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Abstract. We introduce two new schemes for securely computing Ham-
ming distance in the two-party setting. Our first scheme is a very efficient
protocol, based solely on 1-out-of-2 Oblivious Transfer, that achieves full
security in the semi-honest setting and one-sided security in the mali-
cious setting. Moreover we show that this protocol is significantly more
efficient than the previous proposals, that are either based on garbled
circuits or on homomorphic encryption. Our second scheme achieves full
security against malicious adversaries and is based on Committed Oblivi-
ous Transfer. These protocols have direct applications to secure biometric
identification.
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1 Introduction

Secure Multiparty Computation (SMC) [40, 15] enables a set of parties to jointly
compute a function of their inputs while keeping the inputs private. We here fo-
cus on the 2-party case [16], also known as Secure Function Evaluation. Several
generic constructions exist in this setting, which apply SMC to any function
computed by two parties. In the semi-honest setting, where security is ensured
against adversaries following the protocol but trying to gain more information
than they should, the Yao’s protocol [40, 26] can be used to achieve this purpose
using Oblivious Transfers and Garbled Circuits. In the malicious model, where
adversaries can follow any strategy, many generic constructions have been pro-
posed [21, 31, 19, 20, 25, 27]. The problem of generic constructions is that they
are often far from being optimal when one wants to securely compute specific
functions of interest. However, it may happen that generic constructions can be
more efficient than specific ones [17].

We here consider the secure computation of the Hamming distance. Con-
cretely, two parties P1 and P2 hold bit strings of the same length n, resp.
X = (x1, . . . , xn) and Y = (y1, . . . , yn) and want to jointly compute dH(X,Y ) =
Σn

i=1(xi ⊕ yi), without P1 (resp. P2) revealing X (resp. Y ) to P2 (resp. P1). For
now, let us consider this problem in the semi-honest setting. It has first been



solved using additive homomorphic encryption [22, 32]. Using this technique,
each bit of P1’s input has to be encrypted in one Paillier ciphertext [33] and
sent to the other part who can then compute a ciphertext corresponding to the
Hamming distance, using homomorphic encryptions. Since Paillier ciphertexts
must be at least 2048 bit-long and homomorphic encryptions are multiplications
and exponentiations in large groups, this technique is inefficient. However, they
also propose in [22] an adaptation of their protocol to the malicious setting.
Recently, Huang et al. [17] showed that the generic Yao algorithm applied to
Hamming distance was more efficient in terms of computation time and band-
width consumption. Using the Yao algorithm, one needs to describe the function
as a binary circuit and then “garble” every gate of this circuit to a table of 4 sym-
metric ciphertexts. However, using the techniques of [24] and [35], XOR gates do
not need to be garbled and garbled gates can be reduced to 3 items. The circuit
used in [17] is the succession of n bit-wise (free) XOR’s and a Counter circuit
that adds the results of these XOR’s. This Counter Circuit is the bottleneck of
their protocol.

The first proposal of our paper achieves full security in the semi-honest model.
We almost only rely on 1-out-of-2 oblivious transfer (OT 2

1 ). This primitive en-
ables a receiver to obtain 1 out of 2 elements held by a sender without the sender
learning the choice of the receiver and without the receiver learning information
on the other element held by the sender. In the Yao algorithm, using oblivious
transfers, party P2 gets his input keys for a garbled circuit of the function to
compute. However, the keys sent by P1 are independent of P1’s inputs. Here we
design our scheme such that, in our oblivious transfers, the elements sent by P1

also depend on the input bits of P1 in such a way that the element obtained by
P2 during the ith OT 2

1 depends on xi ⊕ yi. Moreover using the technique of [28,
Third Variant], we avoid the use of a costly Counter circuit. We prove, using the
OT-hybrid model [6, 25, 16], that our protocol is fully secure in the semi-honest
setting or one-sided secure in the malicious setting, depending on the level of
security of the underlying OT 2

1 . This protocol is significantly more efficient than
the previous proposals for secure Hamming distance in the semi-honest model
[22, 32, 17, 2].

We next extend our first proposal to a second protocol that is fully secure in
the malicious setting. Therefore, we use Committed Oblivious Transfer (COT)
[8] instead of basic OT 2

1 . In particular, we use a COT on bit strings with ho-
momorphic commitments, as in [23]. COT enforces that the parties are commit-
ted to their inputs to the oblivious transfers and moreover that the receiver is
committed to his output. The homomorphic commitment scheme enables us to
guarantee that the inputs of the sender are consistent and that the computation
run by the receiver on these inputs after the Oblivious Transfers follows the
protocol.

We show that our two proposals for efficient secure Hamming Distance com-
putation well extend to the secure computation of weighted Hamming distance
used, for instance, in biometric iris matching [11]. We also show that it scales bet-
ter than previous protocols to the simultaneous computation of several Hamming



distances, which has direct applications in biometric identification, that has so
far been one of the main motivations for secure Hamming distance computation
[32, 2, 3].

2 SMC and Oblivious Transfer

In this section, we first introduce the notions of Oblivious Transfer and Com-
mitted Oblivious Transfer, which are the main tools for our proposals. We then
recall the definitions of Secure Multi-Party Computation (SMC), more specifi-
cally here Secure Two-Party computation. In particular, we recall the definitions
of the security properties.

