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Abstract. The indifferentiability framework of Maurer, Renner, and Holenstein (MRH) has
gained immense popularity in recent years and has proved to be a powerful way to argue security
of cryptosystems that enjoy proofs in the random oracle model. Recently, however, Ristenpart,
Shacham, and Shrimpton (RSS) showed that the composition theorem of MRH has a more limited
scope than originally thought, and that extending its scope required the introduction of reset-
indifferentiability, a notion which no practical domain extenders satisfy with respect to random
oracles.

In light of the results of RSS, we set out to rigorously tackle the specifics of indifferentiability
and reset-indifferentiability by viewing the notions as special cases of a more general definition.
Our contributions are twofold. Firstly, we provide the necessary formalism to refine the notion of
indifferentiability regarding composition. By formalizing the definition of stage minimal games we
expose new notions lying in between regular indifferentiability (MRH) and reset-indifferentiability
(RSS).

Secondly, we answer the open problem of RSS by showing that it is impossible to build any domain
extender which is reset-indifferentiable from a random oracle. This result formally confirms the
intuition that reset-indifferentiability is too strong of a notion to be satisfied by any hash function.
As a consequence we look at the weaker notion of single-reset-indifferentiability, yet there as well
we demonstrate that there are no “meaningful” domain extenders which satisfy this notion. Not
all is lost though, as we also view indifferentiability in a more general setting and point out the
possibility for different variants of indifferentiability.
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1 Introduction

The notion of indifferentiability was introduced by Maurer, Renner, and Holenstein (MRH)
in [12] as an extension of the classical notion of indistinguishability. The main result of [12]
allows one to securely replace a functionality ¢ (i.e. a random oracle) in any game G with a
different functionality ¢o (i.e. a hash function), as long as ¢ is shown to be indifferentiable
from 1. Usually ¢y is a functionality which allows for easier security analysis of a game G,
thereby reducing the work needed in order to show that (s is secure with various games.
Since the introduction of the random oracle (RO) model by Bellare and Rogaway in [3], the
security for many simple and efficient employed cryptographic schemes, such as OEAP [4] and
FDH [5], has been proven in the RO model. An important implication of the result of MRH
is that proving that your hash function is indifferentiable from a random oracle allows one to
focus on the modular hash function design and conclude security against generic attacks.
Coron et al. [8] developed the idea of using the work of MRH [12] in the case of hash
function domain extenders. Both the works of MRH [12] and Coron et al. [8] set a line of
research on indifferentiability of hash domain extenders versus random oracles, which resulted
in numerous indifferentiability proofs of hash domain extenders, such as [1,2,6,7,10,11].
Several variants of indifferentiability [9,13,14,16] have appeared in the literature, where
random oracles are replaced with other functionalities. But despite the wide use of the indif-
ferentiability security notion, the seminal indifferentiability framework of MRH has received
little further theoretical attention and treatment. Recently, however, Ristenpart, Shacham,
and Shrimpton (RSS) [15] revealed a surprising result. They showed that the types of games
in which indifferentiable constructions can be securely replaced is limited. To understand their
core observation and the underlying intricacies of the indifferentiability framework, we will



use a slightly modified form of the notation of RSS (a translation of terms from RSS to MRH
can be found in Table 1 in Appendix A).

In [12], MRH define a functionality ¢; to be at least as secure as a functionality (g, if for
any given game G and adversaries Aj, there exist adversaries As such that the quantity

Pr (G:;lll —1) = Pr (G:;‘; —1) (1)

is small. The game G is any procedure with binary output, which may run the adversaries, Ay
or Ay, and the honest interfaces to either ¢1 or ¢s. Here, by the honest interface we simply
mean that part of 1 or wo with which the game may interact, as opposed to the adversarial
interface which only the adversaries may access. A useful way of thinking about making (1)
small is that the objective of G is to distinguish the interaction of A; and ¢ from that of
A2 and o, whereas the objective of (1 is to mimic o as well as possible no matter what
adversaries A; it gets. We would like to explicitly mention that the above definition is given
in terms of all games, which becomes an important point later on.

