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Abstract

In this paper, we study timed-release cryptography with information-theoretic security. As
fundamental cryptographic primitives with information-theoretic security, we can consider key-
agreement, encryption, and authentication codes. Therefore, in this paper we deal with information-
theoretic timed-release security for all those primitives. Specifically, we propose models and formal-
izations of security for information-theoretic timed-release key-agreement, encryption, and authenti-
cation codes; we also derive tight lower bounds on entities’ memory-sizes required for all those ones;
and we show optimal constructions of all those ones. Furthermore, we investigate a relationship of
mechanisms between information-theoretic timed-release key-agreement and information-theoretic
key-insulated key-agreement. It turns out that there exists a simple algorithm which converts the
former into the latter, and vice versa. In the sense, we conclude that these two mechanisms are
essentially close.

1 Introduction

The security of most of present cryptographic systems is based on the assumption of difficulty of
computationally hard problems such as the integer factoring problem or the discrete logarithm problem
in finite fields or elliptic curves. However, taking into account recent rapid development of algorithms
and computer technologies, such a system based on the assumption of difficulty of computationally
hard problems might not maintain sufficient long-term security. In fact, it is known that quantum
computers can easily solve the factoring and discrete logarithm problems. From these aspects, it is
necessary and interesting to consider cryptographic techniques whose security does not depend on any
computationally hard problems, especially for the long-term security.

Informally, the goal of timed-release cryptography is to securely send a certain information into
the future. For instance, in timed-release encryption, a sender transmits a ciphertext so that a receiver
can decrypt it when the time which the sender specified has come, and the receiver cannot decrypt
it before the time. The timed-release cryptography was first proposed by May [11] in 1993, and after
that, Rivest et al. [13] developed it in a systematic and formal way. Since Rivest et al. gave a
formal definition of timed-release encryption in [13], various researches on timed-release cryptography
including timed-release signatures (e.g., [1, 8, 9]) and timed-release encryption have been done based
on computational security. In particular, timed-release public key encryption (TR-PKE for short)
has been recently researched intensively. Chan et al.[4] proposed the first TR-PKE scheme, but
did not present a formal security definition. Cathalo et al.[2] and Chalkias et al.[3] proposed direct
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constructions of TR-PKE schemes based on number-theoretic assumptions in the random oracle model.
Independently, Cheon et al. [6] proposed a generic construction of TR-PKE and it is efficient and
provably secure in the standard model. And also, Fujioka et al.[7] proposed a generic construction of
TR-PKE that guarantees strong security in the random oracle model. It also should be noted that
Choen et al.[5] recently shows relationships between TR-PKE and key-insulated public-key encryption
(KI-PKE for short) with computational security setting.

To the best of our knowledge, there is no paper which reports on the study of information-theoretic
timed-release cryptography. If a sender wants to transmit a message far into the future, information-
theoretic security will be helpful in constructing timed-release mechanism, since its security can provide
the long-term security. In this paper, we study timed-release cryptography with information-theoretic
security. As fundamental cryptographic primitives with information-theoretic security, we can consider
information-theoretically secure key-agreement, encryption, and authentication codes. Therefore, in
this paper, we deal with information-theoretic timed-release security for all those primitives. Specifi-
cally, the contribution of this paper is as follows.

e TR-KA. We propose a model and formalization of security for timed-release key-agreement
(TR-KA for short) in information-theoretic security setting. We also derive tight lower bounds
on entities’ memory-sizes required for TR-KA. In addition, we propose an optimal direct con-
struction of TR-KA based on multivariate polynomials over finite fields.

e TRE. We propose a model and formalization of security for timed-release encryption (TRE for
short) in information-theoretic security setting. In addition, we derive tight lower bounds on
entities’” memory-sizes required for TRE. Furthermore, we present a simple generic construction
of TRE: TRE can be constructed from TR-KA and the one-time pad. In particular, the ap-
plication of our optimal direct construction of TR-KA in the generic construction leads to an
optimal direct construction of TRE.

e TRA-code. We propose a model and formalization of security for timed-release authentication
codes (TRA-codes for short) in information-theoretic security setting. We also derive tight lower
bounds on entities’ memory-sizes required for TRA-codes. In addition, we present two kinds of
constructions, generic and direct ones. Our generic construction of TRA-codes is simple: TRA-
codes can be constructed from TR-KA and traditional A-codes. Since the generic construction
does not lead to an optimal construction of TRA-codes, we also propose a direct construction
which is optimal.

¢ Relation between TR-KA and KI-KA. We investigate and show relationship between TR-
KA and key-insulated key-agreement (KI-KA for short) [15] in information-theoretic security
setting. It turns out that there exists a simple algorithm which converts TR-KA into KI-KA,
and vice versa. Therefore, we can conclude that the mechanisms of TR-KA and KI-KA are
essentially close. Note that this relationship in information-theoretic security setting is analogous
to that of TR-PKE and KI-PKE in computational security setting shown in [5].

2 TR-KA: Timed-Release Key-Agreement with Information-Theoretic
Security
2.1 Model and Security Definition

In this section we show a model and a security definition of timed-release key-agreement (TR-KA for
short) with information-theoretic security. This is done based on those of timed-release schemes with
computational security and those of traditional key-agreement with information-theoretic security.



For simplicity, we assume that there is a trusted authority whose role is to generate and to distribute
secret-keys of entities. We call this model the trusted initializer model as in [12]. In TR-KA, there
are n + 2 entities, n users Uy, Us,...,U,, a time-server T for broadcasting time-signals and a trusted
initializer TI, where n is a positive integer. In this paper, we assume that the identity of each user U; is
also denoted by U;. In addition, when any two users communicate each other in a timed-release scheme
(i.e., not only TR-KA but also TRE and TRA-codes in the following sections) under consideration in
this paper, we call a user who specifies the time a sender and the other a receiver for convenience.

Informally, TR-KA is executed as follows. In the initial phase, T1 generates secret-keys on behalf
of U; (1 <i <mn) and the time-server T. After distributing these keys via secure channels, TI deletes
them in his memory. Any user U;, can specify future time when U;, wants to share a common-key
with a user U;,, and he computes a common-key in advance by using U;,’s secret-key and the identity
Ui,. And U;, tells U;, the future time which Uj;, specified. The time-server T periodically broadcasts
a time-signal at each time which is generated by using T’s master-key. When the specified time has
come, U;, can compute a common-key shared with U;, by using U;,’s secret-key, the identity U;, and
a time-signal of the specified time. Note that each user has two kinds of secret-keys: one is used for
generating a common-key when he is a sender; and the other is used for deriving a common-key when
he is a receiver. In TR-KA, we consider a non-interactive model where any two users can share a
common-key without interactive communications.

Formally, we give the definition of TR-KA as follows.!

Definition 1 (TR-KA). A timed-release key-agreement (TR-KA for short) II involves n+ 2 entities,
TI, Uy,Us,...,U, and T, and consists of a four-tuple of algorithms (Setup, Ext, KeyGen, KeyDer)
with five spaces, TCK, TUK, TMK,T, and TT, where all of the above algorithms except Setup are
deterministic and all of the above spaces are finite. In addition, 11 is executed with four phases as
follows.

— Notation:

- Entities: TI is a trusted initializer, U; (1 < i <n)is a user and T is a time-server which
broadcasts time-signals. Let U := {Uy,Us, ..., U,} be the set of all users.

- Spaces: TCK is a set of possible common-keys, and T MK is a set of possible master-keys.
T :={1,2,...,7} is a set of time. TI"W is a set of time-signals at time t. Let TT :=
U, 77, Also, TL{ICZ(.S) is a set of possible U;’s secret-keys for common-key generation.
And also, TUK® is a set of possible U;’s secret-keys for common-key derivation. Then,

TUK; = TL{ICE-S) X TZ/{ICER) is the set of possible secret-keys for U; with an associated
probability distribution Pryg,. Let TUKS) = Ui, TUICZ(»S), TUKWE) = Ui, TUICZ(R),
and TUK =], TUK,;.

- Algorithms: Setup is a key generation algorithm which on input a security parameter 1%,
outputs users’ secret-keys and a time-server’s master-key, Ext: TMK xT — TZ is a time-
signal generation algorithm for T, KeyGen: TUKS) x T xU — TCK is a common-key
generation algorithm and KeyDer: TUKY) x TT x U — TCK is a common-key derivation
algorithm.

1. Key Generation and Distribution. In the initial phase, TI generates the following keys by
using Setup: a master-key tmk* € T MK for T; and a secret-key tuk; = (tukgs),tuk(R)) e TUK;

i

Note that our models of information-theoretically secure timed-release schemes (i.e., Definitions 1, 4 and 6) are
almost the same as those of computationally secure timed-release schemes [2, 4, 5, 6, 7] except for considering the trusted
initializer in our models.



forU; (i=1,2,...,n). These keys are distributed to corresponding entities via secure channels.
After distributing these keys, TI deletes them from his memory. And, T and U; keep their keys
secret, respectively.

2. Time-signal Generation. For broadcasting a time-signal at each time, T generates a time-
signal tmk® =FExt(tmk*,t) € WAL by using a master key tmk* and time t € T. Then, T
broadcasts it to all users via a (authenticated) broadcast channel.

3. Common-key Generation. If U;, wants to share a common-key with U;, at future time t,
Ui, computes a common-key to be shared with U;, in advance, tck :KeyGen(tukZ(IS),t, Ui,) €

11,82
TCK, by using his secret-key tuk:gls), time t, and the receiver’s identity U;,. And, U;, tells U;,
the specified time t via an authenticated channel.

4. Common-key Derivation. On receiving the specified time t from U;,, and if the time t has

come, U, computes a common-key tck:g?i2 :KeyDer(tuk:Z(QR),
(R)

tmk®), Ui,) by using his secret-key tuk;,”, a time-signal tmk® at time t, and the sender’s identity

Us,.

In the model of TR-KA, we require the following equation holds: For all possible t € T, i1,i9 €
{1,2,...,n}, tukf) € ’Z'Z/{IC(S), tuk!™ € TL{ICZ(-f), tmk® e TI® | we have KeyGen(tuk(S),t, Ui,) =

i1 i i1
K eyDer(tukZ(f),tmk(t), Ui, )0 The above requirement implies that any two users can share a common-
key at the specified time without any error if they correctly follow the specification of TR-KA. In
addition, tcl{:i(f?i2 means a shared key between U;, and U, at time ¢t when Uj;, is the sender and U, is
the receiver, and we note that tck'g?i2 #+ tckrg?il in general.
We now define several notation to formalize security of TR-KA as follows. For any finite set Z and
any non-negative integer z, let P(Z,z) := {Z C Z||Z] < z} be the family of all subsets of Z whose

cardinality is less than or equal to z. Let w (< n) be the maximum number of possible colluders. For
a set of colluders W = {U,,Ul,,..., Uy} € PU,w), TUKY = TUK x TUK]Y x - x TuK|”

denotes the set of possible W’s secret-keys for common-key generation, and TLIIC%/IIE) = TL{ICl(lR) X
TUK® % .. x TL{ICl(E) denotes the set of possible W’s secret-keys for common-key derivation. And,

l2 ¥

let 7CKY
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be the set of possible common-keys shared between U;, and U;, at the time t € 7.
Furthermore, let TCK.\", , TMK,TUK), TUKYY, and TIM, ..., TI®) be random variables which
take values on TCIC(-t).2,T./\/lIC, TL{IC(S),TZ/{IC%}E), and 7ZW, ..., TZ() respectively.

Q1,0

Next, we formalizle a security definition of TR-KA based on the idea of timed-release security and
traditional key-agreement with information-theoretic security. In TR-KA, we consider the following
security goal and attacking model. First, the security goal which we consider is basically the same
as that of the traditional key-agreement: an adversary (or a dishonest entity) cannot obtain any
information on a common-key shared between two honest users. In addition to this, we want to
require that even a legitimate receiver cannot obtain any information on a common-key to be shared
before the specified time comes (i.e., before a time-signal at the specified time is received), since
we consider timed-release security in this paper. Secondly, as an attacking model we consider the
following three types of attacks: (1) an attack by a dishonest time-server; (2) an attack by colluders
(i.e., dishonest users) not including a receiver; and (3) an attack by colluders including a receiver. By
combining the security goal and attacks mentioned above, we formally define security of TR-KA as
follows.

Definition 2. Let IT be TR-KA. IT is said to be (n,w, 7)-secure if the following conditions are satisfied:



(1) For any U;,,U;, € U and t € T, it holds that

H(TCKY | TMK) = H(TCK". ).

11,12 11,22

(2) For any W € P(U,w), U;,,U;, € U such that U;,,U;, ¢ W, and for any ¢t € 7, it holds that

HrekY | Tukt) Tuk(®, IO, 71y = H(TCEY, ).

11,12 11,12

(3) For any W € P(U,w), U;,,U;, € U such that U;; ¢ W and U;, € W, for any t € T, it holds that

H(rekY, | TUKS TUKG) 110, 710D 710 1710y = H(TOK, ).

Intuitively, the meaning of formalizations (1)-(3) in Definition 2 is explained as follows: (1) a
dishonest time-server cannot obtain any information on a common-key shared between two honest
users. However, we assume that the time-server correctly broadcasts a time-signal at each time;
(2) No information on a common-key shared between two honest users is obtained by any colluding
group W not including a legitimate receiver, even if W obtains time-signals at all the time; (3) No
information on a common-key between two users at the specified time is obtained by any colluding
group W including a legitimate (but dishonest) receiver, even if W obtains time-signals at all the time
except the specified time.?

2.2 Lower Bounds

In this section, we derive lower bounds of entities’ memory-sizes required for secure TR-KA as follows.
The proof is given in Appendix A.

