
Automatic Search of Attacks on round-reduced AES and
Applications

Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque

ENS, CNRS, INRIA, 45 rue d’Ulm, 75005 Paris, France
{charles.bouillaguet,patrick.derbez,pierre-alain.fouque}@ens.fr

Abstract. In this paper, we describe versatile and powerful algorithms for searching guess-and-
determine and meet-in-the-middle attacks on some byte-oriented symmetric primitives. To demon-
strate the strengh of these tools, we show that they allow to automatically discover new attacks on
round-reduced AES with very low data complexity, and to find improved attacks on the AES-based
MACs Alpha-MAC and Pelican-MAC, and also on the AES-based stream cipher LEX. Finally, the
tools can be used in the context of fault attacks. These algorithms exploit the algebraically simple
byte-oriented structure of the AES. When the attacks found by the tool are practical, they have
been implemented and validated experimentally..

1 Introduction

Since the introduction of the AES in 2001, it has been questioned whether its simple algebraic structure
could be exploited by cryptanalysts. Soon after its publication as a standard [NIS01], Murphy and
Robshaw showed in 2002 an interesting algebraic property: the AES encryption process can be described
only with simple algebraic operations in GF p28q [MR02]. Such a result paved the way for multivariate
algebraic techniques [CP02,Cid04] since the AES encryption function can be described by a very sparse
overdetermined multivariate quadratic system over GF p2q. However, so far this approach has not been
so promising [MV04,CL05], and the initial objective of this simple structure, providing good security
protections against differential and linear cryptanalysis, has been fulfilled.

Recently, much attention has been devoted to the AES block cipher as a by-product of the NIST
SHA-3 competition. The low diffusion property of the key schedule has been used to mount several
related-key attacks [BKN09,BK09,BDK�10,KBN09] and differential characteristic developed for hash
functions have been used to also improve single-key attacks [DKS10]. In order to find better attacks,
new automatic tools have been designed to automatically search either related-key attacks or collision
attacks on byte-oriented block ciphers [BN10] or AES-based hash functions [KBN09].

In this paper, we look at the security of round-reduced versions of the AES block cipher in a prac-
tical security model, in continuity with [BDD�10]. The adversary knows a very small number of plain-
text/ciphertext pairs, one or two, and his goal is to recover the secret key. Studying reduced-round
versions of AES is motivated by the proliferation, these last years, of many AES-based primitives for
hashing or authentication, such as the Grøstl, ECHO, Shavite, LANE hash functions, the LEX [Bir05]
stream cipher, or the Alpha-MAC [DR05a] and Pelican-MAC [DR05b] message authentication codes.
A possible explanation of this fancy is that the AES enjoys very interesting security properties against
statistical attacks. Namely, two rounds achieve full diffusion, and there exist very good differential and
linear lower bounds for the best differential on four rounds [KMT01a,KMT01b,Kel04]. Consequently, for
some applications such as hashing and authentication where the adversary has little or no access to the
internal state, the full ten AES rounds may be overkill, and some designers proposed to use less rounds
for more efficiency. In these applications, the adversary has less control over the AES than in the usual
block-cipher setting, and has access to a very few number of plaintext/ciphertext pairs. For example, in
the LEX stream cipher [Bir08], only a quarter of the state is leaked at each round and to generate the next
32 bits of keystream, only one round of AES is performed. Furthermore, in some particular attacks, such
as side-channel attacks, only a small number of rounds of the cipher needs to be studied [PQ03,BK07].
In the latter scenario, the adversary does not know plaintext/ciphertext pairs, but that some difference
in intermediate states results in two different ciphertexts. Finally, in symmetric cryptanalysis, statistical
attacks usually use distinguishers on a small number of rounds and then, extend these distinguishers to
more rounds. Consequently, it is important to search the best attack in this model.

