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Abstract

NOEKEON is a block cipher having key-size 128 and block size 128,proposed by Daemen, J et al.Shekh Faisal
Abdul-Latip et al. give a side channel attack(under the single bit leakage model) on the cipher at ISPEC 2010.Their
analysis shows that one can recover the 128-bit key of the cipher, by considering a one-bit information leakage from
the internal state after the second round, with time complexity of O(268) evaluations of the cipher, and data complexity
of about 210 chosen plaintexts.Our side channel attack improves upon the previous work of Shekh Faisal Abdul-Latip
et al. from two aspects. First, we use the Hamming weight leakage model(Suppose the Hamming weight of the lower
64 bits and the higher 64 bits of the output of the first round can be obtained without error) which is a more relaxed
leakage assumption, supported by many previously known practical results on side channel attacks, compared to the
more challenging leakage assumption that the adversary has access to the ”exact” value of the internal state bits as
used by Shekh Faisal Abdul-Latip et al. Second, our attack has also a reduced complexity compared to that of Shekh
Faisal Abdul-Latip et al. Namely, our attack of recovering the 128-bit key of NOEKEON has a time complexity 20.1
seconds on a PC with 2.6 GHZ CPU and 8G RAM and data complexity of 99 known plaintexts; whereas, that of
Shekh Faisal Abdul-Latip et al. has time complexity of O(268) and needs about 210 chosen plaintexts.

Keywords: NOEKEON, symbolic computation, Gröbner Basis, side channel attack, algebraic-side channel attack,
method of formal coding-side channel attack

1. Introduction

Classical cryptanalysis generally considers adver-
saries getting black box access to the cryptographic
primitives they target, e.g. the inputs and outputs of
a block cipher. However,considering the practical im-
plementations of a block cipher, especially in resource
limited systems such as smart cards, there is a stronger
attack model, namely the side channel attack model,
where the adversary is given more power by having ac-
cess to some limited information leaked about the in-
ternal state of the cipher. This information leakage can
be via physical side channels, such as timing, electrical
power consumption, electromagnetic radiation, prob-
ing, etc.

One of a recent trend is to combine the classi-
cal cryptanalysis such as algebraic cryptanalysis with
side channel attacks, e.g. the work of Bogdanov,
Kizhvatov and Pyshkin at INDOCRYPT 2008 [1],
the side channel cube attack introduced by Dinur

and Shamir in [2] which was used to attack the
block cipher PRESENT[5,6,7], NOEKEON [9],and the
ASCA(Algebraic-Side Channel Attack) proposed by
Renauld et al. in [3,4].

In this paper,we propose the Method of Formal
Coding-Side Channel Attack(MFCSCA) by combing
the method of formal coding and side channel at-
tack.The idea of MFC[10] is to find the algebraic ex-
pression of each bit in the ciphertext as an XOR sum
of products of the bits of the plaintext and the mas-
ter key.The XOR-sum form of the ciphertext is also
known as the algebraic normal form(ANF).The for-
mal manipulations of these expressions may decrease
the key search effort.Schaumuller-Bichl [11,12] stud-
ied this method and concluded that it requires an enor-
mous amount of computer memory which makes the
whole approach impractical.However,by combing with
side channel attack,especially when the leaked informa-
tion comes from earlier rounds,MFC is practical.The
idea of MFCSCA is to give the explicit algebraic ex-
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pressions of the leaked information,with the plaintext
bits and master key bits as variables.These algebraic
expressions can be obtained by modern symbolic com-
putation software such as Mathematica[16].If the alge-
braic expressions are not very complex,the correspond-
ing equation system can be solved by Gröbner basis-
based method [15] or using a SAT solver as in [14].We
selected Gröbner basis-based method in this paper.

As an application, we exhibit an MFCSCA attack
against the block cipher NOEKEON.

Comparing Side Channel Cube attack of [9] with Our
attack. The leakage model used by Shekh Faisal Abdul-
Latip et al. [9] assumes that adversary has access to the
exact value of some of the internal state bits after each
round. We note that obtaining the exact value of the in-
ternal state bits in practice will require a probe station
that allows the attacker to monitor the value of a specific
bit position in the internal state during the encryption
or decryption process. This implies an intrusive physi-
cal measurement and is known to involve a wide range
of difficulties such as penetrating the device to access
its internals and guessing which bit position is being
recorded. To relax the leakage model, in contrast, we
assume the Hamming weight leakage as a more com-
mon side channel leakage model, e.g. see [18-22].In
this paper,we suppose that the Hamming weight of the
lower 64 bits and the higher 64 bits of the output of the
first round can be obtained without error. In this paper
we do not consider these specific issues and counter-
measures about the actual physical aspects of the im-
plementation attacks and how information leakage can
be measured. Rather, we assume the Hamming weight
leakage side channel model as an abstract attack model,
and concentrate on investigating the security of ciphers
against MFCSCA attacks in this attack model.