Theorem 1. Let I be (n,w,7)- secure TR-KA, and we assume that all entropies on common-keys are
equal, namely H(TCK) = (TCK ,) for any i1,io € {1,2,...,n} andt € T. Then, we have

(i) HTUK™) > (w+ 1)H(TCK), (i) HTUK®) > (1 + w)H(TCK),

) >
(iii) H(TI® >) > (w+1)H(TCK), (iv) HTMK) > 7(w+1)H(TCK).
As we will see in the next section, the above lower bounds are tight since our construction will

meet all the above inequalities with equalities. Therefore, we define optimality of constructions of
TR-KA as follows.

Definition 3. A construction of (n,w,7)-secure TR-KA is said to be optimal if it meets equality in
every inequality of (i)-(iv) in Theorem 1.

2.3 Construction

We present a construction, which is provably secure TR-KA in our model, by using multivariate
polynomials over finite fields. In addition, it is shown that the construction is optimal. The detail of
our construction of TR-KA II=(Setup, Ext, KeyGen, KeyDer) is given as follows.

In this sense, we have formalized the security notion stronger than the security that a dishonest receiver cannot
obtain any information on a common-key to be shared before the specified time comes.



1. Setup. For a security parameter 1% Setup outputs matching secret-keys tuk; and tmk* for
Ui (1 < i < n)and T, respectively, as follows. Setup picks a k-bit prime power g, where
g > max(n, 7), and constructs the finite field F, with ¢ elements. We assume that the identity
of each user Uj is encoded as U; € F,\{0}. Also, we assume 7 = {1,2,...,7} C F,\{0} by using
appropriate encoding. And, Setup chooses uniformly at random f(z,y) = > 7, Z;J:Oaijmiyj )
tmk*(z,z) =Y., Z;;é bipr'z® over F, with three variables x, y and z in which each degree of
z and y is at most w, and the degree of z is at most 7 — 1. Setup also computes tuk:Z(S) (y,2) :==
f(Ui,y) + tmk*(U;, z) and tuk( )( ) = f(x,U;) (1 <i < n). Then, Setup outputs secret-keys
tuk; := (tuk:l( )( Y, 2), tuki( )( )) (1 <i<n)and tmk* := tmk*(z,2) for U; (1 <i<mn)and T,
respectively.

2. Ext. For tmk* = tmk*(z,2) and time t € 7, Ext outputs a time-signal at time ¢, tmk® () :=
tmk*(x,t).

(5)

3. KeyGen. For a secret-key tuk; ", the specified time ¢ and an identity U;,, KeyGen generates a

common-key shared between U;, and Uj,, tck:g)i2 = tuk:gls)(UiQ,t), and outputs it.

4. KeyDer. For a secret-key tukrgz),

KeyDer outputs a common-key shared between U;, and U,,, tek = tukgf)(Uil)—i—tmk(t)(Uil).

11,12

a time-signal tmk® at the specified time ¢ and an identity Ui,,

The security and optimality of the above construction is stated as follows.
Theorem 2. The resulting TR-KA 11 by the above construction is (n,w, T)-secure and optimal.

Proof. In this proof, we can write f(x,y) and tmk*(z, z) in the form of

1 1

Y z
flz,y) = (1,z,...,2%)A i and tmk*(z,z) := (1,z,...,2%)B i ,

yw ZT*l

respectively, where A is an (w+ 1) X (w4 1) matrix and B is an (w + 1) X 7 matrix, respectively. To
complete the proof of Theorem 2, we show the following lemmas.

Lemma 1. The above construction meets H(TC’Kl(f)l2 | TMK) = (TC’K“ 12) for any Uy, , U, € U
andt e T.

Proof. Consider the case that T'S will guess tek?) = = f(Uy,Ui,) + tmk*(U;,,t) by using his master

11,12

key. Since T'S knows tmk*, he can compute tmk*(U;,,t). Therefore, he has to guess f(U;,,Ui,).
However, by applying X := O, A:= A and Y := O in Proposition 1 in Appendix B, there are at least
q candidates of A. Then, by applying « := (1, U;,, U? Ug), A= Aand y := (1 Ui, U? Ug)

S s
in Proposition 2 in Appendix B, T'S cannot guess f(U;,,U;,) = x Ay with probability larger than 1/q.
On the other hand, it is clear that H(TCK(t) ) = logy q. Hence, for any U;,,U;, € U and t € T,

11,72

HTCKY | TMK) = HTCKY. ) = log, q. 0

21 22 11,22

Lemma 2. The above construction meets H(TCK(t) | TUK‘(,[“?),TUK‘(,[},%), TIM, . .., TIM) = (TCK(t) )

01,12 01,12

for any Ui, Uy, €U and W € P(U,w) such that U;,U;, ¢ W, and for anyt € T.



Proof. Without loss of generality, we consider that W := {Uy,...,U,} is a set of colluders such that
Ui, Uiy, € W, and we write x; := (1,U;,U?,...,U¥) (1 <i < n). Consider the case that a group of
colluders W not including a targeted receiver will guess tckg?iz = f(Ui,,Ui,) + tmk*(U;,, t) by using
their secret-keys and all time-signals. Since W can compute tmk™* by all time-signals, W can correctly
obtain tmk*(U;,,t). Therefore, the purpose of W is to guess f(U;,,U;,). Since W can calculate

tmk* (U, z) (1 <1 <w) and hence tukl(s)(y, z) —tmk*(Up, z) = f(U,y) (1 <l <w), W gets

1
Yy
f(Ul7 y) = mlA . 5

y'w
for 1 <[ <w. Thus, W can know the following matrix:
1
T2

XyA = ) A.

Ly

In addition, W knows
f(l', Ul) = (an s 7:[;“) A txla

for 1 <1 < w by their secret-keys tuk:gf). Thus, W can know the following matrix:

A tXU =A (tiB1,tm2, N ,t:Bw).

By applying X := Xy, A := A and Y := Xy in Proposition 1 in Appendix B, there are at least ¢
candidates of A. In addition, {z;,,x1,®2,...,x,} and {x;,, ®1, T2, ..., x,} are linearly independent,
respectively, since U;,, U, ¢ W. Therefore, W cannot guess f(U;,,U;,) = x;, A 'x;, with probability
larger than 1/¢q by Proposition 2 in Appendix B. Thus, we have H(TC'KZ-(?Z-2 | TUK‘(,E), TUK‘(,[?),
IO, .. ,TI(T)) = log, q. Hence, for any U;,, U;, € U such that U;,U;, ¢ W, and for any t € T,
H(TCKY, | TUKS TUKY 71O, ..., TID) = HTCKY,) =log, q. O

11,22

Lemma 3. The above construction meets H(TC’K;?2 | TUKI(/{?), TUKI(/I],%),TI(D, o, TIY )

LTI = HTCKY,) for any Uy, Uy, € U and W € PU,w) such that U, ¢ W and Uy, € W,
and for anyt € T.

Proof. Without loss of generality, we suppose that W := {U,...,U,} is a set of colluders such
that U;, ¢ W, U, is a targeted sender, U, is a targeted receiver, and 7 is a specified time. In
addition, we write x; := (1,U;,U?,...,U¥) (1 < i < n) and y; := {(1,4,4%,...,471) (1 <i < 7).
Consider the case that a group of colluders W will guess tCkz(;)w = f(Uiy, Uy) + tmk*(U;,, 7) by using
their secret-keys and time-signals at all the time except the specified time. Note that W can get
f(Ui,,U,) since U, € W. Thus, W tries to obtain tmk*(x, z) to know tmk*(U;,, 7). W can compute
tukl(s)(y,z) — f(Up,z) =tmk*(Up, z) (1 <1 <w), and hence W gets

1
z

tmk* (U, z) = ;B ) ,



for 1 <[ <w. Thus, W can know the following matrix:

1
T2
XyB:=| " |B

Ly

In addition, W obtains tmk*(z,t) = (1,x,...,2¥)By, for 1 <t < 7 — 1 by time-signals at all except
the time 7. Thus, W can know the following matrix:

BYT = B(y17y27’ . '7y7'—1)’

By applying X := Xy, A := B and Y := Y7 in Proposition 1 in Appendix B, there are at least
g candidates of B. In addition, {x;,,x1,®2,...,x,} and {y1,¥y2,...,y,} are linearly independent,
respectively, since U;; ¢ W. Therefore, W cannot guess tmk*(U;,,7) = x;, By, with probability

larger than 1/¢ from Proposition 2 in Appendix B. Thus, we have H(TCKZ-(:L | TUKI(/{?),TUK‘(,[?),

TI(l),TI(Q),...,TI(T_l)) = logy q. Hence, in general, for any U;,, U;, € U such that U;; ¢ W and
U, € W, and for any t € 7, it holds that
H(TCcKY

11,82

S R _ ,
| TUKY, TUKGY, TIW, . 71D, 710D 710y = HTCKY, ) = log, q.
O

Proof of Theorem 2. 1t follows that our construction satisfies the conditions (1)-(3) in Definition
2 from the above lemmas. Finally, it is straightforward to see that the construction satisfies all the
lower bounds in Theorem 1 with equalities. Therefore, the above construction is optimal. O

3 TRE: Timed-Release Encryption with Information-Theoretic Se-
curity

In this section, we show a model and a security formalization of timed-release encryption (TRE for
short) with information-theoretic security. We also show that TRE can be constructed from TR-KA
and the one-time pad in a generic and simple way. In addition, we derive tight lower bounds on
entities’” memory-sizes required for TRE.

3.1 Model and Security Definition

We propose a model and a security definition of TRE, based on that of timed-release encryption with
computational security (e.g., [13]) and that of the traditional encryption with information-theoretic
security (e.g., [16]). Formally, we give a definition of TRE in the TI-model as in the case of TR-KA.

Definition 4 (TRE). A timed-release encryption (TRE for short) ¥ involves n + 2 entities, TI,
Ui,Us, ..., U, and T, and consists of a four-tuple of algorithms (EGen, EFExt, Enc, Dec) with siz
spaces, C, Mg, USK,EMK, T, and ETL, where all of the above algorithms except EGen are deter-
ministic and all of the above spaces are finite. In addition, X is executed with four phases as follows.

— Notation:

- Entities: TI, U; (1 <i<n), T, and U are the same as those in Definition 1.



- Spaces: T is the same as that in Definition 1. C is a set of possible ciphertexts, Mg is
a set of possible plaintexts with a probability distribution Py, EMK is a set of possible
master-keys. ETTIW is a set of time-signals at time t. Let ETT = |J]_, ETTW, Also,
EKC; is a set of possible encryption-keys for U;, DIC; is a set of possible decryption-keys for
Ui, and USK; := EK; x DK; is a set of possible secret-keys for U;. Let EK = |J! EK;,
DK :=U;_, DK; and USK = |J;_, USK,;.

- Algorithms: EGen is a key generation algorithm which on input a security parameter 1%,
outputs each user’s secret-key and a server’s master-key, EExt: EMK x T — ETT is a
time-signal generation algorithm for T, Enc: Mg x EK X T xU — C is an encryption
algorithm, and Dec: C x DK X ETT x U — Mg is a decryption algorithm.

1. Key Generation and Distribution. In the initial phase, TI generates the following keys by
using EGen: a master-key emk™ € EMK for T; a secret-key usk; = (ek;, dk;) € USK; for U;

(i=1,2,...,n). These keys are distributed to corresponding entities via secure channels. After
distributing these keys, TI deletes them from his memory. And, T and U; keep their keys secret,
respectively.

2. Time-signal Generation. For broadcasting a time-signal at each time, T generates a time-
signal emk® =EExt(emk*,t) € ETIW® by using a master-key emk* € EMK and time t € T.
Then, T broadcasts it to all users via a (authenticated) broadcast channel.

3. Encryption. U;, specifies time t when U, can decrypt a ciphertext, and then U;, computes a

ciphertext, cg?m =FEnc(m, ek;,,t,Ui,) € C, by a plaintext m € Mg, an encryption-key ek;, € EX,

the specified time t and the identity U;,. And, U;, sends a pair of the ciphertext and the specified
()

time, (¢;,;,,t); to Ui, via an authenticated channel.

g)ﬂé,t) from U;,. After receiving a time-signal

emk®) at the specified time t, U;, recovers m :Dec(c(t) dkiy, emk® U;)) by a ciphertext c(?

11,027 11,827

4. Decryption. Suppose that U;, has received (c

a decryption-key dk;,, a time-signal emk®, and the identity Ui, .

In the model of TRE, we require the following equation holds: For all possible t € 7, i1,i0 €
{1,2,...,n}, ek, € EK;,, dki, € DKy, emk® € ETT® | we have

Dec(Enc(m, eks, ,t,Us,), dki,, emk® U;) = m.

The above requirement means correctness of TRE.

Next, we provide a security definition of TRE based on the idea of timed-release security and
the traditional encryption with information-theoretic security. The choice of possible colluders W &
P(U,w) is the same as that in TR-KA. For a set of colluders W = {U},,U,,,...,U;,} € PU,w),
ERw = EK X EK, x - - - xEK; 1s a set of Ws encryption-keys, and DKy := DKy, X DKy, X - - - x DK,
Z(lt)m be a finite set of possible ciphertexts sent from U;, to
Ui, such that it can be decrypted at the time ¢. Furthermore, let M, CZ.(lt?iQ, FMK, EKyw, DKy, and
ETIM, ... ETI™ be random variables which take values on Mg, Ci(f?ig, EMK, ELw, DKy, and
S’TI(I), e ,5’]’1(7), respectively.