2.1 Oblivious Transfer

Oblivious Transfer was first introduced by Rabin [36] as a two-party protocol
where a sender has a secret message that he sends to a receiver, which receives
it with probability 1/2, without the sender knowing if the message has been
received or not. This is however not the version that is now used in secure
protocols, but a slightly different primitive called 1-out-of-2 Oblivious Transfer
(OT 2

1 ). We here describe this primitive, some extensions to improve its use and
a derived version called Committed Oblivious Transfer (COT) [23], used in our
second proposal.

1-out-of-2 Oblivious Transfer A 1-out-of-2 Oblivious Transfer is a crypto-
graphic primitive that enables a receiver R to obtain 1 out of 2 elements held
by a sender, without learning information on the other element and without the
sender knowing which element has been chosen. This kind of protocol is stronger
than a Private Information Retrieval (PIR) protocol [7] where only the choice
of the receiver remains hidden from the sender. The functionality enabled by
a OT 2

1 is described in Figure 1. For more details on implementations, see for
instance [16, Chapter 7]. For instance, the oblivious transfers of [30] and of [34]
can be used, respectively, in the semi-honest and in the malicious setting (see
Section 2.2 for the security definitions).

– Inputs:

• Sender S inputs two n-bit strings X0 and X1

• Receiver R inputs a choice bit b

– Output:

• S learns nothing on b
• R obtains Xb but learns nothing on X1−b

Fig. 1. The OT 2
1 functionality



Extensions Several kinds of optimizations can be applied to Oblivious Trans-
fers, independently of the implementation. Two optimizations introduced in [18]
are of interest for our proposals. The first one [18, Section 3] enables, in the
random oracle model, to compute many OT’s with a small elementary cost from
k OT’s at a normal cost, where k is a security parameter. The second one [18,
Appendix B] enables to reduce oblivious transfers of long strings to oblivious
transfers of short strings using a pseudo-random generator.

Committed Oblivious Transfer Committed Oblivious Transfer (COT) is
a combination of OT 2

1 and bit commitment, first introduced by Crépeau [8]
under the name Verifiable Oblivious Transfer. In this variant, both sender and
receiver are committed to their inputs before the oblivious transfer. Moreover,
the sender receives a commitment to the receiver’s output, and the receiver
obtains the randomness for this commitment. To our knowledge, the only scheme
that considers COT of bit strings is the one of Kiraz et al. [23], which uses
an homomorphic cryptosystem as commitment scheme. COT is described in
Figure 2, where Com denotes a commitment scheme.

– Inputs:

• S inputs two n-bit strings X0 and X1 and two randoms r0 and r1
used for commitment.

• R inputs a choice bit b and a random r used for commitment
• The common inputs are Com(b, r), Com(X0, r0) and Com(X1, r1)

– Output:

• S learns nothing on b and r
• R obtains Xb and a random u but learns nothing on X1−b, r0 and r1.
• Both parties obtain Com(Xb, u).

Fig. 2. The COT functionality

2.2 Secure Two-Party Computation

Overview Secure Multi-Party Computation [40] enables a set of parties to
jointly compute a function of their inputs while keeping their inputs private.
Different kinds of adversaries are considered:

– semi-honest adversaries who follow the protocols and try to gain more in-
formation than they should on the other parties’ inputs,

– malicious adversaries who use any kind of strategy to learn information.

There also exists a notion of covert adversaries [1] who are malicious but averse
to being caught. Notice that we only consider static adversaries.



The Security Definitions Informally, security in SMC is ensured by simulat-
ing the secure protocol in an ideal model where the inputs of both parties are sent
to a trusted party who takes care of the computation and sends the outputs back
to the respective parties and showing that all adversarial behaviours in a real
execution are simulatable in this ideal model. Full definitions and explanations
can be found in [15, 16].

We quickly recall how full security is proved in the malicious setting. Let π
be a protocol for computing f(x, y) = (f1(x, y), f2(x, y)). In the real world, a
probabilistic polynomial-time (PPT) adversary A sends messages on behalf of
the corrupted party and follows an arbitrary strategy while the honest party
follows the instructions of π. In the ideal world, the honest party sends his
genuine input x to a trusted party. The adversary sends any input y′, of the
appropriate size to the trusted party. The trusted party first sends his output
f1(x, y′) to the adversary and, if the adversary does not abort, also sends his
output f2(x, y′) to the honest party. The adversary is also allowed to abort the
protocol at any time. Full Security against a malicious party Pi is ensured if, for
any PPT adversary in the real world, there is a PPT adversary in the ideal world
such that the distribution of the outputs in the real world is indistinguishable
from the distribution of the outputs in the ideal world.

A weaker notion is Privacy against a malicious party Pi, for i = 1, 2, that
guarantees that Pi cannot learn any information on the other party’s input.
However, the execution in the real model might not be simulatable in the ideal
model. We say that a protocol achieves One-Sided Security in the malicious
model if it is fully-secure against a malicious Pi and private against a malicious
P3−i. See [16, Section 2.6] for further details.

In this paper, we prove security of our schemes in the OT-hybrid setting
[6, 25, 16]. In this setting, the execution in the real model is slightly modified.
The parties have access to a trusted party that computes oblivious transfers
for them. We only need to prove indistinguishability between executions in this
hybrid model and the ideal model to ensure security.

3 Secure Hamming Distance Computation

In the following, the + and − operators respectively denote modular additions
and subtractions, we assume that the context is explicit enough and do not recall
the moduli in the description of the algorithms. x̄, where x is a bit value, denotes
1− x. The Hamming distance is denoted by dH .