Our side channel attack improves upon the previ-
ous work of Shekh Faisal Abdul-Latip et al. from two
aspects. First, we use the Hamming weight leakage
model which is a more relaxed leakage assumption, sup-
ported by many previously known practical results on
side channel attacks, compared to the more challenging
leakage assumption that the adversary has access to the
”exact” value of the internal state bits as used by Shekh
Faisal Abdul-Latip et al. Second, our attack has also
a reduced complexity compared to that of Shekh Faisal
Abdul-Latip et al. Namely, our attack of recovering the
128-bit key of NOEKEON has a time complexity 10
seconds on a PC with 2.6 GHZ CPU and 8G RAM and
data complexity of 99 known plaintexts; whereas, that
of Shekh Faisal Abdul-Latip et al. has time complexity
of O(268) and needs about 210 chosen plaintexts.

2. Description of the Method of Formal Coding-Side
Channel Attack(MFCSCA)

MFCSCA can also be thought of an extended version
of algebraic-side channel[3,4].Algebraic side-channel
attacks are made of three separate steps.

(1)Offline phase 1: algebraic description of the cryp-
tosystem.

(2)Online measurement phase to obtain leaked infor-
mation.

(3)Offine phase 2: equation system solving by SAT
method.

MFCSCA has also the above 3 steps.Howerver,the
step 1 and 2 of MFCSCA is different from that of
ASCA.

In step (1) of ASCA,the algebraic description of a
block cipher consists of two parts:one is the equation
system following the idea of algebraic attack[13].This
is an implicit equation system by setting the interme-
diate state as variables.The other is the equation system
generated from the leaked Hamming weight.In MFC-
SCA,we first give the direct explicit representation of
the outputs of earlier rounds of a block cipher in terms
of the bits of plaintext and master key.This is just the
idea of the method of formal coding.This can be done
with the help of symbolic computation software such as
Mathematica [16].Then the Hamming weight(mod 2) of
the outputs can be explicitly represented by the bits of
plaintext and master key.

In step (3) of ASCA,SAT solving technique [14] is
used to find the solution of the equation system.In step
(3) of MFCSCA,we choose Gröbner basis-based [15]
methods to find the solution.

3. Experimental results–Method of formal coding-
side channel attack on NOEKEON

3.1. Description of NOEKEON
NOEKEON is an iterated 128-bit block cipher with

128-bit keys, which runs in 16 rounds. Each round
consists of some subfunctions, a linear function called
Theta, three rotations called Pi1, 32 parallel 4-bit
S-box(see Table 1) lookups called Gamma and three
rotations called Pi2. All functions take a 128-bit text
input. The function Theta takes as input also the
128-bit round key. To avoid round symmetries a round
constant is added to 32 bits of the ciphertexts in each
round. After the 16 rounds, an output transformation
is applied. This consists of the addition of a round
constant and a final application of Theta. The output
transformation and the nature of the individual round
function components allow for very similar encryption
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Table 1: Specification of the S-box in the function Gamma.
i 0 1 2 3 4 5 6 7
S[i] 7 A 2 C 4 8 F 0
i 8 9 A B C D E F
S[i] 5 9 1 E 3 D B 6

and decryption routines. Figure 1 illustrates the round
function in NOEKEON, where Ci is a round dependent
constant and K0, ...,K3 are the 32-bit subkeys.The
least significant byte of C0 to C16 are(in hexideci-
mal):80,1b,36,6c,d8,ab,4d,9a,2f,5e,bc,63,c6,97,35,6a,d4.
(We refer to [8] for a complete description of the ci-
pher).

Let Ar = ar
0ar

1ar
2ar

3 denote the 128-bit internal
state after round r; where ar

i ’s are 32-bit words, and
A0 contains the input plaintext P to the cipher.Then
NOEKEON encryption algorithm can be described as
follows:

For r = 0; r < 16; r + +

Ar+1 = Pi2(Gamma(Pi1(Theta(Ar,K))));
A17 = Theta(A16,K)

The specification of NOEKEON [8], provides a key
schedule which converts the 128-bit Master Key (i.e.
the original key) into a 128-bit Working Key, which is
used in the round function. However, the use of the
key schedule is optional. If related-key attack scenar-
ios [23] are not of a concern, then the key schedule is
not applied (i.e. the Master Key is used directly as the
Working Key), and the cipher is called to be used in the
direct- key mode. Otherwise, it operates in the indirect-
key mode, where the Master Key is processed by the
key schedule algorithm to produce the Working Key.

3.2. Algebraic expressions of the bits of the output of
the 1st round of NOEKEON

In this section,we give the algebraic expressions of
the bits of the output of the 1st round of NOEKEON
with the plaintext bits and master key bits as variables.

Notation:
K = k0k1...k127: master key of NOEKEON,
P = p0 p1...p127 : plaintext of NOEKEON,
B = b0b1...b127 : output of the 1st round of NOEKEON.

Note:In this paper we number bits from zero
with bit zero(the most significant bit) on the left of a
block or word.