Similarly as in Definition 2 we consider the following three types of security notions for TRE:
(1) A dishonest time-server cannot obtain any information on an underlying plaintext from a target

ciphertext transmitted on the channel; (2) No information on an underlying plaintext from a target
ciphertext is obtained by any colluding group W not including a legitimate receiver, even if W obtains

is a set of W’s decryption-keys. Also, let C



time-signals at all the time; (3) No information on an underlying plaintext from a target ciphertext is
obtained by any colluding group W including a legitimate (but dishonest) receiver, even if W obtains
time-signals at all the time except the specified time.

The formalizations of the above security notions for TRE are given as follows.

Definition 5. Let X be TRE. X is said to be (n,w, 7)-secure if the following conditions are satisfied:

(1) For any U;,,U;, € U and any t € T, it holds that
HM |CY,  EMK) = H(M).
(2) For any W € P(U,w), U;,,U;, € U such that U;,,U;, ¢ W, and for any ¢t € 7, it holds that
HM | CY, EKw, DKy, ETIV, ... ETI™) = H(M).
(3) For any W € P(U,w), U;,,U;, € U such that U;; ¢ W and U;, € W, for any t € T, it holds that

H(M |CY, EKw,DEw,ETIV, ... ETI*V, ETI®Y . ETIT) = H(M).

3.2 Lower Bounds

We derive lower bounds on entities’ memory-sizes required for secure TRE as follows.

Theorem 3. Let ¥ be an (n,w,7)-secure TRE. Then, we have

(i) H(DK;) > (w+1)H(M), (ii) H(EK;) > (1 +w)H (M),
(iii) HETIY) > (w+ 1)H(M), (iv) HEEMK) > 7(w+1)H(M).

Proof. The proof is given in Appendix C. The proof is similar to that of Theorem 1, however, in the
proof there are several technical points which are complicated than that of Theorem 1 (See Appendix
C for details). O

As we will see in the next section, the above lower bounds are tight since an instantiation of our
generic construction will meet all the above inequalities with equalities.

3.3 Construction of TRE from TR-KA and One-time Pad

We present a generic construction of TRE YX=(FEGen, EExt, Enc, Dec) starting from TR-KA TI=(Setup,
Ext, KeyGen, KeyDer) and the one-time pad. In our construction, II and X satisfy the following con-
ditions: EMK = TMK; ETT = TT; EK = TUK); and DK = TUKP).

1. EGen. For a security parameter 1%, EGen outputs matching secret-keys usk; = (ek;, dk;) and

emk* for U; (1 < i < n) and T, respectively, as follows. EGen calls Setup with input 1.
(S) (R) (s) (R) () (R) * k

Suppose (tuky”’, tuky”’, tuky”’, tuky ', ... tuky ', tuk, ’, tmk*) «Setup(1¥). Then, EGen

(R), and emk™ := tmk* for U; (1 <i<mn)and T,

)

outputs secret-keys ek; := tukzgs), dk; = tuk
respectively.

2. EExt. For a master-key emk™ = tmk™* and time t, FExt calls Ezt, and let tmk®) =Fzt(tmk*,t).
Then, EEzt outputs a time-signal at the time ¢, emk® := tmk®.

10



3. Enc. For a plaintext m, an encryption-key ek;, = tukl(f), the specified time t and an identity

Ui,, Enc calls KeyGen, and suppose tck’g?i2 :KeyGen(tukgls), t,Ui,). Then, Enc outputs a
ciphertext B S5 tek®

11,82 i1,02°

(®)

11,127

Z(QR), a time-signal emk® = tmk® at
(R)

12 )

4. Dec. For a ciphertext c a decryption-key dk;, = tuk

the specified time t and an identity U;,, Dec calls KeyDer, and suppose tck‘g?iQ =KeyDer(tuk
tmk®, Ui,). Then, Dec outputs a plaintext m := ) D tekd)

11,02 1,02°
The security of the above construction is shown as follows.

Theorem 4. Given (n,w,7)-secure TR-KA II in which common-keys are uniformly distributed over

TCK (i.e., H(TCKZ(?) = logy |[TCK| for any i, j, and t), then the TRE ¥ formed by the above
construction based on II is (n,w, T)-secure.

Proof. Let Z be arandom variable such that: (1) Z = EMK;or (2) Z = (EKw, DKy, ETIV, ... ETIM)
with U;,, Ui, ¢ W; or (3) Z = (EKw, DKy, ETIV, ... ETI¢D ETI¢D  ETIM) with Uy, ¢
W and U;, € W.

Then, for any random variable Z of (1)-(3) mentioned above, we have

H(M | C,Z) = H(M), (1)
)

where (1) follows from Definition 2 and perfect secrecy of one-time pad ¢ = m @ tCki(f,iz (i.e., each pair
of M,TCK, Z is independent). Therefore, the above construction satisfies the conditions (1)-(3). O

Remark 1. Although in this paper we have presented the direct proof of Theorem 1 (i.e., the lower
bounds in TR-KA), we can also prove Theorem 1 by using Theorem 3 (i.e., the lower bounds in TRE
) and the above generic construction where uniformly distributed plaintexts are taken.

Remark 2. In the above generic construction, we suppose Py to be uniform (i.e., uniformly dis-
tributed plaintexts) and apply the direct (and optimal) construction of TR-KA in Section 2.3. Then,
the resulting direct construction of TRE meets equality in every inequality of (i)-(iv) in Theorem 3.
Therefore, the resulting direct construction is optimal and the lower bounds in Theorem 3 are tight.

4 TRA-codes: Timed-Release Authentication Codes

In this section, we show a model and a security definition of timed-release authentication codes (TRA-
codes for short). We also derive tight lower bounds on entities’ memory-sizes required for TRA-codes.
In addition, we present two kinds of constructions of TRA-codes, generic and direct ones. Our generic
construction is simple, while our direct construction is optimal.

4.1 Model and Security Definition

We newly propose a model and a security definition of TRA-codes, based on that of timed-release
signatures with computational security (e.g., [8]) and that of the traditional authentication code with
information-theoretic security (e.g., [17]).

Formally, we give a definition of TRA-codes in the TI-model as in the case of TR-KA.

11



Definition 6 (TRA-codes). A timed-release authentication code (TRA-code for short) A involves
n + 2 entities, TI, Uy,Us,...,U, and T, and consists of a four-tuple of algorithms (TAGen, AFEzt,
TAuth, TVer) with siz spaces, My, A, €, AMK, T and ATZ, where all of the above algorithms
except TAGen are deterministic and all of the above spaces are finite. In addition, A is executed with
four phases as follows.

— Notation:

- Entities: TI, U; (1 <i<n), T, andU are the same as those in Definition 1.

- Spaces: T is the same as that in Definition 1. A is a set of possible authenticators (or
tags), M4 is a set of possible messages, AMK is a set of possible master-keys. ATZW s

a set of time-signals at time t. Let ATT :=J;_, ATZW . Also, EZ-(S) is a set of possible U;’s
authentication-keys, EZ(R) is a set of possible U;’s verification-keys, and & = EZ(S) X 51-(R)
is a set of possible secret-keys for U;. Let £5) = U, Si(s), e = U, Si(R), and
£ = U?:l (2

- Algorithms: TAGen is a key generation algorithm which on input a security parameter 1%,
outputs each user’s secret-key and a time-server’s master-key, AFxt: AMK x T — ATT
is a time-signal generation algorithm for T, TAuth: My x €S x T xU — A is an
authentication algorithm, and TVer: M x Ax T x EB) x ATT xU — {true, false} is a
verification algorithm.

1. Key Generation and Distribution. In the initial phase, TI generates the following keys by
using TAGen: a master-key amk* € AMIK for T; a secret-key e; = (e(s) e(R)) e & for U;

]

(i=1,2,...,n). These keys are distributed to corresponding entities via secure channels. After
distributing these keys, TI deletes them from his memory. And, T and U; keep their keys secret,
respectively.

2. Time-signal Generation. For broadcasting a time-signal at each time, T generates a time-
signal amkY) =AEzt(amk*,t) € ATT® by using a master-key amk* € AMK and time t € T.
Then, T broadcasts it to all users via a (authenticated) broadcast channel.

3. Authentication. U;, specifies time t when U;, can verify validity of a message m, and then

Ui, computes an authenticator, alt) = TAuth(m, ez(-f),t, Ui,) € A, by the message m € My, an

11,82
authentication-key el(-f), the specified time t and the identity U;,. And, U;, sends (m,ozg??h,t) to
Ui, via an insecure channel.
4. Verification. Suppose that U;, has received (m, az(?,iz,t) from Uy, . After receiving a time-signal
(R)
2
signal amk® and the identity U;, : If TVer(m, 041(.31»2,75, egf), amk®), Ui,) = true, then U;, accepts
(t)

(m’ ail,ig ?

amk® at the specified time t, Ui, checks the validity of az(-f?h by a verification-key e; ', a time-

t) as valid, and rejects it otherwise.

In the model of TRA-codes, we require the following equation holds: for all possible t € T, i1,i5 €
{1,2,...,n}, egf) € Ei(ls), egf) € Si(f), amk® € ATT® | we have
TVer(m, TAuth(m, egf), t,Ui,), t, egf),amkz(t), Ui,) = true.
The above requirement means correctness of TRA-codes.
Next, we provide a security notion and its formalization for TRA-codes based on the idea of
timed-release security and the traditional authentication code with information-theoretic security.

12



The choice of possible colluders W € P(U,w) is the same as that in TR-KA. For a set of colluders
W= {U,,U,,...,U;} € PU,w), 5155) = SZ(S) X 51(23) X oo X EZ(J_S) is a set of W’s authentication-

1
keys, and 51(/5 ) = 51(1R) X EI(QR) X +ee X 51(,}2) is a set of W’s verification-keys. In TRA-codes, we
consider impersonation attacks and substijtution attacks as follows. (a) Impersonation attacks: an
adversary (or a dishonest entity) tries to generate a fraudulent authenticated message at time t,
(m, az(f)n, t), that has not been legally generated by a sender U;; but will be accepted by a receiver
Ui,. (b) Substitution attacks: an adversary (or a dishonest entity) tries to generate a fraudulent
authenticated message at time to, (m/, az(?;, t2), that has not been legally generated by a sender

U;, but will be accepted by a receiver U,,, after observing a valid authenticated message at time ¢,
(m, alf) t1) with (m, alf) t1) # (m/, al2) ¢ t2). Similarly as in Definition 2 we consider the following

11,12 11,127 11,12
three ‘éyf)es of security né)tigons for TRA- éo2des: (1) A dishonest time-server cannot succeed in each of
the impersonation attack and substitution attack; (2) Any colluding group W not including a legitimate
receiver cannot succeed in each of the impersonation attack and substitution attack, even if W obtains
time-signals at all the time; (3) Any colluding group W including a legitimate (but dishonest) receiver
cannot check the validity of a target authenticated message without a time-signal at the specified time,
even if W obtains time-signals at all the time except the specified time. To formalize this security
notion, we consider it to be a kind of security against impersonation attacks at the future specified
time: Any colluding group W including a receiver cannot succeed in impersonation attacks at the
future specified time, even if W obtains time-signals at all the time except the specified time.

The formalizations of the above three types of security notions for TRA-codes are given as follows.

Definition 7. Let A be a TRA-code. A is said to be (n,w, T;¢€)-secure, if max(Pseryer, P1, P2) < €,
where Pseryer, P1 and Py are defined as follows.

(1) Attacks by a dishonest time-server. Let Pgepyer = max(Pyg, Psy), where Prg and Psg are given
as follows.

1-1) Impersonation attacks. The success probability of this attack denoted by Prg is defined as
follows: For any U;,, Ui, € U and any t € T, we define Pri(U;,, Uy, t) by

Pr, (Ui, , Uiy, t) :=  max max max
(t) t) amk* gmk(t)

Pr(T'Ver(m ol t e amk®, Ui,) = true | amk™).

11127 ) 12 Y

The probability Prg is defined as Prg := max tPIS (Ui, , Uy, ).
i1:Uigs
1-2) Substitution attacks. The success probability of this attack denoted by Psg is defined as
follows: For any U;,,Us, € U and any t1,t2 € T, we define Psg (Ui, , Ui, t1,t2) by

Psy (Ui, , Uiy, t1,t2) ==  max max max max

5121)2 7752) (m 0‘5111)2 »t1)7ﬁ( 5121)27t ) amk™ amk(t2)

Pr(TVer(m’ alf?) ¢, e(R) ,amk®) U) = true | (m, alt) t1),amk™).

11 12 11,127

(m/,a

The probability Ps is defined as Psg := [, max Ps (Ui, , Uiy, t1, t2).
i1,Vig,l1,l2

(2) Attacks by colluders not including a legitimate receiver. Let P; := max(Py,, Ps,), where Py, and
Pg, are given as follows.

13



2-1) Impersonation attacks. The success probability of this attack denoted by Py, is defined as
follows: For any set of colluders W € P(U,w), any U;,,U;, € U such that U;;, U, ¢ W and
for any t € T, we define Pr, (U;,, Ui, W, t) by

P, (U;,,Ui,, W,t) ;== max maxmax max
(m, ot 4) e (5) (R) amk®) .. amk(™)
11,12’

Pr(TVer(m a1 e amk® U;)) = true

’51 PR 22 )
| eg/}i), eg/?), amk®, . .. ,amk(T)).
The probability Py, is defined as Pr, := max  Pr, (Ui, Uy, W, t).

i17Ui27VVv
2-2) Substitution attacks. The success probability of this attack denoted by Ps, is defined as
follows: For any set of colluders W € P(U,w), any U;,,Us;, € U such that U;;, U, ¢ W and
for any ty,ty € T, we define Pg, (Ui, ,Us,, W, t1,t2) by

Ps, (Ui, Uiy, W,t1,t2) == max max max max
1) 1) (mal) i)t(mal2) 1) oS o

01,19 11,19 zz’

max Pr(TVer(m',al"?) ty, el amk ),Uil):true

amk@) ... amk(™) RECK 2 7

(m/ e

| (m, o) t1), eg/g), eg/{f), amk® ... amk(™).