The connection between 1 being at least as secure as @9 and the indifferentiability of ¢
with respect to ¢z is made in Theorem 1 of [12] (which we refer to as the MRH theorem),
where it is stated that these two concepts are equivalent. The proof relies on the fact that the
adversaries Ay can be explicitly created by defining it to be a combination of the adversaries
A1 and an extra procedure, usually called the simulator. The simulator is introduced via
indifferentiability, where it is defined to be the adversary of a distinguisher. The distinguisher
in turn can be considered as a convenient way of describing all games (anything a game can
do, a distinguisher can do, and vice versa), hence one describes G and A; in terms of a
distinguisher and the MRH theorem is proved.

Yet in [15], RSS point out that there is a hidden assumption used in the proof of the MRH
theorem which restricts the type of games to which the MRH theorem is applicable. In partic-
ular, the games should be restricted to one-games (single-stage games in RSS terminology),
namely games which use one stateful adversary. This is because RSS realized that the dis-
tinguishers with which all indifferentiability proofs have been performed are only as powerful
as one-games (hence, the distinguishers do not cover all games), therefore the simulators are
only designed to work against one-games. As a result, if 1 is indifferentiable from g, then
the quantity in (1) is only guaranteed to be small when G is a one-game. To restore the scope
of the MRH theorem, RSS introduced reset-indifferentiability as a generalization, where the
simulator must be designed to withstand a distinguisher which can reset the simulator’s state
an arbitrary number of times, allowing the MRH theorem to apply to any n-game (n-stage or
multi-stage game in RSS terminology).

Our Contributions

We first start by formalizing what exactly an n-game is in Section 2. Although RSS informally
describe in [15] what they mean by an n(-stage)-game and a minimal n(-stage)-game, in order
to further expand upon the topic of indifferentiability we need a rigorous definition of an
n-game.

Then, by looking at indifferentiability from a more general point of view, in Section 3 we
put the MRH theorem [12] in perspective and note that there are no faults in the application
of indifferentiability. Rather, all existing proofs limit the scope of indifferentiability due to the
nature of the distinguishers used. From this viewpoint we are led to a generalization of indif-
ferentiability: G-indifferentiability, where G is a class of games in which composition will hold.
Indifferentiability, as commonly used, corresponds to the class of one-games, games with one
stateful adversary. The reset-indifferentiability of RSS corresponds to the class of all games,
thereby restoring the implication for any n-game. There are many more types of indifferentia-
bility, as G could be any class of games. One of them is single-reset-indifferentiability, where



the distinguisher may reset the state of the simulator only once (as opposed to an arbitrary
number of times).

As a first step we consider the possibilities of reset-indifferentiability and single-reset-
indifferentiability. We answer the open problem of RSS [15] in proving that there are no domain
extenders which are reset-indifferentiable from a random oracle (Section 4), a generalization
of the impossibility result from [15] that no single-pass domain extenders (processing the
message only once) can be reset-indifferentiable from a random oracle. The intuition behind
this impossibility result is that the distinguisher does not allow the simulator to maintain any
state as it resets the simulator after every call to it.

Going a step further, as a main contribution we prove that there are no “meaningful”
domain extenders which are single-reset-indifferentiable from a random oracle (Section 5).
Here, “meaningful” domain extenders are ones where the state size of the domain extender
has a finite upper bound (e.g. it cannot grow with the size of the input message), and where
modifications in the input message lead to different results with high probability (also known
as the “avalanche effect”). The intuition behind the distinguisher is that it bases its strategy
on the type of construction. If the domain extender is roughly single-pass, a generalization of
the distinguisher by RSS does the job. On the other hand, if the domain extender processes
a significant amount of bits more than once, the distinguisher resets at a deliberate time and
smartly manipulates the simulator inputs in order to distinguish with high probability.

The observation that one cannot hope to find any meaningful domain extender that
achieves single-reset-indifferentiability (let alone reset-indifferentiability) leads to the following
conclusion: either there is no hope of finding a convenient way of linking the security of domain
extenders with that of random oracles for n-games (n > 1), or the notions we are looking at
are too strong. The distinguishers derived in this work provide evidence as to why the notions
are too strong: if we attempt to prove indifferentiability for the class of all n-games, or the
class of games covered by single-reset-indifferentiability, then the games corresponding to our
distinguishers, which are rather unnatural, are members of these classes and must be taken
into account. Hence, rather than ruling out indifferentiability, the question becomes what
classes of games allow for composition and are meaningful to consider. A possible direction
would be to consider more restricted, but perhaps more natural, classes of games in which to
achieve composition. After all, the alternative of proving security for each game individually
already restricts one to games which are considered natural. We elaborate on future work in
Section 6.

