
Provably Secure Generic Construction of Certificate

Based Signature from Certificateless Signature in

Standard Model

Wei Gaoa,b, Guilin Wangc, Kefei Chena, Xueli Wangd

a Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

b School of Mathematics and Information, Ludong University, Yantai 264025, China
cSchool of Computer Science & Software Engineering, University of Wollongong, NSW

2522, Australia
dSchool of Mathematics, South China Normal University, Guangzhou 510631, China

Abstract

Similar to certificateless cryptography, certificate-based cryptography is an-
other novel public key setting which combines the merits of traditional public
key cryptography (PKC) and identity-based cryptography (IBC). Both cer-
tificateless cryptography and certificate based cryptography do not have the
key escrow problem in identity-based cryptography, and greatly reduce the
overhead of certificate management in traditional PKC. Public key encryp-
tion and digital signature are two main issues in public key cryptography.
In this paper, we deal with the generic construction of certificate based sig-
nature from certificateless signature. In 2009, Wu et al. proposed the first
generic conversion from certificateless signature (CLS) to certificate based
signature (CBS). However, Wu et al.’s method has to involve a cryptograph-
ic hash function which is assumed to be a random oracle for security proof.
This paper proposes another intuitive, simple and provably secure generic
conversion from CLS to CBS. A new security model for CLS is formalized
and then it is proved that this generic conversion is secure in the stand model,
only if the underlying CLS scheme is secure in our new security model. As

Email addresses: sdgaowei@gmail.com (Wei Gao), guilin@uow.edu.au (Guilin
Wang), kfchen@sjtu.edu.cn (Kefei Chen), wangxuyuyan@gmail.com (Xueli Wang)

1This work is completed when the first author visited University of Wollongong (2011-
2012)

Preprint submitted to **** February 27, 2012

an example, based on this new generic method, we construct a new provably
secure certificate based signature scheme.

Keywords: certificateless signature, certificate based signature, identity
based signature, provable security.

1. Introduction

1.1. Background

Traditional VS Identity-based PKC (IBC). In traditional public
key cryptography (PKC) the authenticity of the public keys must be certi-
fied by a trusted third party, which is called Certification Authority (CA).
The public key infrastructure (PKI) required to support traditional PKC is
the main difficulty in its deployment. Many of the problems of PKI-based
cryptography arise from the management of certificates, which includes stor-
age, revocation and distribution. In 1984, Shamir [7] proposed the concept
of identity-based PKC (IB-PKC), which sought to reduce the requirements
on the public key infrastructure by using the client’s well-known identity as
its public key. With this approach, the certification of public keys becomes
implicit. However, because the private key of every user is generated and
hence known by the authority called PKG, IB-PKC suffers from the main
drawback of being inherently key escrowed, which limits the applicability of
IB-PKC.

Certificate-based Cryptography (CBC). Motivated by the above
problems of the traditional PKC and IB-PKC, the concepts of certificate
based encryption (CBE) and certificate based signature (CBS) were intro-
duced by Gentry [3] and Kang et al. [6] respectively. In PKC or IB-PKC,
for decrypting or signing, the user only needs to know the private key. In
certificate based cryptography (CBC), for decrypting/signing, the party Bob
needs two indispensable data, namely his private key and the up-to-date cer-
tificate. In particular, this certificate acts as a partial decryption/signing
key as well as a traditional public key certificate. Hence, before the user gets
the up-date certificate, the user with only the private key remains unable
to decrypt ciphertexts or generate signature. On one hand, CBC mitigates
the problem of revocation of certificates, which is an especially challenging
problem in certificate management in PKC. Now let the certificate have an
expiry date, at the end of which a new certificate must be obtained from CA
for decryption. In this way, revocation is achieved by stopping the issuance

2

of certificates for the revoked public key. Hence this approach can greatly re-
duce the public key and certificate management cost. In other hand, there is
no key-escrow problem, since the user’s decryption/signing key is generated
by joining both the certificate and a private information only known to the
user. Additionally, there is no secret key distribution problem of IBE, since
the CA’s certificate need not be kept secret.

Certificateless cryptography (CLC). Similarly motivated by the
disadvantages of the traditional PKC and IB-PKC, independently from the
work of certificate based cryptography, the concept of certificateless encryp-
tion (CLE) and certificateless signature (CLS) were introduced by Al-Riyami
and Paterson in [1]. In CLC, each entity has two secrets: a secret value SV
chosen by the entity and a partial private key PPK generated by a third par-
ty called Private Key Generating(PKG). The full private key is the output
of a function by taking SV and PPK as the input, and hence can be known
by only the user. On one hand, unlike IBC, CLC does not suffer from key
escrow, since PKG does not have access to the user’s secret value SV. On
the other hand, unlike traditional PKC, CLC does not require the use of
certificates to guarantee the authenticity of public keys, because any outside
attacker not being PKG is not able to figure out the partial private key PPK
for the authentic or fake public key.

1.2. Related Works.

Although CBC and CLC were developed independently, both of them can
be conceptually seen as intermediates between traditional PKC and IBC,
seeking to simplify the management of certificates while avoiding the key
escrow property of identity-based cryptography. Of course, the main differ-
ence between them is whether there are certificates required. So a natural
question to establish the connection of these two concepts arose. In 2005,
Al-Riyami and Paterson in [2] presented a generic construction of a secure
CBE scheme from a secure CLE scheme and claimed the provable security of
this generic construction of CBE. Shortly later, Kang and Park [5] pointed
out that this generic conversion from CLE to CBE has a critical flaw in the
security proof. In 2012, Wu et al. [9] proposed a new generic conversion
from CLE to CBE which involves the additional tool of collision resistant
hash function. In 2009, Wu et. al proposed a general conversion from CLS
to CBS, where the cryptographic hash function is involved and taken as a
random oracle in the security proof. In this paper, we will deal with the
generic conversion from CLS to CBS.