Related Work. In this security model, statistical attacks may be not the best possible attacks, since
they usually require many pairs with specific input difference and algebraic attacks seem to be more well-
suited. However, such attacks using either SAT solvers or Gröbner basis algorithms [MR02,BPW06], have
never been able, so far, to endanger even very reduced versions of the AES even though its structure
exhibits some algebraic properties. These attacks encode the problem into a system of equations, then
feeds the equations to a generic, sometimes off-the-shelf equation solver, such as a SAT-solver or a
Gröbner basis algorithm. The main obstacle in these approaches is the S-box, that only admits “bad”
representations (for instance, it is a high degree polynomial over the AES finite field), and increases the
complexity of the equations, even though low degree implicit equations may also exist.

Our tools, instead of using pre-existing generic equations solvers, first run a search for an ad hoc
solver tailored for the equations to solve, build it, and then run it to obtain the actual solutions. They
can be applied to systems of linear equations containing a non-linear permutation of the field, such as
an S-box. Our idea is to consider the S-box as a black box permutation. We only use few properties of
this function and our attacks works for any instantiation of the S-box.

This approach is reminiscent of the ideas used by Khovratovich, Biryukov and Nicolić to find collisions
in an AES-based hash function (more precisely, a hash function using a large version of Rijndael in
Davies-Meyer mode) [KBN09]. They first found a “good” colliding truncated differential path, and they
were facing the problem of finding a conforming pair to obtain an actual collision. The basic strategy
for finding a message pair conforming to a differential path consists in exhaustively trying all possible
input values and checking if the constraints are satisfied. In order to speed up the collision search, these
authors used a message modification technique: they described the hash function using a system of
linear equations with an S-box, and added equations to enforce that the message and chaining value
follow their truncated differential characteristic inside the function. Solving the equations would yield a
collision, and the approach they proposed is to look automatically for constraints that could be satisfied
by setting a particular variable to a particular value without violating other constraints. To this end, they
use linear algebra, and essentially consider x and Spxq to be independent variables, and then greedily
satisfy constraints. This method is however limited in that when the greedy strategy aborts, i.e., when
no easily-satisfiable constraints remain, then probabilistic trials is the only fallback.

Our Techniques and Results. Our tools try to find attacks automatically by searching some classes
of guess-and-determine and meet-in-the-middle attacks. They take as input a system of equations that
describes the cryptographic primitive and some constraints on the plaintext and ciphertext variables for
example. Then, it solves the equations by first running a (potentially exponential) search for a customized
solver for the input system. Then, the solver is run, and the solutions are computed.

We describe two tools. Our preliminary tool uses a depth-first branch-and-bound search to find
“good” guess-and-determine attacks. It has been (covertly) used to generate some of the attacks found
in [BDD�10], and outperformed human cryptanalyst in several occasions. However, the class of attack
searched for by this preliminary tool is quite restricted, and it fails to take into account important
differential properties of the S-box. Our second, more advanced tool, allows to find more powerful attacks,
such as Meet-in-the-Middle attacks. For instance, it automatically exploits the useful fact that an input
and output difference on the S-box determine almost uniquely the actual input and output values. The
algorithmic techniques used by this tool are reminiscent of the Buchberger algorithm [Buc65]. The results
found by these algorithms are summarized in tables 1 and 2.

We improve many existing attacks in the “very-low data complexity” league. For instance, we find
a certificational attack on 5 AES rounds using just a single known plaintext, and a practical attack on
4 full AES rounds with 4 chosen plaintexts. We also look at AES-based primitives. We independently
discovered (along with [DKS11]) the best known attack on Pelican-MAC, and automatically rediscover
the best attacks on Alpha-MAC and LEX. We also used our tool to find a new, faster, attack on LEX.
Lastly, we improve the efficiency of the state-recovery part of the Piret-Quisquater fault attack against
the full AES. While it required 232 elementary operations, it now takes about one second on a laptop.

Since most of the attacks we present are practical, or have a practical core, we implemented many of
them and tested them in practice. The source code of some of these attacks is available at:

http://www.di.ens.fr/~bouillaguet/implementation.html

Organization of the paper. In section 2, we describe how the equations are constructed given the AES
description and how we represent them. Then, we present our preliminary guess-and-determine attack

Attacks on round reduced versions of the AES-128

This paper Previous Best Attacks
#Rounds Data Time Memory Time Memory Ref.

