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Abstract. Achieving both security and efficiency is the challenging issue
for a data outsourcing service in the cloud computing. Proof of Storage
with Deduplication (POSD) [1] is the first solution that addresses the
issue for the cloud storage. However, the validity of the POSD scheme
stands on the strong assumption that all clients are honest in terms
of generating their keys. We present insecurity of the scheme under new
attack model that malicious clients exploit dishonestly manipulated keys.
We also propose an improvement of the POSD scheme to mitigate our
attack.

1 Introduction

Data outsourcing to a cloud storage brings forth one of new challenges for the
efficient resource utilization as well as keeping security for the outsourced data
simultaneously. Recently, Zheng and Xu proposed a Proof of Storage with Dedu-
plication (POSD) scheme for a secure and efficient cloud storage service [1]. Ex-
ploiting the public verifiability [2], the POSD scheme couples two notions of
Proof of Data Possession (PDP) [2][3] and Proof of Data Ownership (POW) [4]
and provides a solution to achieve both of security and efficiency. Using the
POSD scheme, a client can be assured the integrity of its outsourced data. In
addition, a storage server can take advantage of deduplication techniques in a
secure manner. That is, the storage server can efficiently utilize resources such
as storage space and network bandwidth while preventing information leakage
[5](6].

In the POSD scheme, the verification of auditing and deduplication protocol
entirely depends on public keys, which are created and provided by clients [1].
Hence, the validity of the scheme is implicitly based on an assumption, which we
call random key assumption, that all clients are honest in terms of generating
their keys. In the cross-multiple users and the cross-domain environment of the
cloud computing, however, such an assumption is unrealistic. Eliminating ran-
dom key assumption may cause storage systems that utilize the POSD scheme
to face a new security threat not considered before. Unfortunately, the scheme



has a serious security breach under new attack model allowing malicious clients
to make dishonestly manipulated keys.

In this paper, we present the security weakness of the POSD scheme. More
specifically, we show that the scheme fails to satisfy two security requirements,
server unforgeability and (k, #)-uncheatability, under new attack model that is
very reasonable and effective. A countermeasure against this attack is provided
by modifying the scheme such that the clients-created keys are blended with
the random values contributed by the storage server. The proposed solution
actually weakens the client’s capability to control their keys. The modification
is minimized so that our scheme preserves the efficiency while providing more
robust security.

This paper is organized as follows: In Section 2, we briefly review the POSD
scheme. New attack model and some attack scenarios are presented in Section
3, and countermeasure against the attack is described in Section 4. Finally, we
conclude this paper in Section 5.

2 A review of the Proof of Storage with Deduplication

In this section, we briefly review the POSD scheme. For more details, refer to
Zheng and Xu'’s original paper [1].

2.1 Security requirements

The POSD scheme is required to satisfy the following two security properties:
Server unforgeability : No cheating server can fool an honest client (or an
auditor), who is to verify the outsourced file F, by presenting F’ # F with non-
negligible probability.

(K, 0)-uncheatability : Given a file F with min-entropy &, no cheating client,
who gets up to 6-bit entropy of F, can fool the server with non-negligible prob-
ability.

2.2 The POSD scheme

Let p, q be two sufficiently large primes and G, G be cyclic groups of order q.
Let g € G be a generator of G and e : G — G be an admissible bilinear map.
Let F be a data file consisting of n blocks and each block F; (1 <4 < n) consist
of m symbols in Z,. Let us denote each symbol of F; as F;; for 1 < j < m.
Let fid be a unique file id, and let H; : {0,1}* — G and H, : {0,1}* — Z, be
hash functions. The POSD scheme consists of the following PPT algorithms and
protocols:

KEYGEN: This algorithm generates two pairs of public key and private key.
A client runs this protocol as follows:

1. Choose v and v randomly from Zj such that the orders of subgroups gen-
erated by v; and vs are ¢g. Choose s;1 and s;jo randomly from ZZ and set

— —S8j1_ —Sj52 .
zj=v; vy Cforl1<j<m.



