
Faster index calculus for the medium prime case
Application to 1175-bit and 1425-bit finite fields

Antoine Joux

CryptoExperts and
Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire PRISM,

45 avenue des États-Unis, F-78035 Versailles Cedex, France
antoine.joux@m4x.org

Abstract. Many index calculus algorithms generate multiplicative relations be-
tween smoothness basis elements by using a process called Sieving. This process
allows to filter potential candidate relations very quickly, without spending too
much time to consider bad candidates. However, from an asymptotic point of
view, there is not much difference between sieving and straightforward testing
of candidates. The reason is that even when sieving, some small amount time is
spend for each bad candidates. Thus, asymptotically, the total number of candi-
dates contributes to the complexity.
In this paper, we introduce a new technique: Pinpointing, which allows us to
construct multiplicate relations much faster, thus reducing the asymptotic com-
plexity of relations’ construction. Unfortunately, we only know how to implement
this technique for finite fields which contain a medium-sized subfield. When ap-
plicable, this method improves the asymptotic complexity of the index calculus
algorithm in the cases where the sieving phase dominates. In practice, it gives a
very interesting boost to the performance of state-of-the-art algorithms. We il-
lustrate the feasability of the method with a discrete logarithm record in medium
prime finite fields of sizes 1175 bits and 1425 bits.

1 Introduction

Index calculus algorithms form a large class of algorithms for solving hard num-
ber theoretic problems which are often used as a basis for public key cryp-
tosystems. They can be used for factoring large integers [14] and for computing
discrete logarithms in finite fields [2, 10, 1] and in some elliptic or hyperelliptic
curve groups [6, 8, 5, 9, 7].

All index calculus algorithms have in common two main algorithmic phase.
The first of these phases is the generation of multiplicative1 relations, which are
converted into linear or affine equalities involving the logarithms of the elements
which appears in the multiplicative relations. The second phase is the linear
algebra phase, which solves the resulting system of equations. For factoring,
the linear algebra is performed modulo 2. For discrete logarithms, it is done
modulo the order of the relevant group. In addition to these two common phases,
several other phases also appear: these extra phases heavily depend on the exact
algorithm being considered. They can be further classified as preparatory or
final phases. The preparatory phases search for a good representation of the
structure being considered in order to speed-up the main phases. For example,

1 In the case of curves, the relation are denoted additively, but the principle remains.

2 Antoine Joux

polynomial selection is a typical preparatory phase which appears when factoring
with the number field sieve [15]. The final phases transform the raw output of
the linear algebra phase into a solution of the considered problem. Typically,
this includes the so-called square root phase of factoring algorithms and the
individual logarithm phase encountered in many discrete logarithm algorithms.
It should be noted that the computational cost of these prepatory and final
phases is usually much smaller than the cost of the main phases.

In most cases, the designers of index calculus algorithms aim at balancing
the theoretical complexity of the two main phases, since this usually yields the
best global effectiveness. However, this is not always possible as illustrated by
the function field sieve for the medium prime case introduced in [13]. In this
specific case, the exact asymptotic complexity varies depending on the relative
contribution of the base field and of the extension degree to the total size of the
finite field being considered (see Section 2). In practice, the two main phases are
usually much less balanced. This is due to the fact that the generation of relations
phase can, in general, be distributed among machines in a straightforward way.
On the contrary, the linear algebra requires a tightly coordinated computation
and is generally performed on a centralized super-computer (or sometimes on
a few super-computers). Since centralized computations that require tight com-
munications are more expensive than distributed computations, implementers
usually generate an extremely large number of linear equations compared to the
number of unknowns. Using various techniques such as filtering, rebalancing or
structured Gaussian elimination, this allows to greatly reduce the size of the
linear system which is eventually solved and thus the cost of the linear algebra
phase. This may increase the total computing power used for the computation,
but trading expensive centralized computations for cheaper distributed compu-
tations is usually worthwhile.

As a consequence of these considerations, we see that the generation of re-
lations is a very important phase of index calculus algorithms. Up to now, two
main techniques are usually used. The simplest approach is direct trial where
one simply checks whether a potential candidate turns into an effective relation
by testing whether an integer or a polynomial splits into a product of “small”
elements. In theory, the parameters of index calculus are selected to make sure
that the cost of testing a candidate has a negligible contribution to the over-
all complexity. However, in practice, factoring these objects has a non-neglibible
cost. Thus, the other approach called sieving is usually prefered. The basic idea of
sieving is to proceed backward and mark all multiples of small elements. Clearly,
an object which receives many marks is much more likely to generate a useful
multiplicative relation that an object which receives few marks. Note that, from
a theoretic point of view, sieving does not change the complexity of the sieving
phase. Indeed, all the potential candidates still need to be considered and even
reducing the cost of considering a candidate to a unit cost would not be enough
to lower the overall asymptotic complexity.