1 1 KP 232 216 248 1 [DK10b]

1.5 1 KP 256 1
1.5 2 KP 224 216

2 1 KP 264 248 280 1 [BDD�10] �
2 2 KP 232 224 248 1 [BDD�10]
2 2 CP 28 28 228 1 [BDD�10]

2.5 1 KP 288 288

2.5 2 KP 280 280

2.5 2 CP 224 216

3 1 KP 296 272 2120 1 [BDD�10] �
3 2 CP 216 28 232 1 [BDD�10]

4 1 KP 2120 280

4 2 CP 280 280 2104 1 [BDD�10]
4 4 CP 232 224

KP — Known plaintext, CP — Chosen plaintext,
Time complexity is measured in encryption units unless mentioned otherwise.
Memory complexity is measured approximately
� : previously published, but found with these tools
“r.5 rounds” — r full rounds and the final round

Table 1. Summary of our Proposed Attacks on AES-128

finder in section 3 and then a more advanced tool that finds meet-in-the-middle attacks in section 4.
Finally, in sections 5, 6 and 7, we show several attacks that were automatically found by the previous
tool.

2 Description of the AES

The Advanced Encryption Standard [NIS01] is a Substitution-Permutation network that supports key
sizes of 128, 192, and 256 bits. A 128-bit plaintext (resp. a 128-bit key or internal state) is treated as a
byte matrix of size 4�4, where each byte represents a value in F28 . An AES round applies four operations
to the state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times in parallel on each byte
of the state,

– ShiftRows (SR) — cyclic shift of each row (the i’th row is shifted by i bytes to the left),
– MixColumns (MC) — multiplication of each column by a constant 4� 4 matrix over F28 , and
– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

Fig. 1 An AES round

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15 3 7 11 15 15 3 7 11

ShiftRows MixColumns

SB SR MC
ARK⊕

ki
xi yi

zi wi

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

We outline an AES round in Figure 1. Before the first round, an additional AddRoundKey operation
(using a whitening key) is applied, and in the last round the MixColumns operation is omitted. The

Attacks on Primitives based on AES

Primitive Complexity G & D Part References

Data Time Memory Time Memory

Pelican-MAC 285.5 queries 285.5 285.5 [YWJ�09]
Pelican-MAC 264 queries 264 264 232 224 Sect. 6

Alpha-MAC 265 queries 264 264 232 216 [YWJ�09] :

LEX 236.3 bytes 2112 236 [DK08]
LEX 240 bytes 2100 264 280 1 [DK10a]
LEX 236.3 bytes 296 280 264 264

LEX 250 bytes 280 248 216 28 Sect. 7.2

AES-128 1 fault 232 232 232 232 [PQ03]
AES-128 1 fault 224 216 224 216 Sect. 5.3

Time complexity is measured in encryption units unless mentioned otherwise.
Memory complexity is measured approximately
: : the tools can find automatically a comparable attack

Table 2. Summary of our Proposed Attacks on Primitives based on AES

number of rounds depends on the key length: 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and
14 rounds for 256-bit keys. We use the round numbers 1, . . . , Nr, where Nr is the number of rounds
(Nr P t10, 12, 14u). We only consider the AES with 128-bit keys and 10 rounds. Because the final AES
round is different from the others, we use the term “r.5 rounds AES” to denote the AES reduced to pr�1q
rounds, including the final round. We use “r rounds AES” to denote the AES reduced to r identical full
rounds. In our terminology, the “normal” 128-bit AES has 9.5 rounds.