2. Choose v uniformly at random from G and w from Zj. Then set z, = g,
where g is a generator of G.

3. Set the public key PK;,1={q,p, g, u, v1,v2, 21, 22, ..., Zm, 24} and the private
key SKint:{(8117 812)7 ey (Sml, Smg)7 w}

4. Set PKgyp=PK;,+ and SKg,,=null.

UPLOAD: A client who is to outsource the file F and the server run this
protocol as follows:

1. For each block F; (1 <1 < n), the client chooses r;1,r;2 at random from ZZ
and computes

Ti1,,T42

T; = v;"' vy mod p,

m
Yi1 = Ti + Z Fi;s;1 mod ¢,
j=1

m
Yiz = Ti2 + Z Fijsjo mod g,
j=1

ti= (Hi(fd | i)qu(Ii))w (€G).

2. The client sends (fid, F, Tag;,:) to the server, where Tag;n.={(2:, ¥i1, Yiz, ti)1<i<n }-
3. The server receives (fid, F, Tag;,:) and sets Taggup,=Tagin:.

AUDITINT: An auditor, which can be the client itself, and the server run this
protocol as follows:

1. The auditor chooses a set of ¢ elements I={a1, aa,...,a.}, where a; € N,
and chooses a set of coefficients 8 = {1, B2, ..., 8.}, where p; € Zj. The
auditor sends a challenge chal = (I, §) to the server.

2. Upon receiving chal, the server computes

pi=>_ BiFij mod g (1<j<m),
i€l

Y1 =) Biya mod g,
i€l

Y2 = Biyiz mod g,
iel

T=[[t" (¢G)
i€l

and sends resp=({t; }1<j<m, {®i}ie1, Y1, Y2, T) to the auditor.
3. Upon receiving resp, the auditor computes :

X = Haclﬁ mod p,
i€l

W =[] Ha(fid || )%

i€l



and verifies

X < vy w2 H 27 mod p (1)
j=1
e(T,g) = e(WuZiet 220 20y (€ Gr). (2)

If both hold, return PASS; otherwise, return FAIL.
DEDUP: The server and the client run this protocol as follows:

1. The server generates a challenge chal = (I, 5), where I={ay, as,...,a.} and
B ={p51,B2,-..,8:} as the AUDITINT protocol, and sends it to the client.
2. Upon receiving chal, the client computes

pi=> BiFijmodg,1<j<m
iel

and sends resp = ({1;}1<i<m) to the server.
3. Upon receiving resp, the server verifies

X = vy )2 H 27 mod p (3)
j=1
e(T, g) = e(WuZiet Fi2@d) 5y (e Gr), (4)

where Y1, Yo, W, X and T are computed from Tagq,,={(x:, i1, Yiz, ti)i<i<n }-
If both hold, return PASS; otherwise, return FAIL.

3 Weakness of the POSD scheme

In this section, we describe new attack model against the POSD scheme and
present some attack scenarios.

3.1 Weak key attack

A malicious client may create the manipulated keys of his/her own dishonestly
rather than executing the KEYGEN algorithm under the random key assump-
tion. Some manipulated keys, which we call weak keys, can incur a security
breach of the POSD scheme. The weak keys can be constructed as follows:

1. & is chosen at random from Zj such that the order of £ is g.

2. Y1,%2, ..., are chosen at random from Z7.
3. £ and ¢; (1 < j < m) are assigned as follows:
U1 = fa V2 = €717

Sj1:8j2:¢j (1§]§m)



4. The rest of key components g, u, w, 21,22,...,%n and z, are generated
correctly according to the KEYGEN algorithm.

5. The weak keys are formed as:

PKint = PKaup = {¢, 0, 9,4, 1,2, 21, 22, . . ., Zm,, Zg }
SKint = {(511,512), - -, (8m1, 5m2), w},
SKup = null.