In this paper, we introduce a new technique to generate relations which
is much faster that sieving. In the some cases, the cost of relation generation
becomes essentially optimal: we only require a small number of arithmetic op-

Faster index calculus for the medium prime case 3

erations per generated relation. To indicate that this technique sometimes allow
direct access the relations, we name it Pinpointing. Unfortunately, we only know
how to achieve this for a limited number of index calculus algorithms. More pre-
cisely, we show how to use pinpointing for the medium prime case as described
in [13].

2 A refresher on the medium prime case

The medium prime discrete logarithms proposed in [13] works as follows. In order
to compute discrete logarithms in Fqn , a degree n extension of the base field Fq,
it starts by defining the extension field implicitly from two bivariate polynomials
in X and Y :

f1(X,Y) = X − g1(Y), f2(X, t) = −g2(X) + Y,

where g1 and g2 are univariate polynomials of degree d1 and d2. In order to define
the expected extension, this requires that the polynomial −g2(g1(Y)) + Y has
an irreducible factor F (Y) of degree n over Fq. As explained in [13], it is easy to
find polynomials g1 and g2 that satisfy this requirement.

The relative degrees of d1 and d2 in this case are controlled by an extra
parameter D, whose choice is determined by the size of q compared to qn. More
precisely, we have d1 ≈

√
Dn and d2 ≈

√
n/D.

Starting from this definition of the finite field, the medium prime field algo-
rithms consider objects of the formA(Y)X+B(Y), whereA and B are univariate
polynomials of degree D and A is unitary. Substituting X by g1(Y) on one side
and Y by g2(X) on the other, we obtain an equation:

A(Y) g1(Y) + B(Y) = A(g2(X))X + B(g2(X)).

This relates a polynomial of degree d1 + D in Y and a polynomial of degree
Dd2 + 1 in X.

To use the equations as index calculus relations, the algorithm of [13] selects
the set of all unitary polynomials of degree at most D in X or Y , with coefficients
in Fq as its smoothness basis and keeps pairs of polynomials (a, b) such that the
two polynomials a(Y) g1(Y) + b(Y) and a(g2(X))X + b(g2(X)) both factor into
terms of degree at most D. These good pairs are found using a classical sieving
approach.

Writing Q = qn, to analyze the complexity of the medium prime discrete
logarithms, [13] chooses to write q = LQ(1/3, αD), where as usual:

LQ(β, c) = exp((c+ o(1))(logQ)β(log logQ)1−β).

In this setting, the (heuristic) asymptotic complexity of the sieving phase is
LQ(1/3, c1) and the complexity of the linear algebra is LQ(1/3, c2), with:

c1 =
2

3
√
αD

+ αD and c2 = 2αD.

4 Antoine Joux

Note that the algorithm with parameter D only works under the condition:

(D + 1)α ≥ 2

3
√
αD

. (1)

Otherwise, the number of expected relations is too small to relate all elements of
the smoothness basis. For a finite field Fqn , [13] indicates that the best complexity
is obtained choosing the smallest acceptable value for the parameter D.

2.1 Individual discrete logarithms phase

Another very important phase that appears in many index calculus based algo-
rithms is the individual discrete logarithms phase which allows to compute the
logarithm of an arbitrary field element by finding a multiplicative relation which
relates this element to the elements of the smoothness basis whose logarithms
have already been computed.

In [13], this is done by first expressing the desired element as a product of
elements which can be represented as low degree polynomials in X or t. These
polynomials can in turn be related to polynomials of a lower degree and so on,
until hitting degree one, i.e. elements of the smoothness basis. For this reason,
the individual logarithm phase is also called the descent phase.

As analyzed in [13], the asymptotic complexity of the descent phase is

LQ

(
1/3,

1

3µ
√
αD

)
,

where µ < 1 is an arbitrary parameter. Moreover, any choice of µ in the inter-
val]1/2; 1[ensures that the complexity of the descent phase is asymptotically
negligible compared to (at least one of) the main phases.

3 Pinpointing

3.1 Basic framework

In order to improve the generation of relations, we first consider the simple case
with parameter D = 1 and we construct our finite field extension using two
polynomials that have the following restricted form:

X = Y d1 and

Y = g2(X),

where g2 is a polynomial of degree d2. To generate relations, since D = 1, we
consider the space spanned by XY , X, Y and 1, i.e., after renormalization we
are thus considering the following candidates:

Y d1+1 + aY d1 + bY + c = X g2(X) + aX + b g2(X) + c,

where a, b and c are arbitrary coefficients in Fq.
A candidate yields a valid multiplicative relation when both sides factor into

linear polynomials. We remark that the left-hand side Y d1+1 + aY d1 + bY + c
splits into linear terms, if and only if, Ud1+1 +Ud1 + b a−d1 U + c a−d1−1 factors
into linear terms. This can be seen by performing the change of variable Y = aU
and dividing by ad1+1.

Faster index calculus for the medium prime case 5

3.2 One-sided pinpointing

Using this remark, we obtain a first form of pinpointing which only focuses on the
Y side. This form searches for polynomials in U of the form Ud1+1+Ud1+B U+C.
This can be done either by directly testing candidates or by sieving. We need to
consider approximately (d1 + 1)! candidates to find a good polynomial.