2 Minimal Games

Our notation builds on the terminology used in [15] and introduces small modifications which
facilitate the discussion on how we handle the state.

2.1 Procedures and Functionalities

We always talk of sequences of procedures in order to be able to leave procedures unspecified
when defining games. These sequences are always assumed to be finite and are denoted with
calligraphic capital letters (e.g. S as opposed to 5). If A and B are two procedure sequences,
then we say that they export the same interface if and only if they are of the same length and
the 7th procedure in A exports the same interface as the ith procedure in B. A functionality
is a pair of procedure sequences ¢ := (H,P) (instead of ¢.hon and ¢.adv as in [15]). An
unspecified procedure sequence is a sequence of interfaces where the procedures have not been
defined; an unspecified functionality is defined similarly. If A is a procedure sequence which
has access to some unspecified procedure sequence B, and C is a procedure sequence which
exports the same interface as B, then we define AC to be the procedure sequence where calls
to B are executed as calls to C.



2.2 Games

A game G consists of a main procedure with output in {0,1}. The main procedure is given
access to an unspecified functionality and an unspecified procedure sequence called the ad-
versaries; we denote this by Gﬁ, where A denotes the adversaries and ¢ the unspecified
functionality. By default the adversaries do not know any of the decisions or knowledge of the
other adversaries. The game needs to explicitly specify which adversaries can communicate
with each other. To this end, the game specifies for each pair of adversaries a storage pro-
cedure which exposes a hash table so that the pair may communicate with each other. The
game may specify the amount of storage for each pair of adversaries ranging from none to
unlimited. If the storage is limited and an adversary asks to store data exceeding the specified
size, then the data is truncated and the remainder is ignored. These storage procedures are
one way of formalizing the principle of resetting a simulator by a distinguisher as was proposed
by Ristenpart et al. [15]: a reset corresponds to two simulators which may not communicate
any information. Each adversary in A is given access to all procedures in P and all storage
procedures involving it as part of the pair. The adversaries may not call other adversaries, nor
any procedure in H, nor any storage procedure with which it is not involved. All procedures
in ¢ may call all other procedures in ¢, but not the adversaries. Every procedure used in a
game has a distinct state. The communications among the procedures is depicted in Figure
1.

>
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S

Fig. 1: Communications between the adversaries in A and the procedures in ¢. Arrows denote access, and lines
denote a shared storage procedure.

If we have a game G and adversaries A with an unspecified procedure sequence, and
B is a procedure sequence which exports the same interface as the unspecified procedure
sequence of A, then we can define a game H, 5 = GﬁB , where the new main procedure is the
main procedure of G along with the A-calls absorbed, and the storage procedures of the new
adversaries B are determined by looking at AB and seeing how A allows B to communicate.

When we write Pr (G:} — 1), we mean that the probability is taken over the random
choices made by G, the adversaries in A, and the functionality ¢ in order to determine how
likely it is that the result of running the main procedure in G:;‘ results in an output of 1.

2.3 n-Games Versus Minimal n-Games

Although RSS [15] describe single-stage-games and multi-stage-games, and they discuss when
games are equivalent, their discussion does not uniquely identify a single definition for the



concepts. A formal definition is however required for a good understanding of generalized
notions of indifferentiability, and in this section we aim at such definition.

First, a minor detail, is a change from the use of the term multi-stage-game to n-game,
where n is the number of adversaries.! In order to remove trivialities, we require that each of
the n adversaries be called at least once by the n-game, since otherwise a game which only
calls one adversary once could be looked at as a 2-game simply by adding an adversary which
does nothing. In [15] RSS define equivalency of games as follows: for any fixed functionality
 and adversaries A, two games are equivalent if

PI‘(G:;‘—>1):PI'(H:04—>1).