3.1 The Basic Scheme

We here introduce our new scheme based on oblivious transfers. The Yao algo-
rithm [40] also uses oblivious transfers but the inputs of the sender are random
keys that are independent of the actual inputs of the sender for the secure com-
putation. In the protocol we propose, the inputs of the sender P1 to the OT’s
depend on P1’s input bits. Consequently, the output of each oblivious transfer



depends on the input bits xi of P1 and yi of P2. We adjust our scheme so that
this output depends on xi ⊕ yi. Then, we use a technique inspired by [28, Third
Variant] to count the number of bits such that xi ⊕ yi = 1, i.e. to compute the
Hamming distance.

We assume that parties P1 and P2 respectively hold inputs X = (x1, . . . , xn)
and Y = (y1, . . . , yn). Party P1 prepares n random values r1, . . . , rn ∈R Zn+1

and prepares n oblivious transfers, as a sender. The inputs of the ith transfer are
arranged in such a way that a receiver with bit input y gets ri + (y ⊕ xi) mod
n + 1. To do so, input 0 of P1 is set to ri + xi and input 1 to ri + x̄i. Indeed,
if y = 0, xi ⊕ y = xi and if y = 1, xi ⊕ y = x̄i. P2 acts as a receiver for all
these n OT’s, with bit inputs y1, . . . , yn and gets (ri + (xi ⊕ yi))i=1,...,n. Then,
P2 adds all these values and gets T = Σn

i=1ri +Σn
i=1(xi ⊕ yi) = R + dH(X,Y ),

where R = Σn
i=1ri. Finally, depending on the party that is supposed to know

the output, either P1 sends R to P2 or P2 sends T to P1, the final output being
D = T −R = dH(X,Y ). The protocol is described in Figure 3.

– Inputs:

• P1 inputs a n-bit string X = (x1, . . . , xn)
• P2 inputs a n-bit string Y = (y1, . . . , yn)

– Output:

• 1st Option: P1 obtains dH(X,Y ) and P2 obtains nothing
• 2nd Option: P2 obtains dH(X,Y ) and P1 obtains nothing

– Protocol:

1. P1 generates n random values r1, . . . , rn ∈R Zn+1 and computes R =
Σn

i=1ri
2. For each i = 1, . . . , n, P1 and P2 engage in a OT 2

1 where
• P1 acts as the sender and P2 as the receiver.
• P2’s selection bit is yi.
• P1’s input is (ri + xi, ri + x̄i).
• The output obtained by P2 is consequently ti = ri + (xi ⊕ yi).

3. P2 computes T = Σn
i=1ti

4. 1st Option:
(a) P2 sends T to P1

(b) P1 computes and outputs T −R
2nd Option:
(a) P1 sends R to P2

(b) P2 computes and outputs T −R

Fig. 3. The Basic Scheme

Theorem 1 (Security of the Basic Scheme).
Assuming that the underlying OT 2

1 is secure in the semi-honest setting, the
Basic Scheme achieves full security in the semi-honest setting.

Assuming that the underlying OT 2
1 is secure in the malicious setting, the

Basic Scheme achieves, in the malicious setting:



– one-sided security, for the 2nd option: privacy against a malicious P1 and
full security against a malicious P2,

– privacy against a malicious P2, for the 1st option.

The proofs are detailed in Section 4.1.

3.2 The Fully Secure Scheme

Requirements on the Commitment Scheme We assume that the commit-
ment scheme used in the Committed Oblivious Transfer we use in our scheme
fulfills the following requirements.

First, it must be additively homomorphic, i.e. there exist efficient operations
� and �, such that Com(x1, r1)�Com(x2, r2) = Com(x1 +x2, r1� r2), for any
x1, x2, r1, r2.

Second, there must exist a zero-knowledge proof of knowledge π2
1 , where

both parties know a commitment C = Com(x, r) and two values x1 and x2. In
this proof, the prover knows x, r and proves that x is either x1 or x2. Using the
notations of Camenisch and Stadler [4], π2

1 = PK{(α, β) : C = Com(α, β)∧(α =
x1 ∨ α = x2)}.

Let us consider the commitment scheme used in [23]. This commitment con-
sists of using a (2,2)-threshold homomorphic cryptosystem, i.e. Com(x, r) =
Enc(x, r) for a homomorphic cryptosystem where the public key is known by
both parties and the secret key is shared between the parties. By definition, the
first condition is fulfilled (usually � is a product and � an addition). The used
cryptosystem can be an additive ElGamal [13] or a Paillier [33] encryption. In
both cases, the second condition can be fulfilled (see resp. [5] and [10]). This
confirms that our requirements are reasonable.

More details on the COT scheme of [23] can be found in Appendix B and
details on the π2

1 proofs can be found in Appendix C.

Our Proposal Our second scheme adapts the Basic Scheme to the malicious
setting. We use a COT with a commitment scheme fulfilling the requirements
previously introduced. The commitment, together with the proofs of knowledge
of the inputs helps to ensure that the inputs are consistent and that the same
values are used along the protocol.