Once we have obtained one such smooth polynomial, we can amplify it (using
the change of variable U = Y/a) into many polynomials Y d1+1 + aY d1 + bY + c,
where a is an arbitrary non-zero element in Fq, b = Bad1 and c = Cad1+1.
This amortizes the cost of finding the initial polynomial, distributing this cost
among many candidates. Indeed, we expect to obtain approximately q/(d2 + 1)!
relations by testing the right-hand sides corresponding to q − 1 different values
of a. Adding to this the cost of finding the initial smooth polynomial, we find an
amortized cost per relation close to:

(d1 + 1)! + (q − 1)

(q − 1)/(d2 + 1)!
=

(d1 + 1)! (d2 + 1)!

q − 1
+ (d2 + 1)!

This is clearly better than the cost of classical sieving which, in this case, amounts
to (d2 + 1)! (d1 + 1)! operations per relation. More precisely, this improves the
cost of the relation by a factor of, at least, min(q − 1, (d1 + 1)!)/2.

3.3 Kummer extensions, Frobenius and advanced pinpointing

With some specific extension fields, it is possible to achieve an even better im-
provement over sieving, using a two-side approach to pinpointing. Moreover, this
can be done while taking into account the action of Frobenius which allows us
to reduce the size of the linear system.

We illustrate this using Kummer extensions of degree n = d1d2 − 1. We
recall that a Kummer extension of degree n is defined over a finite field Fq which
contains n-mi roots of unity by a polynomial P (X) = Xn − α, where α has no
root of prime order m|n in Fq. Let µ denote a primitive n-th root of unity in Fq
and x denote a n-th root of α in Fqn , then we have:

P (X) =
n−1∏
i=0

(X − µix).

As a consequence, there exists a i0 prime to n such that xq = µi0x. By changing
our choice of primitive root µ, we can ensure that i0 = 1. Thus, throughout the
sequel, we have xq = µx.

Such a Kummer extension can be obtained in our framework by defining:

X = Y d1/α and (2)

Y = Xd2

Substituting one equation in the other, we find Xd1d2 − αX = 0. Thus dividing
by X we obtain the desired Kummer extension. If x denotes as above the image
of X in Fqn , the image of Y is y = xd2 . Once again, since we are considering

6 Antoine Joux

D = 1, our smoothness basis contains all the linear polynomials x+ a and y+ a
with a in Fq.

The Frobenius acts on the smoothness basis as follows:

(x+ a)q = xq + a = µx+ a = µ(x+ a/µ) and

(y + a)q = yq + a = µd1 y + a = µd1(y + a/µd1).

As a consequence, in the quotient group F(q
n)∗/F∗q , we have:

log(x+ a/µ) = q log(x+ a) and

log(y + a/µd1) = q log(y + a).

These relations allow us to divide the number of unknowns in the linear system
that we need to solve by a factor essentialy equal to n. Indeed, all elements in the
factor base except x and y have precisely n conjuguates (including themselves).
Moreover, since xn(q−1) = 1 and yn(q−1) = 1, the logarithms of x and y are equal
to 0 modulo any large prime dividing the order of the quotient group.

Advanced pinpointing: Generating equations in Kummer extensions
As in the one-sided case, we consider the space of candidates generated by XY ,
X, Y and 1. Due to our specific choices, the renormalized candidates can be
rewritten in a slightly simpler form:

XY + aY + bX + c =

Xd2+1 + aXd2 + bX + c = Y d1+1/α+ b Y d1/α+ aY + c.

We now remark that the polynomial on the X side splits, if and only if, Ud2+1 +
Ud2 + b a−d2 U + c a−d2−1 splits. Moreover, the polynomial on the Y side splits,
if and only if, V d1+1/α+ V d1/α+ a b−d1 V + c b−d1−1 splits.

Let λ = c/(ab), then the polynomials in U and V can respectively be rewrit-
ten as:

Ud2+1 + Ud2 + b a−d2 (U + λ) and (V d1+1 + V d1)/α+ a b−d1(V + λ).

Converserly, choose a triple (A,B, λ), with A 6= 0 and B 6= 0 and ABd2 a
n-th power in Fq such that:

Ud2+1 + Ud2 +A (U + λ) and (V d1+1 + V d1)/α+B(V + λ)

both split. Then, we can recover a unique (up to Frobenius action) triple (a, b, c)
corresponding to a candidate that yields an equation in the finite field. We first
recover a and b. Putting together the two equations A = ba−d2 and B = ab−d1 ,
we find bn = bd1d2−1 = 1/(ABd2). Since, by hypothesis, ABd2 is a n-th power this
equation has n distinct solutions. Choose one arbitrary solution for b, then we
necessarily have a = Bbd1 and c = λab. We thus obtain a valid candidate (a, b, c).
To show the unicity up to Frobenius action, we start from another solution µib
and obtain the triple (µd1i, µib, µ(d1+1)ic). Now, let the Frobenius act j times on:

Xd2+1 + aXd2 + bX + c

Faster index calculus for the medium prime case 7

and renormalize to obtain:

Xd2+1 + aµ−jd2Xd2 + bµ−jd1d2X + cµ−jd1(d2+1).