Note that 4 does not change, hence they do not discuss what happens if the number of
adversaries changes. In fact, it is not obvious what is meant when an n-game is equivalent
to an m-game for some m < n. For example, if one says that G and H are equivalent if
there exist adversaries A and B such that Pr (G;‘ — 1) = Pr (Hg — 1), then this misses
the point of looking at equivalency of games in our case since G and H could be completely
different, yet happen to output 1 with the same probability. There are other ways of changing
n-games into “equivalent” m-games which are not useful for the discussion. For example, if
you arbitrarily fix n — m + 1 adversaries in an n-game, then you have an m-game which is
equivalent to the original n-game in some sense of the word. To unambiguously identify the
amount of adversaries in a game, we explicitly formalize the notion of equivalency among
games with respect to the amount of communication possible between the adversaries. Then
we refer to a game as a minimal n-game if it is not equivalent to any m-game for m < n.

The basic idea behind our definition of a minimal n-game is that if you have a game with
multiple adversaries and you allow some of the adversaries to share unlimited state, and this
modification does not result in a change to the output of the game, then you can safely replace
all of the adversaries with unlimited shared state by a single adversary, resulting in a game
with fewer adversaries.

Let n > 1, let ¢ be a functionality and let G, be an n-game. Let s be a subset of {1,...,n},
then we define H, to be the same as G, except all storage procedures related to the pairs
contained in s now have unlimited storage. Note that for all adversaries A it is the case that

PI‘(G?—>1)§PI‘(H:04—>1).

Letting the pairs of adversaries at the positions specified in s have unlimited communication
is the same as replacing all of them with one adversary, seeing as the only thing that separates
adversaries is the amount of communication they may have. Hence if we define the game §<p
to be the same as G, except all adversaries with a position in s are replaced by a single
adversary, we have that

Pr(Hy —1) =Pr (G, — 1),

where B is a shortened version of A where all adversaries at the positions in s are replaced
by a single adversary.

Definition 1. Let 1 <m < n. An n-game G, can be written as an m-game under ¢ if there
exists a subset s of {1,...,n} such that |s| =n —m+ 1 and for all sequences of adversaries
A we have that i
A B _
Pr(G@ —>1) —PF(Gwﬂl),

with G and B defined as above.
Let m be the smallest integer such that G, can be written as an m-game, then we say that
Gy is a minimal m-game.

! The authors believe that the word “stage” does not add anything meaningful to the description of the object.



Note that if an n-game G, is a minimal m-game, then G, can be written as an i-game for
any m < i < n: one applies the above trick to n — ¢ + 1 adversaries.

Ezample 1. Below we show an example of a two-game which was introduced in [15]. When
we call an adversary, we write in superscript the procedures that the adversary has access
to. The storage procedure between A; and As is denoted by st, and is limited to n bits. Let
v = (H,P).
procedure C’RP;%’A2 (p,n,s)
m < {0,1}»
A7 (m)
c&{0,1}
z & A;D’St" (c)
return z = H(m||c)
end procedure
We consider the case where H is a domain extender and P is an ideal primitive. Note that
when n < p the game is really a minimal two-game. Say that Ay is an adversary which simply
stores m and Ag is an adversary that calculates H(m/||c) using P, where m/' is the value Ay
gets from querying st, for m. If n < p then the game outputs 1 with very small probability
since the storage procedure truncates the message m, whereas if storage is unlimited, then the
game outputs 1 with probability 1. Thus, in terms of Definition 1, we have Pr (G;;t — 1) <

Pr (@i — 1> and the game is thus a minimal two-game.
If n > p then we still cannot say it is a minimal one-game. The reason for this is that
a particular choice of A may cause the strict inequality Pr (Gj;l — 1) < Pr (@g — 1). For

instance, A; could generate some random message m* of length n and store m*||m so that
As receives no useful information when the storage is limited, but can always win when the
storage is unlimited.

3 A Different View of Indifferentiability

The goal of this section is to explain indifferentiability as just one way of achieving our
original aim of composition. In the process we will prove the MRH theorem from [12], and
indicate where exactly the application of the MRH theorem to the CRP game fails with
certain domain extenders. Additionally, we will demonstrate that beyond the notions of regular
indifferentiability and reset-indifferentiability, there is a whole spectrum of indifferentiability
definitions that one could consider.