21,227

And, Pg, is defined as Ps, := Uil,UIZ-I;?V}I{/,tl,tQPSl(Ui“in W, tq,t2).
(3) An attack by colluders including a legitimate (but dishonest) receiver. The success probability
of this attack denoted by Py is defined as follows: For any set of colluders W € P(U,w), any
Ui,, Ui, € U such that U;; ¢ W and U, € W, and for any t € T, we define Po(U;,,U,,, W, t) by

Py(U;,, Uiy, W,t) == max maxmax max
(m, ot t) e (S) (R') amk@) .. .amk®=1 amk(+1) amk()
11,127
Pr(T'Ver(m gf)ZQ,t, 1(2) amk®, Uy;,) = true
| eg/g), e%,{f)amk:( ) amkY amkD ,amk(T)).
The probability Py is defined as Py := max Py(U;,, Uy, W, t).
Uil)UiQ’W7

4.2 Lower Bounds

We derive lower bounds on success probabilities of attacks and memory-sizes required for (n,w, 7;¢€)-
secure TRA-codes. Let MA = {(m, alt). ) € Max Al me My and T Auth(m (S),t,Uw) =

11,192 11,22
ag)iQ for some e( ) e 5 } be a set of possible pairs of messages and authenticators such that each
element of the set can be generated by the sender U;, to send it to U, at specified future time ¢.

Furthermore, let MAZ( )Z , AMK, E(S) E( ) , ATIM . ATI™ be random variables which take
values in /\/IAZ1 iy AMK, 5‘(}[/), Ew’ A’TI(l), ooy ATT) | respectively.

We assume that there exist the following mappings in the model of TRA-codes: for every i,j €
{1,2,...,n} and every t € {1,2,...,7},

Aot ED B ke

)

14



o SJ(R) — 58? - X 5,(1 j),
O . ATIO S Acrzf X oo x ATTW
g : AMK —» AMK;y X -+ x AMK,,
g AMK; — ATI“) oo AT
pij S(S) — 5 x AMK;,
(5)

where &; ; 1s a set of possible U;’s authetication-keys which are actually used to communicate with

a receiver Uj; 5;?) is a set of possible U;’s verification-keys which are actually used to communicate
with a sender U;; AT Igt) is a set of possible information on time-signals at time ¢ when U; becomes a
sender; AMK; is a set of possible partial information about master-keys when U; becomes a sender?.
Note that each user has the potential to become an adversary, but each user is honest when he is a
sender. Hence, if a sender U; is fixed and amk: € ATZT,; ® i given, TRA—codes look like MR A-codes

[14]. From this, it would be natural to assume a mapping &, ( J) SZ-(yR) if amk ) € ATT, ® is given, in
TRA-codes as in the model of MRA-codes (see Definition 3.1 in [14]) In addltlon from the footnote

of this page, we have assumed the above mapping p; ; : & ( ]) — 5 ) % AMIK;. From the explanation,

we consider that the assumption of existence of the above mapplngs is not so strange, rather natural,

and we will show that these mappings actually exist in our simple direct construction in Section 4.4.
Then, we can derive lower bounds on success probabilities of attacks as follows.

Theorem 5. For any i1,i2 € {1,2,...,n}, any time t € T, any colluding group W with U;,,U;, ¢ W,

and W with Uy, ¢ W and U, € W, it holds that

log Pro (U, , Uiy, t) > —I(MAY . - EF) | AMK)

©1, 12’ 11,92

log Pss (Ui, , Uiy, t1, ta) > —I(MAY2) . EX) | AMK, MAU) )

91,127 711,12 11,42

1
2
3. log Pr, (Ui, Uiy, W,t) > —I(MAY . EF) |E(S) U0 ATIV . ATI)
4
5

01,127 11 i2

log Ps, (Ui, ,Us,, W, t1,t2) > —I(MA2) . B \E(S) EW, ATI“) AT A

11,827 41,12 11,12

log Pa(Us,, Usy, W, t) > —I(MAY,

AT | B B ATI(D,...,ATI“’”,ATI““),...,ATI(T))
The proof can be shown in a way similar to that of [14, Theorem 3.2].
We next show lower bounds on memory-sizes of entities in TRA-codes. The proof is given in
Appendix D.
Theorem 6. Let A be an (n,w,T;e)-secure TRA-code. Let q := e '. Then, for any i1, iz €
{1,2,...,n} and t € {1,2,...,7}, we have
(@) 1RO = @D, i) 1] = g2
(iii) |ATZIO| > ¢*t1,  (iv) |JAMK| > " @),
()
(v) ’Ail,ig‘ 2 q.
As we will see in Section 4.4, the above lower bounds are all tight since our direct construction

will meet all the above inequalities with equalities. Therefore, we define optimality of constructions
of TRA-codes as follows.

Definition 8. A construction of (n,w,T;€)-secure TRA-codes is said to be optimal if it meets equality
in every inequality of (i)-(v) in Theorem 6.

3We assume that each user U; potentially has partial information on a master-key, since a sender U; can specify
any time t (i.e., the sender U; can generate amkft) € ATIZ(-t) for 1 < ¥Vt < 7) but he cannot generate a time-signal
amk € ATTW.
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4.3 Generic Construction of TRA-codes from TR-KA and A-codes

We propose a generic construction of (n,w, 7;€)-secure TRA-codes from TR-KA and the traditional
A-codes (e.g., [17]). First, we briefly explain the traditional A-codes as follows.

A-codes. We consider a scenario where there are three entities, a sender S, a receiver R, and an
adversary A. The A-code © consists of a three-tuple of algorithms (AGen, Auth, Ver) with three
spaces, M, A and &, where they are finite sets of possible messages, possible authenticators (or tags)
and possible secret-keys, respectively. AGen is a key generation algorithm, which takes a security
parameter on input and outputs a secret-key e. Auth is an algorithm for generating an authenticator.
Auth takes a message m € M and a secret-key e € £ on input and outputs an authenticator o € A,
and we write a =Auth(m,e) for it. On receiving (m, a), a receiver R can check the validity of it by
using Ver. Ver takes a message m, an authenticator a and a secret-key e on input, and outputs true
or false, and we write true=Ver(m, «, e) or false=Ver(m,a,e) for it. In A-codes, there are two kinds
of attacks: impersonation attacks and substitution attacks. Here, © is said to be e-secure if each of
success probabilities of these attacks is at most € (e.g., see [17] for details).

The detail of our generic construction of TRA-codes A=(TAGen, AFExt, TAuth, TVer) by using
TR-KA TI=(Setup, Fzt, KeyGen, KeyDer) and A-codes ©=(AGen, Auth, Ver) is given as follows. In
our construction, I, ©® and A satisfy the following conditions: My x T C M; TCK C &; A = A;
AMEK = TMK; ATT =TT; €S = TUK®): and ER) = TUK®,

1. TAGen. For a security parameter 1, TAGen outputs matching secret-keys e; = (e(s) 6(»R))

and amk* for U; (1 <i <n) and T, respectively, as follows. TAGen calls Setup with iznpiltzlk,
and suppose (tuk%s) , tuk%R), tukés), tukéR),

. ,tukgs),tukfﬁ),tmk*) «—Setup(1¥). Then, TAGen outputs secret-keys egs) = tukz(s), el(R) =
tukgR) and amk* := tmk* for U; (1 <i <n) and T, respectively.

2. AExt. For amaster-key amk* = tmk* and time ¢, AEzxt calls Ext, and suppose tmk® =Ext(tmk*,t).
Then, AFEzt outputs a time-signal at time ¢, amk® := tmk®.

3. TAuth. For a message m, an authentication-key e( ) = tuk:( ) the specified time ¢ and an
identity U;,, TAuth calls KeyGen, and suppose tck'() = KeyG’en(tuk‘f),t, Ui,). Then, TAuth

11,12

calls Auth, and it computes an authenticator o =Auth((m,t), tckfl)m) Finally, TAuth outputs
(t)

an authenticator at time ¢, Q; G, =

®)

11,827

(R) _

4. TVer. For a message m, the specified time ¢, an authenticator «; a verification-key e; 7 =

tuk( ), a time-signal amk® = tmk® at the specified time ¢t and an identity U;,, T'Ver calls
KeyDer with inputting them, and suppose tckzz(l)Z2 —KeyDer(tuk:gf),tmk(t), Ui,). Then, TVer

outputs true if Ver((m,t), a )tk ) =true, and outputs false otherwise.

21 727 11,12
The security of the above construction is shown as follows.

Theorem 7. Given an e-secure A-code © and (n,w, T)-secure TR-KA II in which common-keys are
uniformly distributed over TCIC, then the TRA-code A formed by the above construction based on ©
and 11 is (n,w, T; €)-secure.

Proof. First, we show the proof of Pg; < € to prove Pgerper < € (i.e., condition (1)). Assume that T°S
tries to generate a fraudulent authenticated message at time to, (m/, o/, t2), that will be accepted by
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a receiver U,,, after observing a valid authenticated message at time ¢1, (m, a,t1). Then, we have

max max max max

(t2) () a(t2) amk* k(t2)
(m.al'2),ta) (m.al1) 1) (m al(2), to) 9k am

Pr(TVer(m/, a( 2) 1o, amk(t2) ,Uiy) = true | (m ) t1),amk™)

11,027 ig 11 127

= max max max max
(m/,a t2) (m,out1)Z(m/ o ta) tmk(t2) tmk*

Pr(KeyDer(tuk:(R) tmk®) U;)) = tck(™) A Ver((m/,t3), o tck(tQ) ) = true | (m,a,t1),tmk")

11,12 11,22
= max max max Pr( Ver((m/,t2), o/, tck®) ) = true m,a,t1), tmk* 2
X K (Ver((m', t2), i1d2) | ( 1) ) (2)
= max max Pr(Ver((m',t2),a’,C) = true | (m,a,t1)) < Ps <, (3)

(m/,a t2) (m,a,ti)#(m/ o t2)

where (2) follows from the correctness of TR-KA, (3) follows from Definition 2 (i.e., tmk™* is unhelpful
)

to guess tck:l(fZ2 ), and Pg is the success probability of substitution attacks in e-secure A-codes. Thus,
we have Pg; < e. In a manner similar to this, we can prove Pr; < €. Therefore, we have Psepyper =
max(Prg, Psy) < €.

Next, we show the proof of Ps, < € to prove P; < ¢ (i.e., condition (2)). Assume that any colluding
group W not including a targeted receiver tries to generate a fraudulent authenticated message at time
to, (M, t2), that will be accepted by a receiver U;,, after observing a valid authenticated message at
time t1, (m, «, t1). Let Info(W) := (eE/V), egf) amkM .. amk()) = (tukég),tuk‘(,g),tmk(l), o tmk(M),
Then, we have

max max max
(m (2] t2) (mali) ) £ms al2) tp) (W)

Pr(TVer(m/,a\™) t5, e amk®™) U, ) = true | (m, ™) ), Info(W))

i1,i20 720 Cig 0 Z112’

= max max max
(m/,a t2) (m,ont1)#(m’ o/ t2) Info(W)

Pr(KeyDer(tukl(ZR),tmk(tQ) Ui,) = tck) A Ver((m/,t2), o tck!t?) ) = true | (m, a, t1), Info(1W))

11,42 01,02
= max max max Pr(Ver((m,t2),d tck(tQ) = true | ((m,t1), a,t1), Info(W
((m/ t2),a/ t2) ((m,t1),a,t1)A((m/ t2),0 t2) Info(W) ( (( 2) “, Z2) ’ (( 1) 1) ( ))
(4)
=  max max Pr(Ver((m/,t ,o/,tck:(@ = true | ((m,t1),a,t 5
(o 5, ottt ) (Ver((m', t2) 1) | ((m,t1), e, t1)) (5)
< Pg <.

where (4) follows from the correctness of TR-KA, (5) follows from Definition 2 (i.e., Info(W) is
unhelpful to guess tck:l(fl)2 ), and Pg is the success probability of substitution attacks in e-secure A-
codes. Thus, we have Ps, < e. In a manner similar to this, we can prove P;, < e. Therefore, we have
Py = max(Pr,, Ps,) <e.

Finally, we show the proof of P, < € (i.e., condition (3)). Assume that any colluding group W
including a legitimate (but dishonest) receiver tries to check the validity of a target authenticated
message without a time-signal at the specified time, even if W obtains time-signals at all the time
except the specified time. Let

Info(W) := (eg,i), eg,l;“), amk®, .. amk®D amk) amk(f))

= (tukS) kD 4k kD kD emk)),
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Then, we have

max max Pr(7TVer(m, agt)i ,t, egR),
(m,al?, ) Info(W) 1,82 2
iy g

amk® U;)) = true | Info(W))

= max max Pr(KeyDer(tuki(f),tmk(t), Ui,) = tek® A Ver((m,t), a, tck® ) = true | Info(W))

(mal®, ¢ nfo(W)

< max max Pr(Ver((m,t),a,tck(t) ) = true | Info(W))

- (m o t) Info(W) t1i2
) 21’127
= max Pr(Ver((m,t), a,tck‘g)irz) = true) (6)
(mya»gt)z‘ ’t) '
1,2
< Pr<e

where (6) follows from Definition 2 (i.e., Info(WV) is unhelpful to guess tck!™) ) and P is the success

1,12
probability of impersonation attacks in e-secure A-codes. Thus, we have Py < e. ]

Remark 3. Even if we apply optimal constructions of TR-KA and A-codes in the above generic
construction, we cannot obtain an optimal construction of TRA-codes. For example, consider the
optimal construction of TR-KA in Section 2.3 and the well-known optimal construction of A-codes
gwen by Auth(m,e) = am + b, where m is an element of a finite field Fy and e = (a,b) € Iﬁ‘g. We can
quite smoothly apply these constructions in our generic construction since both ones are given based on
polynomials over Fy. However, the resulting construction of TRA-codes is not optimal. Therefore, in
the next section we will show that there exists a direct construction (i.e., a construction from scratch)
which satisfies Definition 8.