Since d1d2 ≡ 1 (mod n), we see that for j ≡ −i (mod n), the action of Frobenius
yields that same equation as the new choice for b.

Notes. Once λ is fixed, finding the triples (A,B, λ) which satisfy the property
that ABd2 is n-th power is a simple matter. Indeed, it suffices to partition the list
of possible values for A and B in n sublists depending on the discrete logarithms
of A (resp. B) modulo n. Since n is small, these values are easily computed by
comparing A(qn−1)/n (resp. B(qn−1)/n) with the possible n-th root of unity in FQ.

We can also remark that this form advanced pinpointing can be used for
some extension fields which are not Kummer extension. Indeed, when d1d2 − 1
does not divides the order of Fq, choosing X = Y d1/α and Y = Xd2 cannot
define an extension of degree d1d2 − 1 because the polynomial Xd1d2 − αX has
two roots in Fq. However, depending on q, it may yield a extension of degree
d1d2 − 2. The main drawback compared to the Kummer extensions is that we
cannot use the action of Frobenius to reduce the size of the smoothness basis.

Cost considerations For each value of λ, creating the list of A-values costs
O(q) operations and the list contains about (q − 1)/(d2 + 1)! elements. Sim-
ilarly, the list of B-values costs O(q) operations and contains approximately
(q − 1)/(d1 + 1)! elements. For a fixed λ, the total number of (A,B) pairs that
yields a good triple (A,B, λ) is approximately:

(q − 1)2

n(d1 + 1)!(d2 + 1)!
.

As a consequence, the average cost of constructing one relation is:

1 +O

(
n(d1 + 1)!(d2 + 1)!

(q − 1)

)
. (3)

If we remember that the factor n in the second term is compensated by the
fact that we only need q/n relations instead of q, we see that the other term is
reduced from (d1 + 1)! to 1. As a consequence, the gain compared to sieving is
at least (q − 1)/2.

An interesting side-effect of this advanced pinpointing is that once the list
of A and B values have been stored, the equations can be regenerated for a
constant cost. This is interesting, because these lists are smaller than the list
of equations. As a consequence, rather that storing the equations, it becomes
preferable to recompute them on the fly whenever they are needed, thus saving
disk space (and disk access time).

3.4 Complexity of relation construction using pinpointing

We first recall that the cost of sieving from [13]:

LQ

(
1/3, α+

2

3
√
α

)
.

8 Antoine Joux

Moreover it is only applicable for α ≥ 3−2/3.

Using one-sided pinpointing As in [13], we now assume consider the com-
plexity of computing discrete logarithms in a field FQ, with Q = qn, assuming
that the parameter α defined as:

α =
1

n

(
logQ

log logQ

)2/3

is fixed. In this setting, we have q = LQ(1/3, α). Since the smoothness basis has
size 2q, the cost of the linear algebra is the same as in [13], i.e., it is LQ(1/3, c2)
with c2 = 2α.

However, the complexity of collecting the relations is reduced compared to
sieving. Indeed, the cost of collecting approximately 2q relations becomes:

2(d1 + 1)!(q + (d2 + 1)!).

Using the usual choice for d1 and d2, this can be written as:

LQ

(
1/3,

1

3
√
α

+ max(α,
1

3
√
α

)

)
Note that this can be further improved by choosing the degrees d1 and d2 as
follows:

d1 ≈
1

3α2

(
log(Q)

log log(Q)

)1/3

and

d2 ≈ 3α

(
log(Q)

log log(Q)

)1/3

.

For α ≥ 3−2/3, this reduces the complexity to

LQ

(
1/3, α+

1

9α2

)

Using advanced pinpointing To determine the asymptotic complexity of
the advanced pinpointing method, we can ignore the action of Frobenius. In-
deed, despite offering a very useful practical improvement, it does not provide
an asympotic gain. The cost of collecting enough relations in this case is:

2(q + (d1 + 1)!(d2 + 1)!).

We choose:

d1 ≈ d2 ≈ α−1/2
(

log(Q)

log log(Q)

)1/3

As a consequence, the cost of building the relations becomes:

LQ

(
1/3,max

(
α,

2

3
√
α

))
.

Faster index calculus for the medium prime case 9

Direct access to relations. When α ≥ 2
3
√
α

, i.e. α ≥ (2/3)2/3, the cost of building

relations becomes equal to the number of relations. In other words, the right
summand in equation (3) becomes negligible and each relation can be built in
constant time. In this context, the pinpointing technique gives direct access to
multiplicative relations. It is weird to note that, in this best case for pinpointing,
there is no improvement on the full complexity, as shown in the next paragraph.