First, P1 and P2 commit to the oblivious transfer inputs and prove that
these inputs are well-formed. P2 proves that his inputs are bits and P1 proves
that his inputs differ by 1, i.e. for each input pair (ai, bi), there exists ri such that
(ai, bi) = (ri, ri + 1) or (ai, bi) = (ri + 1, ri). COT’s are then run with the same
inputs as in the basic scheme. Party P2 receives committed outputs, performs
the addition of these outputs and a commitment to this addition, thanks to the
homomorphic properties of the commitment scheme. P2 can prove, using the
commitments, that the value T obtained by adding the results of the COT’s is
consistent. In the same way, party P1 can prove that the value R is consistent
with his inputs to the COT’s. Indeed, Σn

i=1ai+bi = Σn
i=1(ri+ri+1) = 2Σn

i=1ri+



Σn
i=11 = 2R+n. Using the commitments to the ai’s and to the bi’s, P2 is then able

to check if the value R is consistent with the inputs of the COT’s. The protocol
is described in Figure 4. At any step, if a check fails, the party computing the
check should halt the protocol and output ⊥.

– Inputs:

• P1 inputs a n-bit string X = (x1, . . . , xn)
• P2 inputs a n-bit string Y = (y1, . . . , yn)

– Output:

• 1st Option: P1 obtains dH(X,Y ) and P2 obtains nothing
• 2nd Option: P2 obtains dH(X,Y ) and P1 obtains nothing

– Protocol:

1. P2 commits to all his bits yi: he computes and publishes Com(yi, χi)
for each i = 1 . . . n. He also proves, using π2

1 proofs on the commit-
ments, that yi = 0 or yi = 1.

2. P1 generates n random values r1, . . . , rn, uniformly from the plaintext
space of Com, and computes R = Σn

i=1ri
3. For each i = 1, . . . , n, P1 computes (ai, bi) = (ri + xi, ri + x̄i)

and commits to ai and bi. He computes and publishes (Ai =
Com(ai, αi))i=1,...,n and (Bi = Com(bi, βi))i=1,...,n

4. P1 proves to P2, using π2
1 proofs on the commitments, that |bi−ai| = 1,

for each i = 1, . . . , n.
5. For each i = 1, . . . , n, P1 and P2 engage in a COT where

• P1 acts as the sender and P2 as the receiver.
• P2’s selection bit is yi.
• P1’s input is (ai, bi).
• The output obtained by P2 is ti = ri + (xi ⊕ yi) and τi.
• Both parties obtain Ci = Com(ti, τi)

6. P2 computes T = Σn
i=1ti,

7. 1st Option:

(a) P2 computes C = Com(T, τ) = C1 � . . .� Cn

(b) P2 sends T and a zero-knowledge proof that C commits to T to
P1

(c) P1 computes C = C1 � . . .� Cn and checks the proof.
(d) P1 computes and outputs T −R
2nd Option:
(a) P1 computes K = Com(2R+n, ρ) = A1� . . .�An�B1� . . .�Bn

(b) P1 sends R and a zero-knowledge proof that K commits to 2R+n
to P2

(c) P2 computes K = A1 � . . .�An �B1 � . . .�Bn and checks that
K = Com(2R+ n, ρ).

(d) P2 computes and outputs T −R

Fig. 4. The Fully Secure Scheme



Theorem 2 (Security of the Fully Secure Scheme). Assuming that the
underlying COT is secure in the malicious setting, the Fully Secure Scheme
achieves full security in the malicious setting.

The proofs are detailed in Section 4.2.

4 Security Proofs

4.1 The Basic Scheme

We here give the proof of security against a malicious P2 in the case of the 2nd

option. The guarantees of privacy against a malicious P2 for the 1st option, or
against a malicious P1 for the 2nd option are easily deduced from the privacy of
the OT’s, since no other messages are sent to these parties during the protocol.

Theorem 3 (Full Security against a Malicious P2-2
nd option). Assuming

that the underlying OT 2
1 is secure in the malicious setting, the Basic Scheme,

following the 2nd option, is fully-secure against a malicious P2 in the OT-hybrid
setting.

The following proof is partially inspired from the proofs of [28]. Indeed, our
scheme can be viewed as a reduction of the third variant of their Oblivious
Automata Evaluation, with only one state per line of the matrix, but where the
lines of the matrix are not identical.

Proof. Let B be a PPT adversary controlling P2 in the real world, we describe
a simulator SB who simulates the view of B in the ideal world.

SB runs B on input Y . Since we operate in the OT-hybrid model, B sends
Y ′ = (y′1, . . . , y

′
n) to the OT oracle. SB sends Y ′ to the trusted party and obtains

D = dH(X,Y ′). SB picks n random values t1, . . . , tn−1, T ∈R Zn+1 and computes
tn = T +D−Σn−1

i=1 ti. SB sends the ti’s to B as results of the oblivious transfer.
He then sends T . SB then outputs whatever B outputs.

Let us now prove the indistinguishability between the real and the simulated
views. Let V be a random subset of size t of {1, . . . , n}. (V represents the bit
positions where xi ⊕ yi = 1.) Consider the distributions:

– (DV ): Choose n uniformly random values {r1, . . . , rn} ∈ Zn+1. For every
i ∈ {1, . . . , n}, let r′i = ri + 1 if i ∈ V and r′i = ri otherwise. Output
(r′1, . . . , r

′
n).

– (D′V ): Choose n uniformly random values R, r′1, . . . , r
′
n−1 ∈ Zn+1. Let R′ =

R+ t and r′n = R′ −Σn
i=1r

′
i. Output (r′1, . . . , r

′
n).