Theta@key_, a_D := Module@
8K0, K1, K2, K3, a0, a1, a2, a3, temp<,
a0 = a@@1 ;; 32DD; a1 = a@@33 ;; 64DD;
a2 = a@@65 ;; 96DD; a3 = a@@97 ;; 128DD;
K0 = key@@1 ;; 32DD; K1 = key@@33 ;; 64DD;
K2 = key@@65 ;; 96DD; K3 = key@@97 ;; 128DD;
temp = a0 + a2;

temp = temp + RotateLeft@temp, 8D
+ RotateRight@temp, 8D;

a1 = a1 + temp; a3 = a3 + temp;

a0 = a0 + K0; a1 = a1 + K1; a2 = a2 + K2;

a3 = a3 + K3; temp = a1 + a3;

temp = temp + RotateLeft@temp, 8D
+ RotateRight@temp, 8D;

a0 = a0 + temp; a2 = a2 + temp;

Return@8a0, a1, a2, a3< �� FlattenDD;

Figure 2: Mathematica code of the subfunction Theta of NOEKEON

We use the powerful symbolic computation soft-
ware Mathematica [16] to obtain the result.To ob-
tain the algebraic expressions of each bit of B =

b0b1...b127, output of the 1st round of NOEKEON,we
need only give the symbolic encryption code for
NOEKEON.This can easily be done with Mathematica
in just the same way we write a C encryption code for
NOEKEON.First,we give the Mathematica code of each
of the subfunctions(Theta,Pi1,Pi2 and Gamma,see fig-
ure 1).The Mathematica code of each of the subfunc-
tions are very simple.We give only the source code of
Theta here(see figure 2).

The whole symbolic encryption code(in direct-key
mode) is given in appendix A.We test the correctness
of the symbolic encryption code using the test vector
given in [24](see Table 2).

we use the following Mathematica code to test the
correctness of the symbolic encryption code(see ap-
pendix A).

m = Table[0, {128}];
k = Table[0, {128}];
c = encryption[m, k];
BaseForm[FromDigits[c, 2], 16]
m = Table[1, {128}];
k = Table[1, {128}];
c = encryption[m, k];
BaseForm[FromDigits[c, 2], 16]
k = IntegerDigits[16ˆˆb1656851699e29fa24b70148503d2dfc,

2, 128];
m = IntegerDigits[16ˆˆ2a78421b87c7d0924f26113f1d1349b2,
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Figure 1: Round function of NOEKEON

2, 128];
c = encryption[m, k];
BaseForm[FromDigits[c, 2], 16]

Obtaining the algebraic expressions of the output
of the 1st round:

Let K = k0k1...k127(pure symbol) be the master key
and P = p0 p1...p127(pure symbol) be the plaintext of
NOEKEON.Then we run the symbolic encryption of
NOEKEON and output the state B = b0b1...b127 after
the 1st round.

The followings(see appendix A for details) are the
Mathematica code for obtaining the algebraic expres-
sions of each bit of B = b0b1...b127.

K = Table[ToExpression[StringJoin[”k”,ToString[i]]],
{i,0,127}];

P = Table[ToExpression[StringJoin[”p”,ToString[i]]],
{i,0,127}];

c = encryption[P,K,1]

Here, encryption[P,K,1] means the output B =

b0b1...b127 of round 1. In this way can obtain the al-
gebraic expressions of each bit of B = b0b1...b127.

Table 2: Correctness test result of our symbolic encryption code(in
direct-key mode) for NOEKEON.

key1 00000000000000000000000000000000
plaintext1 00000000000000000000000000000000
ciphertext1 b1656851699e29fa24b70148503d2dfc
our ci-
phertext1

b1656851699e29fa24b70148503d2dfc

key2 ffffffffffffffffffffffffffffffff

plaintext2 ffffffffffffffffffffffffffffffff

ciphertext2 2a78421b87c7d0924f26113f1d1349b2
our ci-
phertext2

2a78421b87c7d0924f26113f1d1349b2

key3 b1656851699e29fa24b70148503d2dfc
plaintext3 2a78421b87c7d0924f26113f1d1349b2
ciphertext3 e2f687e07b75660ffc372233bc47532c
our ci-
phertext3

e2f687e07b75660ffc372233bc47532c
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We list only three of them,b0, b63, b127:

b0 = k98 + p2 + p10 + p26 + p66 + p74 + p90 + p98 +
(
k0 +

k32 +k33 +k37 +k40 +k45 +k56 +k61 +k69 +k96 +k98 +k101 +

k104+k109+k120+k125+p0+p1+p2+p9+p10+p25+p26+

p32+p33+p37+p40+p45+p56+p61+p65+p66+p69+p73+

p74+p89+p90+p96+p98+p101+p104+p109+p120+p125+(
k98 + p2 + p10 + p26 + p66 + p74 + p90 + p98 +1

