
A A -C A “I ⊕ C” B
C M W O

Jon Passki
jon@passki.us

Tom Ritter
tritter@isecpartners.com

June 3, 2012

Abstract
Certain block cipher confidentiality modes are susceptible to an adaptive chosen-ciphertext attack against the

underlying format of the plaintext. When the application decrypts altered ciphertext and attempts to process the
manipulated plaintext, it may disclose information about intermediate values resulting in an oracle. In this paper
we describe how to recognize and exploit such an oracle to decrypt ciphertext and control the decryption to result
in arbitrary plaintext. We also discuss ways to mitigate and remedy the issue.

1 I

Quoting from [1]:

Adaptive chosen-ciphertext attacks on cryptographic protocols allow an attacker to decrypt a cipher-
text C, getting the plaintext M, by submitting a series of chosen-ciphertexts C′ ̸= C to an oracle which
returns information on the decryption. The ciphertexts can be adaptively chosen so that information
on previous decryptions is available before the next chosen ciphertext is submitted.

Adaptive chosen-ciphertext attacks against different confidentiality modes are not novel. The CBC confidentiality
mode can suffer from a side channel attack against padding verification [2], popularized by [3]. A variant of the
Cipher Feedback (CFB) confidentiality mode has been attacked in different encryption mail protocols by [4, 5, 1],
and the padding schemes of asymmetric ciphers are another source of such attacks [6, 7]. In some form, they
rely on the use of an oracle that leaks or communicates information back to attackers. We examine four different
confidentiality modes encrypting plaintext that is separated by a delimiter, and the absence or inclusion of that
delimiter generates an oracle by the application. We call this oracle a Separator Oracle.

2 “I⊕ C” C M B C

A common form of block cipher construction is to implement decryption such that an XOR is performed with the
ciphertext after the cipher operation¹ to produce the decrypted plaintext block. We refer to this property as “I⊕C”,
where C represents the ciphertext and I an Intermediate Value. It is featured in the Cipher Block Chaining (CBC),
Counter (CTR), Cipher Feedback (CFB), and Output Feedback (OFB) modes of operation and may be present in
other less well known modes.

¹In some of these modes, the cipher (e.g. AES) is run in the forward or encryption direction even during decryption. In others, it is run in
the decryption direction. The direction is irrelevant to the attack.

1/14

CBC mode encrypts a value derived from the plaintext block XOR-ed with the previous ciphertext block - or the
Initialization Vector if it is the first block. This value, after it is encrypted, becomes the ciphertext block. To decrypt,
CBC mode decrypts the ciphertext block, resulting in an Intermediate Value. This Intermediate Value is then XOR-
ed with either the Initialization Vector or the prior ciphertext block. In many scenarios, the ciphertext is attacker-
controlled; in CBC mode, the attacker controlled data is processed in the decryption mode.

Figure 1 shows CBC mode encryption and decryption for blocks of data numbered j. In this figure, and the three
following, the I ⊕ C construction is visible in the decryption equation. Targeting the I ⊕ C construction has been
mentioned in [8], with specific detail for CBC demonstrated in both academic and practical contexts [8, 9, 10],
including recent work on breaking XML encryption in [10] - but it is made difficult because modifications to a
ciphertext block propagate to other blocks².

Figure 1: CBC Mode

Cj =

{
if j = 0 Ek(Pj ⊕ IV)

else Ek(Pj ⊕ Cj−1)

CBC Encryption

Pj =

{
if j = 0 Ek(Cj)⊕ IV

else Ek(Cj)⊕ Cj−1

CBC Decryption

CTR mode encrypts an incrementing counter to produce an Intermediate Value, which is XOR-ed with the plaintext
to produce the ciphertext. The independent count prevents modification propagation. The process is repeated for
decryption: the counter is encrypted and the result XOR-ed with the ciphertext to produce the plaintext. CTR
mode is often recommended because attacker-controlled data is never processed through the encryption function,
reducing the risk of side channel attacks [11]. Figure 2 shows CTR mode encryption and decryption for blocks of
data numbered j.

Figure 2: CTR Mode

Cj = Ek(noncej)⊕ Pj

CTR Encryption

Pj = Ek(noncej)⊕ Cj

CTR Decryption

OFB Mode repeatedly encrypts an Intermediate Value, which is XOR-ed with the plaintext (or ciphertext) block to
produce the ciphertext (or plaintext) block. Like CTR mode, attacker controlled data is never processed through
the encryption function and a modification in a ciphertext block is not propagated. Figure 3 shows OFB mode
encryption and decryption for blocks of data numbered j.

Figure 3: OFB Mode

Ij =

{
if j = 0 Ek(IV)

else Ek(Ij−1)

Cj = Ij ⊕ Pj

OFB Encryption

Ij =

{
if j = 0 Ek(IV)

else Ek(Ij−1)

Pj = Ij ⊕ Cj

OFB Decryption

CFB mode encrypts an Initialization Vector to produce an Intermediate Value, which is XOR-ed with the first block
of plaintext to produce the first block of ciphertext. Each subsequent block of intermediate values is produced by
encrypting the prior block of ciphertext, and the ciphertext is produced by XOR-ing the intermediate block with
the plaintext block. In CFB mode, attacker controlled data is processed in the decryption mode. Figure 4 shows
CFB mode encryption and decryption for blocks of data numbered j. Like CBC mode, a modification to a ciphertext
block is propagated. The details and difficulties of performing an attack on CFB mode in whole are presented in
Appendix A.