Impact on the full discrete logarithm complexity In order to define the
asymptotic complexity of the discrete logarithm computation for the algorithm
with parameter D = 1, we also need to take into account the complexity of the
linear algebra LQ(1/3, 2α). For α ≥ 3−2/3, this cost is higher than the cost of
pinpointing in either version. As a consequence, in this range, the full complex-
ity of discrete logarithm computation becomes LQ(1/3, 2α). When α is in the
interval [3−2/3; (2/3)2/3[, this is better than the algorithm of [13] whose cost is
dominated by sieving. In particular, for α = 3−2/3, the cost is reduced from
LQ(1/3, 31/3) ≈ LQ(1/3, 1.44) to LQ(1/3, 2/32/3) ≈ LQ(1/3, 0.96).

4 Generalization to D > 1

The one-sided pinpointing technique presented above can easily be generalized
to the case where D > 1 in a straightforward way. More precisely, it suffices to
remark that a polynomial:

Xd +
d−1∑
i=0

aiX
i,

can be decomposed into a product of polynomials of degree at most D, if and
only if, the polynomial:

Ud + Ud1 +

d−2∑
i=0

ai a
d−i
d−1U

i

can be decomposed into a product of polynomials of degree at most D.
As a consequence, we can essentially save a factor q−1 compared to a sieving

approach if we use a pinpointing approach in this general case.

Resulting complexity. As in [13], we consider the case where Equation (1) is
satisfied. The amortized cost of constructing one relation is:

SD(d1 +D) + (q − 1)

(q − 1)/SD(Dd2 + 1)
=
SD(d1 +D)SD(Dd2 + 1)

q − 1
+ SD(Dd2 + 1),

where SD(T) denotes the inverse of the probability for a degree T polynomial
to decompose as a product of polynomials of degree at most D. We recall that
SD(T) ≈ exp((T/D) log T/D) (see [13, 16]). As a consequence, the runtime of
the relation collection is approximated by:

SD(d1 +D)SD(Dd2 + 1)qD−1 + SD(Dd2 + 1)qD.

10 Antoine Joux

For the usual choice, d1 ≈
√
Dn and d2 ≈

√
n/D and writing q = LQ(1/3, αD)

this becomes:

LQ

(
1/3, D(D − 1)α+

1

3D
√
α

+ max(
1

3D
√
α
,Dα)

)
.

Depending on the exact value of α, it can be re-optimized by changing the value
of d1 and d2. When possible, the complexity becomes:

LQ

(
1/3, D2α+

1

9D2α2

)
.

To test whether re-optimization is possible, it suffices to compare the two com-
plexities and keep the smaller.

4.1 Kummer extensions with D > 1.

In the case where D > 1, it is clear that using Kummer extensions allows to
account for the action of Frobenius, as in the D = 1 case. However, it is less
clear that a dual-sided approach is also possible in this case. It turns out that the
method used for D = 1 remains applicable. More precisely, define the relation
between X and Y as in equation 2 and consider the space of candidatesA(Y)X+
B(Y), where A and B are polynomials of degree D and A is unitary. We write
A(Y) = Y D + aY D−1 + · · · and B(Y) = bY D + cY D−1 + · · · .

The X-side is:

XDd2+1 + bXDd2 + aX(D−1)d2+1 + cX(D−1)d2 + · · ·

It splits, if and only if:

UDd2+1 + UDd2 +
a

bd2

(
U (D−1)d2+1 +

c

ab
U (D−1)d2

)
+ · · ·

also splits. Similarly, the Y -side is:

Y d1+D/α+ aY d1+D−1/α+ · · ·+ bY D + cY (D−1) + · · ·

It splits, if and only if:

V d1+D/α+ V d1+D−1/α+ · · ·+ b

ad1

(
V D +

c

ab
V (D−1)

)
+ · · ·

also splits. As a consequence, given λ = c/(ab), A = b/ad1 and B = a/bd2 such
that ABd1 is a n-th power, we can transform all smooth polynomials in U and
V into smooth polynomials in X and Y form with matching values for a, b and
c. If the other coefficients also match, we obtain a relation.

However, due to the cost of matching extra coefficients, this is not as favorable
as in the case D = 1.

Faster index calculus for the medium prime case 11

5 Application: a record on 1175 bits

In order to demonstrate the practicality of our algorithm, we give a new record for
discrete logarithms in finite fields in a particularly favorable case. More precisely,
we decided to improve on the discrete logarithm record in F370 80130 presented
in [12] and to choose a much larger field Fp47 , with p = 33 553 771.

To the best of our knowledge, the previous discrete logarithm record in a
finite field concerned F3582 , a 923-bit field (see [11]). Our result thus increases
the size of the previous record by more than 250 bits. In order to illustrate the
running time improvements gained from our new technique, we compare in the
sequel our running times and the running times from [11]. However, we wish to
warn the reader than this comparison should be analyzed with care. Indeed, the
finite field we have chosen is especially well-suited to our new techniques.

Concerning the chosen finite field, we first remark that p ≡ 1 (mod 47). As
a consequence, we define the extension field using the relations Y = X6 and
Y 8 = 2X. This allows us to use advanced pinpointing and take advantage of
the action of Frobenius. We obtain a smoothness basis of 1.43M elements. The
cardinality of the finite field is:

p47 − 1 = 47 · 2069 · 12409 · (p− 1) · 132103049403319 · C,

where C is a 1073-bit composite cofactor of unknow factorization2.

