
Bellcore attack in practice
Andrey Sidorenko, Joachim van den Berg, Remko Foekema,

Michiel Grashuis, Jaap de Vos

Brightsight BV
Delftechpark 1, 2628 XJ Delft, the Netherlands

http://www.brightsight.com

Abstract. In this paper we analyze practical aspects of the differential fault attack
on RSA published by Boneh, Demillo and Lipton from Bellcore. We focus on the
CRT variant, which requires only one faulty signature to be entirely broken
provided that no DFA countermeasures are in use. Usually the easiest approach
for the attacker is to introduce a fault in one of the two RSA-CRT
exponentiations. These are time-consuming and often clearly visible in the power
profiles. However, protection of the exponentiations against faults does not
always circumvent the Bellcore attack. Our goal is to investigate and classify
other possible targets of the attack.

1. Introduction

RSA algorithm [RSA78] has been introduced more than thirty years ago. Since that moment the algorithm has
become very popular and as a result a lot of attacks on RSA have been published. Among the most powerful are
differential fault attacks based on the assumption that it is possible to inject hardware faults when the victim device
performs RSA. The pioneer differential fault attack on RSA is the one published by Boneh, Demillo and Lipton
from Bellcore [BDL01]. It is often referred to as the Bellcore attack.

This paper is devoted to the analysis of practical aspects of the Bellcore attack. We investigate steps of the RSA
implementation that can serve as a target for the attack.

2. Bellcore attack

The attack is applicable both for classical RSA that involves one modular exponentiation and for RSA-CRT. In the
first case the attack requires several faulty signatures while in the second case only one faulty signature may
suffice. We consider only the CRT variant.

RSA-CRT transforms message m into signature s using private key p, q, dp, dq as follows:

sp = (mp)dp mod p,
sq = (mq)dq mod q,

s = (((sq – sp) · pinv) mod q) · p + sp,

where mp = m mod p, mq = m mod q, pinv = p–1 mod q. For a detailed overview of RSA-CRT the reader is referred
e.g. to [BDL01].

Suppose either sp or sq is computed with a fault. Assume that the resulting faulty signature s' together with the
correct signature s are known to the attacker. Then he can retrieve the private key by computing

gcd(s – s', N)

for the publicly known RSA modulus N. Alternatively, the attacker can recover the private key from s' and m by
computing

gcd(m – ((s')e mod N), N),

where e is the public exponent. Boneh et al. [BDL01] point out that the latter variant is suggested by A. K. Lenstra.

3. Possible targets of the attack

3.1 CRT exponentiations

A natural way to put the Bellcore attack in practice is to perturb one of the RSA-CRT exponentiations. These
operations usually take relatively long time giving the attacker a wide window of opportunity. In the case of smart
cards an RSA exponentiation typically takes several milliseconds. Furthermore, normally the exponentiations are
clearly distinguishable in the power traces, which helps the attacker to choose the right moment e.g. for light
manipulation or voltage manipulation.

However in order to avoid the Bellcore attack it is not always sufficient to protect only the exponentiations. Nearly
all the other steps of RSA-CRT should be protected as well. These steps can be divided into two classes: those that
are performed before the CRT-exponentiations and afterwards. Some important examples of each of these two
classes are discussed below.

3.2 Steps performed before the exponentiations

Key loading

Even though key loading usually takes significantly less time than an exponentiation, this action is often visible in
the power profiles. If a fault is injected while loading (p, dp) or (q, dq) but not in both of the pairs the attacker is
likely to get a faulty signature s' suitable for retrieving the private key.

Note that replacing p by a faulty p' ≠ p during key loading leads to the signature s' such that

s' ≠ s mod p and
s' ≠ s mod q,

which is not beneficial for the attacker, with overwhelming probability. On the other hand, inducing a fault in q
will mean that s' = A · p + sp, where A ≠ (((sq – sp) · pinv) mod q), and thus

s' = s mod p and
s' ≠ s mod q

so computing the greatest common divisor gcd(s – s', N) will reveal the private key. The reason for this behaviour
is that p and q are used in the CRT recombination in an asymmetric way, see Section 2.

Reformatting

The implementation may require changing the format of the key after loading. For instance, the format may be
changed from big to little endian. The reformatting should be secure against perturbation attacks. Similarly to the
case of key loading described above, here the perturbation of p and perturbation of q have different effects.