²In other literature, this modification propagation is often referred to as ’error propagation’ - in our application the modifications are inten-
tional

2/14

Figure 4: CFB Mode

Cj =

{
if j = 0 Ek(IV)⊕ Pj

else Ek(Cj−1)⊕ Pj

CFB Encryption

Pj =

{
if j = 0 Ek(IV)⊕ Cj

else Ek(Cj−1)⊕ Cj

CFB Decryption

During the decryption phase of each of these block cipher modes, attacker controlled data is XOR-ed against an
Intermediate Value to produce the plaintext block. It is possible to produce any desired plaintext block by modifying
the ciphertext block correctly. This requires knowing the Intermediate Value produced by the encryption function -
but in some cases cryptographic oracles can leak enough information to make it possible to learn the Intermediate
Value.

3 S O

Assume an application uses a block cipher mode with a construction as described above, for example CTR mode.
It encrypts plaintext, sends the ciphertext to users, and does not include a MAC or other integrity check. Users
send the ciphertext back to the application, perhaps for session management, which the application decrypts. If
a user modifies the ciphertext, the application will decrypt it to an unexpected value. If the application produces
error messages based on the structure of the mangled plaintext, information about the plaintext can be derived.
Depending on the type of information derived, it may be possible to decrypt the ciphertext to learn the original
plaintext or alter the ciphertext to decrypt to a chosen plaintext.

As a practical example, we will consider the case when the plaintext is composed of delimited values, such as
username|timestamp|access-level. The separator character, the pipe | in this example, will be denoted by
PS. If the application cannot split the delimited plaintext into the appropriate number of values by performing a
split operation using PS, the application responds with a state we will call SeparatorException. If the split operation
succeeds, the application continues - if the split values are considered invalid for another reason the application
may respond with another state we will call OtherException. If the application does not raise any exception, we will
consider it normal application state.

SeparatorException is a discernible state different from the normal state or OtherException. This difference is called
a Separator Oracle. Applications that disclose an oracle during encryption or decryption have been studied and
attacked previously. Although labeled an “Exception”, the oracle may manifest as a verbose error message, an HTTP
Status Code, or a measurable difference in response time. The Separator Oracle occurs as a result of application
code following the cryptographic routine - no changes to a cryptography library can be made to silence this oracle,
the change must occur in the application code.

4 S O CTRM

We will now present an algorithm for decrypting ciphertext encrypted with CTR mode using a Separator Oracle.
This algorithm assumes the underlying plaintext uses a one-byte encoding format, such as ASCII, with a single
encoding of each glyph. Algorithms targeting other plaintext encoding formats like ASN.1 or UTF-8, or encodings
with multiple representations of the same glyph, need to adjust accordingly.

4.1 P 1: L T S ()

We are given ciphertext C and plaintext P. We denote the least significant byte of C as C[0] and P as P[0].

The application expects m number of PS characters to appear in the plaintext. Starting at C[0], we negate the
least significant bit of C[0] by XOR-ing with 0x01 (C[0] ⊕ 0x01), and submit the ciphertext. The application will

3/14

respond with either SeparatorException, OtherException, or normal application state. For the purposes of the at-
tack, OtherException and normal application state are functionally identical; we will concern ourselves only with
SeparatorException or not.

By negating the least significant bit, we have negated the least significant bit of P[0], altering it. If a SeparatorExcep-
tion was generated, this indicates that either a PS was removed from the plaintext and the values could not be split
correctly, or a PS was added to the plaintext, resulting in too many separators. From a single bit negation, we are
unsure which is the case - in fact at this point we are unsure if the application does produce a SeparatorException
if too many PS characters are present! However, we can learn if a separator was added or subtracted by perform-
ing a second bit negation. We negate the second-least significant bit of C[0] by XOR-ing with 0x02 (C[0] ⊕ 0x02)
and submit the ciphertext. Because PS cannot be produced by two different negations within the same byte, if we
receive a SeparatorException we can confirm that we are removing a separator by modifying P[0] - and thus the first
byte of the plaintext contains a separator. We denote the first separator found as PS0

, the second PS1
, and the total

number of separators as PSm
.

If no SeparatorException is received after modifying C[0], we restore it to its original value, and perform the same
operation on a bit of the next byte, C[1]. By performing the test on each byte individually, we can determine which
bytes of the ciphertext are separators. For a ciphertext of length n, this algorithm determines the location and
number of separators in a maximum of (2× n) queries to the oracle.