By construction, X has order 47(p − 1) and thus cannot serve as a base for
discrete logarithm. However, X − 3 is very likely to have order p47 − 1. Indeed,
none of the values (X − 3)(p

47−1)/f is equal to 1, when f is chosen as one of the
known factors of p47 − 1. This choice is validated by our computation since we
can find logarithms of random elements in basis X − 3.

As expected, the construction of the multiplicative relations is extremely ef-
ficient. For this reason, it was performed on a single laptop, using one CPU. We
used advanced pinpointing. The preparatory construction of smooth-polynomials,
for 1000 different values of λ, took a little more than 3 hours on the laptop. Once
this is done, we performed the computation of the relations together with the
structured Gaussian elimination, in 2 minutes. The resulting linear system con-
tains 829 405 unknowns.

As expected, the computation is dominated by the linear algebra step. We
performed this step using a block Wiedemann approach (as in [17]), based on
32 independent series of matrix-vector evaluation. Each run in the series was
performed on a 16-core3 node of Genci’s Curie computer, using OMP threads,
thus using a total of 512 processors. The initial matrix-vector products required
almost 37 hours. Due to memory requirement, the computation of a relation
using block Wiedemann was done on 64 cores of a larger node4 of Curie: it took

2 We have not made any special effort to factor C, so it may well have some factors of moderate
size.

3 More precisely, it was on Curie’s thin nodes: each node contains two octocore Intel Sandy
Bridge EP (E5-2680) processors at 2.7 GHz.

4 Here, we used half of a Curie’s xlarge node, i.e. eight octocore Intel Nehalem-EX X7560
processors at 2.26 GHz .

12 Antoine Joux

9h30min. Finally the recovery of the solution took 32 additional matrix-vectors
products of half length compared to the initial runs. Due to the extra cost of
combining the intermediate values using the coefficients in the relation, this
required almost 25 hours. The grand total amounts to about 32 000 CPU-hours.
We give a comparison of the timings with the previous record in Table 1.

Bitsize Total time Relation construction Linear algebra Indiv. Log.

[11] 923 bits 813 000 CPU.hours 270 000 CPU.h 483 000 CPU.h 60 000 CPU.h

This paper 1175 bits 32 000 CPU.hours 3 CPU.h 32 000 CPU.h 4 CPU.h

This paper 1425 bits 32 000 CPU.hours 6 CPU.h 32 000 CPU.h < 12 CPU.h
(sect. 6)

Table 1. Comparison between the computation and the previous record

To illustrate the results, we first give some discrete logarithms of factor base
elements in base x− 3 modulo C. We note that, as expected, the logarithms of
x and y are both zero modulo C.
log(x− 1) =
958279554173727889612111197507299242684067344181298651243272909430317481396330758
560813251369090454862304876191589736188462639199099191502125281574348537123252148
755041947895233853911550867939437156637523089420798591149108051927269279161198801
13567931724180868901724860373253630442936157531712330314891742481658155699597613
log(x− 2) =
709052847323809595168960125781021479202293916870712723474713912893801706297392879
978483442724086326577186533315018288878673646691823448020790444344617620581034386
025800322533833374564327243676881540966719504001840750899945178776727792016014215
54905236313618024147453867620526117100039277887621947094730742958277464818390465
log(x+ 1) =
221919729580147920873275877593729991652983807389057758615955517518669593629932961
258932119520643525550044466121436910217666464059074815428238445523256036591646686
727265305449739187349155387211518175236829231739749044949974723272049053079929343
06560207700268824803542475788420305869403355275251219067807853032669466128535944
log(y − 1) =
100010054864718730539602231442817542499533931970145916599066628357543905747488230
067813737577015661445633280826086723377988453762736842153466191025060409113700852
281085834243602982367114162527846301248916033975934167510701280680712226718094099
93310027600177764254738174863646977658739191171546816174310362854136358144609763
log(y − 2) =
615276902127207142716438224010940971155687205817344059660713912481190697761226478
311319722767104377102848640581618185132991999276109005475014994965821714282176130
407202306637963400388300523885368470319060103383355874550600780651713474611209649
45190720689474052263809706188924679921054683415735227928798768439809316649275349

The logarithms can be easily checked by computing the values

(X − i)(p47−1)/C − (X − 3)log(X−i) (p
47−1)/C and

(X5 − i)(p47−1)/C − (X − 1)log(Y−i) (p
47−1)/C

Faster index calculus for the medium prime case 13

in Fp47 : these values are all equal to 0.

5.1 Individual discrete logarithm

The computation of individual discrete logarithms is unchanged from [13] and
requires a moderate amount of computing power. We illustrate this by computing
the logarithm of:

Z =
46∑
i=0

(
bπ pi+1c mod p

)
Xi.