Under new attack model that allows to exploit the weak keys, a malicious
client can break two security properties, server unforgeability and (&, 8)-uncheatability,
of the POSD scheme. We describe details below.

Breaking server unforgeability: We show that under the weak key attack,
an auditor will be fooled into assuring the integrity of an outsourced file F even
if a storage server does not have the correct file but an arbitrary F'(# F). Let us
denote an auxiliary audit information computed from the weak keys as 'fa\gmt
Suppose that an adversary A, which acts as a client, generates a weak key
PKmt and SKmt A begins uploading a tuple (fid, F/ Tagmt) where F' # F and
Tagim7 fid is for F, to the storage server. An auditor who is to verify the integrity
of the file F will start the AUDITINT protocol by sending the storage server a
challenge (I, 8), where I={a, aa,...,a.} and 8 = {1, B2, . - ., Bc}. Upon receiv-
ing the challenge, the storage server computes the following with F’ and fagim:

1y = ZﬂiFlij mod ¢ (1 <j<m),
iel
= Zﬂiym mod ¢,
i€l
= Biyiz mod g,
i€l
T=][t) (€G),

i€l



and sends resp = ({M;-}lgjgnu {i}ien, Y1,Y2, T) to the auditor. In the verifica-
tion phase, Eq. (1) holds as follows:

m ’
Yy, Y2 Hj
vy vy I | 2

=1

m . /,.

et By D01 Biviz —81 —8j2 Lier BiF's

=Y Vg Uy 7 Uy
j=1

m
_ ,Ulziez Biylivgiel Biyi2 H g(wj—wj)Ziel BiFij

Jj=1

UZieI Bi(ra+X7w, Fijsjl)ineI Bi(ria+3 7o, FijSi2)
1 2

_ <,Ulziel 13“”7111]22@'61 Bi“?) SZiel DTy BiFijw =32 cr 25w BiFijbs

= (v Ugiz)ziel Bi

i€l
X (5)

Eq. (2) also holds since the resp is valid and any z;, yi1, yi2 and t; (1 < i < n)
of the Tag;,; are not forged in the attack. Thus, the verification process returns
PASS, which indicates that the POSD scheme fails to satisfy server unforgeabil-
ity.

Breaking («,)-uncheatability: Suppose that an adversary A has uploaded
a file F of k-bit min-entropy in the form of a tuple (fid, F, ri\agim) to the storage
server, and another client B executes the DEDUP protocol to take an ownership
of F. Upon receiving of a challenge (I, 3) from the server, B picks a dummy F’
and computes

py=> BiFiymodg (1<j<m).
i€l

Then, B sends resp = ({M;‘}lgjgm) to the server. In the verification phase, Eqs.
(3) and (4) hold as the calculations are the same as the aforementioned case of
breaking server unforgeability. Note that even without knowing any information
of F (i.e., 8 = 0), B can pass the DEDUP protocol. Hence, the POSD scheme
fails to satisfy (k, 8)-uncheatability.

3.2 Attack scenario

Exploiting the weak keys, several practical attacks against storage systems using
the POSD scheme are feasible. Below we list some plausible attack scenarios.

Malware Distribution: A malware writer can use a storage server as a malware
distribution platform by exploiting the weak keys. For clarity, let us denote the



malware writer as A, which may play a role of a client in the POSD scheme. In
order to deploy the malware effectively, A may use a setup file F of a popular
software like Acrobat Reader or Google Chrome for hosting the malware. A
modifies F into F’ by attaching the malware to F and changing the program’s
execution flow. Executing the UPLOAD protocol, A uploads a tuple (fid, F’,
’I/‘a\th)7 where fid and T/‘a\gmt is for F, to the storage server.