#Input: String: ciphertext
#Output: List: separatorPositions
foreach(i in [0..len(ciphertext)]): # Iterate over all bytes

ciphertext' = ciphertext
ciphertext'[i] = ciphertext[i] ^ 1 # Negate the Least Significant Bit of the byte
result = queryOracle(ciphertext')

if result == SeparatorException:
Confirm this is a separator
ciphertext' = ciphertext
ciphertext'[i] = ciphertext[i] ^ 2 # Negate Second Least Significant Bit of the byte
result = queryOracle(ciphertext')

if result == SeparatorException: # If both results match
Byte at position i is a separator

else:
Byte at position i not a separator, but is 1 bit removed from it
such that negating the least significant bit made it a separator
and the application cannot handle extra separators

else: # OtherException or Normal Operation
Byte at position i is not a separator

Listing 1: Algorithm for Determining Separators in Plaintext

4.2 P 2: A M

At this stage, we know the positions of all the separators in the plaintext. We take the original ciphertext, and negate
a bit in the byte at the first separator position, PS0

. When this modified ciphertext, call it ciphertext ′, is submitted,
a SeparatorException will be returned because the application expects one more separator than is present in the
modified plaintext.

However, by modifying a byte known not to be a separator, we can correct the SeparatorException and induce an
OtherException or normal application state. SetC[0] ³ to each possible byte valueB successively and query the oracle.
If a SeparatorException is returned, modifyingC[0] toB did not produce a new PS in the plaintext. Before modifying
C[0] we had m − 1 separator characters. As long as we receive a SeparatorException, we know that modifying C[0]

to B did not turn P[0] into a separator.

³We will assume PS0
!= 0, and thus modify C[0] - if this is not true, modify C[1] instead.

4/14

But some value of B will result in an OtherException or normal application state. That means that value of B, when
XOR-ed with the Intermediate Value from the encryption function, produces a separator (B ⊕ I[0] = PS), and the
plaintext now has the expected number of separators. We solve this formula for I[0], producing I[0] = B⊕ PS.

We recall the original decryption relation in Figure 2 and summarize it as Pj = Ij ⊕ Cj. We solve this equation
for the Intermediate Value, using byte [0], creating the following equation: I[0] = P[0] ⊕ C[0]. We substitute
I[0] in this formula with the results of the aforementioned formula, B ⊕ PS, and solve for P[0]. This produces
P[0] = C[0] ⊕ PS ⊕ B. We store B as an approximate value A[0] for index 0, restore C[0] to the original value, and
repeat the process for all bytes that are not separators. At the end, we have a series of relations for each byte [i]:
P[i] = C[i] ⊕ PS ⊕A[i], where C[i] and A[i] are known. For a ciphertext of length n, we determine these relations
in a maximum of (255× n) queries to the oracle.

#Input: String: ciphertext, List: separatorPositions
#Output: Array: approximateValues

Initialize approximateValues as an empty array

Set ciphertext' to a string known to produce a SeparatorException
ciphertext' = ciphertext
ciphertext'[separatorPositions[0]] = ciphertext'[separatorPositions[0]] ^ 1

foreach(i in [0..len(ciphertext)]): # Iterate over all bytes
if byte b at position i is a separator:

Append 0 to approximateValues
else:

foreach(B in [1..255]): # Byte Loop, Iterate over all possible byte values
ciphertext'' = ciphertext'
ciphertext''[i] = B

queryOracle(ciphertext'')
if result == SeparatorException:

continue #b XOR Intermediate Value does not produce a Separator
else:

Append b to approximateValues
break Byte Loop

Listing 2: Algorithm for Determining Approximate Values

4.3 P 3: D S V D C

At this point we are a single value away from decrypting the entire message. Recall we have an array containing an
approximate values A[i] for all byte positions [i]. We can use this array with the relation P[i] = C[i] ⊕ PS ⊕A[i] to
find the plaintext P[i] for each byte, if we know the separator character PS.

#Input: Array: approximateValues, String: ciphertext, Character: separator, List: separatorPositions
#Output: String: plaintext

Initialize plaintext as an empty string

foreach(i in [0..len(ciphertext)]): # Iterate over the ciphertext
if position i is a separator:

byte plaintextChar = separator
else:

byte plaintextChar = ciphertext[i] ^ separator ^ approximateValues[i]
append plaintextChar to plaintext

Listing 3: Decrypting the ciphertext using the separator character.

If the separator character is not known, run the algorithm for each likely separator character, and see if any of the
plaintext are recognizable. No further queries to the oracle are made, allowing ciphertext decryption in a maximum
of (257× n) queries for a ciphertext of length n.

5/14

5 P M

Recall the construction of I ⊕ C confidentiality modes. The final step XORs attacker controlled data against the
Intermediate Value to produce the plaintext. Therefore, if the Intermediate Value is known, it is possible to calcu-
late a ciphertext that results in an arbitrary plaintext value equal to or less than the original length. For the chosen
plaintext to be accepted by the application, we must choose a plaintext that contains the same number of PS char-
acters as the original plaintext. To create plaintext values of greater lengths than recovered Intermediate Values,
insert the ciphertext and repeat the attack outlined to recover these values. Once recovered, additional plaintext
can be added.