Let F28 be the finite field with 256 elements used in the AES. We represent the S-box of the SubBytes
transformation by S : F28 Ñ F28 . In a 4� 4 matrix, we use the following numbering of bytes: byte zero
is the top-left corner, the first column is made of bytes 0-3, while the last column is made of bytes 12-15,
with byte 15 in the bottom-right corner (this is illustrated by Figure 1). We denote the four columns of
a 4� 4 matrix M by M r0..3s,M r4..7s,M r8..11s and M r12..15s respectively.

As we consider only the AES with 128-bit key, we shall describe only its key schedule algorithm.
The key schedule of the other variants can be found in [NIS01]. The key schedule of AES-128 takes the
128-bit master key k0 and extends it into 10 subkeys k1, . . . , k10 of 128 bits each using a key-schedule
algorithm given by the following equations:

KSi :

$''''&
''''%

kirjs � kirj � 4s � ki�1rjs � 0, j � 4, . . . , 15
kir0s � ki�1r0s � S pki�1r13sq � RCONi � 0
kir1s � ki�1r1s � S pki�1r14sq � 0
kir2s � ki�1r2s � S pki�1r15sq � 0
kir3s � ki�1r3s � S pki�1r12sq � 0

We denote by xi the internal state entering round i (i.e., before SubBytes), by yi the internal state
between the SubBytes and ShiftRows operations, while zi and wi denote the internal state before and
after the MixColumns operation, respectively. The plaintext is denoted by P , and the ciphertext by C.
One round is represented by these equations:

Ri :

$''''''&
''''''%

yi � Spxiq � 0

wi �

�
���

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

�
��
�

�
���
yir0s yir4s yir8s yir12s
yir5s yir9s yir13s yir1s
yir10s yir14s yir2s yir6s
yir15s yir3s yir7s yir11s

�
��
� 0

xi�1 � wi � k1�i � 0

It is straightforward to form the system of equations E describing the full encryption process along with
the key schedule: we just have to concatenate some KSi’s and some Ri’s (without forgetting the initial
key addition). Since the right-hand side of all these equations are zero, we stop representing it from now
on.

These equations are extremely sparse, containing at most 5 terms. Each variable occurs in at most
5 equations. These equations form a constrained linear system, where the constraints are that for all
variables, the values of x and Spxq are not independent.

Let us denote by V pXq the vector space spanned by 1, x, Spxq for all x P X, for any set of variables X.
We denote by X the set of all key and internal state variables, and then the cipher equations span a
subspace of V pXq. Any basis of this subspace describes an equivalent system of equations. Therefore, by
an abuse of notation we identify the set of equations describing the block cipher with the vector space
formed by all the linear combinations of the equations, and we still denote it by E. We also introduce
the notation SpEq to denote the set of solutions of the equations E and OpEq to denote their number.

In some cases, we are interested in interchanging the order of the MixColumns and AddRoundKey

operations. As these operations are linear they can be interchanged, by first XORing the data with an
equivalent key and only then applying the MixColumns operation. We denote the equivalent subkey for
the altered version by:

ui �MC�1pkiq �

�
���

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

�
��
� ki

3 A preliminary Tool for Simple Guess-And-Determine Attacks

Confronted with a system of equations in V pXq (possibly describing a cryptographic problem), the most
naive way to obtain its solutions consists in enumerating all the possible values of the variables and
retaining only the combinations satisfying all the equations. However, equations in V pXq are such that,
in a given equation, once all the terms but one are known then the value of the last one can be found
efficiently. This is especially useful when the equations are sparse (efficient cryptographic primitives
usually result in sparse equations). This enables more or less efficient guess-and-determine techniques to
solve the equations. In a cryptographic setting, guess-and-determine attacks are often found when data
is very scarce, and statistic attacks are therefore impossible. Guess-and-determine attacks can be more
or less sophisticated, but the simplest ones typically take the following form:

1: for all values of some part of the (unknown) internal state do
2: Compute the full internal state
3: Retrieve the secrets
4: Check the secrets against available data
5: if match then return secrets
6: end for

The difficulty in finding such an attack is to find which parts of the internal state to enumerate, and
how to recover the rest. In this section, we present a preliminary tool that finds such attacks automatically.
It takes as input a system of equations E � V pXq and a set K0 � X of initially known variables—
these are the variables corresponding to the available data, for instance the plaintext, the ciphertext,
the keystream, etc. The preliminary tool returns a C++ function (the “solver”) which enumerates the
solutions of E (using negligible memory), given the actual values of the known variables. The tool also
returns the exact number of elementary operations the solver performs in the worst case.