)(
k37 +k45 +

k61 +k69 +k101 +k109 +k125 + p37 + p45 + p61 + p69 + p101 +

p109 + p125 +1
)
+
(
k37 +k45 +k61 +k69 +k101 +k109 +k125 +

p37+p45+p61+p69+p101+p109+p125

)(
k33+p1+p9+p25+

p33+p65+p73+p89+
(
k98+p2+p10+p26+p66+p74+p90+

p98 +1
)(

k37 +k45 +k61 +k69 +k101 +k109 +k125 + p37 + p45 +

p61+p69+p101+p109+p125+1
)))(

k33+p1+p9+p25+p33+

p65+p73+p89+
(
k98+p2+p10+p26+p66+p74+p90+p98+

1
)(

k37 +k45 +k61 +k69 +k101 +k109 +k125 + p37 + p45 + p61 +

p69+p101+p109+p125+1
)
+
(
k0+k32+k40+k56+k96+k104+

k120+p0+p32+p40+p56+p96+p104+p120+
(
k37+k45+k61+

k69 +k101 +k109 +k125 + p37 + p45 + p61 + p69 + p101 + p109 +

p125

)(
k33+ p1+ p9+ p25+ p33+ p65+ p73+ p89+

(
k98+ p2+

p10 + p26 + p66 + p74 + p90 + p98 +1
)(

k37 +k45 +k61 +k69 +

k101+k109+k125+p37+p45+p61+p69+p101+p109+p125+

1
))

+1
)(

k0+k32+k33+k37+k40+k45+k56+k61+k69+k96+

k98+k101+k104+k109+k120+k125+p0+p1+p2+p9+p10+

p25+p26+p32+p33+p37+p40+p45+p56+p61+p65+p66+

p69 + p73 + p74 + p89 + p90 + p96 + p98 + p101 + p104 + p109 +

p120 + p125 +
(
k98 + p2 + p10 + p26 + p66 + p74 + p90 + p98 +

1
)(

k37 +k45 +k61 +k69 +k101 +k109 +k125 + p37 + p45 + p61 +

p69 + p101 + p109 + p125 +1
)
+
(
k37 +k45 +k61 +k69 +k101 +

k109 +k125 + p37 + p45 + p61 + p69 + p101 + p109 + p125

)(
k33 +

p1 + p9 + p25 + p33 + p65 + p73 + p89 +
(
k98 + p2 + p10 + p26 +

p66 + p74 + p90 + p98 +1
)(

k37 +k45 +k61 +k69 +k101 +k109 +

k125 + p37 + p45 + p61 + p69 + p101 + p109 + p125 +1
))

+1
))
.

b63 =
(
k96 + p0 + p8 + p24 + p64 + p72 + p88 + p96

)(
k35 +

k43+k59+k67+k99+k107+k123+p35+p43+p59+p67+p99+

p107 + p123 +1
)
+
((

k35 +k43 +k59 +k67 +k99 +k107 +k123 +

p35+p43+p59+p67+p99+p107+p123

)((
k96+p0+p8+p24+

p64+p72+p88+p96

)(
k35+k43+k59+k67+k99+k107+k123+

p35+p43+p59+p67+p99+p107+p123+1
)
+k63+p7+p23+

p31+p63+p71+p87+p95

)
+k30+k38+k54+k62+k102+k118+

k126 + p30 + p38 + p54 + p62 + p102 + p118 + p126 +1
)((

k96 +

p0 + p8 + p24 + p64 + p72 + p88 + p96

)(
k35 +k43 +k59 +k67 +

k99 +k107 +k123 + p35 + p43 + p59 + p67 + p99 + p107 + p123 +

1
)
+
(
k35+k43+k59+k67+k99+k107+k123+p35+p43+p59+

p67+p99+p107+p123

)((
k96+p0+p8+p24+p64+p72+p88+

p96

)(
k35+k43+k59+k67+k99+k107+k123+p35+p43+p59+

p67+p99+p107+p123+1
)
+k63+p7+p23+p31+p63+p71+

p87 + p95

)
+k30 +k35 +k38 +k43 +k54 +k59 +k62 +k63 +k67 +

k96+k99+k102+k107+k118+k123+k126+p0+p7+p8+p23+

p24+p30+p31+p35+p38+p43+p54+p59+p62+p63+p64+

p67 + p71 + p72 + p87 + p88 + p95 + p96 + p99 + p102 + p107 +

p118+p123+p126

)
+k63+p7+p23+p31+p63+p71+p87+p95.

b127 =
(
k34 + k42 + k58 + k66 + k98 + k106 + k122 + p34 +

p42 + p58 + p66 + p98 + p106 + p122

)((
k34 +k42 +k58 +k66 +

k98 +k106 +k122 + p34 + p42 + p58 + p66 + p98 + p106 + p122 +

1
)(

k127 + p7 + p23 + p31 + p71 + p87 + p95 + p127 +1
)
+k62 +

p6+p22+p30+p62+p70+p86+p94

)
+k29+k37+k53+k61+

k101 +k117 +k125 + p29 + p37 + p53 + p61 + p101 + p117 + p125.
Note:The correctness of these expressions are

guaranteed by the correctness of the symbolic en-
cryption code on which we have made a correctness
test using the test vector in [24] and the encryption
code for digital encryption and symbolic encryption
are the same.