After decrypting the ciphertext C, we know the plaintext P, and can calculate the Intermediate Value I, I = C⊕ P.
For a chosen plaintext P ′, we calculate a new ciphertext C ′ via Figure 5, for each byte [i].

Figure 5: Equation for Performing Plaintext Modification
C ′

[i] = C[i] ⊕ P[i] ⊕ P ′
[i]

6 R

6.1 S T : R O

As a short term solution, an application developer could modify existing code to silence the Separator Oracle. One
potential work-around is to utilize a common exception handler that returns the same values for SeparatorException
and OtherException. Another fix may be to use exception catching routines around the separator function (e.g.
try/catch/finally).

While these work-arounds may decrease the likelihood of exploiting the Separator Oracle, they do not guarantee
the application is invulnerable to other types of oracles. They should only be seen as temporary work-arounds until
a more robust solution described in Section 6.2 is implemented.

6.2 L T : P A C -C A

Adaptive chosen-ciphertext attacks can be prevented when the authenticity of the message is verified by the crypto-
system. Two approaches can be used to provide authenticity: using an encryptionmode that includes authentication
or utilizing message authentication codes in addition to an encryption mode.

6.2.1 Authenticated Encryption Modes

NIST’s 800-38 series defines two encryption modes that authenticate the ciphertext: Counter with Cipher Block
Chaining-Message Authentication Code (CCM) [12] and Galois/Counter Mode (GCM) [13]. An authenticated cipher
mode builds integrity into the block cipher mode. Any alteration to the ciphertext is detectable as part of the
decryption routine, an error will be raised, and no plaintext will be produced.

6.2.2 Message Authentication Codes

A crypto-system can calculate a message authentication code (MAC) over the ciphertext, and transport the MAC
next to it. Once received, an application verifies the MAC and should not decrypt a ciphertext whose MAC is
incorrect. If the MAC is calculated over the plaintext, the decryption function must run; however, the result should
be discarded before use if the calculated MAC does not match the provided MAC. Care needs to be taken to ensure
the MAC verification is performed in constant time [14], or a separate timing attack may be exposed. The authors
recommend the former Encrypt-then-MAC pattern [15], versus the latter Encrypt-and-MAC pattern.

6/14

7 C

We have demonstrated an attack against block ciphers that use an “I ⊕ C” confidentiality mode when the imple-
mentation discloses a Separator Oracle. An attack was shown against CTR mode that allowed plaintext recovery in a
low number of queries to the oracle, and how to manipulate the ciphertext to decrypt to arbitrary plaintext. Finally,
short-term and long-term solutions to the vulnerability were presented.

8 A

We wholeheartedly thank Nate Lawson, Marsh Ray, and Matthew Green for reviewing various versions this paper.
Their valuable feedback is very much appreciated. We would also like to thank several of our inspirations: Julian
Rizzo and Thai Duong for demonstrating padding oracles, Adam Langley, Moxie Marlinspike, Dino Dai Zovi, Bran-
don Edwards, Dan Guido, and Peter Oehlert. We would also like to thank our employers, Aspect Security and iSEC
Partners; and our partners, whose constant encouragement we could not do without.

We thank and apologize to Juraj Somorovsky for leading us to more work on the topic.

9 R

[1] S. Mister and R. Zuccherato, “An attack on c mode encryption as used by openpgp,” 2005. 1

[2] S. Vaudenay, “Security flaws induced by cbc padding - applications to ssl, ipsec, wtls,” in Proceedings of In
Advances in Cryptology - EUROCRYPT’02, pp. 534–546, Springer-Verlag, 2002. 1

[3] T. Duong and J. Rizzo, “Padding oracles everywhere.” http://www.ekoparty.org/archive/2010/ekoparty_2010-
Duong_Rizzo-Padding_Oracles_Every_Where.pdf, 2010. 1

[4] J. Katz and B. Schneier, “A chosen ciphertext attack against several e-mail encryption protocols,” in 9th USENIX
Security Symposium, pp. 241–246, 2000. 1

[5] K. Jallad, J. Katz, J. J. Lee, and B. Schneier, “Implementation of chosen-ciphertext attacks against pgp and
gnupg,” in Information Security, 5th International Conference, volume 2433 of Lecture Notes in Computer Science,
pp. 90–101, Springer-Verlag, 2002. 1

[6] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based on the rsa encryption standard pkcs #1,”
in Proceedings of the 18th Annual International Cryptology Conference on Advances in Cryptology, pp. 1–12, 1998.
1

[7] J. Manger, “A chosen ciphertext attack on rsa optimal asymmetric encryption padding (oaep) as standardized in
pkcs #1 v2.0,” in Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
pp. 230–238, 2001. 1

[8] C. J. Mitchell and R. Holloway, “Error oracle attacks on cbc mode: Is there a future for cbc mode encryption?,”
2005. 2

[9] J. Black and H. Urtubia, “Side-channel attacks on symmetric encryption schemes: The case for authenticated
encryption,” in In Proceedings of the 11th USENIX Security Symposium, pp. 327–338, 2002. 2