4.4 Direct Construction of TRA-codes by Polynomials over Finite Fields

We propose a direct construction of (n,w, 7;€)-secure TRA-codes. In addition, it is shown that the
construction is optimal. The detail of our construction of TRA-codes A=(AGen, AExt, TAuth, TVer)
is given as follows.

1. AGen. For a security parameter 1¥, AGen outputs matching secret-keys e; and amk* for
Ui (1 <1 < n) and T, respectively, as follows. AGen picks a k-bit prime power ¢, where
¢ > max(n, 7), and constructs the finite field Fy with ¢ elements. We assume that the identity
of each user Uj is encoded as U; € F,\{0}. Also, we assume 7 = {1,2,...,7} C F,\{0} by using
appropriate encoding. And, AGen chooses uniformly at random f(z,y) := Zfzozyzoaijxiyj ,
g(x,y) = Zfzozz‘-’:()bija:iyj, and amk*(x,z) := 32 3724 capx’zF over F with three variables
x, y and z in which each degree of x and y is at most w, and the degree of z is at most 7 — 1.
AGen also computes )= (9(Uiyy), f(Ui, y) + amk*(U;, 2z)) and ) = (9(z,Uy), f(z,U;)) (1

ez(.s), e(R)) (1 <i<n)and amk* := amk*(z, 2)

7

<i <mn). Then, AGen outputs secret-keys e; := (
for U; (1 <i<n) and T, respectively.

2. AEzxt. For amk* = amk*(z,z) and time t € 7, Ext outputs a time-signal at time ¢, amk®) (z) :=
amk*(z,t).
3. TAuth. For a message m, a secret-key egf), the specified time ¢t and an identity U;,, TAuth

generates an authenticator, al) = 9(Ui,, Uiy )m+ f(Ui,,Us,) + amk*(U;,, t), and outputs it.

11,12
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4. TVer. For the message m, the authenticator «; the specified time t, a secret-key e: ", a

time-signal amk® at the specified time ¢ and an identity U;,, T'Ver outputs true if o
9(Ui,, Uiy )m~+f(U;,, Ui, ) + amk™*(U;, , t) holds, and otherwise outputs false.

The security and optimality of the above construction is stated as follows.

Theorem 8. The resulting TRA-code A by the above construction is (n,w,;1/q)-secure and optimal.

Proof. In this proof, we can write f(x,y), g(z,y) and tmk*(z, z) in the form of

1 1

y y . z
flzyy) = 1,2,...,2°)A . , 9(x,y) = (L,z,...,2¥)B . , and amk®(z,z2) := (1,z,...,2%)C

ycu yw ZT—l

respectively, where A and B are (w+1) X (w+1) matrices and C'is an (w+ 1) x 7 matrix, respectively.
To complete the proof of Theorem 8, we show the following lemmas.

Lemma 4. The above construction satisfies Pseryer < %.
Proof. First, we show the proof of Ps, < 1/q. Assume that T'S will generate a fraudulent authenticated
(t2)

i Zz,tg) under the following conditions: 7S can obtain a valid authenticated

message at time to (m/, a;

(t1)

message (m, o, Z2,151) where m # m’ and knows his master-key amk*. To begin with, since T'S knows
amk*, he can compute amk*(U;,,t2). Therefore, he tries to generate g(U;,, U, )m' + f(Ui,, Us,).

Moreover, T'S can obtain g(U;,,Us,)m + f(Ui,,U;,) by calculating alf) — amk*(U;,, t1). However,

01,12
by applying X := O, A := A and Y := O in Proposition 1 in Appendlx B, there are at least g
candidates of A. Then, by applying « := (1,U;,, Uz21’ o UR), A= Aand y := t(,U,,, U122, L UR)
in Proposition 2 in Appendix B, T'S cannot guess f(U;,,U;,) = xAy with probability larger than
1/q. In a similar way, we can prove that T'S cannot guess g(U;,, U;,) with probability larger than 1/q.

Hence, Ps; < 1/q. We can also prove Ps, < 1/q. Thus, we have Pgepper = max(Ps,, Psg) < 1/¢q. O
Lemma 5. The above construction satisfies P < é.

Proof. First, we show the proof of P, < 1/q. Without loss of generality, we consider that W

{Uy,...,U,} is a set of colluders such that U;,,U;, ¢ W, and we write x; := (1,U;, UZ,...,U?) (1
(t2)

1 < n) Assume that W will generate a fraudulent authenticated message at time o (m Q; iy b2
under the following conditions: W can obtain w user’s secret-keys, all time-signals, and a valid authen—
ticated message (m, ozl(f 1)27t1) where m # m/. Note that W can compute amk* by all time-signals and
calculate amk*(U;,, t1) and amk*(U;,, t2). Therefore, W tries to generate g(U;,, U;,)(m —m') to suc-

ceed in this substitution attack, since N —) —9(Uiy,, Uiy) (m—m")—amk* (U, , t1)+amk*(U;,, t2).

11,42 21,72

W can compute g(Up,y) (1 <1 < w) by using el(s) (y,z) and amk*(Uy, z). Hence, W gets

= A i

1

Y
g(Ul7y) :CCIB . )
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for 1 <[ <w. Thus, W can know the following matrix:

T

i)
XyB:=| . |B

x,
In addition, W knows
g(z,U)) = (1,2,...,2%)B 'a,
for 1 <[ < w by their verification-keys f(z,U;) (1 <! <w). Thus, W can know the following matrix:
B'Xy =B (‘zy,'xs, - -+ ,'x).

By applying X := Xy, A := B and Y := !Xy in Proposition 1 in Appendix B, there are at least ¢
candidates of B. In addition, {x;,, 1, ®9,...,x,} and {x;,, 1, X2, ..., o, } are linearly independent,
respectively, since U;,,U;, ¢ W. Therefore, W cannot guess g(U;,,Us;,) = x;, B 'x;, with probability
larger than 1/¢ by Proposition 2 in Appendix B. Hence, P;, < 1/q. We can also prove P;, < 1/q.
Thus, we have Py = max(Py,, Pig) < 1/q. O

Lemma 6. The above construction satisfies Py < é.

Proof. Without loss of generality, we suppose that W := {Uy,...,U,} is a set of colluders such that
Ui, ¢ W, U, is a targeted sender, U, is a targeted receiver, and 7 is a specified time. In addition, we
write z; := (1,U;, U2,...,U?) (1 <i<n)and y; :=(1,4,i%,...,i" 1) (1 <i < 7). To succeed in the
substitution attack by a group of colluders W, W will try to check the validity of a target authenticated
message without a time-signal at the specified time under the following conditions: W can obtain w
user’s secret-keys, time-signals at all the time except the specified time 7, and a valid authenticated
message (m, agfil,t). Note that W can get f(U;,,U,) and g(U;,,U,) since U, € W. Thus, W tries

to obtain amk*(x, z) to know f(U;,,U,) + amk*(U;,, 7). W can compute amk*(U, z) (1 <1 <w) by
using egs) (y,z) and f(Uj, z). Hence, W gets

1
z
amk* (U, z) = x;C , )
Z‘rfl

for 1 <[ <w. Thus, W can know the following matrix:
1
T2

XUC = . C.
Ly

In addition, W obtains amk*(x,t) = (1,z,...,2%)Cy; for 1 <t < 7 —1 by time-signals at all except
the time 7. Thus, W can know the following matrix:

CYr :=C(y1,y2, - ,Yr—1)-
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By applying X := Xy, A := C and Y := Y7 in Proposition 1 in Appendix B, there are at least

g candidates of C. In addition, {x;,,x1,T2,...,x,} and {y1,y2,...,y,} are linearly independent,
respectively, since U;; ¢ W. Therefore, W cannot guess amk*(U;,,z) = x;,Cy, with probability
larger than 1/¢ by Proposition 2 in Appendix B. Thus, we have P, < 1/q. O

Proof of Theorem 8. It follows that max(Pserper, P1, P2) < 1/q from the above lemmas. Finally,
it is straightforward to see that the construction satisfies all the lower bounds in Theorem 6 with
equalities. Therefore, the above construction is optimal. O

5 Relation to Information-Theoretic Key-Insulated Security

In this section, we show relationship between TR-KA and key-insulated key-agreement (KI-KA for
short) in information-theoretic security setting.

5.1 Key-Insulated Key Agreement (KI-KA)

Recently, information-theoretically secure KI-KA is proposed by Seito and Shikata [15]. In KI-KA,
there are n users Uy, Us, ..., U; where 71 is a positive integer. And each user has two kinds of devices:
a trusted device (e.g., a smart card, USB flash memory) which stores a master-key; and an insecure
device in which a user’s secret-key is stored. Here, the notion of a secure device implies that it is
usually isolated from a network (e.g. the Internet or LAN) and that the attacker can neither wiretap
nor substitute information stored in the device via the network. Here, we assume that the user U;’s
secure device is expressed as H; (1 <1i < n). We also assume that the lifetime of systems is divided
into discrete periods. And, at the beginning of each period j, U; receives key-updating information
from H; by connecting with H;, then U; computes a secret-key at the period j by using the secret-key
of the previous period and key-updating information. And then, any user U;, can share a common-key
with any user U;, at a period j.
Formally, we describe the definition of the model of KI-KA shown in [15].

Definition 9 (KI-KA [15]). A key-insulated key-agreement (KI-KA for short) I involves 27 + 1
entities, TI, Uy, Ua, ..., Uy and Hy, Ho, ..., Hy, and consists of a four-tuple of algorithms (KGen,
KUpd*, KUpd, KDer) wzth sixz spaces, CKC, T, T, T, MK and UK, where all of the above algorithms
except KGen are deterministic and all of the above spaces are finite. And, the detail of the notation
is as follows.

- Entities: TI is a trusted initializer, U; (1 < i < n) is a user and H; (1 < i < n) is a secure
device for U;. Let U := {Uy,Us,...,Us} be a set of users, and H := {Hy, Ho, ..., Hz} is a set
of devices. It is assumed that the z'dentity of each user U; is also denoted by Uj;.

- Spaces: CK is a set of possible common-keys, Z; is a set of possible key-updating information
forUi. LetT =1y UZy U ... UZz. And T :={1,2,...,N} is a set of time periods. Let
T := T U{0}. Also MK; is a set of possible master-keys for H;. Let MK := MKy U MKy U

. U MK5. And also L{ICl(. D is a set of possible secret-keys at a period j for U;. Let UK; =

uk® vuk® U UuUK™ and UK == UKy UUK, U ... U UK.

)

- Algorithms: KGen is a key generation algorithm which on input a security parameter 1¥, outputs
each user U;’s initial secret-key ukgo) € LIICZ(-O) (i.e., a secret-key at the period 0) and each device
H;’s master-key mk; € MK;. And, KUpd": MK X TxT —>Tisa key-updating algorithm
for H; (1 <i<n), and we write mk:l(h’j) =KUpd" (mk;, h,j) where mk‘lgh’j) € I, is key-updating
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information. Also, KUpd: UK x T — UK is a key-updating algorithm for U; (1 < i < n), and
we describe uk(J) —KUpd(uk(h), mk(h’])) where uk(J) € Z/{IC(]) is a U;’s secret-key at a period
j. KDer: UK x U — CK is a key derivation algorithm, and we write k) KDer(ukl(f), Ui,)

01,12
(4)

where ckl
1 12

€ CK is a common-key shared between U;, and U;, at a period j.

In KI-KA, it is required that the following equation holds: for all possible j € T, i1,ip €
(1,2,...,7}, uk? e UK and ukl) € UK, we have KDer(uk!), Uy,) = KDer(ukfg), Ui,).
And, in KI-KA, the following security goal is considered.

- The adversary does not obtain any information on a common-key shared between two honest
users at a target period.

And, as an adversarial model, it is assume that an adversary can obtain the following information on
user’s keys exposed in KI-KA.

- A user’s secret-key from the insecure device.
- A user’s master-key exposed (or robbed) from the secure device.

Especially, in KI-KA, it is considered that the following two types of exposure from targeted users.

- Type A: Targeted users’ secret-keys exposure, which models compromise of targeted users’ secret-
keys from their insecure devices (i.e., the attack to steal a secret-key stored in an insecure device
via a network).

- Type B: Targeted users’ master-keys exposure, which models compromise of their secure devices
by physical means (i.e., the attack to steal a master-key stored in a secure device directly).

To show the formal definition of the above security notions, we describe the several notations. Let
1 be the number of possible users whose master-keys are exposed, let A be the number of possible
users whose secret-keys are exposed per period, and let @ be a nonnegative integer with @ > ¢ + A.
And, let v be the number of possible periods at which secret-keys are exposed per user. And also,
let W := {U;,,Usy,..., Ui, } € P(U, 1)) be a set of users whose master-keys are exposed, and MKy :=
ME;, x MK, x -+ x MK;, be a set of master-keys exposed. Also let AU = {U,,Up,..., U, } €
P(U ,A) be a set of users whose secret-keys at the period j are exposed. Here, we note that AU)
satisfies the following condition: for every i € {1,2,...,a}, |{j|U; € AY) for some j € T}| <. The
above condition implies that for every U;, the number of periods at which U;’s secret-keys may be
exposed is at most . Also, let LIIC(]) —L{ICO) X L{IC(j) S X Z/{IC(A) be a set of users’ secret-keys
exposed at the period j.