It is easy to show that DV and D′V are identically distributed and that sampling
from D′V only requires the knowledge of t. We can now notice that the distribu-
tion DV represents the view of B in a real execution of the protocol while our
simulator SB samples from D′V , with the only knowledge of the final output.
Thus, the view of P2 in the real world and the simulated view of P2 in the ideal
world are indistinguishable, which ensures full security against a malicious P2.

ut



Remark 1. The proofs of security in the semi-honest setting are straightforward,
given the security guarantees of the Oblivious Transfer and the arguments ex-
plained in the previous proof proving that the outputs of the OT’s give no
information on the inputs of P2.

4.2 The Fully Secure Scheme

We use an adaptation of the OT-hybrid model to Committed Oblivious Transfer.
When the parties engage a COT in the COT-hybrid model, parties interact with
each other and have access to a trusted party that computes the COT for them.
Concretely, the receiver sends b, Com(b, r) to the trusted party, the sender sends
x0, Com(x0, r0) and x1, Com(x1, r1) to the trusted party. The trusted party
sends xb and r′ back to the receiver and Com(xb, r

′) to both parties. This model,
for a slightly different COT, has already been used in the proof of security of
the binHDOT protocol [22] for malicious adversaries.

Notice that, since we use zero-knowledge proofs of knowledge, our protocol
cannot be proved secure in the UC model [6] but in the stand-alone setting only.

Theorem 4 (Full Security Against a Malicious P1). Assuming that the
underlying COT is secure in the malicious setting, the Fully Secure Scheme is
fully-secure against a malicious P1 in the COT-hybrid setting.

Proof. Let B be a PPT adversary controlling P1 in the real world, we describe
a simulator SB who simulates the view of B in the ideal world.

SB runs B on input X. SB commits to random bits (y′1, . . . , y
′
n) and runs

the proofs that an honest P2 would run. He receives the commitments of B and
checks the proofs like an honest P2. Then, SB gets the inputs (ai, bi, Ai, Bi)i=1,...,n

of B to the COT oracle and easily deduces the couples (r′i, x
′
i)i=1,...,n such that

(ai, bi) = (r′i + x′i, r
′
i + x′i). Such values must exist, and are unique, since B suc-

cessfully proved that |ai− bi| = 1. SB sends X ′ to the trusted party and obtains
D = dH(X ′, Y ). SB chooses n random τi’s, sets t′i = r′i + 1, for i = 1, . . . , D
and t′i = r′i otherwise. He then computes (Com(t′i, τi))i=1,...,n. SB sends these
commitments back to B. SB then follows the protocol until the end, the checks
on the dot-products of commitments ensuring that everything is consistent.

It is relatively easy to show that this simulation is indistinguishable from
the view of P1 in the real world, which ensures full security against a malicious
P1. ut

Theorem 5 (Full Security Against a Malicious P2). Assuming that the
underlying COT is secure in the malicious setting, the Fully Secure Scheme is
fully-secure against a malicious P2 in the COT-hybrid setting.

Proof. Let B be a PPT adversary controlling P2 in the real world, we describe
a simulator SB who simulates the view of B in the ideal world.

SB runs B on input Y . SB commits to random inputs (r′i, r
′
i + 1)i=1,...,n and

runs the proofs that an honest P1 would run. He receives the commitments of B
and checks the proofs like an honest P1. Then, SB gets the inputs (y′i, χi)i=1,...,n



of B to the COT oracle. SB sends Y ′ to the trusted party and obtains D =
dH(X,Y ′). SB sets t′i = r′i for i = 1, . . . , D and t′i = r′i otherwise. SB chooses
n random τi’s and computes (C ′i = Com(t′i, τi))i=1,...,n. SB sends (t′i, τi)i=1,...,n

back to B as outputs of the COT. SB then follows the protocol until the end.
Using arguments similar to the proof of Theorem 3, it is relatively easy to

show that this simulation is indistinguishable from the view of P2 in the real
world, which ensures full security against a malicious P2. ut

5 Extensions

In the following, we only consider the basic scheme. Similar adaptations can be
applied to the fully secure scheme.

5.1 Weighted Hamming Distance

Secure Hamming distance computation is an important tool for secure biometric
identification, when Hamming distance is the actual matching operation (see [32]
for an example of application).

In the field of iris recognition [11], the most common representation of bio-
metric templates is the IrisCode representation. The iris is encoded as a 2048-bit
code, together with a 2048-bit mask that indicates whether the corresponding
bits in the code represent a genuine iris part or not (some parts are, for in-
stance, covered by eyelids). The matching between two IrisCodes (X1,M1) and
(X2,M2) (where Xi is the code and Mi is the mask) is computed using the
weighted Hamming distance operation HD:

HD(X1, X2,M1,M2) =
||(X1 ⊕X2) ∩M1 ∩M2||

||M1 ∩M2||
=
Σn

i=1(x1i ⊕ x2i) ·m1i ·m2i

Σn
i=1m1i ·m2i

Secure Computation of weighted Hamming distance has already been consid-
ered in [2, 3] using homomorphic encryption and garbled circuits. We can help
improving these protocols using the first part of our proposals, i.e. until the end
of the oblivious transfers. Indeed, we can achieve the computation of both nu-
merator and denominator in the weighted Hamming distance computation but
not the division. However, in secure biometric identification protocols, the value
of interest is not the actual matching score but whether this score is above or
under a given threshold. The outputs of the first part of the protocol, modified
to compute the numerator and the denominator, can then be used as inputs for
another circuit that outputs the desired result, as in [2, 3].