3.3. Algebraic expressions of the Hamming weight
mod2 of the lower half and higher half of the out-
put of the 1st round of NOEKEON

Based on the algebraic expressions of the output B =

b0b1...b127 of the 1st round,we can obtain the algebraic
expressions of Hamming weight mod2 of the lower half
and higher half of B = b0b1...b127.

Let hl = b64 ⊕ b65 ⊕ ... ⊕ b127,which is the Ham-
ming weight mod2 of the lower 64 bits of the output
of round 1,then by summing the expressions of bi, 64 ≤
i ≤ 127,we have

hl = hl(k32, k33, ..., k126, k127, p0, p1, ..., p127) =

k64 +k65 +k66 +k67 +k68 +k69 +k70 +k71 +k72 +k73 +k74 +

k75 +k76 +k77 +k78 +k79 +k80 +k81 +k82 +k83 +k84 +k85 +

k86 +k87 +k88 +k89 +k90 +k91 +k92 +k93 +k94 +k95 + p64 +

p65+p66+p67+p68+p69+p70+p71+p72+p73+p74+p75+

p76+p77+p78+p79+p80+p81+p82+p83+p84+p85+p86+

p87+p88+p89+p90+p91+p92+p93+p94+p95+
(
k101+p5+

p13 + p29 + p69 + p77 + p93 + p101 +1
)(

k32 +k40 +k48 +k72 +

k96 +k104 +k112 + p32 + p40 + p48 + p72 + p96 + p104 + p112 +

1
)
+
(
k102 + p6 + p14 + p30 + p70 + p78 + p94 + p102 +1

)(
k33 +

k41+k49+k73+k97+k105+k113+p33+p41+p49+p73+p97+

p105 + p113 +1
)
+
(
k103 + p7 + p15 + p31 + p71 + p79 + p95 +

p103 +1
)(

k34 +k42 +k50 +k74 +k98 +k106 +k114 + p34 + p42 +

p50+p74+p98+p106+p114+1
)
+
(
k104+p0+p8+p16+p64+

p72 + p80 + p104 +1
)(

k35 +k43 +k51 +k75 +k99 +k107 +k115 +

p35+p43+p51+p75+p99+p107+p115+1
)
+
(
k105+p1+p9+

p17 + p65 + p73 + p81 + p105 +1
)(

k36 +k44 +k52 +k76 +k100 +
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k108 +k116 + p36 + p44 + p52 + p76 + p100 + p108 + p116 +1
)
+(

