∑
i∈S xi − kx0

)
,

where k is such as in (2).

As in the proof of Lemma 3.1, we want that

−p
2
≤ v(m+ 2r′ + 2

∑
i∈S

ri − kr0) <
p

2
.

So we obtain 2η > 4v(2ρ
′
+ τ2ρ+1), that is,

η > log2(2
ρ′ + τ2ρ+1) + log2 v + 2 = log2(v(2ρ

′
+ τ2ρ+1)) + 2.

Note that the inequality below is η > B+ log2 v, where B is the value on
the right side of bound (3).

2. We suppose that Evaluate takes as input s times the same ciphertext c.

c · ... · c︸ ︷︷ ︸
s times

= c s =
(
m+ 2r′ + 2

∑
i∈S xi − kx0

)s
.

where k is such as in (2).

As before, we want that −p
2
≤
(
m+ 2r′ + 2

∑
i∈S xi − kr0

)s
< p

2
. Thus,

we obtain
2η > 2s+1(2ρ

′
+ τ2ρ+1)s,

CGC

8 Some security bounds for the DGHV scheme

that is,

η > s log2(2
ρ′ + τ2ρ+1) + s+ 1 = s

[
log2(2

ρ′ + τ2ρ+1) + 1
]

+ 1. (4)

Note that the inequality below is η > s · (B−1) + 1, where B is the value
on the right side of bound (3).

In general we have the following lemma:

Lemma 3.3. Let C be a binary circuit with t inputs, and let C ′ be the associ-
ated integer circuit (where the gates are replaced with integer operations). Let
f(x1, . . . , xt) be the multivariate polynomial computed by C ′ and let d be its
degree. If

η ≥ d
[
log2(2

ρ′ + τ2ρ+1) + 1
]

+ 1 + log |f |,

where |f | is the sum of absolute values of the coefficients of f , then
Decrypt(sk,Evaluate(pk, C, c1, ..., ct)) = C(m1, . . . ,mt).

Proof. Suppose that Evaluate takes as input s times the same ciphertext c,
that is, f(c) = a0 + a1c + . . . + adc

d. As before, we want that |f(c)| ≤ p/2.
Since

|a0 + a1c+ . . .+ adc
d| ≤ |a0 + a1 + . . .+ ad| · |cd| = |f | · |cd|,

so, if the scheme is correct for |f(c)| < p/2, then it is correct also for |f ||cd| <
p/2. By 2. of Lemma 3.2, we obtain:

η ≥ d log2(2
ρ′ + τ2ρ+1) + d+ 1 + log |f |.

Note that for large λ, we have log2(2
ρ′ + τ2ρ+1) ≈ log2(2

ρ′) and so we
obtain

η ≥ d(ρ′ + 1) + 1 + log |f |.
If we consider |f(c)| < p/8, we obtain η ≥ d(ρ′ + 1) + 4 + log |f |, slightly
improving of Lemma 3 in [DGHV10] which claims η ≥ d(ρ′ + 2) + 4 + log |f |.
In particular, if d is large then the improvement is significant.

3.3 Encrypt vs Evaluate

As we saw before, a key property of FHE is the compactness of the cipher-
text [Gen09,Gen10,Vai11,DGHV10]. We recall that a ciphertext cf is compact
if its size, after homomorphic evaluation, does not depend on the number of
inputs t and it is also independent of the circuit C. This means that we want
that the ciphertext cf has the same size of the output c of Encrypt. Note

CGC

9

that it does not happen in DGHV scheme because in the Encrypt algorithm
the ciphertext is reduced modulo x0, whereas in the Evaluate algorithm this
reduction is not performed and so the ciphertext grows. After just one mul-
tiplication the ciphertext becomes much larger than x0 and this implies that
η > γ. We recall that γ has to be equal to ω(η2 log λ), and so bigger than η.

Although the reduction modulo x0 would help in the Evaluate algorithm,
in [DGHV10] the authors claim that this reduction is not possible. We now
prove their claim. We consider cf equals to c2 modulo x0:

cf = c2 mod x0 =
(
m+ 2r′ + 2

∑
i∈S

xi − kx0
)2

mod x0

=
(
m+ 2r′ + 2

∑
i∈S

xi

)2
mod x0

=
(
m+ 2r′ + 2

∑
i∈S

xi

)2
− k′x0, for some k′ ∈ Z. (5)

So we have

k′ =

⌊(
m+ 2r′ + 2

∑
i∈S xi

)2
x0

− c2

x0

⌉
=

⌊(
m+ 2r′ + 2

∑
i∈S xi

)2
x0

⌉
,

that is, in the worst case,

k′ =

⌊
(m+ 2r′ + 2τx0)

2

x0

⌉
=

⌊
(m+ 2r′)2

x0
+

4τ 2x20
x0

+
4τx0(m+ 2r′)

x0

⌉
.