Any (victim) client, denoted as C, who wants to outsource F to the storage
server will execute the DEDUP protocol with the server. The DEDUP protocol
will pass though the server actually has only F’. As a result of the DEDUP
protocol, C takes an ownership of file F. When downloading, however, C will
get F’ instead of F. In order to verify the integrity of the outsourced file, C or
an auditor may perform the AUDITINT protocol with the server. However, the
AUDITINT protocol will also pass though the server has modified version of F.
Unintended CDN: A storage server utilizing the POSD scheme also can be
used as a CDN (Content Distribution Network) among malicious clients. Suppose
that there are two malicious clients, A and B: A owns a file F which is potentially
huge and probably copyright violating like pirated movie files, and wishes to send
F to B who is not in possession of the file. Generating the weak key, A uploads F
to the storage server through the UPLOAD protocol. Then, B starts executing
the DEDUP protocol for F. Since B has no information of F, B may present
a dummy F’, given a challenge, to the storage server. The DEDUP protocol
will pass though F’ # F, and B can take an ownership of F and eventually will
download it. As noted in [4], the behavior of A and B conflicts with the business
model of the cloud storage server, which is meant to support many uploads but
few downloads (restores).

4 Countermeasure

We present an improved POSD scheme by modifying the original scheme to
mitigate the weak key attack described in the previous section. Then, we give a
security analysis of the modified scheme.

4.1 Modified POSD scheme

The security problem caused by the weak key attack comes from the fact that
a client is fully capable of controlling its key generation. Hence, our mitigation
solution against the attack is to weaken the client’s capability by blending parts
of the keys with random values contributed by the storage server. This solution
requires only a slight modification of the UPLOAD protocol. The modified POSD
scheme is described as follows:

KEYGEN, AUDITINT, DEDUP: The key generation algorithm and the
auditing and the deduplication protocols are same as those of the original scheme.
UPLOAD: The modified file uploading protocol is described as follows:

1-2. The procedures are same as described in steps 1-2 of the original UPLOAD
protocol.



3. Upon receiving (fid, F, Tag;,), the server selects ;1 and ;o uniformly at
random from Z7 for 1 < j < m, and computes with the corresponding public
key PK;,: as follows:

, o —o om0 S0
zp = zjv; vy 7 (: vy Ty Y ]1) mod p.

For each block F;, where 1 < i < n, the server computes

m m
Y1 :yilJFZFijO'jl =T +2Fij(5j1 +051) |,
j=1 j=1

m m
Yo =y + Y Fiyoje | =ria+ Y Filsjp+o52) |,
j=1 j=1

where y.;,yl, are computed under mod gq.

4. The server updates the corresponding public keys, PK;,; and PKgy,, by
replacing z; with z} for 1 < j < m and updates Tag;,; by replacing y;1, yio
with y/;,yl, for 1 <i < n. Then the server sets Taggu,=Tagin:.

4.2 Security analysis

Now we show that our modified scheme satisfies two security requirements, server
unforgeability and (k, §)-uncheatability [1], even under the weak key attack.

Theorem 1. The modified POSD scheme is server unforgeable and (k, 6 )-uncheatable
in the random oracle model without the random key assumption.

Proof. We present our proof through a hybrid argument. In each game, an ad-
versary A plays a role of the malicious client or the malicious server, and the
challenger verifies the adversary A in the role of the sever or a client (an auditor).
GameO0: In Game0, A and the challenger run the original POSD scheme assum-
ing that all clients including A honestly execute the KEYGEN algorithm (the
random key assumption). A tries to fool the challenger by breaking the scheme
within the polynomially bounded resources. Given the random key assumption,
A can break the scheme just with negligible probability, as proved in [1]. Hence,
the required security properties are preserved in Game0.