And, let ¢k, be a finite set of possible common-keys shared between U;, and U;, at a period

11,22

j. Also, let I(h’J ) C Z; be a finite set of possible U;’s key-updating information which is used for

key-updating process from a period A to a period j. And, let C 1(1 )12, MKy and UKI(XI), ceey UK/(\N)
be random variables which take values on C'ICE1 ins MKy and UICE\), e LIIC&N), respectively. With

these notation, we formally define security notions of KI-KA as follows.

Definition 10 ([15]). Let I be a KI-KA and @ > o + A. I is said to be (n,@; N,~)-secure, if the
following conditions are satisfied:

1. For any U;,, U;, € U and any j € T, it holds that H(C CKY). UK

11,12

) U,) = 0.

Zl’
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2. For any set of users U € P(U,1p) whose master-keys are exposed, any set of users AU e P(U,N)
whose secret-keys at the period j are exposed, and any target period t € T, it holds that
MKy, UKDV, .. UK™) = HCED,).

( 21 22 11,22

under each of the following conditions: (a) any U;,, U, ¢ ¥ and Uy, U;, ¢ AD; (b) any Uy,
U, €9 and U, U, ¢ AV (1 <j<N).

In this paper, we introduce a slightly weaker security: There is no exposure of users’ secret-keys
at the target period; and either Type A (users’ secret-key exposure) or Type B (users’ master-key
exposure) occurs. Formally, it is stated as follows.

Definition 11. LetII be a KI-KA. 11 is said to be (n,0; N, v)-weakly-secure, if the following conditions
are satisfied.

1. For any U;,, U, €U and any j € T, it holds that H(CK, () |UK(3 Ui,) = 0.

11,12 21 ?
2. For any U;,,U;, € U and any target period t € T, the following security conditions are sarisfied:

(a) For any set of users AY) € P(U,&) whose secret-keys at the period j (1 < j < N,j # t) are
exposed, it holds that
HOKD ok, .. vk ux{™, . Uk{) = HCKD,).
(b) For any set of users U e P(U,&) whose master-keys are exposed such that U, ,Us, € U, it
holds that H(CK,"; |MKy) = H(CK\", ).

11,12

5.2 Relationship between TR-KA and KI-KA

In KI-KA, any user cannot update a secret-key without using key-updating information which is
generated by the master-key. That is to say, the user’s key-updating process is controlled by the
device’s master-key and key-updating information. On the other hand, in TR-KA, no receiver can
derive a common-key without using a time-signal corresponding to a designated period (time). Namely,
the receiver’s common-key derivation process is controlled by the time-server’s master-key and the
time-signal. From the above observation, the mechanisms of KI-KA and TR-KA are similar in the
point that a common-key (or a secret-key required for deriving a common-key) derivation process is
controlled by a master-key.

The above statement is explicitly shown by proposing two generic constructions (or converters) in
a simple way: one is a construction of KI-KA from TR-KA; and the other is a construction of TR-KA
from KI-KA. In the following sections, we will see that the mechanisms of TR-KA and KI-KA are
essentially close by showing the generic constructions.

5.2.1 KI-KA from TR-KA

We first propose a simple algorithm which converts a secure TR-KA TI=(Setup, Fzt, KeyGen, Key-
Der) into a secure KI-KA ﬁ:(KGen, KUpd*, KUpd, KDer). More precisely, we propose a generic
construction method of KI-KA by using TR-KA, and it meets the security requirements of KI-KA.
The detail of the construction is as follows.
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1. KGen. For a security parameter 1¥, KGen outputs matching secret-keys for Uy, ..., U and

Hi, ..., H; as follows. KGen calls Setup with taking on input 1¥. Let (tuk%s), tukzgR), tuk:és),
tukéR), ceey tuk’és), tuk:éR), tmk*) be the output from Setup. Then, KGen outputs secret-keys

ukrgo) = (tuk‘gs), tuk:Z(R), 0) and mk; := tmk* for U; and H;, respectively.

2. KUpd* and KUpd. For two periods h € T, j € T and mk; = tmk*, KUpd* calls Ext and
generates tmk(?) =FExt(tmk*,j). Then, KUpd* outputs a key-updating information mk( 9
tmk. On the other hand, for mk( 9 and uk:(h) (tuk( ) tukg ), h, tmk(h)), KUpd generates
a secret-key at the period j, uk‘z(]) .—(tuk:Z( ), tuki(R), 7, tmk:(j)), and outputs it.

3. KDer. For ukl(f) = (tukf),tukf),j,tmk(j)) and an identity U;,, KDer calls KeyGen and
KeyDer and generates the following two values:

ek, = KeyGen(tu(?),j,Us,), ekl = KeyDer(tukl[", tmk),U;,).

11,22 22,21

Then, KDer outputs a common-key at a period j, k9 = tekl9). &) tekY).

Q1,12 01,12 i9,0i1°

The security of the above construction is shown as follows.

Theorem 9. If TR-KA 11 is (n,w, T)-secure and common-keys are uniformly distributed over TCK,
then the KI-KA 11 formed by the above construction is (n,w; N,v)-weakly-secure, where n =n, © = w
and v = 17 — 1. Furthermore, the sizes of secret-keys required in the above construction are given as
follows:

MK, = |TMK|, UKD | = |Tuc®| - | Tuc!®| - |779)| . 7
ek | = TeKV iz = |71,

11,12 i1, 12‘

Proof. From the requirement of TR-KA shown in Section 2, it is obvious that the proposed construction
satisfies the first condition in Definition 11. And, we show the proposed construction fulfills the second
conditions (a) and (b) in Definition 11. In the following, suppose that U;, and U, are target users and
t € T is a target period, and that the adversary tries to obtain any information about a common-key
ck( ) shared between U;, and U;, at the period t.

1,2

Condition (a). We consider the following case for (a) in Definition 11:

1. No devices’ master-key is compromised, and no sender’s secret-keys is compromised, i.e., ¥ = ()
and U;, ¢ A for 1 < j < N. Let AU = {Ul,Ug,...,Ug)_l,Uh}4 be a set of users whose
secret-keys at the period j is compromlsed (1 <j<N,j#t); and

2. No user’s secret-key at the targeted period ¢ is compromised, i.e., AD = .

Then, we have

H(CKZ(fZQ\UKA LUK URED oY)
— H(TCK 11 W oerTok!) |ITUK), TUKYY, 71V, 71D 710 ™)y (1)
= H(TCK “ Z2|TUK ) ok 710, 716D pretn o pr)y
— H(TCKY,) (8)
_ (1)
= H(CK!,), (9)

“The case of U, ¢ AY) can be similarly discussed, and we omit it here.
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where W = {Uy,Us,...,Uz-1,U;,}, (7) and (9) follow from the construction, and (8) follows from
Definition 2.

Condition (b). We consider the following case for (b) in Definition 11:

- No user’s secret-key is compromised through a whole period, i.e. AU =@ for 1 < j < N. Let
U(# () be an arbitrary set of users whose master-keys are exposed (Note that M Ky = {tmk*}
for any W # () from the construction).

Then, we have

H(CK), |MKy) = H(TCK\, @ TCK{, |TMK) (10)

= H(ICK\, @TCK,) (11)

= H(CK]),). (12)

where (10) and (12) follow from the construction, and (11) follows from Definition 2. O

5.2.2 TR-KA from KI-KA

Next, we show a simple algorithm which converts a secure KI-KA f[:(K Gen, KUpd*, KUpd, KDer)
into a secure TR-KA [1=(Setup, Ext, KeyGen, KeyDer). We now describe a construction method of
II from II.

1. Setup. For a security parameter 1%, Setup outputs each entity’s secret-key as follows. Setup calls

K(Gen with inputs 1% to generate secret-keys for two sets U= {U1.s, U1.r, Uss, Usg, ..., Upns,
Unr)® and H := {Hy s, Hip, Hos, Hyg, ..., Hus, Ho g} Let (uki®, uk®) ukl), ukl), ..
uk:ﬁfé, ukrgﬂz, mki.s, mky g, mka.g, mka g, ..., mky.s, mk, r) be the output from KGen. Then,

Setup outputs secret-keys tukgs) ::(ukl(_(g, mki.s), tuk:Z(R) = uk‘g% and tmk* :=(mky g, mka g,
’ mknR)

2. Ext. For a master-key tmk* = (mky g, mkaR,...,mk, r) and a period j, Ext calls KUpd* n
times and generates mk( 7) =KUpd*(mk; r,0,7) (1 < j <mn). Then, Ezt outputs a time-signal
at the period j, tmk(?) —(mkg R), el mkff}%)).

3. KeyGen. For tuk:Z(IS) = (ukﬁ?‘)s,mk:zl s) and a period j, and an identity U;,, KeyGen calls

KUpd* and KUpd generates mk:g).’j) =KUpd*(mk;, 5,0,7) and uk:z(J)S KUpd(ukz(O)S,mk:l(1 S))
()

Then, KeyGen computes ckil‘SiQ.R —KDer(ukgl ?S, Ui,.r) and outputs a common-key at a period
(9) (9)
tCkll i2 = Ckil.S,ig.R'

4. KeyDer. For tuk(R) = Ukz(g)m tmk) = (mkg R)’ e mkzﬁlo.’}%)) and an identity U;,, KeyDer calls

KUpd and generates ukl(Q) —KUpd(ukl(2 )R, me(Q R)) Then, K(eg)/Gen generates ckg.)Rm_S =KDer
L J

(ukg.)R, Ui, s), and outputs a common-key at a period j, tc s = ckgg?R .S

We give a proof that the above construction is secure TR-KA as follows.

5Tn this construction, each identity U; € U consists of two identities U;.s,U;.r € u.
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Theorem 10. If KI-KA 1I is (n,0; N, N)-secure with lﬁ < @, then the TR-KA 11 formed by the
above construction is (n,w, T)-secure, where n = %ﬁ, w<o-— %n and T = N. Furthermore, the sizes

of secret-keys required in the above construction are as follows:

ITMK| = IMK|",  [TUK®| = uk®| - |mici),  17uc®™| = juc!”),
7Ky ckY | 7@ = 170,

1, 12’ - 11,12

Proof. We show that the proposed construction satisfies the conditions (1)-(3) in Definition 2. In the
following, suppose that U;, and U;, are target users, and that ¢t € 7 is the specified time.

Condition (1). Suppose n < @. Then, we have

(TC'K21 22|TMK*) = H(CK by 12|MK )
— (t)
- H(CK“ 12) (13>
— (t)
o (TC'K“ 12) (14)

where ¥ = {Uy g, Us.R,...,Unr}, (13) follows from Definition 10, and (14) follows by the construction.

Condition (2). Suppose n + w < @. Without loss of generality, we consider the following case.

o W ={Uy,Us,...,U,} is a set of colluders such that U;,,U;, € W.
Q]

e W tries to obtain any information on tck“ in-

Then, we have

HrTeKY. \[Tuk ok 1, T710)

21,22

> H(CKY, MKy, UK}, ... . UKY)

_ (t)
- H(CK“ 22) (15)
_ ()
= H(TCK; Z2) (16)
where ¥ = {U; 5,Usg,...,U,. s} and AY) = = {Ui.r,Usr,...,Upr} (1 <j < 1), (15) follows from

Definition 10, and (16) follows by the construction. Obviously, we have

HrekD  tuk TurP IV 110y < HTeKY, ).

11,12 11,22
Therefore, we obtain H(TCK(", [TUKY), TUKYY, TIW,... ., TI)) = H(TCK), ).

Condition (3). Suppose n + w S w. Without loss of generality, we consider the following case.

o W :={Uy,Us,...,Uy—1,U;,} is a set of colluders including a legitimate (but dishonest) receiver
Ui,.

e W tries to obtain any information about tck:g)i2

time except the specified time ¢.

by using information on time-signals at all the

Then, we obtain

HreK? vk Tuk(P, 71O, 71 preth | )

11,82
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> H(CK" MKy, UK, . UK")

= 11,12

_ ()

_ (t)

= H(TCKY,), (18)

where W = {U1s,Us.s, ..., Us-1.5, Uip.s} and AV = {Urg, Usp, ... Unr} (1 < j <7, j #1), (17)
follows from Definition 10, and (18) follows by the construction. Therefore, we have

H(TCKY

21,2

JTUKS) TUKSY, 11O, 11D i i) = H(TeK D

1171'2)'

6 Concluding Remarks

In this paper, we studied timed-release cryptography with information-theoretic security. Specifically,
we first proposed a model and formalization of security for timed-release key-agreement (TR-KA) in
information-theoretic security setting. In addition, we derived tight lower bounds on memory-sizes
required for TR-KA, and we proposed the optimal direct construction.

Also, we proposed models and formalizations of security for timed-release encryption (TRE) and
authentication-codes (TRA-codes) in information-theoretic security setting. We also presented simple
generic constructions of TRE and TRA-codes, respectively. Furthermore, we derived tight lower
bounds on memory-sizes required for TRE and TRA-codes, respectively, and we also proposed optimal
direct constructions of TRE and TRA-codes, respectively.

Moreover, we showed the relationship between TR-KA and key-insulated key-agreement (KI-KA)
in information-theoretic security setting. We have shown that there exists a simple algorithm which
converts TR-KA into KI-KA, and vice versa. Therefore, we conclude that the mechanisms of TR-KA
and KI-KA are essentially close.