[10] T. Jager and J. Somorovsky, “How to break xml encryption,” in Proceedings of the 18th ACM Conference on Com-
puter and Communications Security, 2011. 2

[11] C. Percival, “Cryptographic right answers.” http://www.daemonology.net/blog/2009-06-11-cryptographic-right-
answers.html, 2009. 2

7/14

[12] M. Dworkin, “Recommendation for block cipher modes of operation: The ccm mode for authentication and
confidentiality,” SP 800-38c, U.S. DoC/National Institute of Standards and Technology, 2004. See http://
csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf. 6

[13] M. Dworkin, “Recommendation for block cipher modes of operation: Galois/counter mode (gcm) and gmac,”
SP 800-38d, U.S. DoC/National Institute of Standards and Technology, 2007. See http://csrc.nist.gov/
publications/nistpubs/800-38D/SP-800-38D.pdf. 6

[14] N. Lawson, “Timing attack in google keyczar library.” http://rdist.root.org/2009/05/28/timing-attack-in-google-
keyczar-library/, 2009. 6

[15] C. Percival, “Encrypt-then-mac.” http://www.daemonology.net/blog/2009-06-24-encrypt-then-mac.html,
2009. 6

[16] M. Dworkin, “Recommendation for block cipher modes of operation,” SP 800-38a, U.S. DoC/National Institute
of Standards and Technology, 2001. See http://csrc.nist.gov/publications/nistpubs/800-38a/
sp800-38a.pdf. 9

8/14

http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

A CFB M

Cipher FeedbackMode is defined in [16] as a confidentialitymode of block ciphers that requires an integer parameter
denoted s that specifies the segment size of the algorithm. The segment size is a value greater than or equal to 1
and less than or equal to the block size of the cipher algorithm that refers to how many bits of the Intermediate
Value are used, and correspondingly, how many bits are encrypted or decrypted for each invocation of the cipher
operation. For a segment size of 1, an entire cipher operation is performed, an Intermediate Value the size of the
algorithm’s block size produced, and a single bit selected from the most significant side of the Intermediate Value.
The single bit is then XOR-ed with the first bit of the plaintext (or ciphertext) to produce the first bit of ciphertext
(or plaintext). Figure A, taken from [16], depicts CFB Decryption using the segment size parameter.

Figure 6: CFB Mode Decryption depicting segment parameter

A.1 T E S S S O A

CFB Mode is starkly different from CTR and OFB modes of operation with regards to the Separator Oracle attack. In
CTR andOFBmodes, Intermediate Values are derived from application-controlled values: an increasing counter and
a repeatedly encrypted Initialization Vector respectively. In CFB mode, the ciphertext itself feeds into the encryption
routine to produce Intermediate Values. The Separator Oracle attack relies on detecting the effect of changing a
single bit or byte of the plaintext at a time. However, segment j’s Intermediate Value is created by performing the
cipher operation on segment j− 1 - therefore altering a bit or byte in segment j− 1 changes the Intermediate Value
and plaintext for segment j. This breaks the underlying assumption that a single bit or byte change in the ciphertext
produces a corresponding single bit or byte change in the resulting plaintext.

A.2 C M -S C

If the ciphertext spans multiple segments, manipulating segment j will entirely corrupt the plaintext of segment
j+1. Additionally, implementation behavior begins to take a much greater role in possible outcomes. If an applica-
tion allows extra PS characters to appear in the plaintext, or if altering some plaintext values produces no discernible
change in application state, it can be difficult to determine how the plaintext was affected by the changed cipher-
text. Some techniques are presented, but these are not exhaustive, as ultimately individual implementation will
determine what information about the plaintext can be derived.

9/14

A.2.1 Randomly Introduced Separators

If a byte C[B] in segment j is altered, segment j+ 1 will be corrupted. Corrupting segment j+ 1 may introduce the
separator character PS to the segment. If segment j+1 did not contain a separator, the corruption may cause a false
positive for the byte C[B] changed in segment j. A false positive occurs when a byte C[B] in segment j, altered by
XOR-ing with some valueX, introduces one or more separators into the plaintext of the corrupted segment j+1. But
the false positive can be detected by performing the same query on byteC[B] XOR-ed with different values: W, Y, Z,
etc. Separator characters may appear in the corrupted segment j+ 1 for some values, including X, but are unlikely
to appear for all values. There are 255 ways C[B] can be altered, and the majority of them should not introduce
separators into the subsequent corrupted segment. Discarding the outlier result(s) can be used to eliminate the
random effect of a separator being introduced into a corrupted segment.