We do not describe the full modification to obtain a secure computation of
the numerator and denominator of the weighted Hamming distance, since it is
quite straightforward. Only notice that 1-out-of-4 OT’s have to be used, instead
of OT 2

1 ’s (or even 1-out-of-3 OT’s if one rewrites IrisCodes as chains of 2048
elements from {0, 1, ε} where ε denotes an erasure, i.e. a position where the
mask is 0).



5.2 Many at Once

Another important advantage of our scheme is that it well extends to the com-
putation of many Hamming distances at the same time. Let X1, . . . , Xm be the
inputs of P1 and Y still be the input of P2. We can adapt the Basic Scheme as
follows. The step indices correspond to the description of Figure 3.

During step 1, instead of generating n random values, P1 generates m × n
random values (rji )i=1,...,n,j=1,...,m. During step 2, the inputs of P1 are con-
catenations of m values: input 0 is (r1i + x1i || . . . ||rmi + xmi ) and input 1 is

(r1i +x1i || . . . ||rmi +xmi ). The output of P2 is thus (t1i = r1i + (x1i ⊕ yi)|| . . . ||tmi =

rmi + (xmi ⊕ yi)). During step 3, P2 computes, for i = 1, . . . ,m, T j = Σn
i=1t

j
i .

During step 4, either P1 sends the Rj ’s to P2 or P2 sends the T j ’s to P1 and the
outputs are (Dj = T j −Rj)j=1,...,m.

This extension is useful for the context of biometric identification [32, 2, 3],
where several matching scores of the same biometric template against a biometric
database have to be performed.

5.3 Secure Evaluation of A Larger Class of Functions

We can see that our scheme is easily adaptable to the class of functions that are
linear combinations of functions taking two binary inputs, i.e. all the functions
f such that ∀X = (x1, . . . , xn) ∈ {0, 1}n, Y = (y1, . . . , yn) ∈ {0, 1}n, f(X,Y ) =
Σn

i=1λifi(xi, yi). The adaptation is straightforward. When looking at Figure 3,
the R value is now computed as R = Σn

i=1λiri. The inputs of P1 to the OT’s are,
for each i, f(xi, 0) + ri and f(xi, 1) + ri, so that P2 obtains ti = ri + f(xi, yi).
T is now computed as T = Σn

i=1λiti. The rest of the protocol is unchanged.

6 Efficiency

6.1 The Basic Scheme

The cost of the basic scheme described in Figure 3 is essentially the cost of n
OT 2

1 ’s of inputs of log(n) bits. Using the OT extension of [18], when many OT’s
are performed, the workload turns out to be two evaluations of a hash function
for P1 and one for P2 per input bit. The bandwidth requirement is then roughly
2n. log(n) bits.

Comparison to Previous Schemes Let us compare our Basic Scheme to
two previous protocols [17], [22, 32] for semi-honest secure Hamming Distance
computation, previously known as the most efficient proposals.

Other techniques, like Private Set Intersection Cardinality [9] or Private
Scalar Product Computation [14] can be easily adapted to perform secure Ham-
ming distance computation. However, in these proposals, use of homomorphic
encryption and/or a linear number of exponentiations leads to schemes that are
less efficient than our proposal in the semi-honest model.



We first compare to the application of the Yao algorithm to Hamming dis-
tance computation described in [17]. In this setting, the Hamming distance func-
tion has to be represented as a binary circuit. To get an idea of the cost of the
computation, we need to count the number of non-XOR gates in this circuit. Let
us assume that the size n of the inputs is a power of 2: n = 2N . The number
G of non-free gates is obtained (see the description of the Counter Circuit in
[17]) by G = ΣN

i=1(2N−i.i) ≈ 2N+1 = 2n. Let k be the security parameter of
the scheme. For the generation of the circuit, party P1 has to perform 4G hash
function evaluations. Then, P1 sends the circuit (3k.G bits) and his keys for the
circuit (n.k bits). Then P1 and P2 perform n OT 2

1 ’s on k-bit strings. P2 has then
to perform G hash functions evaluations. Using the OT extension of [18], the
workload of P1 is roughly 10n hash functions evaluations, the workload of P2 is
3n hash function evaluations and the bandwidth is 6kn bits. When m Hamming
distances on the same input of P2 are evaluated, all these operations but the
oblivious transfers of P2’s inputs have to be computed m times.

We now evaluate the workload and bandwidth requirements of the [22, 32]
algorithm. The binHDOT protocol presented in [22] enables evaluation of a class
of functions depending on Hamming distance. We here consider its reduction to
the evaluation of the Hamming distance only. We describe the corresponding
protocol in Appendix A. We moreover take into account, in our evaluations, the
optimizations presented in [32].

Party P2 prepares n homomorphic ciphertexts, encrypting each of his inputs
bits. These ciphertexts are sent to P1 who homomorphically adds and subtracts
them to obtain the encryption of the Hamming distance. Taking into account the
optimizations of [32] (although we do not separate off-line and on-line phases),
P1 has to perform n homomorphic encryptions and P2 n homomorphic addi-
tions. They mainly exchange n ciphertexts. When m distances are computed,
with the optimizations of [32], P2’s work is almost the same and P1 has to per-
form mn/2 homomorphic additions, once n subtractions and 3.5n additions are
preprocessed. The bandwidth depends on the option and on the receiver of the
result.