3

1.3. Contribtution

We propose a novel security model for CLS which will play an important
role in the security proof for our generic conversion from CLS to CBS. In
particular, our model allows the Type II attacker to attack the replaced
public key, under the only condition that the attacker does not know the
secret key for this current public key. For example, suppose that the PKG
(Type II adversary) replaces the public key of the attacked user Alice with
that of user Bob. In this way, the PKG does not know current private key,
although he has already replaced public key. Hence, it is reasonable that the
PKG remains unable to generate signature or decrypt ciphertexts under this
replaced public key. In other words, if he can decrypt ciphertext or generate
signatures in this way, this attack is interesting and should be taken into
account. Additionally, we also redefine the signing oracle by considering the
special case, i.e that the attacked public key is other user’s public key (in
this case, the private key is not known by the adversary). This is just the
basic idea of our new security model. This new security property is usually
ignored in previous definitions [4], but inherent in most existing secure CLS
scheme, because our new security model still meets the basic rule that the
attacker does not know the private key. This new security model will lead
us to complete the security proof for our new conversion.

Next, we prove that any CLS scheme secure in this new security model
can be directly transformed into a secure CBS scheme through our conversion
method. It is obvious that the security proof does not needs any additional
assumptions such as random oracles or collision resistant hash functions . In
other words, any CLS scheme secure in the stand model can generate a CBS
scheme secure in the standard model through our conversion. Additionally,
to show the application of our result, a concrete provably secure CBS scheme
is proposed.

1.4. Orgnization

Organization. This paper is organized as follows. Section 2 reviews
the syntax definition of CLS and proposes the new security model for CLS.
Section 3 briefly reviews the definition and security model for CBS. Section
4 presents our new generic construction of CBS for CLS and its security
proof. Section 5 presents a concrete CBS signature scheme as an application
example of our generic conversion. At last, Section 6 draws the conclusion.

4

2. Certificateless Signauture

In this section, we first review the syntax definition of CLS [4], and then
propose the new security model for CLS. At last, we compare our new security
model with other existing ones. The new security definition formalizes new
important property which has been ignored by other existing security models.
In fact, it will play the key role in our new generic construction of CBS
for CLS with provable security, and greatly helps to formally capture the
intuitively close relation between CBS and CLS.

For writing convenience, we use the notation ID and ID to denote the
identity information in the certificateless system and certificate based system
respectively. We put the prefix CL. to specify that this is in the certificateless
system and CB. specify that this is in the certificate based system. We use
the notation query 9 O to denote that the query query has never been
submitted to the oracle O, and the notation answer ← O to denote that
answer has been returned by the oracle O.

2.1. Syntax of Certificateless Signature Scheme

Although there are some different syntax frameworks for certificateless
signature schemes [4], there is very little essential difference between them.
Here we directly adopt the CLS syntax provided by Huang et al. [4].
Definition 1. [Syntax of CLS]. A certificateless signature scheme consists
of the following six algorithms.

- CL.Setup(1k)→ (CL.msk, CL.param).

It takes 1k as input where k is the security parameter, and returns
the master secret key CL.msk and the parameter CL.param which is
shared in the system.

- CL.ExtractPPK(CL.msk, CL.param, ID) → DID.

It takes the master private key msk, the system parameter CL.param
and the identity ID as input, and returns the partial private key DID.

- CL.SetSV(CL.param)→ XID.

It takes as input the system parameter CL.param, and outputs a secret
value XID.

5

- CL.SetPK(CL.param,XID)→ (CL.PKID).

It takes as input the system parameter CL.param, and this identity’s
secret value XID, and outputs the public key CL.PKID.

- CL.Sign (CL.param,DID, XID,m)→ CL.σ.

It takes as input the system parameter CL.param, the partial private
key DID, the secret value XID and the message m, and outputs the
signature CL.σ.

- CL.Verify(CL.param, ID, CL.PKID,m,CL.σ)→ b ∈ {0, 1}.
It takes as input the system parameter CL.param, an identity ID, this i-
dentity’s public key CL.PKID and a message/signature pair (m,CL.σ),
and outputs 1 if the signature is correct, or 0 otherwise.

2.2. Security Definition of CLS

In the following definition, if the adversary A is used to model the outside
attacker who does not know the master secret key, it is said to be of Type
I. If the adversary A is used to model the malicious authority who holds
the master secret key, it is said to be of Type II. Both types of adversaries
are allowed to mount the public key replacement attack, but they do this
under different restrictions. For example, if the Type II adversary replaces
the public key with the value generated by himself, he will know both the
corresponding secret key and the partial private key. In this way, it can triv-
ially generate signatures. Hence, in the definition, some restrictions should
be made to avoid Type II adversaries replacing public key in this way. How-
ever, under the condition that the partial private key is not known by one
Type I adversary, it can replace public keys in any way.

The signing oracles is divided two kinds: normal one or super one. The
normal signing oracle OCL.NSign answers the signature query, only if he knows
the corresponding secret value. The super signing oracle OCL.NSign is still
forced to answer the signature query in some “super” way, even if it does
not know the corresponding secret value. Generally speaking, both the se-
cret value and the partial private key are the two indispensable factors for
generating a CLS signature. Hence, for the challenger to answer the super
signing oracle, some “super’ method (such as depending random oracles) will
be needed.

According to whether the signing oracle is normal or super and whether
the type is I or II, the adversaries will be divided four kinds. In the following

6

definition, against four different kinds of chosen message and chosen identity
adversaries (CMCI), the existential unforgeability (EU) of CLS is defined in
the uniform framework.

The following definition of ours is different from other ones including that
in [4]. We will discuss the differences in the next subsection.