k106+p2+p10+p18+p66+p74+p82+p106+1
)(

k37+k45+

k53 +k77 +k101 +k109 +k117 + p37 + p45 + p53 + p77 + p101 +

p109 + p117 +1
)
+
(
k107 + p3 + p11 + p19 + p67 + p75 + p83 +

p107+1
)(

k38+k46+k54+k78+k102+k110+k118+p38+p46+

p54 + p78 + p102 + p110 + p118 +1
)
+
(
k108 + p4 + p12 + p20 +

p68+ p76+ p84+ p108+1
)(

k39+k47+k55+k79+k103+k111+

k119 + p39 + p47 + p55 + p79 + p103 + p111 + p119 +1
)
+
(
k117 +

p13 + p21 + p29 + p77 + p85 + p93 + p117 +1
)(

k32 +k48 +k56 +

k88 +k96 +k112 +k120 + p32 + p48 + p56 + p88 + p96 + p112 +

p120 +1
)
+
(
k109 + p5 + p13 + p21 + p69 + p77 + p85 + p109 +

1
)(

k40 +k48 +k56 +k80 +k104 +k112 +k120 + p40 + p48 + p56 +

p80 + p104 + p112 + p120 +1
)
+
(
k118 + p14 + p22 + p30 + p78 +

p86 + p94 + p118 +1
)(

k33 +k49 +k57 +k89 +k97 +k113 +k121 +

p33 + p49 + p57 + p89 + p97 + p113 + p121 +1
)
+
(
k110 + p6 +

p14 + p22 + p70 + p78 + p86 + p110 +1
)(

k41 +k49 +k57 +k81 +

k105+k113+k121+p41+p49+p57+p81+p105+p113+p121+

1
)
+
(
k119+p15+p23+p31+p79+p87+p95+p119+1

)(
k34+

k50+k58+k90+k98+k114+k122+p34+p50+p58+p90+p98+

p114 + p122 +1
)
+
(
k111 + p7 + p15 + p23 + p71 + p79 + p87 +

p111+1
)(

k42+k50+k58+k82+k106+k114+k122+p42+p50+

p58+p82+p106+p114+p122+1
)
+
(
k96+p0+p8+p24+p64+

p72+p88+p96

)(
k35+k43+k59+k67+k99+k107+k123+p35+

p43 + p59 + p67 + p99 + p107 + p123 +1
)
+
(
k120 + p0 + p16 +

p24+p64+p80+p88+p120

)(
k35+k51+k59+k91+k99+k115+

k123 + p35 + p51 + p59 + p91 + p99 + p115 + p123 +1
)
+
(
k112 +

p8+p16+p24+p72+p80+p88+p112

)(
k43+k51+k59+k83+

k107+k115+k123+p43+p51+p59+p83+p107+p115+p123+

1
)
+
(
k97+p1+p9+p25+p65+p73+p89+p97+1

)(
k36+k44+

k60 +k68 +k100 +k108 +k124 + p36 + p44 + p60 + p68 + p100 +

p108 + p124 +1
)
+
(
k121 + p1 + p17 + p25 + p65 + p81 + p89 +

p121+1
)(

k36+k52+k60+k92+k100+k116+k124+p36+p52+

p60 + p92 + p100 + p116 + p124 +1
)
+
(
k113 + p9 + p17 + p25 +

p73+ p81+ p89+ p113+1
)(

k44+k52+k60+k84+k108+k116+

k124 + p44 + p52 + p60 + p84 + p108 + p116 + p124 +1
)
+
(
k32 +

k40+k56+k64+k96+k104+k120+p32+p40+p56+p64+p96+

p104+p120+1
)(

k125+p5+p21+p29+p69+p85+p93+p125+

1
)
+
(
k98+p2+p10+p26+p66+p74+p90+p98+1

)(
k37+k45+

k61 +k69 +k101 +k109 +k125 + p37 + p45 + p61 + p69 + p101 +

p109 + p125 +1
)
+
(
k122 + p2 + p18 + p26 + p66 + p82 + p90 +

p122+1
)(

k37+k53+k61+k93+k101+k117+k125+p37+p53+

p61 + p93 + p101 + p117 + p125 +1
)
+
(
k114 + p10 + p18 + p26 +

p74+ p82+ p90+ p114+1
)(

k45+k53+k61+k85+k109+k117+

k125 + p45 + p53 + p61 + p85 + p109 + p117 + p125 +1
)
+
(
k33 +

k41+k57+k65+k97+k105+k121+p33+p41+p57+p65+p97+

p105+p121+1
)(

k126+p6+p22+p30+p70+p86+p94+p126+

1
)
+
(
k99+p3+p11+p27+p67+p75+p91+p99+1

)(
k38+k46+

k62 +k70 +k102 +k110 +k126 + p38 + p46 + p62 + p70 + p102 +

p110 + p126 +1
)
+
(
k123 + p3 + p19 + p27 + p67 + p83 + p91 +

p123+1
)(

k38+k54+k62+k94+k102+k118+k126+p38+p54+

p62 + p94 + p102 + p118 + p126 +1
)
+
(
k115 + p11 + p19 + p27 +

p75+ p83+ p91+ p115+1
)(

k46+k54+k62+k86+k110+k118+

k126 + p46 + p54 + p62 + p86 + p110 + p118 + p126 +1
)
+
(
k34 +

k42+k58+k66+k98+k106+k122+p34+p42+p58+p66+p98+

p106+p122+1
)(

k127+p7+p23+p31+p71+p87+p95+p127+

1
)
+
(
k100 + p4 + p12 + p28 + p68 + p76 + p92 + p100 +1

)(
k39 +

k47 +k63 +k71 +k103 +k111 +k127 + p39 + p47 + p63 + p71 +

p103 + p111 + p127 +1
)
+
(
k124 + p4 + p20 + p28 + p68 + p84 +

p92+p124+1
)(

k39+k55+k63+k95+k103+k119+k127+p39+

p55 + p63 + p95 + p103 + p119 + p127 +1
)
+
(
k116 + p12 + p20 +

p28 + p76 + p84 + p92 + p116 +1
)(

k47 +k55 +k63 +k87 +k111 +

k119 +k127 + p47 + p55 + p63 + p87 + p111 + p119 + p127 +1
)
.

Let hh = b0 ⊕ b1 ⊕ ... ⊕ b63,which is the Hamming
weight mod2 of the higher 64 bits of the output of round
1.Similarly,we can also obtain its expression,which is
too complex to be given here.Each plaintext variable
and key variable appears in the expression.i.e. we have

hh = hh(k0, k1, ..., k126, k127, p0, p1, ..., p127).

3.4. Improved side channel attack on NOEKEON by
MFCSCA

In this section,we give our MFCSCA attack on
NOEKEON,which improves the work of Shekh Faisal
Abdul-Latip et al in [9]. We use the Hamming weight
leakage model.We suppose that the Hamming weight of
the lower 64 bits b64b65...b127 and the higher 64 bits
b0b1...b63 of the output of the first round can be ob-
tained without error.We give a simulation MFCSCA at-
tack on NOEKEON,which shows that the 128-bit key
of NOEKEON can be recovered in 10 seconds on a PC
with 2.6GHZ cpu and 8G RAM,with 99 known plain-
texts.