The comparison of these 3 protocols is summed up in Table 1, where hash
means hash function evaluations and k is the security parameter of the Yao algo-
rithm of [17]. We extrapolate to the simultaneous computation of m Hamming
distances in the setting of Section 5.2 in Table 2. In the first line of Table 2, the
(+m) hom. ciphertexts corresponds to the case where P2 gets the result instead
of P1.

For concrete estimations, k should be at least 80 and Paillier ciphertexts at
least 2048-bit long. It is easy to see that, for reasonable sizes of n, our scheme
is more efficient and requires significantly less bandwidth. In these tables, we
do not mention the k base OT’s that are needed in our basic scheme and in
the scheme of [17] for OT extension. They can be performed in a preprocessing
phase.



P1 P2 Bandwidth (bits)

[22, 32] n hom.add. n hom.enc. n hom.ciphertexts

[17] 10n hash 3n hash 6kn

The Basic Scheme 2n hash n hash 2n log(n)

Table 1. Secure Computation of One Hamming Distance in the Semi-Honest Model

P1 P2 Bandwidth (bits)

[22, 32] mn/2 hom.add. n hom.enc. n(+m) hom.ciphertexts

[17] (2 + 8m)n hash (1 + 2m)n hash (2 + 4m)kn

The Basic Scheme 2n hash n hash 2mn log(n)

Table 2. Secure Computation of m Hamming Distances in the Semi-Honest Model

Implementation Results To prove our allegations regarding efficiency im-
provements in terms of computational workload, we ran the implementation of
secure Hamming distance used in [17] and an implementation of our basic scheme
using the same framework [38] on the same computer. The framework is imple-
mented in Java and we ran it on a single computer with a 2 GHz Intel Core
i7 processor and a 4 GB RAM. We think that the ratio of computation times
between the protocols is more relevant than an absolute value of the time of exe-
cution of our process. This comparison is illustrated in Figure 5. For inputs with
a few thousands bits size, the computation time required for our Basic scheme
is approximately 22% of the time required to compute the protocol of [17].

Fig. 5. Ratio computation times between our Basic Scheme and the protocol of [17]



6.2 The Fully Secure Scheme

We assume that the COT of the Fully Secure Scheme is the one of [23], using
a threshold El-Gamal cryptosystem. According to [23], 24 exponentiations are
required per COT , once the inputs are committed.

P1 performs 2n commitments and runs n π2
1 proofs on the commitments.

He participates in n COT’s as a sender. He finally computes a product of n
ciphertexts (or 2n for the 2nd option). P2 performs n commitments and runs
n π2

1 proofs on the commitments. He participates in n COT’s as a receiver.
He finally computes a product of n ciphertexts (or 2n for the 2nd option). The
bandwidth mainly comprises 3n commitments and n COT’s.

In [22], Jarrous and Pinkas also propose an adaptation of their binHDOT pro-
tocol to the malicious setting. They also use a particular Committed Oblivious
Transfer functionality, with proofs that the inputs differ by a constant number
∆, while we prove that our inputs always differ by 1. However, their protocol
(for a more generic functionality) ends with an oblivious polynomial evaluation.
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A A Homomorphic Secure Hamming Distance
Computation Protocol

We describe a secure Hamming distance protocol derived from the protocol of
[22]. We simplify the protocol of [22] since it is more “powerful” and enables
to compute a function depending on the Hamming distance and not only the
Hamming distance itself. Similar mechanisms to the protocol of [22] are also
present in [2].

We sum up the protocol. Party P1 owns a secret key for an additively homo-
morphic scheme E and P2 knows the corresponding public key. P1 encrypts all
his input bits and sends the ciphertexts to P2, who can compute using homomor-
phic operations the encryption of the Hamming distance between the parties’
inputs. Finally, P2 either sends the resulting ciphertext back to P1 who decrypts
it and learns the result or homomorphically adds a random number and sends
the resulting ciphertext to P1 who decrypts and sends the decryption result back
to P2 who can subtract the random number and obtain the result. The protocol
is described in Figure 6. It is secure in the semi-honest setting.

B The COT protocol of Kiraz et al.

We here briefly describe the COT protocol of [23]. We first recall the COT
functionality in Figure 7.



– Inputs:

• P1 inputs a n-bit string X = (x1, . . . , xn)
• P2 inputs a n-bit string Y = (y1, . . . , yn)
• P1 owns a secret/public key couple (sk, pk) for an additively homo-

morphic scheme E. P2 only knows the public key pk.