The first step is to find a value related to Z which can be expressed using
polynomials in X of relatively low degree. Here, we find that:

Z · (X + 1)359 =
N

D
,

where:

N = (X + 14210538) · (X3 + 11391523X2 + 11557966X + 4735070) ·
(X5 + 19077323X4 + 33518441X3 + 10948280X2 + 22585133X + 10781284) ·
(X6 + 23779790X5 + 19694794X4 + 3592889X3 + 22256672X2 + 26459485X + 17252086) ·
(X8 + 30752676X7 + 23235735X6 + 9985255X5 + 12021197X4 +

24717929X3 + 32859134X2 + 9427686X + 30050174)

D = (X2 + 1349926X + 27933009) · (X2 + 6270430X + 128544) ·
(X2 + 19943007X + 2446135) · (X4 + 11569768X3 + 16137291X2 + 16134928X + 18008733) ·
(X5 + 23551399X4 + 20101733X3 + 18928216X2 + 459685X + 10057276) ·
(X8 + 29709444X7 + 18269267X6 + 8636523X5 + 16115038X4 +

422786X3 + 30511605X2 + 9551655X + 13032796).

Once, this is done, we use the descent procedure to express each factor using
polynomials of lower degree in X and Y . The slowest step in the descent is the
final step that expresses polynomials of degree 2 using linear polynomials. After
the earlier steps of the descent, we have a total of 278 degree polynomials whose
logarithms are required (156 in X and 122 in Y). In the final step, we consider
all polynomials of the form XY + aY + bX + c that are multiples of the target
polynomial and use sieving to find a relation between this target and linear
polynomials. When not possible, we use a relation that also include another
degree 2 polynomial and restart from that polynomial. The total time to obtain
all these logarithms on the laptop used for computing the relations is under 4
hours.

Finally, back-substituting all the logarithms of the linear polynomials, we
derive the logarithm of Z modulo C. To ease verification, we have also computed
this logarithm modulo the small factors and thus give its complete value. We

14 Antoine Joux

have:

log(Z) = 35663312714649406626328113474094944057178080787823953083099211252314049

42775893475045554815091157495604731476318649637458779492102525688657986

42649039047033462050627522813317937084662147227994756376452164608898303

68728733379152433093789922795231130025288283817373896596104544618014057

3240231646914447899262099152488534480737568049333712088197470913054182

6 Details of a larger record on 1425 bits

Since the above record only required a moderate amount of computing power,
we further investigated the potential of the technique by choosing a new target
of a similar form. We considered Fp57 , with p = 33 341 353.

We have p ≡ 1 (mod 57) and we defined the extension field using the rela-
tions: Y = X7 and X = 2/Y 8. The advanced pinpointing technique can easily
be adapted to deal with this case and take advantage of the action of Frobenius.
The initial smoothness basis thus contains1.17M elements. The cardinality of the
finite field is:

p57 − 1 = (p− 1) · (p2 + p+ 1) · 19 · p1 · p2 where

p1 = (

18∑
i=0

pi)/19 and

p2 =
12∑
i=0

p3i − (p+ p20)
5∑
i=0

p3i.

The two primes p1 and p2 respectively have 446 and 900 bits.
Since,X has order 57(p−1), we useX−11 as our basis for discrete logarithms.

The construction of the multiplicative relations was performed on the same lap-
top as previously. For the preparatory construction of smooth-polynomials, we
used 2000 different values of λ, which took 6 hours on the laptop. Once this is
done, we performed the computation of the relations together with the struc-
tured Gaussian elimination, in 2 minutes. The resulting linear system contains
714 931 unknowns.

Once again, the computation is dominated by the linear algebra step. This
time, we split the computation into two independent parts, adressing p1 and
p2 separately. For each of the two primes, the initial matrix-vector products
required 18 hours and 30 minutes, using a 16-core node for each prime. The
block Wiedemann step required 2h30m for p1 and 6h10m for p2, using 64 cores
for each computation. The final run of matrix-vectors products took 12 hours for
each prime. Once again, the grand total amounts to about 32 000 CPU-hours.

6.1 Individual discrete logarithm

The computation of individual discrete logarithms works as previously. However,
for performance reasons, we reimplemented the descent procedure in C, instead

Faster index calculus for the medium prime case 15

of using a mix of PARI/GP scripts and C code as before. The computing power
required for an individual logarithm remains moderate and could be parallelized
if required. We illustrate this by computing the logarithm of:

Z =
56∑
i=0

(
bπ pi+1c mod p

)
Xi.