Definition 2 [Security of CLS]. A CLS scheme is CL-EUF-CMCI secure
against a certain kind of adversary

A ∈ { CL.Normal-AI ,CL.Super-AI ,CL.Normal-AII ,CL.Super-AII},

if no polynomially bounded adversary A has a non-negligible success proba-
bility in the following CLS game. In this following,

CL.Normal-AI ,CL.Super-AI ,CL.Normal-AII ,CL.Super-AII

will be called normal Type I adversary, super Type I adversary, normal Type
II adversary, and super Type II adversary respectively.
(1) Initial: The challenger runs the algorithm CL.Setup, returns CL.Params
and the auxiliary information aux ∈ {nil, CL.msk} to the attack A (nil
means nothing), where

aux = nil, for A ∈ {CL.Normal-AI , CL.Super-AI };
aux = CL.msk, for A ∈ {CL.Normal-AII ,CL.Super-AII}.

(2) Queries: In this phase, A can adaptively make requests to a few oracles
among the following ones.

- OCL.CreateU(ID)→ CL.PKID
This oracle receives an input ID and outputs this original public key of
the identity ID.

- OCL.ReplacePK(ID, CL.PK)→ ∅
For a public key replacement query (ID, CL.PK), it sets CL.PK as
the current public key.

- OCL.SecretV (CL.PK)→ X
If CL.PK is the original public key of a ceratin identity ID (i.e.,
CL.PK has been returned from the oracle OCL.CreateU), this oracle
returns the secret value X corresponding to CL.PK. Otherwise, it
refuses this query.

7

- OCL.PartialPK(ID, CL.PK)→ DID
For a partial private key query ID, this oracle runs the algorithm
CL.PartialPK and outputs the result DID.

- OCL.NSign(ID,m)→ CL.σ
If

CL.PKID ← OCL.CreateU ,

which means that CL.PKID has been provided by the oracleOCL.CreateU ,
it outputs a valid signature CL.σ of m under the current public key
CL.PKID of the identity ID. Otherwise, it refuses the query. Here
note that more detailed discussion on this normal signing oracle will
be presented in the next subsection.

- OCL.SSign(ID,m)→ CL.σ
For a super signing query (ID,m), it outputs a valid signature CL.σ of
m under the current public key CL.PKID of the identity ID.

Every attack model A has its own set OA of allowed oracles. In particu-
lar, with O′ = {OCL.CreateUser, OCL.ReplacePK , OCL.SecretV } being commonly
allowed,

OA = O′ ∪ {OCL.NSign, OCL.PartialPK}, for A =CL.Normal-AI ;
OA = O′ ∪ {OCL.SSign, OCL.PartialPK}, for A =CL.Super-AI ;
OA = O′ ∪ {OCL.NSign}, for A =CL.Normal-AII ;
OA = O′ ∪ {OCL.SSign}, for A =CL.Super-AII .

(3) Output: After all queries, A outputs a forgery (ID∗,m∗, CL.σ∗). Let
CL.PKID∗ be the current public key of ID∗. A is said to win the game if the
forgery satisfies the following requirements. Here note that these restrictions
are put forward to ensure that the forged signature is valid and this forgery
is nontrivial. It is known that the basic requirement for CLS is that both the
secret value and the partial private key are the two indispensable factors for
generating a CLS signature. In other words, any forgery generated by the
attacker who knows at most one of these two indispensable factors should be
accepted as successful.

- For A ∈ {CL.Normal-AI , CL.Super-AI , CL.Normal-AII , CL.Super-
AII}, it is commonly required that

8

1 = CL.Verify(CL.mpk,CL.param, ID∗, CL.PKID∗ ,m
∗, CL.σ∗),

and

(ID∗,m∗) 9 OCL.Sign,

where

OCL.Sign = OCL.NSign, for A ∈ {CL.Normal-AI , CL.Normal-AII };
OCL.Sign = OCL.SSign, for A ∈ {CL.Super-AI ,CL.Super-AII}.

Here, we use the notation 9 to denote that the query (ID∗,m∗) has
never been provided to the oracle OSign. This restriction ensures that
the signature is valid and not trivially obtained from the signing oracle.

- For A ∈ {CL.Normal-AI , CL.Super-AI }, additionally, it is required
that

ID∗ 9 OCL.PartialPK .

This restriction ensures that at least the target partial private key is
not known by A.

- For A ∈ {CL.Normal-AII , CL.Super-AII}, additionally, it is required
that

CL.PKID∗ 9 OCL.SecretV ,

and

CL.PKID∗ ← OCL.CreateU ,

where CL.PKID∗ ← OCL.CreateU means that CL.PKID∗ is provided by
the oracle OCL.CreateU . This restriction ensures that the target secret
value is not known by A. This restriction is different to that in other
security models such as that in [4]. This difference will be discussed in
more details in the next subsection.

9

2.3. Comparison between Our Security Models and Others

In this section, we compare our security definition with other ones includ-
ing that of [4]. By this comparison, it will be seen that our definition are
more general, more reasonable and also be very useful.

Firstly, Huang et al. consider three kinds signing oracles, i.e., normal
signing oracle, strong signing oracle, and super signing oracle, while we does
not involve the strong signing oracle. Because the strong signing oracle is an
intermediate one between the other ones and seldom mentioned in literature,
we don’t consider this signing oracle. However, with similar techniques to
deal with the normal signing oracle and the super signing oracles, it is easy
to deal with the strong oracles on the strong signing oracle. For more details,
refer to [4].