The same problem presents itself during the second approximation phase. Byte C[B] in segment j is modified to
some value X and we look for the absence of a SeparatorException to indicate that X is the Approximate Value for
C[B] we are searching for. However, it is also possible that altering byteC[B] corrupted segment j+1 and introduced
a PS, giving another type of false positive. This type of false positive can also be detected, although the segment size
s s comes into play, and s may be unknown. Byte C[B] is held at value X; X either produces a false positive or is the
Approximate Value we are searching for. Assume byteC[B] is not the last byte in a segment - modifying byteC[B+1]

would then corrupt segment j+ 1 in a new way. If we are dealing with a false positive - the SeparatorException will
reappear; if X is the legitimate Approximate Value, the SeparatorExceptionwill probably not reappear⁴. Now assume
byteC[B] is the last byte in a segment, and byteC[B+3] in the corrupted segment j+1 is producing a PS. Modifying
byte C[B+1] will not remove that PS, all bytes up to byte C[B+(s/8)]⁵ must be changed to detect the false positive. A
segment size of 8 (one byte), is the exception - although all bytes are on a segment boundary, modifying byteC[B+1]

will result in a new cascade of alternations.

A.2.2 Corrupted Blocks

If the plaintext of segment j+1 does contain a PS, corrupting it by altering a byteC[B] in segment jwill remove that
PS. Thus, all bytes in segment j will consistently return a SeparatorException⁶. When segment j + 1 is processed,
the algorithm will work as normal, as segment j is unaltered and segment j+ 1 uncorrupted. By skipping segment
j, the algorithm can still proceed on segment j+ 1. However if segment j+ 2, or segment j+ x, also contains a PS,
the pattern repeats. In this case, it is advisable to work backwards to find the final (or only) PS in some segment k.
When the final PS, PSm

is found in segment k, all segments from k onward may be processed.

However, there are mitigating factors to processing segment k onwards also. The plaintext contains separator-
delimited values v1, v2, . . . , vn. PSm

delimits value vn. Consider the case where vn spans two segments: segment
k and k + 1. If the application does not give discernible behavior when an extra separator appears in vn – either
through a SeparatorException or other behavior – then segment k + 1 cannot be decrypted. In order to decrypt
segment k + 1, segment k would need to be altered to remove PSm

– but by altering segment k, segment k + 1 is
corrupted and cannot be processed.

A.2.3 Summary of Challenges

It is clear that these situations are complicated and depend heavily on implementation specific details. This Ap-
pendix does not seek to present algorithms that correctly handle all cases, but rather discuss some techniques to
handle certain situations when some knowledge is available a priori.

⁴ It is conceivable that even though we have found the correct Approximate Value, the corrupted segment j + 1 now contains a separator
characterPS and the application issues a SeparatorException if toomanyPS are present. Modifying byteC[B+1] to alternate values and discarding
outliers can reduce this possibility.

⁵The segment size s is given in bits, thus C[B+(s/8)] indicates one segment past position B.
⁶ Unless the unlucky situation happens where a separator is introduced by random into the corrupted segment as covered in Section A.2.1

Randomly Introduced Separators.

10/14

A.3 S S G T 1 B

If the segment size used in CFB mode is greater than one byte, it is always possible to conclusively locate one
separator – but fully decrypting some or all of the ciphertext depends on the plaintext being attacked and the
implementation of the application.

First the segment containing the final separator PSm
must be located. This segment will be called k. When segment

k − 1 is altered, segment k will be corrupted – therefore altering any byte in a segment prior to k will cause a Sep-
aratorException⁷. If we work backwards altering one byte at a time, the first occurrence of two SeparatorExceptions
in a row is likely to indicate we have reached segment k − 1 and corrupted segment k. Although implementation
specific, it is unlikely for two separators to be found in a row – therefore, once two sequential SeparatorExceptions
are found, we consider the first of the two to be the final byte in segment k − 1. As we worked backwards, we
encountered at least one SeparatorException occurring on its own; indicating a separator character PS.

#Phase 1: Finding the separators
#Input: String: ciphertext
#Output: Array: byteIndicators

const Type.TemporaryMarker = 3
const Type.PreKSegment = 2
const Type.Separator = 1
const Type.CiphertextByte = 0
separatorExceptionsInARow = 0

foreach(i in [len(ciphertext)-1..0]): # Iterate over all the bytes in reverse
ciphertext' = ciphertext
ciphertext'[i] = ciphertext[i] ^ 1 # Flip the Least Significant Bit of the byte
result = queryOracle(ciphertext')

if result == SeparatorException: # Confirm this is a separator
ciphertext' = ciphertext
ciphertext'[i] = ciphertext[i] ^ 2 # Flip Second Least Significant Bit of the byte
result = queryOracle(ciphertext')

if separatorExceptionsInARow >= 1 and result == SeparatorException:
if Type.Separator not in byteIndicators:

First SeparatorException was actually a Separator, then we crossed into the prior block.
May miss scenario where two separators are both in segment k
byteIndicators[i+1] = Type.Separator

else:
byteIndicators[i+1] = Type.PreKSegment

foreach(j in [i..0]: # Now mark all remaining bytes as off limits
byteIndicators[j] = Type.PreKSegment

break
elif separatorExceptionsInARow == 0 and result == SeparatorException:

Byte at position i is a separator (maybe)
Set to Type.TemporaryMarker so we don't accidentally overwrite when looking for Type.Separator
byteIndicators[i] = Type.TemporaryMarker
separatorExceptionsInARow = 1

else:
if Type.TemporaryMarker in byteIndicators: # Plaintext byte, confirm any outstanding separator

byteIndicators[byteIndicators.index(Type.TemporaryMarker)] = Type.Separator
byteIndicators[i] = Type.CiphertextByte # Byte at position i is not a separator
separatorExceptionsInARow = 0

else: #OtherException or Normal Operation
if Type.TemporaryMarker in byteIndicators: # Plaintext byte, confirm any outstanding separator

byteIndicators[byteIndicators.index(Type.TemporaryMarker)] = Type.Separator
byteIndicators[i] = Type.CiphertextByte # Byte at position i is not a separator
separatorExceptionsInARow = 0

Listing 4: Algorithm for Determining Separators when Segment Size > 1 Byte

The output of this algorithm will be an array containing indicators for each position of the ciphertext. A 2 (or

⁷Barring a separator being introduced into the corrupted segment as covered in Section A.2.1 Randomly Introduced Separators.

11/14

Type.PreKSegment) indicates a byte on a segment we cannot process. Altering any of those bytes would corrupt
subsequent segments. A 0 (or Type.Separator) indicates a ciphertext byte we can attempt to decrypt, and a 1 (or
Type.Separator) indicates a separator. We will alter the first separator so it is no longer a separator, as we did in the
single-segment case. Then we will alter each 0-indicated byte to produce a separator to find the Intermediate Value.

Phase 2: Approximating the final plaintext value
Input: String: ciphertext, Array: byteIndicators
Output: Array: approximateValues

const Type.PreKSegment = 2
const Type.Separator = 1
const Type.CiphertextByte = 0

Initialize approximateValues as an empty array

separatorPosition = index of first 1 in byteIndicators
ciphertext' = ciphertext
ciphertext'[separatorPosition] = ciphertext'[separatorPosition] ^ 1

foreach(i in [0...len(ciphertext')]): #Ciphertext Loop
if byteIndicators[i] == Type.Separator:

append 0 to approximateValues
elif byteIndicators[i] == Type.PreKSegment:

append 0 to approximateValues
else:

foreach(b in [1..255]): # Byte Loop
ciphertext'' = ciphertext'
ciphertext''[i] = b
queryOracle(ciphertext'')
if result != SeparatorException:

append b to approximateValues
break Byte Loop

else:
continue # b is not an Approximate value

Listing 5: Algorithm for Determining Approximate Values when Segment Size > 1 Byte

Finally, we can perform the decryption phase, omitting any bytes in segments prior to k.

Phase 3: Decrypting the final plaintext value
Input: Array: approximateValues, String: ciphertext, Character: separator, Array: byteIndicators
Output: String: plaintext

Initialize plaintext as an empty string

foreach(i in [0..len(ciphertext)]):
if byteIndicators[i] == 1:

byte plaintextChar = separator
else if byteIndicators[i] == 2:

byte plaintextChar = '?' # This value cannot be decrypted
else:

byte plaintextChar = ciphertext[i] ^ separator ^ approximateValues[i]
append plaintextChar to plaintext

Listing 6: Decrypting the ciphertext when Segment Size > 1 Byte

The success of the above algorithm does depend on the structure of the (unknown) plaintext. It will only work when
the final separator appears in the final segment. In this scenario, the final segment will be decrypted entirely. If
the final separator does not appear in the final segment, and the final value vn spans two segments as described in
Section A.2.2 Corrupted Blocks, the algorithm will not work correctly.

If the final separator does appear in 2nd to last segment, it is only possible to partially decrypt that segment. Call
the number of segments n, and the segment the final separator appears in segment n− r, where r >= 1. Altering
segment n− r during the approximation phase 2 will corrupt segment n− r+1, making it possible that a separator
appears randomly in the corrupted segment. In this event it is impossible to determine if the modification made

12/14

to byte C[B] in segment n − r was a valid Approximate Value for C[B] or a corruption of a subsequent segment.
(In practice, the corrupted segment regularly produces the random separator.) The only recourse is to store all the
values that produce a separator⁸, and try each value for the position and see if the plaintext is recognizable. These
results are deemed partial, as it may be possible to assemble multiple reasonable values of segment n− r from the
choices of stored values.

Application-specific behavior determines whether partial results of segments n− r+ 1 . . . n− 1 and decryption of
segment n is possible. In some cases, it may not be possible to decrypt segments n− r+ 1 . . . n, even partially. If
the application does not throw a SeparatorException if an extra separator is present in the plaintext, then segments
n − r + 1 . . . n cannot be decrypted. If it does, we can continue. The byte in segment n − r containing the final
separator must remain unaltered so segment n−r+1 is not corrupted. Keeping segment n−r equal to the original
value, each byteC[B] in segmentn−r+1 is altered until the application throws a SeparatorException – indicating the
Approximate Value for C[B]. However, the same problem with randomly introduced separators applies to segment
n − r + 1 also: a list of potential values must be stored. When the final segment n is reached, the values can be
determined conclusively as no further segments exist to be corrupted.