Modular reduction

As a preparation step for the exponentiations message m is reduced modulo p and modulo q to compute mp and mq,
respectively. Both of the modular reductions should be protected since any perturbation of one of them may result
in a successful attack.

Transition to Montgomery representation

If Montgomery multiplication (see e.g. [MOV97] for a thorough overview) is used care should be taken when
transforming the data from one representation to the other. In the beginning of the Montgomery exponentiation mp

and mq are multiplied by the Montgomery constant R modulo p and modulo q. Both of the modular multiplications
are potential targets of the Bellcore attack.

On the other hand, if R is perturbed before transforming mp and mq into Montgomery representation the Bellcore
attack will not work since we will end up in the situation when

s' ≠ s mod p and
s' ≠ s mod q.

Data loading

Sometimes it is required to load mp and mq into the memory of an arithmetic coprocessor. The memory copy
function should be implemented in a secure way.

Blinding

As a countermeasure against side channel attacks (SCA) the developer may decide to blind mp, mq, p, q, dp, dq. A
well-known example is multiplicative message blinding:

mp → μp = mp · rp mod p,
mq → μq = mq · rq mod q,

where numbers rp and rq are chosen at random for every signature. This is an efficient countermeasure against
differential power analysis aimed at modular exponentiation.

Remarkably, in this situation SCA-countermeasures may ease the fault attack. A fault induced in any of the
blinding operations may imply the retrieval of the private key.

It is worth noticing that this is not the only situation of this sort. SCA-countermeasures require extra effort; the
additional steps immediately become potential targets of the perturbation attacks. To give another example, Yen en
Joye [YJ00] observed that the square-and-always-multiply method provides an opportunity to distinguish dummy
multiplications from real ones by inducing faults at the moments when these exponentiations are performed.

3.3 Steps performed after the exponentiations

Steps similar to those performed before the exponentiations

These are the following. Whenever Montgomery exponentiation is used the final result sp and sq, will be
transformed back from Montgomery representation into the regular one. If a coprocessor is used it might be
necessary to transfer sp and sq from its memory to the other location. A developer may decide to unblind sp and sq as
soon as they are computed. All these operations should be carefully protected against perturbation attacks.

CRT recombination

The last step of the RSA-CRT algorithm, namely, the CRT recombination is also a potential target of the Bellcore
attack. As opposed to some other targets this one is quite difficult since the fault has to be induced very precisely
such that, for instance, (((sq – sp) · qinv) mod q) is manipulated while sp remains unchanged.

4. Conclusion

The Bellcore attack on RSA-CRT is one of the most prominent attacks on RSA known so far. Whenever RSA-CRT
is implemented in secure embedded software, this attack has to be circumvented by appropriate countermeasures.
Most of the steps of RSA-CRT have a property that their perturbation may result in a signature s' such that

s' = s mod p
while s' ≠ s mod q

or vice versa. It means that the protection mechanisms should cover not only the CRT exponentiations but nearly
all the other steps of the algorithm that influence the computation of sp, sq or the CRT recombination.

A powerful countermeasure against the Bellcore attack is to raise the signature to the power e and to compare the
result with the input message m. If the signature is faulty the comparison will detect it. A possible obstacle is that in
practice e is not always available to the signer function.

Another well-known countermeasure against the Bellcore attack is to perform the signature computation twice and
to compare the two results. Remarkably, this countermeasure does not necessarily help to prevent the attack. For
instance, it might happen that both computations will be performed using the same erroneous private key and thus
the two results will match.

References

[BDL01] D. Boneh, R. A. DeMillo, R. Lipton. On the Importance of Eliminating Errors in Cryptographic
Computations. In Journal of Cryptology 14(2), pages 101–120, 2001.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, volume 21(2): pages 120–126, 1978.

[MOV97] A. Menezes, P. van Oorschot and S. Vanstone. Handbook of applied cryptography. CRC Press,
1997.

[YJ00] S.-M. Yen, M. Joye. Checking Before Output May Not Be Enough Against Fault-Based Cryptanalysis.
IEEE Trans. Computers 49(9): 967–970 (2000).

	1. Introduction
	2. Bellcore attack
	3. Possible targets of the attack
	3.1 CRT exponentiations
	3.2 Steps performed before the exponentiations
	3.3 Steps performed after the exponentiations

	4. Conclusion
	References