Secondly, the normal signing oracle and the super signing oracle are dif-
ferent from others. This difference will play an important role in our generic
construction of CBS schemes from CLS schemes. In [4], the normal signing
oracle returns signatures, only if the current public key of the queried iden-
tity is the original one and this original public should belong to the queried
identity. In contrast, in our definition, the normal signing oracle returns sig-
natures, if the current public key is the original public key of any identity,
i.e. not only the queried identity, but also other identities. Now consider
an example case: the adversary obtains Alice’s public key CL.PKAlice and
Bob’s public key CL.PKBob from the oracle OCL.CreateU , and then changes
the public key of Alice into the value CL.PKBob by making the oracle query
OCL.RepalcePK(CL.IDAlice, CL.PKBob). In this case, the challenger knows the
current secret value XAlice = XBob and can naturally answer the signing or-
acle under this replace public key. The signature query under this replaced
public key is taken as normal in our definition. In contrast, in previous def-
initions [4], this signature query is taken as super. Our definition is more
reasonable and will make senses in some cases. In fact, the initial reason to
distinguish normal and super signing oracles is that: for the normal signing
oracle, the challenger knows the master secret key and the secret value, and
hence can naturally answer the singing oracles, while for the super signing
oracle, the challenger should be “super” in the sense that he is required to
answer the signing oracle without knowing the secret value.

Thirdly, the restriction for the forgery from Type II adversary, i.e.

CL.PKID∗ 9 OCL.SecretV and CL.PKID∗ ← OCL.CreateU ,

10

may be more reasonable. This property will also play an important role in
the generic construction of CBS schemes from CLS schemes. In [4], the target
public key, as the original public key, is required to be the original public key
of the target identity. In contrast, in our definition, the target public key can
be any identity’s original public key, only if it is “original” which can ensures
that its secret value is not known by this Type II adversary. In fact, the initial
reason for this restriction is to prevent the trivial case that: once the Type
II adversary, who holds the master secret key, also knows the secret value,
it can trivially forge signatures. In other words, any nontrivial forgery of
the Type II adversary should be considered. Hence, this difference between
our security definition and previous ones makes our definition involve the
nontrivial forgery ignored in other security definitions. As we will see in next
sections, it is this difference that matters whether we can get more intuitive,
more simple, more efficient, provably secure generic construction from CLS
to CBS.

At last, it is intuitive to see that many existing CLS signature schemes
secure in the previous model will remain secure in our new model. In other
words, what we has done is just to find out and formalize the new security
property which has been holden by existing CLS signature schemes, but
was ignored or not comprehensively captured in previous definitions. As
you will see, our new general conversion method from CLS to CBS is more
intuitive and efficient than that proposed by Wu et al. [8]. In particular, our
conversion method does not depend on involving additional cryptographic
tool, namely one hash function, which has to be taken as random oracle for
the security proof to go through. At first, we can not provide the formal
security proof for our new generic construction, although it is so simple,
intuitive, and beautiful. When trying our best to find the reasons, we find
some security properties of CLS which are indispensable for security proof but
were never mentioned in previous security definition. This is the beginning
of the procedure of revisiting the security model of CLS.

3. Certificate Based Signature

In this section, we directly adopt the definition and security model for
CBS from [8]. Of course, we can improve the definition model in [8], as we
did for CLS in the above section. In fact, it is not a difficult task. We aim
to show that, from any CLS signature scheme, which is secure in our new
security model, we can generally constructed a CBS signature which is secure

11

in the previous security model [8]. Hence, we need to adopts and review the
previous CBS signature definition.

Here, for the security definition of CBS, as we did for CLS, four kinds
of adversaries are considered. In other words, we don’t consider the strong
signing oracle between the normal one and the super one. Additionally, the
security definition is organized in a more compact framework. However, there
is no essential difference between the following definition and that in [8].

Definition 3 [Syntax of CBS]. A Certificate Based Signature Scheme (CBS)
consists of five algorithms as follows.

- CB.Setup(1k)→ (CB.msk, CB.param).

It takes as input the security parameter 1k and returns the certifier’s
master secret key CB.msk and the system parameter CB.param that
includes the description of a string space Γ, which can be any subset
of {0, 1}∗.

- CB.GenUK(CB.param)→ (CB.PKID, CB.SKID).

It takes input the system parameter CB.param, and outputs the se-
cet/public key pair (SKID, PKID) for a certain entity ID.

- CB.Cert(CB.msk, CB.param, ID,CB.PKID)→ certID.

It takes as input the master secret key CB.msk, the system parameter
CB.param, the identity ID and its public key CB.PKID, and outputs
the certificate certID.

- CB.Sign(CB.param, ID,CB.PKID, certID, CB.SKID,m) → CB.σ.

It takes as input the system parameter CB.param, the identity ID,
the public key CB.PK, the certificate certID, the secret key CB.SKID

and the message m, and outputs the signature CB.σ.

- CB.Verify(CB.param, ID,CB.PKID,m,CB.σ)→ b ∈ {0, 1}.
It takes as input the system parameter CB.param, an identity ID, this
identity’s public key CB.PKID and a message/signature pair (m,CB.σ),
and outputs 1 if the signature is correct, or 0 otherwise.

Definition 2 [Security of CBS]. A CBS scheme is CB-EUF-CMCI secure
against a certain kind of adversary

12

A ∈ { CB.Normal-AI ,CB.Super-AI ,CB.Normal-AII ,CB.Super-AII},

if no polynomially bounded adversary A has a non-negligible success proba-
bility in the following CBS game. In this following,

CB.Normal-AI ,CB.Super-AI ,CB.Normal-AII ,CB.Super-AII

will be called normal Type I adversary, super Type I adversary, normal Type
II adversary, and super Type II adversary respectively.
(1) Initial: The challenger runs the algorithm CB.Setup, returns CB.Params
and the auxiliary information aux ∈ {nil, CB.msk} to the attack A (nil
means nothing), where

aux = nil, for A ∈ {CB.Normal-AI , CB.Super-AI };
aux = CB.msk, for A ∈ {CB.Normal-AII ,CB.Super-AII}.