Hence, since we can consider m+2r′

x0
< 1

2
, we obtain

k′ = 4τ 2x0 + 4τ(m+ 2r′). (6)

By (5)

cf mod p =
((
m+ 2r′ + 2p

∑
i∈S

qi + 2
∑
i∈S

ri
)2 − k′pq0 − k′r0) mod p

=
((
m+ 2r′ + 2

∑
i∈S

ri
)2 − k′r0) mod p

Therefore, as done in the proof of Lemma 3.1 and replacing k′ with 4τ 2x0 +
4τ(m+ 2r′), to decrypt correctly cf we want that

−p
2
≤
(
m+ 2r′ + 2

∑
i∈S

ri

)2
− (4τ 2x0 + 4τ(m+ 2r′))r0 <

p

2
(7)

Considering the number of bits of p, ri and r′, since (7) holds f or every
r0 ∈ (−2ρ, 2ρ), in the worst case we can observe that

CGC

10 Some security bounds for the DGHV scheme

2η−1 >
(
2 · 2ρ′ + 2τ · 2ρ

)2
+ 2ρ

(
22τ 2 · 2γ + 23τ · 2ρ′

)
> 4
(
τ 2 · 2ρ(2γ + 2ρ) + 4τ · 2ρ+ρ′ + 22ρ′

)
.

Hence

η > 3 + log2

(
τ 2 · 2ρ(2γ + 2ρ) + 4τ · 2ρ+ρ′ + 22ρ′

)
> 3 + log2

(
τ 2 · 2ρ+γ

)
= 3 + 2 log2 τ + ρ+ γ > γ.

Acknowledgements

This research has been supported by TELSY S.p.A.

These results are contained in the first author’s MSc thesis and she would
like to thank the other authors, especially her supervisor (the last author).

References

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, (Leveled) fully
homomorphic encryption without bootstrapping, Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ACM, 2012,
pp. 309–325.

[BV11a] Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic
encryption from (standard) LWE, 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science—FOCS 2011, IEEE Computer
Soc., Los Alamitos, CA, 2011, pp. 97–106.

[BV11b] Z. Brakerski and V. Vaikuntanathan, Fully homomorphic encryption
from ring-LWE and security for key dependent messages, Advances in
cryptology—CRYPTO 2011, Lecture Notes in Comput. Sci., vol. 6841,
Springer, Heidelberg, 2011, pp. 505–524.

[CCK+13] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi,
and A. Yun, Batch fully homomorphic encryption over the integers,
Advances in Cryptology–EUROCRYPT 2013, Springer, 2013, pp. 315–
335.

[CMNT11] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, Fully
homomorphic encryption over the integers with shorter public keys,
Advances in cryptology—CRYPTO 2011, Lecture Notes in Comput. Sci.,
vol. 6841, Springer, Heidelberg, 2011, pp. 487–504.

[DGHV10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully
homomorphic encryption over the integers, Advances in cryptology—
EUROCRYPT 2010, Lecture Notes in Comput. Sci., vol. 6110, Springer,
Berlin, 2010, pp. 24–43.

CGC

11

[Gen09] C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis,
Stanford University, 2009.

[Gen10] , Computing arbitrary functions of encrypted data, Commun.
ACM 53 (2010), no. 3, 97–105.

[GH11] C. Gentry and S. Halevi, Implementing Gentry’s fully-homomorphic
encryption scheme, Advances in cryptology—EUROCRYPT 2011,
Lecture Notes in Comput. Sci., vol. 6632, Springer, Heidelberg, 2011,
pp. 129–148.

[GHS12] C. Gentry, S. Halevi, and N. P. Smart, Fully homomorphic encryption
with polylog overhead, Advances in cryptology—EUROCRYPT 2012,
Lecture Notes in Comput. Sci., vol. 7237, Springer, Heidelberg, 2012,
pp. 465–482.

[NLV11] M. Naehrig, K. Lauter, and V. Vaikuntanathan, Can homomorphic
encryption be practical?, Proceedings of the 3rd ACM workshop on
Cloud computing security workshop, ACM, 2011, pp. 113–124.

[Sil13] A. Silverberg, Fully Homomorphic Encryption for Mathematicians.,
IACR Cryptology ePrint Archive 2013 (2013), 250.

[SV10] N. P. Smart and F. Vercauteren, Fully homomorphic encryption with
relatively small key and ciphertext sizes, Public key cryptography—PKC
2010, Lecture Notes in Comput. Sci., vol. 6056, Springer, Berlin, 2010,
pp. 420–443.

[Vai11] V. Vaikuntanathan, Computing blindfolded: new developments in fully
homomorphic encryption, 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science—FOCS 2011, IEEE Computer Soc.,
Los Alamitos, CA, 2011, pp. 5–16.

CGC