The simulation attack contains two parts.
1.Recovering k96, k97, ..., k127 with n ≥ 64

known plaintexs,using the expressions of
hl = hl(k32, k33, ..., k126, k127, p0, p1, ..., p127) in sec-
tion 3.3. The simulation steps are as follows:

(1)Random choose a key K = k0k1...k127.
(2)Random choose n known plaintexts.Encrypt each

plaintext with the key in (1) and output the Hamming
weight(mod 2) of the lower 64 bits of the output of the
1st round.
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(3)Using the n Hamming weights(mod
2) and the expressions of hl =

hl(k32, k33, ..., k126, k127, p0, p1, ..., p127) in section
3.3,we can obtain n equations with k32, k33, ..., k126, k127
as variables.

(4)Output these equations to a text file mg.txt,of
which Magma v2.12-16 can find the Gröbner basis.Here
we use the lexicographical order for finding the Gröbner
basis in Magma.

(5)Use the Magma command ”load mg.txt” to find
the Gröbner basis of the equation system.

The steps (1)-(4) are simulated in Mathematica and
step (5) in Magma.

We have made 100 simulations of (1)-(5) with n =

70.Each time Magma can find 64 bits key,of which the
exact value of k96, k97, ..., k127 can be obtained.The av-
erage running time of step (1)-(4) in Mathematica is
3.5 seconds and the average running time of step (5)
in Magma is less than 1 second on a PC with 2.6GHZ
CPU and 8G RAM.Hence the average time of recover-
ing k96, k97, ..., k127 is 4.5 seconds.

2.Recovering k0, k1, ..., k95 with another m(i.e. total
m + n,denoted by u) known plaintexs,using the ex-
pressions of hh = hh(k0, k1, ..., k126, k127, p0, p1, ..., p127)
in section 3.3. Now the variables k96, k97, ..., k127 are re-
placed by the value obtained in 1. The simulation steps
are as follows:

(1)Random choose a key K = k0k1...k127.
(2)Random choose u known plaintexts.Encrypt each

plaintext with the key in (1) and output the Hamming
weight(mod 2) of the higher 64 bits of the output of the
1st round.

(3)Using the u Hamming weights(mod 2) and the ex-
pressions of hh = hh(k0, k1, ..., k126, k127, p0, p1, ..., p127)
in section 3.3,we can obtain u equations with
k0, k1, ..., k94, k95 as variables(The variables
k96, k97, ..., k127 are replaced by the actual digital
value in (1)).

(4)Output these equations to a text file mg.txt,of
which Magma v2.12-16 can find the Gröbner basis.Here
we use the lexicographical order for finding the Gröbner
basis in Magma.

(5)Use the Magma command ”load mg.txt” to find
the Gröbner basis of the equation system.

The steps (1)-(4) are simulated in Mathematica and
step (5) in Magma.

We have made 100 simulations of (1)-(5) with u =

99.Each time Magma can find the Gröbner basis of the
equation system in (3).One running instance of the ob-
tained Gröbner basis by Magma is:

[k0 +1, k1, k2, k3, k4, k5 +1, ..., k92, k93 +1, k94 +1, k95 +1],

Table 3: Summary of side channel attack on NOEKEON
Source Leakage

model
Data Com-
plexity

Recovered
Key

[9] A 210 CP 60 bits
this paper B 99 KP 128 bits

Note:CP:Chosen Plaintext;KP:Known Plaintext;
A:single bit leakage of the output of the second round;
B:Hamming weight leakage of the lower 64 bits and
higher 64 bits of the output of the 1st round;

which means that k0 = 1, k1 = 0, k2 = 0, k3 = 0, k4 =

0, k5 = 1, ..., k92 = 0, k93 = 1, k94 = 1, k95 = 1.The
average running time of step (1)-(4) in Mathematica
is 4.8 seconds and the average running time of step
(5) in Magma is 10.8 seconds on a PC with 2.6GHZ
CPU and 8G RAM.Hence the average time of recover-
ing k0, k1, ..., k95 is 15.6 seconds and the total time of
recovering the 128-bit key is 15.6+4.5=20.1 seconds.

We summarize our work and the known side channel
attack on NOEKEON in Table 3. Our side channel at-
tack improves upon the previous work of Shekh Faisal
Abdul-Latip et al. from two aspects. First, we use the
Hamming weight leakage model(we suppose the Ham-
ming weight of the lower 64 bits and the higher 64 bits
of the output of the first round can be obtained without
error) which is a more relaxed leakage assumption, sup-
ported by many previously known practical results on
side channel attacks, compared to the more challenging
leakage assumption that the adversary has access to the
”exact” value of the internal state bits as used by Shekh
Faisal Abdul-Latip et al. Second, our attack has also a
reduced complexity compared to that of Shekh Faisal
Abdul-Latip et al. Namely, our attack of recovering
the 128-bit key of NOEKEON has a time complexity
20.1 seconds on a PC and data complexity of 99 known
plaintexts; whereas, that of Shekh Faisal Abdul-Latip et
al. has time complexity of O(268) and needs about 210

chosen plaintexts.