(2) Queries: In this phase, A can adaptively make requests to a few oracles
among the following ones.

- OCB.CreateU(ID)→ CB.PKID

This oracle receives an input ID and outputs this original public key
of the identity ID.

- OCB.ReplacePK(ID,CB.PK)→ ∅
For a public key replacement query (ID,CB.PK), it sets CB.PK as
the current public key of ID.

- OCB.Corrupt(ID)→ CB.SKID

If ID has been submitted to the oracle OCB.CreateU , this oracle returns
the secret key CB.SKID corresponding to ID’s original public key.
Otherwise, it first makes the oracle query OCB.CreateU(ID) and then
the oracle query OCB.Corrupt(ID).

- OCB.Cert(ID,CB.PK)→ certID
For this certification query, this oracle gets the result certID by running
the algorithm CB.Cert and outputs it.

- OCB.NSign(ID,m)→ CB.σ
If ID has been submitted to OCB.CreateU , it outputs a valid signature
CB.σ of m under the original public key CB.PKID of the identity ID.
Otherwise, it refuses the query.

13

- OCB.SSign(ID,m)→ CB.σ
For a super signing query (ID,m), it outputs a valid signature CB.σ
of m under the current public key CB.PKID of the identity ID.

Every attack model A has its own set OA of allowed oracles. In particu-
lar, with O′ = {OCB.CreateUser, OCB.ReplacePK , OCB.Corrupt} being commonly
allowed,

OA = O′ ∪ {OCB.NSign, OCB.Cert}, for A =CB.Normal-AI ;
OA = O′ ∪ {OCB.SSign, OCB.Cert}, for A =CB.Super-AI ;
OA = O′ ∪ {OCB.NSign}, for A =CB.Normal-AII ;
OA = O′ ∪ {OCB.SSign}, for A =CB.Super-AII .

(3) Output: After all queries, A outputs a forgery (ID∗,m∗, CB.σ∗). Let
CB.PKID∗ be the current public key of ID∗. A is said to win the game if
the forgery satisfies the following requirements.

- For A ∈ {CB.Normal-AI , CB.Super-AI , CB.Normal-AII , CB.Super-
AII}, it is commonly required that

1 = CB.Verify(CB.mpk,CB.param, ID∗, CB.PKID∗ ,m
∗, CB.σ∗),

and

(ID∗,m∗) 9 OSign,

where

OCB.Sign = OCB.NSign, for A ∈ {CB.Normal-AI , CB.Normal-AII };
OCB.Sign = OCB.SSign, for A ∈ {CB.Super-AI ,CB.Super-AII}.

- For A ∈ {CB.Normal-AI , CB.Super-AI }, additionally, it is required
that

ID∗ 9 OCB.Cert.

- For A ∈ {CB.Normal-AII , CB.Super-AII}, additionally, it is required
that

ID∗ 9 OCB.Corrupt,

and

CB.PKID∗ = OCB.CreateU(ID∗).

14

4. Generic Construction CLS-2-CBS and Security Proof

In this section, we will introduce a generic method to construct certifi-
cate based signatures from certificateless signatures. We show that this CBS
signature generated in this way is provably secure against any kind of adver-
sary such as CB.Normal-AI , only if the underlying CLS signature scheme is
provably secure against the corresponding kind of adversary CL.Normal-AI .
At last we compare our conversion method from CLS to CBS with that in
[8].

4.1. Generic Construction CLS-2-CBS

Let ΠCL be a CLS scheme with algorithms:

ΠCL = (CL.Setup,CL.SetSV,CL.SetPK,CL.ExtractPPK,CL.Sign,CL.Verify),

as specified in Definition 1. Then a CBS scheme

ΠCL = (CB.Setup,CB.GenUK,CB.Cert,CB.Sign,CB.Verify)

is defined as follows. Let Γ be the identity information space for ΠCB, PKCB
be the public key space for ΠCB and IDCL denotes the space of identities
for ΠCL. Without loss of generality, we assume that IDCL = Γ× PKCB.

- CB.Setup.
On input a security parameter k, first run

(CL.msk, CL.param)← CL.Setup(1k).

Then set CB.msk = CL.msk. Define CB.param by extending CL.param
to include a description of Γ which is the identity information space for
ΠCB. The output is (CB.msk, CB.param).

- CB.GenUK.
On input CB.param, first extract CL.param from CB.param. Run

X ← CL.SetSV(CL.param),
CL.PK ← CL.SetPK(CL.param, X).

The output is (CB.PK, CB.SK) = (CL.PK,X).

15

- CB.Cert.
On input CB.msk, CB.param, ID,CB.PKID, first extract CL.param
from CB.param. Set the ID = ID ||CB.PKID and CL.msk = CB.msk.
The output is

certID = CL.ExtractPPK (CL.param, CL.msk, ID).

- CB.Sign.
On input CB.param, certID, CB.SKID, m, first extract CL.param
from CB.param. Then set ID = ID||CB.PKID, CL.PKID = CB.PKID,
DID = certID, XID = CB.SKID. The output is

CB.σ = CL.Sign(CL.param, ID, CL.PKID, DID, XID,m).

- CB.Verify.
On input CB.param, ID,CB.PKID,m,CB.σ, extract CL.param from
CB.param. Set ID = ID||CB.PKID, CL.PKID = CB.PKID and
CL.σ = CB.σ. The output is

b = CL.Verify(CL.param, ID, CL.PKID,m, CL.σ).

4.2. Security Proof for CLS-2-CBS

In the following, we prove four theorems which deal with the four kinds of
adversaries respectively. In particular, if the CLS scheme is secure against one
certain kind of adversary in our new security model, then the corresponding
CBS signature is also secure against the corresponding kind of adversary in
the security model reviewed in section 3.