– Output:

• 1st Option: P1 obtains dH(X,Y ) and P2 obtains nothing
• 2nd Option: P2 obtains dH(X,Y ) and P1 obtains nothing

– Protocol:

1. P1 encrypts the bits of X. He computes E1 = Epk(x1), . . . , En =
Epk(xn)

2. P1 sends the Ei’s to P2

3. For each i = 1, . . . , n, P2 computes Fi = E1−2yi
i ·Epk(yi) = Epk(xi −

2xi · yi + yi) = Epk(xi ⊕ yi)
4. P2 computes F = Πn

i=1Fi = Epk(dH(X,Y ))
5. 1st Option:

(a) P2 sends F to P1

(b) P1 decrypts F and outputs Dsk(F ) = dH(X,Y )
2nd Option:
(a) P2 picks a random R, uniformly from the plaintext space of E,

and computes G = F · Epk(R) = Epk(dH(X,Y ) +R)
(b) P2 sends G to P1

(c) P1 decrypts G and obtains H = dH(X,Y ) +R
(d) P1 sends H to P2

(e) P2 computes and outputs H −R = dH(X,Y )

Fig. 6. A Homomorphic Encryption-Based Secure Hamming Distance Computation
Protocol

Sender S Receiver R

Input: X0, X1, r0, r1 Common Input: Com(b, r),

Com(X0, r0), Com(X1, r1)

Input: b, r

Committed Oblivious Transfer

Output: ⊥ Common Output: Com(Xb, u), Output: Xb, u

Fig. 7. The COT Functionality

Let E be a (2,2)-threshold additive homomorphic scheme, i.e. a public-key
cryptosystem such that:

– E(x, r1) · E(y, r2) = E(x+ y, r1 + r2) and E(n · x) = E(x)n



– The secret key sk of the scheme is divided into two shares sk1 and sk2.
– The decryption is performed using two algorithms D and R such that

R(Dsk1
(E(x)), Dsk2

(E(x))) = x

In the COT scheme of [23], the commitment scheme is a (2,2)-threshold
cryptosystem. Consequently, the sender S and the receiver R own, respectively,
shares skS and skC of the secret key. To commit to an element x using random
r, one computes Com(x, r) = E(x, r).

The scheme is based on the following remark: the output of the receiver is
Xb = b ·(X1−X0)+X0. Using the homomorphic properties of the encryption E,
we then have E(Xb) = E(b)X0−X1 ·E(X0). This can be computed by the sender,
using his private inputs X0 and X1 and the commitments E(b) and E(X0). The
sender sends this value, together with his decryption share to the receiver. The
receiver computes the other decryption share and retrieves the output of the
oblivious transfer. This process goes with several proofs, that we do not detail
here. The scheme of [23] is summed up in Figure 8.

Sender S Receiver R

Input: X0, X1, r0, r1, skS Common Input: e = E(b, r),

e0 = E(X0, r0), e1 = E(X1, r1)

Input: b, r, skR

e′ = eX1−X0 · e0 · E(0)
sS = DskS (e′) e′, sS + proofs

sR = DskR(e′), Xb = R(sS , sR)

Pick a random u, e′′ = E(Xb, u)

ŝR = DskR(e′′/e′)e′′, ŝR + proofs

ŝS = DskS (e′′/e′)

R(ŝS , ŝR) =? 0

Output: ⊥ Common Output: Com(Xb, u), Output: Xb, u

Fig. 8. The COT Scheme of [23]

C π2
1 Proofs

We here detail the π2
1 proofs required at the beginning of the Fully Secure

Scheme, that prove that a given homomorphic ciphertext encrypts one out of
two given values. We instantiate them in the interactive setting, without random
oracle. They can easily be adapted to a non-interactive setting, in the random
oracle model, using the Fiat-Shamir heuristic [12].



C.1 Paillier Cryptosystem

First, let us consider the case of the Paillier cryptosystem [33]. The proof is
introduced in [10, Section 4.2]. Let E be Paillier encryption with public key
(n, g).

The inputs of the prover are an element x ∈ Zn and a random r ∈ Z∗n2 . The
common inputs of the prover and the verifier are x1, x2 and E(x, r) = gxrn

mod n2. We assume, w.l.o.g. that x = x1. Let k denote the bit-length of n and
t = k/2. Prover P and Verifier V proceed as follows:

1. P and V compute u1 = E(x)/gx1(= rn) and u2 = E(x)/gx2

2. P picks a random z2 ∈R Z∗n2 , a random k-bit number e2 and sets a2 = zn2 u
−e2
2

mod n2.
3. P picks a random r1 ∈ Zn2 and sets a1 = rn1 mod n2

4. P sends a1 and a2 to V
5. V chooses a random t-bit number s and sends it to P
6. P computes e1 = s− e2 mod 2t and z1 = r1r

e1 mod n2.
7. P sends e1, z1, e2, z2 to V
8. V checks that s = e1 + e2 mod 2t, zn1 = a1u

e1
1 mod n2 and zn2 = a2u

e2
2 mod

n2 and accepts if and only if all checks succeed.

C.2 ElGamal Cryptosystem

Now consider the additive ElGamal cryptosystem [13]. The underlying proof
on discrete logarithms can be found in [5, Example 3]. Let E be an ElGamal
encryption with public key h in a group G of order q and generator g.

The inputs of the prover are an element x and a random r. The common
inputs of the prover and the verifier are x1, x2 and E(x, r) = (gr, gxhr) = (b1, b2).
We assume, w.l.o.g. that x = x1. Prover P and Verifier V proceed as follows:

1. P and V compute u1 = b2/g
x1(= hr) and u2 = b2/g

x2

2. P picks random v1, v2, c2 ∈R Zq and computes t1 = hv1 and t2 = uc22 h
v2 .

3. P sends t1 and t2 to V
4. V picks a random c ∈R Zq and sends it to V
5. P computes c1 = c− c2, r1 = v1 − c1.r and r2 = v2
6. P sends c1, r1, c2, r2 to V
7. V checks that c = c1 + c2, t1 = uc11 h

r1 and t2 = uc22 h
r2 and accepts if and

only if all checks succeed.