This preliminary tool has been developed while performing the research that led to the results pub-
lished in [BDD�10]. The preliminary tool has for instance been used to find one known plaintext attacks
against 1, 1.5, 2, 2.5 and 3 AES rounds, systematically beating the best results found manually. For
instance, prior to the publication of [BDD�10], the best attack on one (full) AES round was a guess-
and-determine attack with complexity 248 described in [DK10b]. The preliminary tool found in less than
a second an attack of complexity 240 and generated its implementation. This attack runs as expected in
about 18 hours using 8 Intel Xeon E5440 cores at 2.83GHz (the parallelization is straightforward using
OpenMP).

3.1 Knowledge Propagation

The core idea of this preliminary tool is quite simple: if there is a linear combination of the equations in
which the values of all terms are known except one, then the value of this last term can be determined
efficiently.

When applied to the AES, this simple procedure automatically harnesses the simple algebraic struc-
ture of the cipher. It automatically exploits the linear relations existing in the key-schedule, as well as
the MDS property of the MixColumns operation: if y � MixColumnspxq then knowledge of any four bytes
in px, yq is sufficient to recover the remaining four efficiently.

An “algebraic” Point of View. The acquisition of further knowledge, either by “guessing” or “deter-
mining” the value of a variable has a simplifying effect on the equations (it removes an active variable
whose value is unknown from the problem). This simplification of the original equations in fact has a
clean algebraic description.

Let K � X be a set of variables whose values are known. If we substituted the values of known
variables into the original equations E, we would indeed get a system with less variables. In fact, this
reduced system is essentially the subspace pE�V pKqq{V pKq of the quotient space V pXq {V pKq: starting
from an equation f P E, its equivalence class rf s in the quotient contains a representative where all the
variables in K have disappeared. Alternatively, the variable x can be deduced from K if either rxs or
rSpxqs belong to the quotient of E � V pKq by V pKq, and we will write x P PropagatepKq when it is
the case. To see why, observe that rxs P pE � V pKqq{V pKq (resp. rSpxqs P pE � V pKqq{V pKq) means
that there exist k P V pKq such that x � k P E (resp. Spxq � k P E). In other terms, there is a linear
combination of the equations E that can be written x� k (respectively Spxq � k). It follows that in any
solution of the equations E, the value of x (resp. Spxq) is the value of k. There is therefore a straight-line
program of size O p|K|q that uniquely determines the value of x given the values of the variables in K—it
just has to evaluate k.

Observe in passing that it is not difficult to check whether x P PropagatepKq: it comes down to
solving a system of (at most) 2|X| linear equations in |E| variables over F28 .

3.2 Automatic Search For a Minimal Number of Guesses

Given a set of “known” variables K0, we may propagate knowledge and obtain the value of new vari-
ables, yielding a new set of known variables K1. But it may turn out that new variables may again be
obtained from K1. We therefore define the function Propagate�pXq which returns the least fixed point
of Propagate containing X:

Propagate�pXq �

"
let Y � PropagatepXq in
if X � Y then return Y else return Propagate�pY q

Note that this definition is well-founded, because Propagate is both monotonic and bounded. In-
deed, it is very easy to check that X � Y implies PropagatepXq � PropagatepY q. It follows that
Propagate� is monotonic as well.

A guess-and-determine solver has been found as soon as we have found a set G of “guesses” such that
Propagate�pGq � X. In that case, we will say that G is sufficient. The problem thus comes down to
automatically finding a sufficient set of minimal size.