Theorem 1. Suppose that AI is a super Type I adversary against ΠCB

with success probability ε and running time t. Then there is a super Type I
adversary BI against ΠCL with success probability ε and running time O(t).

Proof. Let C denote the ΠCL challenger against BI . BI mounts a Type I
attack on ΠCL by simulating the challenger for AI and using help from AI

as follows.
Initial phase for CBS game. BI obtains from C the system parameter of

ΠCL and extends it into the system parameter CB.param of ΠCB as done in
CB.Setup of ΠCB. BI supplies CB.param to AI .

Queries Phase for CBS game. When AI enters the Queries phase for the
CBS game, BI accordingly enters the Queries phase of the CLS game. For
the oracle queries from AI , BI handles these queries as follows.

16

- OCB.CreateU(ID)→ CB.PKID.
If the query ID has been submitted to the oracle OCB.CreateU , it will
directly returns the previous answer which is recorded in the list L.
Otherwise, it does as follows. BI chooses a random identity ID′ and ob-
tains its original public key CL.P̃KID′ through the oracle OCL.CreateU .

It sets ID = ID ||CB.PKID′ and requires the oracle OCL.ReplacePK to

change the public key of ID into CL.P̃KID′ . In this case, the CBS

original public key of ID is the CLS original public key of ID′. In oth-
er words, every original public key for ΠCB is related with a certain
original public key for ΠCL.

Additionally, to record the above operations for future use, BI sets the
original public key

CB.P̃KID = CL.P̃KID′

and the current public key

CB.PKID = CL.P̃KID′ ,

and adds the tuple

(ID, ID′, CB.P̃KID, CB.PKID)

to the initially empty list L.

- OCB.ReplacePK(ID,CB.PK)→ ∅
If ID has not been submitted to the oracle OCB.CreateU , BI first makes
the query OCB.CreateU(ID) by himself before doe the following. Oth-
erwise, it directly does the following. BI sets ID = ID ||CB.PK, and
sequentially makes two oracle queries OCL.CreateU(ID) and OCL.ReplacePK

(ID , CB.PK) to change the public key value of ID into CB.PK.

Additionally, to record the above operation, BI searches the relative
tuple

(ID, ID′, CB.P̃KID, CB.PKID),

and then changes the value of CB.PKID into CB.PK.

- OCB.Corrupt(ID)→ CB.SKID

Without loss of generality, we assume that ID has been submitted to
the oracle OCB.CreateU . BI searches the corresponding tuple

(ID, ID′, CB.P̃KID, CB.PKID)

17

in the list L. Then it makes the oracle query OCL.SecretV (CB.P̃KID)

and relays this answer to the attacker AI . Here note CB.P̃KID =
CL.P̃KID′ .

- OCB.Cert(ID,CB.PK)→ certID
Without loss of generality, we assume that the current public key
CB.PKID = CB.PK in the corresponding tuple

(ID, ID′, CB.P̃KID, CB.PKID).

of the list L. BI sets ID = ID ||CB.PK, makes the oracle query
OCL.PartialPK(ID), and then relays the returned partial private key DID
as the certificate for AI .

- OCB.SSign(ID,m)→ CB.σ
For a query (ID,m), this oracle browses the list L for the corresponding
tuple

(ID, ID′, CB.P̃KID, CB.PKID).

Then it sets ID = ID||CB.PKID and makes the signing oracle query
OCL.SSign(ID,m) and relays this answer to AI .

Output for CBS game. Now the attacker AI returns its forgery (ID∗,
m∗, CB.σ∗). Without loss of generality, we assume that AI has made the
oracle query OCB.CreateU or the replacing public key oracle query for ID∗. BI

browses the list L for the the corresponding tuple

(ID∗, ID′∗, CB.P̃KID∗ , CB.PKID∗),

and returns (ID∗,m∗, CL.σ∗) to its challenger C, where

ID∗ = ID∗||CB.PKID∗ , CL.σ
∗ = CB.σ∗.

Analysis. First, from the relations of ΠCB and ΠCL, it can be easily
or trivially seen that BI perfectly simulates the game settings for AI in the
two phases of Initial and Queries. Second, if the forgery (ID∗, m∗, CB.σ∗) is
successful, i.e., this forgery satisfies the three additions:

CB.Verify(CB.param, ID∗, CB.PKID∗ ,m∗, CB.σ∗) = 1,
(ID∗,m∗) 9 OCB.SSign.

(ID∗, CB.PKID∗) 9 OCB.Cert.

18

then, by checking these two groups of three restrictions one by one (the above
and the below), it easily follows that (ID∗,m∗, CL.σ∗) is also successful, i.e.
this forgery satisfies that

CL.Verify(CL.param, ID∗, CL.PKID∗ ,m
∗, CL.σ∗) = 1,
(ID∗,m∗) 9 OCL.SSign.

ID∗ 9 OCL.PartialPK .

Hence, the success probability of BI is same to that of AI . Additionally,
since what BI mainly does in reduction is just issuing some relative queries
to C, it is obvious that the time of BI is almost equal to the time t of AI .
Hence we say that the running time of BI is O(t). �

Theorem 2. Suppose that AII is a super Type II adversary against ΠCB

with success probability ε and running time t. Then there is a super Type II
adversary BII against ΠCL with success probability ε and O(t).

Proof. Let C denote a ΠCL challenger against Type II adversary BII . BII

mounts a Type II attack on ΠCL using help from AII as follows.

Initial for CBS game. How BII communicates with AII is the same to
how BI communicates with AI in the above proof for lemma 1, except that
BII additionally gets the master private key CL.msk and relays it to AII as
the master key CB.msk for ΠCB.

Queries for CBS game. How BII answers these queries from AII is the
same to how BI simulates the oracles for AI in the above proof for lemma 1,
except that AII does not query the oracle OCB.Cert.