Acknowledgments. The authors would like to thank anonymous reviewers of ICITS 2012 for their
valuable comments.
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A  Proof of Theorem 1

The proof follows from the following lemmas.

Lemma 7. H(TUK"™) > (w+ 1)H(TCK) for anyi € {1,2,...,n}.
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Proof. For arbitrary i € {1,2,...,n}, we take a subset B := {l1,l2,...,lu+1} C {1,2,...,n} of indices
of users such that ¢ ¢ B. Let Dy := (Ig,1) and Wy, := {l1,l2,...,l;} for each k with 1 < k < w + 1.
Then, we have

Y

H(TUK™ | TIO)
(TCKY) , TCKY) ... . TCKy) TUK™ | TI)
— H(TCKY, TCKY .. TCK(t T
1 2
H(TCKY) , TCKY), ..., TC’K o TI® TUK ™)
2
t t t
= H(ICK}) TCKP) ... TCK}) | TI(t )

H(TUK™)

v

w+1

= Y H(TCKY) | TIO, TCKY) TCKY) ..., TCK}) )

k=1

w—+1

S H(TCK)) | TUKY) | TIY)

k=1

w+1

= Y H(TCKY)) (19)
k=1

= (w+1)H(TCK),

v

where (19) follows from the condition (2) in Definition 2. O

Lemma 8. H(TUK;S)) > (r14+w)H(TCK) for anyi e {1,2,...,n}.

Proof. For arbitrary i € {1,2,...,n}, we take a subset B := {l1,l2,...,ly+1} C {1,2,...,n} of indices
of users such that i ¢ B. Let Dy := (i,l;) and Wy := {ly,l2,...,l;} for each k with 1 < k < w + 1.
Also, let F" := (TCK},), TCK),

L TOKY)) and GY == (TCK) , TCK),... . TCK})) for 1 <k <w+1and 1 <t <. Then, we
have

H(TUK™)
2 H(FI(T)7 GS—)FI)
= H(FD)+ HGY, | F7)
T w+1
=N H(roKy) | K+ Y HTCOKY) | K7 TCK), .. TCK}) )
t=1 k=2

>N H(TOK) | TUKYY, TIW, ... T1¢Y)

t=1
w+1
+Y H(TCKY) | TUKYY | TIV, ..., TI")
k=2
T w41
=N H(TCKY))+ Y H(TCKY)) (20)
t=1 k=2
= (T +w)H(TCK),
where (20) follows from the conditions (2) and (3) in Definition 2. O
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Lemma 9. H(TI® | TIM, . . TI¢D) > (w4+1)H(TCK) for anyt € T. In particular, H(TI®) >
(w+1)H(TCK) for anyt e T.

Proof. For arbitrary ¢ € {1,2,...,n}, we take a subset B := {ly,l2,...,l,+1} C {1,2,...,n} of indices
of users such that i = l. Let Dy := (I, i) and Wy := {l1,la,...,l} for each k with 1 <k <w + 1.
Then, we have
H(TIO | 71D, T1tY)
> H(TI® | TUK™, 71V, T710D)
> 1(rckY rexW . rek® 110 | ruk® m1® . rrh)
1 2 w41 (2
=HTCcKY ek .tk |Tuk™ TIO, . T10-D)
1 2 w41 7
~H(TCKY),...,TCKy) | TUK™ 71D, TI)

= H(TCKp) , TCKY). ... . TCK}y) | TUKM™ 71O, TI1¢D)

w+1
- Z H(TCKSI)C ‘ TUKZ(R)’ TI(l)’ e 7TI(t_1)7TCKg37 NN ,TCKg])q—l)
k=1
w+1
> Y H(TCKp,) | TUKy) | TUK!, 110, 7107
k=1
w+l
=N H(TCKY)) o
k=1

= (w+ )H(TCK),
where (21) follows from the condition (3) in Definition 2. O
Lemma 10. H(TMK) > 1(w+ 1)H(TCK)O
Proof. We have

H(TMK) > I1(TIV,. .. . TI7:; TMK)
= HTIWY, ... 717y —HgTIY, .. TI7 | TMK)
= H(TIW, ... TI")
= > H(@IY |71V, . 710

t=1
= 1w+ 1)H(TCK),

where the last equality follows from Lemma 9.

Proof of Theorem 1: From Lemmas 7-10, the proof of Theorem 1 is completed.

B Technical Propositions

Proposition 1. Let X be an h x i matriz, A be an i X j matriz, Y be a j X k matriz, W be an
h X j matriz, and Z be an i X k matriz, respectively, where all entries of the matrices are elements in
Fy. When X, Y, W and Z are given, there are at least q solutions of A for the simultaneous linear
equations, W = XA and Z = AY, if i > h and j > k.
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Proof. First, let X, A, and Y be

ri1 Ti12 o Tlg a1 air2 -+ alj Yyl Yi2 0 Yk

21 T22 -t T2 a1 a2 -+ A2 Y21 Y22 - Y2k
X = ) . ) , A= ) . ) and Y = ) ) .

Thl Th2 - Thy a1 G2 0 Qg Yj1 Yji2 0 Yk

respectively. Then, we can write

w11 w12 v Wi 21,1 21,2 2Lk
w21 W22 o W2 221 222 -t 22k
W = ) . ) and Z = : . . ;
Wh,1 Wh,2 -+ Whj Zi 1 %2 o 2k
such that
Wem = Te1Q1m + Tp202m + -+ xp0i,m for 1<E<h, 1<m<j,
Zem = QaYlm + aoYom + o+ apyim for 1<0<d, 1 <m < k.

Since we have the equation WY = X Z, it holds that, for any o, with 1 <a<hand 1 < <k,
Wa,1Y1,8 T Wa,2Y2,8 + *** + Wa,j¥j8 = Ta,121,8 + Ta222,8 +  + TaiZig-

Thus, with respect to unknowns as¢ (1 < s <1, 1 <t < j), we have at most hj + ik — hk linearly
independent equations. Therefore, the number of unknowns not uniquely determined is at least

ij — (hj+ik —hk)= (i—h)(j — k),

and it is positive if ¢ > h and 7 > k. From this, it follows that A has at least ¢ solutions. O

Proposition 2. Let i > h and j > k, and suppose that X, A, Y, W, and Z are the same as those
in Proposition 1. Let x := (z1,%2,...,2;) € (Fy)" and y = *(y1,v2,...,y;) € (Fy)? be vectors such
that: x is not contained in the Fq-vector space generated by row vectors of X ; and y is not contained
in the Fq-vector space generated by column vectors of Y. Suppose that such X, Y, W, Z, x, and y
are arbitrarily given, and each entry of A is chosen from Fy uniformly at random such that W = X A
and Z = AY . Then, an element xAy € F, cannot be guessed with probability larger than 1/q.

Proof. Let x == {A | XA = W, AY = Z} be the set of solutions of A for the simultaneous linear
equations, W = XA and Z = AY. First, we show the following lemmas.

Lemma 11. Define xo := {A | XA = O, AY = O}, and let Ay be a solution in x. Then, xo is a
linear space over Fy with dimxo > 1, and x = {Ao+ A1 | Ao € xo}-

Proof. Tt is straightforward to see that xo is a linear space over F,, and dim xo > 1 follows from the
special case of W = Z = O in Proposition 1.

For generally given W and Z, let A; be an element in y. For any A € y, it holds that XA =W
and AY = Z, and hence X(A — A1) = O and (A — A;)Y = O, which implies A — A; € xo. Thus, we
have x = {Ao + A1 | Ag € x0}- O

Lemma 12. Let X and Y be an h X i matrix and a j X k matriz, respectively, with i > h and j > k.
Then, the Fy-linear mapping f : xo — F, defined by f(A) := xAy is surjective.
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Proof. First, we assume that X and Y are (i — 1) x ¢ matrix and j x (j — 1) matrix, respectively, such
that rank X =i—1andrank Y = j—1. It is obvious that the mapping f is F;-linear. In addition, since
f is Fy-linear, Imf is a linear subspace of F,. Therefore, by Lemma 11, dim(Im f) is 0 or 1. We will
show that dim(Im f) =1 (i.e., Im f = F,). To prove this, it is sufficient to show that, for A, A" € xo

with A # A’, we have x Ay # xA'y. Suppose on the contrary that Ay = xA'y. Let X := (i) and

Y := (Y,y). Then, since XA = XA = O and AY = A'Y = O, we obtain XAY = XA'Y. Since X
and Y are invertible, we have A = A’, which implies contradiction. Therefore, f is surjective.

Next, we consider a general case that X and Y are h X ¢ matrix and j X k matrix, respectively,
with i > h and j > k. Let X be an (i — 1) x i matrix such that: rank X =i — 1; x is not contained in
the IFg-vector space generated by row vectors of X: and the [F,-vector space generated by row vectors
of X contalns the vector space generated by row vectors of X. Slmllarly, let Y be an j x (7 —1) matrix
such that: rank Y = j — 1; y is not contained in the [F,-vector space generated by column vectors of
Y; and the [F,-vector space generated by column vectors of Y contains the vector space generated by
column vectors of Y. Letting xo := {A | XA = O, AY = O}, and we have o C xo. Therefore, it
holds that f : xo — F, defined by f(A) := xAy is surjective, since f | Xo is surjective as shown by
the above paragraph. ]

Proof of Proposition 2. We show that, if A is chosen from x uniformly at random, a value of x Ay
cannot be guessed with probability larger than 1/¢. For proving it, it is sufficient to show that, for
every t € Fy, Pr[t = xAy] = 1/q if A is chosen from y uniformly at random. Define fix— F, by
f(A) := xAy, and fix some A; € y. Then, arbitrary A € x is expressed by A = Ag + A1 (Ag € x0)
by Lemma 11, and then, f(A) = xzApy + A1y = f(Ap) + ¢A1y. Note that A being chosen from
x uniformly at random is equivalent to that Ay being chosen from yxg uniformly at random. If Ag is
chosen from x( uniformly at random, we have Pr{t = f(Ag)] = 1/q for every t € F, since f is F4-linear
and surjective by Lemma 12. Therefore, since f(Ay) takes every value of F, with equal probability
and T Ay is fixed, f (A) = f(Ao) + xA 1y takes every value of F, with equal probability. O

C Proof of Theorem 3

The proof of Theorem 3 follows from the lemmas in this appendix. In this appendix, for any 4,5 €
{1,2,...,n} and any ¢t € {1,2,...,7}, M; ) denotes the random variable which takes plaintexts to be

sent from U; to U; at time ¢, and Mi(,j) is 1.1.d. according to Pyy.
Lemma 13. H(DK;) > (w+ 1)H(M) for any i € {1,2,...,n}.

Proof. For arbitrary i € {1,2,...,n}, we take a subset B := {l1,l2,...,ly+1} C {1,2,...,n} of indices
of users such that ¢ ¢ B. Let Dy := (I, i) with 1 < k <w + 1. Then, we have

H(DK;) > H(DK; |ETI 01(33’0827""02530“)
> I(Méz Mz()tgw--,Mgiﬂ;DKi | ETI(t)’Cl(;z’Cgl"“’Cgc)uH)

t t ) ~() t
H(MY, lg;M,ggm \ET[(t),CDI,CDQ,...,C,(jlﬂ)
~H(MY), My, MY | ETIO DK, Y ch) ) )
= HMY MY, Mgiﬂ | ETIO, CW) o). ,cﬁlﬂ)
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w1
(t) (t) 2700 t) ) A t)
= Y HMp) | ETTY M) M), Mgk 1,0},3,0&2,...,(7})“1)

k=1
w+1

= Y H(MY) (22)
k=1

— (w+ DH(M),

where (22) is shown by following: Let Wy := {l1,lo, ..., lg—1,lk+1,---,lwt1} for each k with 1 < k <
w + 1. Then, we have

H(M) | CY), EKw,, ETIV)

(
= H(M t) |CD ,EKWk,ET[(t) Mgz,...,Mgi_l,MgZH ..,Mglﬂ)
< H(M(” My My oY el ETIO)
< H(M(t))

And, we have H(MDti | 0127 EKyw,,ETI®) = H(Mgi) from the condition (2) in Definition 5.
t t t t t t

Therefore, we have H(Mg) | My),..., My W ... cY)  ETIO) = H(MY)). 0

Lemma 14. H(EK;) > (1 +w)H(M) for any i € {1,2,...,n}.

Proof. For arbitrary ¢ € {1,2,...,n}, we take a subset B := {ly,l2,...,l,+1} C {1,2,...,n} of indices

of users such that i ¢ B. Let Dy := (i,1;) with 1 <k <w+1. Also, let F]Et) = (Mz()l,vag,37 . Mgi)
1 2
G = (M) M), M), PO = (0p), 0, ..., CY)), and GOy = (CF), )., O for
1<k<w+1land 1<t <7. Then, we have
H(EK;)
— H(EK; | F77Y, ijjl)
> I(EK; FC\" Y aol +1 | F D60 )
—H(FCTV,cc0) | P60 )y~ HFCT Y, qel) | FY 60 B
—m(Frc VY, qel) | Y 6 ) (23)

=H(FoT V| ATV, 60)) + H@GAS), | BT Gﬁnnﬁ*b

T—1
T—1) T 1 —1 T T—1) T—1 T T
= > H(Cf) | G‘lDC%L.~,031*%+§:fHC%}IF§ LGl peiY cf) L ep) )
t=1 7j=1

> (r+w)H(M), (24)

where (23) follows from Enc algorithm (i.e. H(FC’(T 2 GC’O(;Z1 F(T 2 GEL)A,EK) =0), and (24)
follows from the following claims:

Claim 1. H(CY) | F,60),.ch) ... .c5™) > HMY)) for 1<t <7—1.