A functionality 1 is at least as secure as a functionality (o if for all games G and adver-
saries A, there exists a game H and adversary B such that the quantity

Pr (G4 — 1) —Pr(HE, —1)

is small. Note that this definition differs from the one given by MRH in [12] in that we do not
require that H = G. This definition remains sufficient in order to achieve composition, since
as long as Pr (Hg2 — 1) is small, Pr (Gé1 — 1) will be small.

So given G and A, the definition searches for an H and B. If we define H := G, create S,
define B := AS, and set D := G4, then we get

Pr (G} —1)-Pr(HS, — 1) =Pr (D5 — 1) —Pr (D3, — 1),

where L is a procedure which just exposes the adversarial interface to ;. This is exactly what
indifferentiability is, and we have proved that indifferentiability gives us that ¢ is at least



as secure as 9. Note that indifferentiability does not place any requirements on the games
or procedures. In fact, in this point of view indifferentiability is mostly a rewording of the
definition of “p1 is at least as secure as o”. Therefore it is not possible that indifferentiability
nor the MRH theorem do not apply to the CRP game.

3.1 G-Indifferentiability

What has occurred is that all existing indifferentiability proofs actually limit the types of
games that are covered by limiting the powers of the distinguisher. Since the distinguishers
are taken to be one-games, composition holds at best for minimal one-games. In fact, the
types of games covered will only be as powerful as the distinguishers. For example, a one-
game distinguisher cannot model all two-games, yet a minimal two-game distinguisher would
be able to do such a thing.

One can look at different types of indifferentiability where the distinguishers are given
varying degrees of power. Let G be a class of games; G could for example be all minimal
one-games, all minimal two-games, or all minimal one-games along with CRP. What we are
really interested in is when we may reduce functionality ¢ to functionality (o in the class G,
or in other words, when is ¢ G-indifferentiable from 27 So we pick a class of distinguishers,
and then we need to show that every game in G can be written as a distinguisher as we
have defined it. For example, if we take distinguishers as they have always been used in
regular indifferentiability proofs, then we notice that they are all one-games: the adversaries
(simulators) are allowed unlimited communication. Conversely, if we take an arbitrary one-
game G:;w (with respect to the adversaries £) and we write it as allowing all adversaries in £
to have unlimited communication, then we have that Gﬁﬁ is a one-game distinguisher. Hence
we have shown that G-indifferentiability where G is the class of one-games, corresponds exactly
to regular indifferentiability.

So proving G-indifferentiability for an arbitrary class G comes down to characterizing
what the games in G are allowed to do with the functionalities and adversaries. In fact,
without this characterization, it is not immediately clear for what class of games one would
be proving indifferentiability. For example, reset-indifferentiability allows the distinguisher to
reset as many times as it wants, yet the attack on online computable domain extenders in [15]
only uses one reset, so it is interesting to see what games we may cover if we restrict the
distinguisher to use only one reset, i.e. single-reset-indifferentiability. We know that single-
reset-indifferentiability cannot cover any minimal three-games or higher, and we know that a
one-game distinguisher already covers all one-games, hence we focus our attention on minimal
two-games. Consider the following minimal two-game, where A; and As may communicate up
to n bits:

procedure GZ;‘I’AQ (p,m)
my [maflmg < {0,117
A7 (ma)
AZ (mo)
2 < AP (mo)
return z = H(m|ma|ms)
end procedure
Here the storage procedure is denoted by st,. Any distinguisher which has to model the
above game must be able to reset at least twice if each A; and As call contains an ‘H call. A
distinguisher must reset once after Aj(m;) and once after Ay(ms), otherwise it would violate
the fact that A; and A, do not have unlimited communication. Hence we have an example of
a minimal two-game which cannot be modeled by a single-reset distinguisher, and so single-
reset-indifferentiability does not cover all minimal two-games. In fact, using similar reasoning,



we see that a single-reset distinguisher is only able to mimic minimal two-games where all calls
to the first adversary happen before all calls to the second adversary occur. So it is important
to understand what types of games a given distinguisher is able to cover.

4 TImpossibility Of Reset-Indifferentiability

In this section we show that it is impossible to create a domain extender which is reset-
indifferentiable from a random oracle. This is not surprising as the existence of a domain
extender which is reset-indifferentiable from a random oracle would mean that such a domain
extender would have to survive being reset an arbitrary number of times. The result in this
section is in fact a generalization of the attack of RSS [15], and is included as a simple
illustration.