Output for CBS game. How BII generates the forged signature is the same
to how BI generates the forged signature in the above proof for lemma 1. Of
course, the forged signatures from BI and BII satisfy different conditions.

Analysis. This analysis can immediately follows from the analysis in the
above proof of lemma 1. Here, we only deal with the somewhat difficult part
of the analysis. In particular, we will show how to get

CL.PKID∗ 9 OCL.SecretV , and CL.PKID∗ ← OCL.CreateU ,

from

ID∗ 9 OCB.Corrupt, and CB.PKID∗ = OCB.CreateU(ID∗),

where
ID∗ = ID∗||CB.PKID∗ , CL.σ

∗ = CB.σ∗.

19

By checking the simulation of the oracle OCB.CreateU by BII for AII (same to
those in the proof of Theorem 1), the equation CB.PKID∗ = OCB.CreateU(ID∗)

means that the original public key CB.P̃KID∗ is equal to the current public
key CB.PKID∗ , i.e. that

CB.P̃KID∗=CB.PKID∗ .

By checking the simulation of oracles OCB.CreateU and OCB.ReplacePK , it can
be seen that the CLS current public key CL.PKID of ID = ID||CB.PKID is

always equal to the CBS current public key CB.PKID of ID. in particular,
for ID∗ = ID∗||CB.PKID∗ , we have

CB.PKID∗ = CL.PKID∗ .

Let the tuple (ID∗, ID′∗, CB.P̃KID∗ , CB.PKID∗) be the corresponding record
in L. Then by checking the simulation of the oracle OCB.CreateU again, it can
be seen that the CBS original public key CB.P̃KID∗ is equal to the CLS
original public key CL.P̃KID′∗ of ID′∗, i.e. that

CB.P̃KID∗ = CL.P̃KID′∗ .

By the above three equations, we can get

CL.PKID∗ = CL.P̃KID′∗ .

Hence, from
CB.PKID∗ = OCB.CreateU(ID∗),

we can get that
CL.PKID∗ ← OCL.CreateU .

By checking the oracles simulation process provided by BII to AII (same to

those in the proof of Theorem 1), it can be seen that OCL.SecretV (CL.P̃KID′∗)

is queried by BII only when OCB.Corrupt(ID∗) is queried by AII . Then by

the just proved equation CL.PKID∗ = CL.P̃KID′∗ , we prove that OCL.SecretV

(CL.PKID∗) is queried by BII only when OCB.Corrupt(ID∗) is queried by AII .
In other words, from

ID∗ 9 OCB.Corrupt

we can get

20

CL.PKID∗ 9 OCL.SecretV . �

Theorem 3. Suppose that AI is a normal Type I adversary against ΠCB

with success probability ε and running time t. Then there is a normal Type I
adversary BI against ΠCL with success probability ε and running time O(t).
Proof. The proof for Theorem 3 is the same to that for Theorem 1, except
the difference that the CBS normal signing oracle is simulated depending on
the CLS normal signing oracle in this proof for Theorem 3, while the CBS
super signing oracle is simulated depending on the CLS super signing oracle
in this proof for Theorem 1. Now show how to simulate the CBS normal
signing oracle using the CLS normal signing oracle.

For a normal signing query OCB.NSign(ID,m), browse the list L for the
corresponding tuple

(ID, ID′, CB.P̃KID, CB.PKID).

set ID = ID||CB.PKID and make the signing oracle query OCL.NSign(ID,m)
and relays this answer to AI . By checking the simulation of the oracle
OCB.CreateU , it can be seen that the original CBS public key CB.P̃KID of ID
is the original CLS public key CL.P̃KID′ of ID′, and the original CLS public

key CL.P̃KID′ of ID′ is the current CLS public key CL.PKID of ID. Hence,

the query (ID,m) will be not rejected by the oracle OCL.NSign. Hence, this
proof can immediately follow Theorem 1. �

Theorem 4. Suppose that AI is a normal Type II adversary against ΠCB

with success probability ε and running time t. Then there is a normal Type II
adversary BI against ΠCL with success probability ε and running time O(t).
Proof. The proof for Theorem 4 is the same to that for Theorem 2, except
the difference that the CBS normal signing oracle is simulated depending on
the CLS normal signing oracle in this proof for Theorem 4, while the CBS
super signing oracle is simulated depending on the CLS super signing oracle
in this proof for Theorem 2. Additionally, in the proof of theorem 3, we
have showed how to simulate the CBS normal signing oracle using the CLS
normal signing oracle. Hence, this proof can immediately follow Theorem 2
and Theorem 3. �

21

4.3. Comparison between CLS-2-CBS with Wu et al.’s Construction

5. Application Example - One Concrete CBS scheme

To demonstrate the application of the CLS-2-CBS conversion, this section
describes a concrete CBS scheme from a CLS scheme proposed in [4]. We
start by reviewing the bilinear groups and the related complexity assumption.

5.1. Bilinear Pairing and Complexity Assumption

This section briefly reviews the definition of bilinear pairings and the
related complexity assumptions.

Let G1 and G2 be two groups of prime order q and let P be a generator
of G1, where G1 is additively represented and G2 is multiplicatively. A map
e : G1 × G1 → G2 is said to be a bilinear pairing, if the following three
conditions hold: (1)e is bilinear, i.e. e(aP, bP) = e(P, P)ab for all a, b ∈ Z∗q;
(2) e is non-degenerate, i.e. e(P, P) 6= 1, where 1 is the identity of G2; (3) e
is efficiently computable.

Definition 5 [Computational Diffie-Hellman Problem,CDH] Given P, aP, bP
with uniformly random choices of a, b ∈ Zq, output abP . An algorithm A
has success probability ε in solving the CDH problem, if

Pr[A(P, aP, bP) = abP] = ε].