Gamel: The only difference between GameO and Gamel is that in Gamel,
the original POSD scheme is replaced with the modified scheme, where addi-
tional values 0j1,052 € Z, (1 < j < m) are chosen at random and supple-
mented in the computation of the UPLOAD protocol. Since the distributions of
{0j1,0j2}1<j<m are statistically independent from that of the other variables of
the scheme, A has no additional advantage breaking the modified scheme even
with the knowledge of {0;1,0;2}1<j<m. Hence, the required security properties
are preserved in Gamel.

Game?2: In Game2, we remove the random key assumption from Gamel. A may
try to break the modified POSD scheme through generating weak keys. Suppose



that A generates weak keys such that v1 = £, vy = ¢! and sj1 = sjo = ¢; for
1 < j < m and executes the UPLOAD protocol with the server. At the end of
the protocol, the corresponding PKmt and Tag;,, (PKdup and Tagdup) will be
updated so that s;1,s52 (1 < j < m) are blended with randoms generated by
the server. Hence, A can control just only v; and v, in the key generation.

We show that if A (in the role of the server) is still able to fool the auditor
by making the keys such that v; = & and v, = £~!, then there is an efficient
algorithm to compute the DLOG (Discrete Logarithm Problem) with respect
to base . Suppose that a DLOG-solving algorithm B is given a € Z; as an
instance of the DLOG problem with respect to base £. B can solve the problem
by interacting with A. The algorithm B is constructed as follows:

— First, B generates the keys as follows: B chooses s;1, sj2 at random from Zj
for 2 < j < m and set

U1 = ga'UQ = 5_1a

7 =a, zj = vy oy (2 < 5 < m).

Then, B selects the remaining part of the keys according to KEYGEN algo-
rithm.

— B answers H; and Hs queries through modeling Hy(-) and Ha(-) as ran-
dom oracles. In addition, B may interact with A executing the UPLOAD,
AUDITINT and DEDUP protocols on behalf of the server.

— When B is asked to compute Tag;,; for F, B executes the following: For each
F; (1 <i<mn), B chooses y;1,yi2 at random from Zz and computes

F,.
;= 21471,0.72412 | I Zj”7

j=1
ti = (Hl(fud I §)u Hﬂ”)

Then, B returns Tagmtz{(xi, Yi1, Yi2, ti)lgign} to .A

— Eventually, A outputs a forgery of the original file F as resp=({1/; }1<jj<m, Y1, Y5, T, {%} }ic1)
which is computed with F’ (# F) . Note that T' = T and 2, = z; for all i €
since otherwise, A would be used for solving the CDH problem [1].

— Let us assume z; (= a) = £*. The following verification holds since resp=({1; }1<j<m, Y1, Y5, T', {2 }ic1)
is the valid response to the challenge:
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Y Y o
1 2 J
vy 1y Z;

J=1

m
’
_ Y1, Yo Hj Yi-Y1 Y3-Yo Hj—Hg
= | v vy sz vy Vg 2;
Jj=1

m
’
=X E(Yllle)f(Yngg) H ZHj_luj
J
=1

- X (5<Y;—Y1>—(Y;—Y2> R (*Sj1+8j2)(u}7m)zf,1*“1)
- X (§<Y3—Y1>—<Y’2—Y2>+2;12 (—Sjl+3.f2)(u;—ug)+fﬂ(u§—u1))

Thus, B outputs the DLOG of a with respect to base £ as

= (Yll - Yl) - (le - YQ) + Z;YLZQ (—8j1 + Sj2)(,U;- - Mj)
pi1 — 1y '

For the adversary A acting as the client in DEDUP protocol, it also can be
shown that the adversary can be converted into the DLOG-solving algorithm
in similar manner. Thus, the required security properties are still preserved in
Game2.

5 Conclusion

We have addressed a security weakness of recently proposed proof of storage
with deduplication (POSD) scheme [1]. Under new attack model allowing mali-
cious clients to exploit dishonestly manipulated keys, the POSD scheme fails to
guarantee required security. To mitigate the attack, we proposed an improved
scheme blending client’s keys with the server contributed random values.
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