The attack uses the notions of min-entropy Hoo and average min-entropy H.o. Readers
not familiar with these two notions can find definitions and basic facts in Appendix B.

Let F': {0,1}™ — {0,1}# be a domain extender that uses the sequence of ideal primitives
m = (m1,...,m); let p1 := (F, ) be the corresponding functionality. For an input message
m of length M, we denote the sequence of primitive calls made by F' for the evaluation of m
with (p1,p2,...,pn), where

pi Ui = V.

Note that n and the sequence in which the m; are called could depend on the input message,
and that two different primitive calls could possibly be the same primitive. For example,
Liskov’s zipper hash [11] uses two primitives, 1 and my: p; through p, /2 would be 7-calls
whereas p,, /511 to p, would be ma-calls.

Theorem 1. Let p2 := (RO, RO) be a functionality where both the adversarial and honest
interfaces expose the random oracle RO with range {0,1}H. Then there exists an n-game
distinguisher D such that for all simulators S = (S1,...,5),

n

gi 1
[Pr(DE, —1) = Pr (DS, — 1)[ > 1- (ZM+2H>
1

1=

where S; makes ¢; queries to RO, > | ¢ < q and L is a sequence of procedures where L € L
returns the value given by n(L).

We stress that ¢ here denotes the number of queries made by S; the distinguisher D makes
n + 1 queries. In order to illustrate the bound, if p; = ... = p, = 7 : {0,1}* — {0, 1} with
H < b, as is the case with many existing (narrow- and wide-pipe) domain extenders, then we
get

c s q 1
Pr (D5, 1)~ Pr (D5, ~ 1) 21~ (i + 5 )
which can be made arbitrarily close to 1 — 1/2, as M can be increased.
Notice that we specify that the distinguisher can be a multi-game and does not have to be
a one-game. This is equivalent to saying that the distinguisher may reset an arbitrary number
of times.

Proof. The distinguisher D requires a functionality ¢ = (H,P), where H exports the same
interface as F' and P exports the same interface as (my,..., 7). Furthermore D requires a
sequence A of n adversaries, with n being the number of primitive calls, and if A; € A then
n(A4;) = p;. We use the fact that the distinguisher may be a multi-game by letting all storage
procedures have zero storage.



First the distinguisher selects a message m uniformly at random from {0,1}*. Then D
copies what F' does, except a call to p; is replaced by a call to A;. The distinguisher outputs its
result z which it then compares with H(m): D returns 1 when z equals H(m), and 0 otherwise.
Note that

Pr (Do —1) =1.

Now we look at D‘(SRO RO)" If H(m) is never called by S; for all ¢ then z is independent of

H(m), hence the chance that z equals H(m) is at most 1/27. Let E; denote the event that S;
queries H(m), then

Pr (Dfo.r0) = 1) < Pr(UE) + Pr (Dfso.ro) — 1| ~(UE)
= 1
<D Pr(E)+ g
=1

Each input given to S;, u;, can be considered a random variable over U;. At call ¢ all the
information that the simulator knows is u; since no communication is allowed between the S;
and each S; is only called once. This means that the probability that S; can compute m is
bounded above by 2~ (mui) We know that Hu(m | u;) > Heo(m) — log |Ui| = M — log |U;]
(cf. Appendix B), therefore

di

and we have our desired result. O

5 Impossibility Of Single-Reset-Indifferentiability

We present the main impossibility result of this work, namely that there are no “meaningful”
domain extenders which are single-reset-indifferentiable from a random oracle. What we mean
by “meaningful” will be explained below.

Just as the result of Section 4, the attack of this section uses the notions of min-entropy Heo
and average min-entropy H.o. Readers not familiar with these two notions can find definitions
and basic facts in Appendix B.

Let F : {0,1} — {0,1}¥ be a domain extender which uses some primitives = =
(m1,...,7). On a given input m € {0,1}™, the domain extender calls its primitives in a
certain order: pi,p2,...,pn. Write p; : U; — V;. Note that the p; are called primitives, not
the primitives themselves, hence different p; could be the same primitive. Let ¢1 denote the
functionality representing F' and its primitives.