The CDH problem is said to be (t, ε)-intractable if there is no algorithm to
solve this problem with time less than t and success probability greater than
ε.

5.2. Concrete CBS Scheme

The scheme described in this section is constructed based on the CLE
scheme in [2] through the generic conversion CLS − 2−CBS. It consists of
following algorithms.

- Setup(1k)→ (msk, params).

This algorithm is run by the authority CA (key generating center). Let
G1 and G2 be two groups of prime order q, P be a generator of G1, and
e : G1 ×G1 → G2 be a bilinear pairing. It specifies two hash functions
H0, H1 : {0, 1}∗ → G∗1. Let Γ be the set of identity information. It
chooses its master key msk = s uniformly at random from Zq and
computes its public key mpk = sP . The system parameter

params = (q, e,G1,G2, P,mpk,H0, H1,Γ).

22

- GenUK(params)→ (PKID, SKID).

It selects a random SKID ∈ Zq, computes PKID = SKIDP and out-
puts SKID, PKID as ID’s secret/public key pair.

- Cert(CB.msk, params, ID, PKID)→ cert.

It sets certID = sH0(ID||PKID).

- Sign(params, ID, certID, PKID, SKID,m)→ σ. For a message m, the
user ID computes the signature σ = (u, v,W) where

- u = H1(m||ID||PKID||r1P ||e(P, P)r2) for random r1, r2 ∈ Zq,
which are chosen by ID.

- v = r1 − u · SKID mod q, W = r2P − u · certID.

- Verify(params, ID, PKID,m, σ) → b. Given a message/signature pair
(m,σ = (u, v,W)), user ID’s public key PKID, anyone can check
whether

u = H1(m||ID||PKID||vP+u·PKID||e(W,P)e(H0(ID||PKID), sP)u),

If the equality holds, this algorithm outputs 1 . Otherwise, it outputs
0.

Theorem 5. The above CBS scheme is secure (in the random oracle model)
against CB.Super-AI and CB.Super-AII , assuming that CDH problem is
hard in G1.

Proof. The proof follows Theorem 1, 2 and the fact that the underlying CLS
scheme is secure against CL.Super-AI and CL.Super-AII if the CDH problem
is hard in G1. In [4], the underlying CLS scheme is proved secure in their
security model. As we have discussed, our security definition against super
Type I adversary is same to that for the super Type I adversary. Hence, the
CLS signature scheme is secure against the super Type I adversary in our
model. Our security definition against super Type II adversary is same to
that for the super Type II adversary of Huang et al. in [4], except that Huang
et al.’s definition [4] requires the target public key key to be the original public
key of the target identity, but our security only requires the secret key for
the target public key is not known by the the Type II adversary. Because the
difference between the definitions for super Type II adversary has very little

23

effects on the security proof, the security proof for this CLS signature scheme
security against super Type II adversary in our model can be immediately
obtained from the proof of security against (super) Type II adversary in the
model of [4]. In fact, in the proof of [4], what matters for the proof is not
that the target public key is “original”, but that the corresponding secret
key is not known by this adversary. Here we omitted the trivial details. �

6. Conclusion

In this paper, we proposed a new provably secure generic conversion from
CLS to CBS. It is very neat in the sense that there is no additional crypto-
graphic tool involved for the conversion itself or its security proof. To analyze
its security, we redefined the security model for CLS by formalizing some im-
portant but previously ignored property which is the main factor making our
new conversion provably secure. As an example, we constructed a new prov-
ably secure certificate based signature scheme by applying this new generic
method. In the theoretic sense, our results formally showed that the two
conceptions of CBS and CLS (CBC and CLC) are very closely connected to
each other.

References

[1] S. S.Al-Riyami, K. G.Paterson. Certificateless public key cryptography.
in:Advancesin Cryptology-ASIACRYPT 2003, pp.452-473.

[2] S.S. Al-Riyami and K.G. Paterson. CBS from CLS: A generic construc-
tion and ecient schemes. Public Key Cryptography - PKC 2005, Lecture
Notes in Comput. Sci., vol. 3386, pp. 398-415, 2005.

[3] C. Gentry. Certificate-based Signature and the certicate revocation prob-
lem. Advances in Cryptology - EUROCRYPT 2003, Lecture Notes in
Comput. Sci., vol. 2656, pp. 272-293, 2003.

[4] X. Huang, Y. Mu, W. Susilo, D. Wong, W. Wu, “Certificateless Sig-
natures: New Schemes and Security Models,” The Computer Journal,
Oxford, September 29, 2011 doi:10.1093/comjnl/bxr097

[5] B.G. Kang and J.H. Park. Is it possible to have CBS from CLS?.
eprint.iacr.org/2005/431.ps

24

[6] B.G. Kang, J.H. Park, S.G. Hahn. A certificate-based signature scheme.
In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 99C111.
Springer, Hei-delberg (2004)

[7] A. Shamir. Identity-based cryptosystems and signature schemes. Crypto
1984, LNCS Vol. 196, pp. 47-53, 1984.

[8] W Wu, Y. Mu, W. Susilo, X. Huang: Certificate-based Signatures Re-
visited. Journal of Universal Computer Science 15(8): 1659-1684 (2009)

[9] W. Wu, Y. Mu, W. Susilo, X. Huang and L. Xu. Provably Secure Con-
struction of Certificate-based Encryption from Certificateless Encryp-
tion. The Computer Journal Advance Access published January 5, 2012,
doi:10.1093/comjnl/bxr130.

[10] D.H. Yum and P.J. Lee. Generic Construction of Certificateless Signa-
ture. In Computational Science and Its Applications - ICCSA 2004 ,
LNCS vol. 3043, pp. 802-811, Springer-Verlag, 2004

25