A.4 S S 1 B

If the segment size used in CFB mode is a single byte, each byte functions as its own segment. This configuration is
relatively common, and is the default for both PyCrypto in python and mcrypt in PHP. In 8-bit CFB mode, modifying
byte C[B] corrupts all subsequent bytes. However, it is always possible to work backwards to find the final separator
in some byte position i.

#Phase 1: Finding the final separator
#Input: String: ciphertext
#Output: Int: separatorPosition
foreach(i in [len(ciphertext)-1..0]): # Iterate over all the bytes in reverse

ciphertext' = ciphertext
ciphertext'[i] = ciphertext[i] ^ 1 # Flip the Least Significant Bit of the byte
result = queryOracle(ciphertext')

if result == SeparatorException:
Confirm this is a separator
ciphertext' = ciphertext
ciphertext'[i] = ciphertext[i] ^ 2 # Flip Second Least Significant Bit of the byte
result = queryOracle(ciphertext')

if result == SeparatorException:
Byte at position i is the final separator
break

else:
Byte at position i is not a separator

else: #OtherException or Normal Operation
Byte at position i is not a separator

Listing 7: Algorithm for Finding the Final Separator when Segment Size equals 1 Byte

After the separator has been found at position i, it may be possible to decrypt bytes after i. Altering byte i to
remove the separator would corrupt all bytes subsequent to i. Again, implementation-specific behavior must be
relied on. First we must confirm that the application throws a SeparatorException if an extra separator is present in
the plaintext. Alter byte i + 2 through all possible values. If a SeparatorException occurs once or a few times, then
the application does throw a SeparatorException when an extra separator is present in the plaintext. When this is
the case, all subsequent bytes from i can be decrypted. For each subsequent byte from i, alter it in all ways until a
SeparatorException is generated - this is the Approximate Value. Move to the next byte and repeat.

⁸ It may be possible to use the technique for the Approximation Phase presented in Section A.2.1 Randomly Introduced Separators to narrow
down the possible values for C[B].

13/14

#Phase 2: Approximating the final plaintext value
#Input: String: ciphertext, Int: separatorPosition
#Output: Array: approximateValues

Initialize approximateValues as an empty array

foreach(i in [0...len(ciphertext')]): #Ciphertext Loop
if i == separatorPosition:

append 0 to approximateValues
else if i < separatorPosition:

append 0 to approximateValues
else:

foreach(b in [1..255]): # Byte Loop
ciphertext' = ciphertext
ciphertext'[i] = b
queryOracle(ciphertext')
if result == SeparatorException:

append b to approximateValues
break Byte Loop

else:
continue # b is not an Approximate value

Listing 8: Algorithm for Determining Approximate Values when Segment Size equals 1 Byte

Again, we can perform the decryption phase, omitting any bytes prior to position i.

#Phase 3: Decrypting the final plaintext value
#Input: Array: approximateValues, String: ciphertext, Character: separator, Int: separatorPosition
#Output: String: plaintext

Initialize plaintext as an empty string

foreach(i in [0..len(ciphertext)]):
if i == separatorIndex:

byte plaintextChar = separator
else if position i < separatorIndex:

byte plaintextChar = '?' # This value cannot be decrypted
else:

byte plaintextChar = ciphertext[i] ^ separator ^ approximateValues[i]
append plaintextChar to plaintext

Listing 9: Decrypting the ciphertext when Segment Size equals 1 Byte

If no SeparatorException is thrown after altering bytes i + 2 onward, the application does not seem to throw a
SeparatorException if extra separators appear in the plaintext. In this case, it may not be possible to decrypt from
bytes i+ 1 onward.

A.5 S S L 1 B , N M B

The Segment size used in CFB mode is a size in bits from 1 up to the block size of the cipher. In practice, performing
an entire encipherment for a single bit is a waste of resources. While segment sizes of a single byte are seen in
practice, it is uncommon to find a segment size that does not align on a byte boundary. If the segment size does not
align on a byte boundary, it is unknown any algorithm relying on determining ASCII values of the plaintext would
operate.

14/14

	Introduction
	``I C'' Confidentiality Modes of Block Ciphers
	Separator Oracle
	Separator Oracle in CTR Mode
	Phase 1: Locating The Separator(s)
	Phase 2: Approximating the Message
	Phase 3: Determining the Separator Value and Decrypting the Ciphertext

	Plaintext Modification
	Remedies
	Short Term: Remove the Oracle
	Long Term: Prevent Adaptive Chosen-Ciphertext Attacks
	Authenticated Encryption Modes
	Message Authentication Codes

	Conclusion
	Acknowledgments
	CFB Mode
	The Effect of Segment Size on the Separator Oracle Attack
	Challenges of Multi-Segment Ciphertext
	Randomly Introduced Separators
	Corrupted Blocks
	Summary of Challenges

	Segment Size Greater Than 1 Byte
	Segment Size of 1 Byte
	Segment Size Less than 1 Byte, or Not a Multiple of a Byte