We require that the internal state of ' does not exceed N bits. Concretely this means that

for all j, no more than IV bits of the outputs of p1, ..., p; are used in the inputs to pji1,...,pn.
For all j < n we can talk of the bits of m used in the inputs to pi,...,pj, represented by
l;, and the bits of m used in the inputs to pji1,...,pn, or r;. Let a; be the bits of overlap
between the two sides, so that |l;| + |rj| — |a;| = M (here we assume that all of m is used
in the inputs, otherwise the domain extender would be easily differentiable from a random
oracle).

We additionally restrict F' such that modifying a bit of the input message m during
computation returns F'(m) with low probability. Concretely, let € be such that for all messages
m, and for all j, if a bit chosen at random is flipped from a;, and the result is computed as
z, then Pr (F(m) = z)) < e. Our restriction is that € is sufficiently close to 0. Note that
this restriction is highly related to the well-known “avalanche effect”, a basic property that
practical hash functions are required to satisfy.



Theorem 2. Let ps := (RO, RO) be a functionality where both the adversarial and honest
interfaces expose the random oracle RO with range {0,1}. Then there exists a single-reset
distinguisher D such that for all simulators,

L S :
|Pr (Dsm — 1) — Pr (D@Q — 1)‘ > mln{l ~9F " oMa2'83 M 2
where q is the total number of queries that S makes to RO and L is a sequence of procedures
with L € L returning the value given by n(L).

Proof. Our distinguisher D is a combination of two distinguishers P and ) which take as
input a message m and an index j. Intuitively, D runs P if the domain extender is roughly
single-pass, and it uses ) for domain extender which re-use a significant part of the message.
We will describe the distinguishers in terms of the unspecified functionality ¢ = (H,P).
The functionality p; = (F,7) represents the so-called “real world”, and the functionality
w2 = (RO, RO) the “simulated world”.

Distinguisher P. The distinguisher P goes through the process of computing with m just as
the domain extender does: it performs all of the primitive calls p1, ..., p,. The only difference
is that it resets after p;. Eventually it arrives at some final result z and it outputs 1 if 2 is
equal to H(m) and 0 otherwise.

Note that this distinguisher always outputs one in the real world. In the simulated world
we have that z is independent of H(m) unless the simulator queries H(m). Let E be the event
that the simulator queries H(m). Then

Pr(P5, — 1) <Pr (PS5, — 1| -E)+Pr(E)

1
§27H+PI‘(E).

By basic properties of entropy (cf. Appendix B), the probability that S queries H(m) before
the reset is bounded above by ¢/ oHoo(m)=Ili| and the probability that S queries H(m) after
the reset is bounded above by q/27 (m)=N=Irj| where ¢ is the total number of queries that
the simulator makes to RO. Hence we get

1
S q d
Pr (PLPQ - 1) < oH + 9 H oo (m)—|1;] + 9Hoo(m)—N—|r;j|

Distinguisher Q. Just like P, the distinguisher @ goes through the process of computing m
like the domain extender and resets after p;. The main difference is that if |a;| > 0, then with
probability one half it will flip one of the overlapping bits of m and continue the computation
after the reset with the modified m/. If |a;| = 0, we define @ to simply return 0 (as becomes
clear later, D will by construction run @ only if |a;| > 0). More formally, @ will take b & {0,1},
and if b = 1, it also takes ¢ < {1,...,]a;|}. If b =1, m’ equals m with the cth bit flipped,
whereas if b = 0, m’ = m. It proceeds the second half of the computation with the modified
m’ and eventually arrives at some final result z. Now, @ outputs 1 if b =0 A z = H(m) or if
b=1Az#H(m).

Denote by B the event that b = 1 (or equivalently, that a bit flip occurred).

In the real world, =B, z equals H(m). On the other hand given B, z # H(m) with
probability at least 1 — ¢ (see introduction). We find

1+1-—
221_

3
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Let U denote the event that simulator after the reset learns ¢. Then, given that B does
not occur then U occurs with probability zero. If B occurs, U occurs with probability at most
‘C%: indeed, the simulator learns the adjusted a;, and at most N bits of information of the
original one. We can write

Pr (Q‘ZQ — 1) <Pr(U)+Pr (Q‘;Q —1|=U)(1-Pr(U))

N N
+Pr(QS —1|-U (1— )
o] TP (@ I\~ 27

<

[\

where we use that if s < zandy <1, z+y(l —x) < z+y(1 — 2).
Let E denote the event that the simulator learns a;. We have

Pr(Q3, —1|-U) <Pr(E|-U)+Pr(Q3,—1|-EA-U)(1-Pr(E|-U)).