4. Conclusion

This paper proposes a new method of cryptanalysis
of block cipher-MFCSCA,by combining the method of
formal coding and side channel attack.The experimental
result shows that if the Hamming weights of the output
of the earlier rounds of a block cipher are leaked,then
we can set up explicit equation system about the mas-
ter key bits.By Gröbner basis-based method,we can find
the master key.Although the diffusion is not enough,the
Hamming weight of the entire state of earlier rounds
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may contain all the information concerning the mas-
ter key.If enough Hamming weights are leaked,than the
master key can easily be recovered by equation solving
technique.The following work is to use MFCSCA to at-
tack other block ciphers.

Appendix A. Symbolic encryption code of
NOEKEON in Mathematica plat-
form
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theta@key_, a_D := Module@8K0, K1, K2, K3, a0, a1, a2, a3, temp<,
a0 = a@@1 ;; 32DD; a1 = a@@33 ;; 64DD; a2 = a@@65 ;; 96DD; a3 = a@@97 ;; 128DD;
K0 = key@@1 ;; 32DD; K1 = key@@33 ;; 64DD; K2 = key@@65 ;; 96DD; K3 = key@@97 ;; 128DD;
temp = a0 + a2; temp = temp + RotateLeft@temp, 8D + RotateRight@temp, 8D;
a1 = a1 + temp; a3 = a3 + temp; a0 = a0 + K0; a1 = a1 + K1; a2 = a2 + K2;

a3 = a3 + K3; temp = a1 + a3; temp = temp + RotateLeft@temp, 8D + RotateRight@temp, 8D;
a0 = a0 + temp; a2 = a2 + temp; Return@8a0, a1, a2, a3< �� FlattenDD;

pai1@x_D := 8x@@1 ;; 32DD, RotateLeft@x@@33 ;; 64DD, 1D,
RotateLeft@x@@65 ;; 96DD, 5D, RotateLeft@x@@97 ;; 128DD, 2D< �� Flatten;

gamma@a_D := Module@8A0, A1, A2, A3, tmp<, A0 = a@@1 ;; 32DD;
A1 = a@@33 ;; 64DD; A2 = a@@65 ;; 96DD; A3 = a@@97 ;; 128DD;
A1 = A1 + HA2 + 1L * HA3 + 1L; A0 = A0 + A1 * A2; tmp = A3; A3 = A0; A0 = tmp;

A2 = A2 + A0 + A1 + A3; A1 = A1 + HA2 + 1L * HA3 + 1L;
A0 = A0 + A2 * A1; Return@8A0, A1, A2, A3< �� FlattenDD;

pai2@x_D := 8x@@1 ;; 32DD, RotateRight@x@@33 ;; 64DD, 1D,
RotateRight@x@@65 ;; 96DD, 5D, RotateRight@x@@97 ;; 128DD, 2D< �� Flatten;

H*round constant of NOEKEON*L
rc1 = 8128, 27, 54, 108, 216, 171, 77, 154, 47, 94, 188, 99, 198, 151, 53, 106, 212<;
rc = Table@Table@0, 832<D, 817<D;
For@r = 1, r £ 17, r++, rc@@rDD@@25 ;; 32DD = IntegerDigits@rc1@@rDD, 2, 8DD;
encryption@m_, key_, s_: 0D := ModuleA8c, r<,

c = m;

ForAr = 1, r £ 16, r++,

c@@1 ;; 32DD = c@@1 ;; 32DD + rc@@rDD;
c = theta@key, cD; c = pai1@cD; c = gamma@cD;
c = Ic �. Power@aaa_, cc_IntegerD ® aaaM �. aa_Integer ® Mod@aa, 2D;
c = pai2@cD;
c = Ic �. Power@aaa_, cc_IntegerD ® aaaM �. aa_Integer ® Mod@aa, 2D;
If@s � r, Return@cDDE;

c@@1 ;; 32DD = c@@1 ;; 32DD + rc@@17DD; c = theta@key, cD;
c = Ic �. Power@aaa_, cc_IntegerD ® aaaM �. aa_Integer ® Mod@aa, 2D;
Return@cDE;

H*correcness test of noekeonEncryption,the test vectors are taken from @24D*L
m = Table@0, 8128<D; k = Table@0, 8128<D;
c = encryption@m, kD; BaseForm@FromDigits@c, 2D, 16D
m = Table@1, 8128<D; k = Table@1, 8128<D;
c = encryption@m, kD; BaseForm@FromDigits@c, 2D, 16D
k = IntegerDigits@16^^b1656851699e29fa24b70148503d2dfc , 2, 128D;
m = IntegerDigits@16^^2a78421b87c7d0924f26113f1d1349b2 , 2, 128D;
c = encryption@m, kD; BaseForm@FromDigits@c, 2D, 16D
H*obtain the algebraic expressions of round 1*L
m = Table@ToExpression@"p" <> ToString@iDD, 8i, 0, 127<D;
k = Table@ToExpression@"k" <> ToString@iDD, 8i, 0, 127<D;
c = encryption@m, k, 1D;
Print@c@@1DD, ",", c@@64DD, ",", c@@128DDD

Figure A.3: Mathematica symbolic encryption code of NOEKEON.
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