Proof. Let F(t,T—l) — (M(l) M(2) Mgl—l) ng-l)’_“,M(D:—l))‘

First, since Ml()) is independent of (F} ot =1) Gfﬁrl, C(Dll), ce Cg;l)) and C’gi (see Definition 5), we

have

HEY | FI D60 eb) . ch )y = Hew | FV.60) o). o) (25)
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Next, we have
H(CY) . MY, EK,; DK, ETIO | E"™ D ¢0) o). ... oh )
—H(M]gz,EKl,DKh,ETI BTV G el e )
+HCY | FTY.60), 0n). .. e85 EK;, DK, ETI)
=H(MY), EK;, DK, ETI® | F'79.60) b)) . ey, (26)

where (26) follows from Enc algorithm in Definition 4 (i.e., H(C’(t

01 Z l17 ) = O) °
On the other hand, we have

H(CY, MY EK;, D, ETIO | FED 60 o) ey
—H(CY), B, DK, ETIV | B D,.65), e, .. o)
+HMp) | F7Y.G0).Cpl.. L O EK:, DI, ETIO)

w—+1°
=H(CY),EK;, DK, ETI® | E71.60) cb) . ey, (27)
where (27) follows from Dec algorithm in Definition 4 (i.e., H( ’l(tl)l | C ” ,DKll,ETI( )) =0).

Therefore, we have

H(CY | Y ijjl,cgf,...,c( V) + H(EK;, DI, ETIO | K70 ¢ el ey
>H(CY), BK;, DK, ETI® | E71.60) b)) ehh)
=H(MY), EK;, DK, ETI® | F{"7D.60) cp) ... .chY) (28)
=H(MJ)) + H(EK;, DK, , ETI® | "D 60) cb) . ol (29)

where (28) follows from (26) and (27), and (29) follows from that MI(D? is independent of (EK;, DK;,, ETT®,

t,T—1 T 1 t—1
FY 60 eh) ol
Hence, we have

HCY) | R D.60) 00, ..oy = H(MY). (30)

Finally, from (25) and (30), we have H(C’gi \ FI(T_l),Gf;)_l,Cg), . ,Cgl_l)) > H(Mgz) for 1 <

1

t<rt-—1. O]

Claim 2. H(ng) | KT Y.60) Feih e5), ng)ﬂ > H(ng)) for1<j<w+l.

Proof. We can prove this lemma in a similar way to the proof of Claim 1. Let GgT)H = (M(T) Mg;, ey
() () ()
MDj ’MDj+17 .. "MDMH)'
. : 1) ) (r—1
First, since M ](3 ) is independent of (F} F GETM L FCY ), C’gl), . ,C'gjll) and C(DTj) (see Defi-
nition 77?), we have

H(ng) | FI(T*I),GE,TJ)FI,FCY*U’Cgl)"'"Cl(;j)ﬂ) :H(ng) | D égzﬂ,FC( 1) Cgl)v'--’cj(;j)_l)-
(31)
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Next, we have

H(C}Q,MS?,EKi,DKl.,ETI<T>rF“ V.6V FelY el )

10 i1

)

:H(ng),EK DK, ,ETI ]F(T V.G

T—1 T T
FC! )705)1),...,01(3271)
+H(CY |F RNE N ol ),Cgl),...,Cg)_l,ng)_,EKi,DKlj,ETI(T))

=H(MY) EK;, DK, ,ETI N FTD. G0 Ol CS) L)), (32)

where (32) follows from Enc algorithm in Definition 4 (i.e., H(CZ(L) | MZ(;J), EK;) =0).
On the other hand, we have

H(CH), My, EK;, DK, ETIO | BTV, eV, cf), . rT 0,60 o) )

Jw—+10 w+1»
_H(cgj), EK;, DK, ETI? | F™ D ¢\ Fe{V ¢S, .., ng ')
+HMY) | FTY, G0 FoyY of), L C) BKG, D, ETIO)
=H(C}), EEK;, DK, ETIC) | FTD G0 FeiY c5) . cf) ), (33)

where (33) follows from Dec algorithm in Definition 4 (i.e., H (MZ(ZT | C
Therefore, we have

DK;,, ETI™) =0).

zl’

H(CE) | FTY.G0,, oY b)) )
+ H(EK;, DKy, ETID | F7 Y. ¢\ roi™Y ¢, ..o )

w410 Dj_1
>H(Cy), EK;, DI, ETIO | IV, e cf), .. cf) )
=H(M}), EK;, DK, ETIO) | FTV GV) L Fei™Y ), ) ) (34)
=H(M})) + H(EK;, DK,,, ETI?) | TV, GV)  Fei™™ ), cp) ), (35)

where (34) follows from (33) and (32), and (35) follows from that ng) is independent of (EK;, DK, ETI(™M),

0,60 pet e, ),
Hence, we have
T T—1 T T—1 T T T
H(Cg) | FTY,G), Fei Y cf) o) ) > HMp)). (36)
Finally, from (31) and (36), we have H(C’gj) | FI(T_I), GL(L)_I, FCY_I), C’gl), ceey ng)q) > H(M(DTJ_))
for1<j<w+1. O

Proof of Lemma 1/: Now, the proof of Lemma 14 is completed. O

Lemma 15. H(ETI® | ETIW, ... ETI¢ V) > (w + 1)H(M) for any t € T. In particular,
H(ETI®W) > (w4 1)H(M) for anyt € T.

Proof. For arbitrary i € {1,2,...,n}, we take a subset B := {l1,la,...,ly+1} C {1,2,...,n} of indices
of users such that ¢ = ;. Let Dy := (Ig,7) with 1 <k <w + 1. Then, we have

H(ETIY | ETIO, ... ETI® D)
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> H(ETIV | Cp),Cp)...... Cp), DKz‘,ETI(l),...,ETI(t_l))
ZI(MSB,MSL M(t) ETI ’C (),,Cgi+l,DKZ,ETI(1),,ETI(t_l))

= H(Mp), Mp),... M) (el e ef) DK ETTY, L ETTY)
~H(My), M), ... Mg ) loeW.ey e DK, ETIV,... ETIV)
=H(MY) My, MY op.op) o) DK, ETIV, . ETI¢D)
w41
:ZH Dk ‘ CDl’Cl()i"' C(t) 1’DKi7ETI(1)7--wET[(til),Mgzv...7Mgif1)
w+1
t
k=1
= (w+ 1)H(M),

where (37) is shown by following: Let Wy := {l1,l2, ..., lk—1,lk+1,.--,lwt1} for each k with 1 < k <
w + 1. Then, we have

H(M(t | C[g),EKWk,DKl,ETI( ). ..., ETItY)
— H(M(t Ke; t),EKWk,DK“ETI( ) ’ETI(til)’M(D?"'"Mgz,lngin'-,Mgiﬂ)
< HMY [eW. 09, DR, ETIO,. L ETIY MY, )
< H(MY)).

And, we have H(M}) | C}) ,EKWk, DK;, ETIV, ..., ETI¢D) = H(M})) from the condition (3) in
.. t t _ t t
Definition 5. Hence, H (M () | CD (DZ7 : ,C’(DlH,DKi,ETI(l),,,.,ETI(t 1),M](33,...,M1(DZ_1) =
H(M). O

Lemma 16. H(EMK) > 7(w+ 1)H(M)O

Proof. The proof can be shown by the same way as in the proof of Lemma 10.

Proof of Theorem 3: From Lemmas 13-16, the proof of Theorem 3 is completed.

D Proof of Theorem 6

The proof of Theorem 6 follows from the lemmas in this appendix. In order to complete the proof of
Theorem 6, we show the following lemmas.

Lemma 17. \gi(f)\ > @) for any iz € {1,2,...,n}.

Proof. For arbitrary i1,i2 € {1,2,...,n}, let Wy, :=={Ui,...,U;;—1,Ui;+1,..,Uyt1} such that U;, ¢
Wi, . Then, for any t1,t2 € 7, we have

1 20+1) wt1
(q) > [ Pu(Ui, Uiy, Wiy 11) Ps, (Ui, Uiy, Wiy 11, 2)

=1
o~ SHE HB, B ) (38)

v
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w R S S
g Tt HED S ES )

Z i1=1 11,19 i1—1
R s s
> 2_2;)1111H(E§1’12|E§,i)2""’E§11M2) (39)
 vwtl (R) | (R) (R)
> 2 X HE ol By B 2 ay) (40)
R R
)
—H(E®
> o HELD (41)
1

€71

iz

where (38) follows from Theorem 5, and (39), (40), and (41) follow from the mappings, \;, for 1 <
11 < w, P4y, for 1 <4 <w, and m;,, respectively. Therefore, we have |5i(2R)| > 2wt O
Lemma 18. |ATZ®| > ¢*t! for anyt € T.

Proof. For arbitrary iy, 42 € {1,2,...,n}, let Wil =A{U1,...,Uiy-1,Ui 41, ..., Uysys1} such that U;, €
W;,. Then, for any t € T, we have

1 w+1 w+1 _
<> H PQ(UiluUi27M1at)

>
q i1=1
— et gATI O EY)
> o Zam HATE 1By, ) (42)
w S S
> 9~ Tnh HATIDE® . B )
_ywl (t) )
> o SHT HATLDAMEK,, . AME;, 1) (43)
w1 (0 g7 (t)
> o SHL HATLDATLY AT ) (44)
_ o-H(ATLY,. ATI() )
_ 0)
> 2 H(ATIW) (45)
> 9= log |ATZ®)| — 1
= ATZO[

where (42) follows from Theorem 5; (43) follow from the mappings A;; and p;, 4, for 1 < iy < w; (44)
and (45) follow from the mappings g;;, for 1 < i3 < w, and ) respectively. Therefore, we have
ATTW| > gt O

Lemma 19. [AMK| > ¢+,

Proof. For arbitrary i,i2 € {1,2,...,n}, let Wil =A{U1,...,Ui;—1,Ui,41,...,Uuy1} such that U;, €
Wi, . Then, for any t € T, we have

1 T(w+1) T wtl 5
() 1T I P, Ui, Wiy 1)

>
q t=14i1=1
> () (1 (t—1)
Sy et HATID|ES) ATIO) . ATIC-D)

Z 2 t i1=1 i1 Wzl (46)
S o X S HATID | B B ATIO) L ATIED)
B _NT w+1 (t) ) (1) (t—1)
> 9~ S S E HATLY AMK . AM Ky 1, ATT), ATTO) (47)
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where (

> o S SHE HATID AT, AL ATIO), . ATIY) (48)
— o= Sy HATLY ATIS) | AT, ATT(-D)

> 9= i HATI®M|ATID) | ATT(E=1)) (49)
_ 27H(ATI(1>,...,ATI(T))

~ o-loglamk] _ L

| AMK|’

46) follows from Theorem 5; (47) follow from the mappings A;, and p;, 4, for 1 <i; < w; (48)

and (49) follow from the mappings g;, for 1 < i; < w and f®, respectively; (50) follows from the

deterministic algorithm (i.e., mapping) AExt: AMK x T — ATZ. Therefore, we have |[AMK| >

qT(w—i-l).

Lemma 20. |<‘:Z-(1

Proof. For arbitrary i1,i2 € {1,2,.

S)’ > @2t for any iy € {1,2,...,n}.

7’L} let Wl2 = {Ul,... UZ2 1,U12+1,...

O]

Uy+1} such that U;, ¢

Wi,, and W € P(U,w) such that U,1 ¢ W and Uy, € W. Then, for any t,t,,t, € T, we have

v

v

Y

v

v

v

1 2w+T+1
log ()
q

w+1

log (HPQ UlMUlQaW t H PIl U117U12’Wl2? )Psl(UimU’iQaWizvtlatQ))

t=2 io=1
r

S
-> " H(ATL) | EY)

t=2

(R) (1)
BV ATIO),

w+1 ()
—ZH mQyEW By, JATIO

12=1
—ZH(ATI | ATIM  ATI®) . ATT¢D)
t=2
w+1
=S (B, | B ATIO),.
i2=1
ST H(ATIY | ATI®, ATI®), ... ATID)
t=2
w—+1
- Z H 'Ll 12 | E zf)lAT[(Q)
io=1
=S m(ATI | ATIP ATLY . ATI V)
t=2
w+1
_ZH(E(t), \ER BB ATI?)
11,22 i1,1 11,22 — i1
io=1
~HATLD, ATID, ... ATID, B R, B().)
R
~H(AMEK; ES, .. B )
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L ATIM) (51)
L ATIO)
L ATIO)
()
,ATT) (52)
(53)



S S
> —H(E”"),....BES) ) (54)
> ~H(EY) (55)
> —loglel¥],

where (51) follows from Theorem 5; (52) follows from the mappings m;, for 1 < iy < w and £ for
2 <t < 7; (53), (54), and (55) follow from the mappings, ¢;,, pi, i, for 1 < iz < w+ 1, and \;,,
respectively. Therefore, lgz(f)| > 2wt O
Lemma 21. |A(-t)

11,82

| > q for any i1,i2 € {1,2,...,n} and t € T.

Proof. Let W = (). Then, we have

1
6 2 PI1(Ui17Ui27M/7t)
_ ) (R (1) ()
> 9 IMA, iE T |ATIO) L ATTO) (56)
_ 2—I(M;E§f)iQ\ATI<1),...,ATI<T>)—I(AZ(.§>J2;Ei(ﬁg|ATI(1),...,ATI(T),M)
—1(AY BB AT AT M)
= 2 11,1274 92
_ (t) 1
> 2 Al >~
11,12

where (56) follows from Theorem 5. Therefore, we have |A") | > ¢00

11,82

Proof of Theorem 6: From Lemmas 17-21, the proof of Theorem 6 is completed.
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