Given that U does not occur, the probability of £ is bounded above by M%N indeed, the
simulator learns the adjusted a;, and at most N bits of information of the original one, which
due to U rules out N possible values from which c is distributed. If the simulator does not
learn a; and U does not occur, then the output of the simulator must be independent of B,

therefore Pr (ng — 1| =EA ﬂU) = % Putting all of the results together, we get
1 1 N 1
Pr(QS —1 §<1+ >+ (1—).
@ =) =5\ =) 1l ! el

Distinguisher D. Now, we define a distinguisher D which picks a message m uniformly at
random from {0, 1}, where M is taken such that M > 8N and M > 8 max; U;.

If there exists a j € {1,...,n} such that |a;| > iM, then D runs @ on input of j and m.
In this case, the advantage of D is lower bounded by

Otherwise, suppose for all j we have |a;| < %M. Let j be maximal such that |[;| < %M. We
claim that also |r;|+ N < 3M. Indeed, as j is maximal, we have 3M < |l;41] < |l;| +max; U;,
and thus

3 1 3
‘Tj|—|-N:M— ’lj|+|aj|+N§M_ZM+maXUi+ZM+NS ZM
7
Hence the claim. Now, D runs P on input of j and m. Note that the entropy of m could
reduce by 1 bit due to the fact that the distinguisher is chosen based on m. By virtue of the

distinguishers P, the advantage of D is lower bounded by

1 q

1= oH — 9M/4-2"

which completes the proof. O

6 Conclusions and Future Work

As we have seen, the indifferentiability framework comes with a range of subtleties which
make it difficult to establish composition for a wide variety of games. This was already clear
since the work of Ristenpart et al. [15], who introduced the generalized definition of reset-
indifferentiability. But, as we have shown, there does not exist any domain extender that is
reset-indifferentiable, and even if one opts for single-reset-indifferentiability, there is no hope
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to find a secure domain extender. These dead-ends in terms of domain extenders and random
oracles, however, do not lead us to question the usefulness of indifferentiability, rather it
points out the disconnect between what distinguishers are and the classes of games one is
considering. Take for example, the fact that a game G and its adversaries 4; are merged
to form a single distinguisher. This creates the unnatural effect that G and A; are actually
cooperating in differentiating one functionality from another, whereas usually G and A; are
designed with opposing goals (hence the name “adversary”). If we look at the CRP game
defined earlier on, we see that the task of the adversaries is complicated by the fact that they
may only communicate a finite amount of bits, and as a result neither adversary gets to see
the full message. Generalizing this, one could consider all games which do not provide their
adversaries with a complete message and limited communication, and see where this type of
indifferentiability would lead.

Ultimately the important part is having an understanding of the natural classes of games
that exist and are easy to describe. Finally, an alternative approach is to consider the same
classes of games, except with different functionalities other than random oracles, as is done
in [13].
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A Translation Between MRH and RSS Terminology

Table 1: Translation between MRH and RSS terminology.

MRH RSS
Random System Procedure
Environment Game
Cryptosystem/Resource Functionality
Public interface Adversarial interface
Private interface Honest interface

B Basic Properties of Entropy

For the purpose of the impossibility results of Sections 4 and 5, we present some basic prop-
erties of entropy.

Definition 2. The min-entropy of a random variable x is Hyo(z) = — log(max,s Pr (z = 2')).

Definition 3. When x and y are two (possibly correlated) random variables the average min-
entropy is given by

Hoo(w | y) = ~log | 3 (H;‘atxPr (x=a'ly= y’)) Pr (y =)

y/

The probability that an adversary guesses the value of x given y is bounded above by 9~ Hx(aly),
Furthermore, if a random variable y can take on n possible values, then

g <maxPr(x—x']y—y’)> Pr (y:y') = max Pr (x:x’ﬂy:y’)
x’ )
Y 4

< nmxa,LXPr (x = :):’) ,

and so Hoo (2 | y) > Heo(z) — logn.
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