We have:

Z · (X − 11)2859 =
N

D
,

where:

N = (X + 453778) · (X2 + 69543X + 24883037) ·
(X7 + 14652112X6 + 23050491X5 + 16035316X4 +

16777829X3 + 20432920X2 + 10070364X + 1446274) ·
(X8 + 88887X7 + 13267655X6 + 14700063X5 + 25848282X4 +

15732085X3 + 32131117X2 + 21277564X + 78289) ·
(X10 + 32382849X9 + 21713401X8 + 6783494X7 + 33190934X6 +

23972988X5 + 31889065X4 + 24039922X3 + 29856003X2 + 157980X + 27237978)

D = (X + 17846191) ·
(X8 + 9691592X7 + 14485138X6 + 4075965X5 + 1961487X4 +

24681391X3 + 6776957X2 + 1299019X + 11459785)

(X9 + 32278483X8 + 30661126X7 + 15184481X6 + 20998396X5 +

30331331X4 + 27365616X3 + 25918194X2 + 6196764X + 9404017)

(X10 + 15736682X9 + 24209918X8 + 30399492X7 + 13166125X6 +

26074972X5 + 1017876X4 + 30123586X3 + 24364998X2 + 1124788X + 29766474)

Once, this is done, we use the descent procedure to express each factor using
polynomials of lower degree in X and Y . The slowest step in the descent is again
the final step that expresses polynomials of degree 2 using linear polynomials.
The total time to obtain all the logarithms on the laptop used for computing the
relations is 11h20m hours.

Finally, back-substituting all the logarithms of the linear polynomials, we
derive the logarithm of Z modulo p1 p2. To ease verification, we have also com-
puted this logarithm modulo the small factors and thus give its complete value.
We have:

log(Z) = 38696727954848672340251996343560616689921565412031083259217543064490314

47408883954126868476623514303774994735374412083792131893939754716315174

24844029927129365760724185099125036453504412299497357601200524653484297

57817687904797819402906339667295765269483052878960833041193969662027000

58228267455228614682567866764560024936105482975290632000822052456595422

72461445286333607026598459910186711625408343307828043847399249565522120202

16 Antoine Joux

7 Conclusion and Open problem

In this paper, we have shown a new technique to replace sieving in some index
calculus algorithms. Since we only know how to do this in the medium prime case
of the function field size, it leaves open the problem of generalizing the approach
to other index calculus algorithms. The natural targets are the function field size
without a medium-size subfield and the number field sieve, either for factoring or
computing discrete logarithms. It should be noted that the cubic sieve introduced
in [3] (see [4] for more details) can be seen as a precursor of the method described
in this paper and offers a partial answer to this question. However, generalizing it
to index calculus with higher degree polynomials seems to be a difficult problem.

Acknowledgements

The author would like to thank the organizers of WMC and SCC 2012 for setting
up such a nice and inspiring workshop.

We acknowledge that the results in this paper have been achieved using
the PRACE Research Infrastructure resource Curie based in France at TGCC,
Bruyères-le-Chatel (project number 2011050868).

References

1. Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for discrete
logarithms over finite fields. In Information and Computation, volume 151, pages 5–16.
Academic Press, 1999.

2. Don Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE
transactions on information theory, IT-30(4):587–594, July 1984.

3. Don Coppersmith, Andrew M. Odlyzko, and Richard Schroeppel. Discrete logarithms in
GF(p). Algorithmica, 1(1):1–15, 1986.

4. Abhijit Das and C. E. Veni Madhavan. On the cubic sieve method for computing discrete
logarithms over prime fields. Int. J. Comput. Math., 82(12):1481–1495, 2005.

5. Claus Diem. The GHS attack in odd characteristic. J. Ramanujan Math. Soc., 18(1):1–32,
2003.

6. Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves.
In Advances in cryptology—EUROCRYPT 2000, volume 1807 of Lecture Notes in Comput.
Sci., pages 19–34. Springer, 2000.

7. Pierrick Gaudry. Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symbolic Computation, 2008.

8. Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and destructive facets of
Weil descent on elliptic curves. J. Cryptology, 15(1):19–46, 2002.

9. Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem. A double large
prime variation for small genus hyperelliptic index calculus. Mathematics of Computation,
76:475–492, 2007.

10. Daniel M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J.
Discrete Math., 6(1):124–138, 1993.

11. Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Takagi. Breaking
pairing-based cryptosystems using ηT pairing over F397 . In ASIACRYPT’2012, pages 43–
60, 2012.

12. Antoine Joux and Reynald Lercier. Discrete logarithms in GF(370 80130). NMBRTHRY
list, November 2005.

13. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case. In
Serge Vaudenay, editor, EUROCRYPT’2006, volume 4004 of Lecture Notes in Computer
Science, pages 254–270. Springer, 2006.

Faster index calculus for the medium prime case 17

14. Arjen K. Lenstra and Hendrick W. Lenstra, Jr., editors. The development of the number
field sieve, volume 1554 of Lecture Notes in Mathematics. Springer–Verlag, 1993.

15. Brian A. Murphy. Polynomial selection for the number field sieve integer factorisation
algorithm. PhD thesis, Australian national university, 1999.

16. Daniel Panario, Xavier Gourdon, and Philippe Flajolet. An analytic approach to smooth
polynomials over finite fields. In J. Buhler, editor, Algorithmic Number Theory, Proceedings
of the ANTS-III conference, volume 1423, pages 226–236. Springer, 1998.

17. Emmanuel Thomé. Subquadratic computation of vector generating polynomials and im-
provement of the block wiedemann algorithm. J. Symb. Comput., 33(5):757–775, 2002.