The process of exhaustively searching such a set of variables to guess can be seen as the exploration of
a Directed Acyclic Graph (DAG) whose nodes are sets of variables. The starting node is the set K0, and

the terminal node is X. For any set of variables X, and any variable y R X there is an edge X
y
ÝÑ XYtyu,

meaning that we may always choose to “guess” the value of y to gain knowledge. Finally, for any set of
variables X, there is an edge X Ñ Propagate�pXq, symbolizing the fact that increase we may increase
our knowledge by propagation.

In this setting, the preliminary tool tries to find a path from K0 to X going through a small (if not the
smallest) number of “guess” edges. Indeed, the cost of the resulting attack is exponential in the number
of “guessed” bytes. The problem is that the size of the DAG is exponential in the number of variables.

The search works in a depth-first branch-and-bound fashion reminiscent of the DPLL procedure
implemented in many SAT-solvers. The pseudo-code of the search procedure is shown in Algorithm 1.
The function ExplorepK,G,Bq returns a minimal set of variables to guess in order to be able to recover
the entire internal state. Here K denotes the set of currently known variables (i.e., the current node of the
DAG), G denotes the set of variables that have been guessed so far, and B denotes the set of variables that
have been guessed in the best previously known solution. This implicit assumption is that |G| |B|, and
that the result of Explore has cardinality smaller than or equal to B. Evaluating Explore(K0,H,X)
returns a minimal solution.

3.3 Pruning Strategies

An obvious way to speed up the DAG exploration is to avoid guessing a permutation of a set of guesses
previously tested. This can be easily enforced by choosing a total order relation X between variables
and only guessing variables in increasing order. In order to further speed-up the search procedure, we

Fig. 2 The possible sets of guessed variables explored by the tool to find an attack one full AES round.
Each descendant has one more guess than its parent.

root

Algorithm 1 Pseudo-code of the Preliminary Tool

1: function Explore(K,G,B)
2: if K � X then return G
3: if K � Propagate�pKq then
4: return ExplorepPropagate�pKq,G,Bq
5: if |G| � |B| � 1 then return B
6: for all x P FilterGuessespX�Kq do
7: recursive Ð ExplorepKY txu,GY txu,Bq
8: if |recursive| B then B Ð recursive
9: if |G| � |B| � 1 then return B

10: end for
11: return B
12: end function

used several pruning strategies that remove “guess” edges from the DAG without modifying its reacha-
bility properties. These pruning strategies appear in Algorithm 1 under the form of the FilterGuesses
function, which only returns a subset of its argument.

Local Pruning. When it is necessary to guess a new variable, we have to choose which new variable to
guess. Some choices may be equivalent (i.e., yield the exact same knowledge after Propagate�), while
some choices may be superior to some others: if guessing the value of x allows to deduce the value of y,
then it is always better to guess x instead of y. Indeed, we see that if y P Propagate�pKY txuq, then:

Propagate�pKY tyuq � Propagate�pKY txuq

Given a set of known variables, this translates to a partial quasi-order relation on variables:

x ¥K y ðñ y P Propagate�pKY txuq.

This quasi-order in turn induces an equivalence relation between variables:

x �K y ðñ px ¥K yq and py ¥K xq

It is easy to check that x �K y means that guessing x is equivalent to guessing y. Indeed, we have:

x �K y ðñ Propagate�pKY txuq � Propagate�pKY tyuq � Propagate�pKY tx, yuq.

It is therefore sufficient to guess only one variable per equivalence class. In addition, the quasi-order
induces a strict partial quasi-order (which we denote by ¡K) on the set ΩpKq � X{�K of all equivalence
classes. In fact, x ¡K y means that any guess in the class of x yields more knowledge that a guess in the
class of y. It is indeed easy to check that:

x ¡K y ùñ Propagate�pKY tyuq � Propagate�pKY txuq

As a consequence, an interesting pruning strategy consists in trying to guess only one variable per
maximal equivalence class (for ©K) from a node labelled by K. We call this strategy “local pruning”
because it only requires a local exploration of the DAG around the current node.

Let G � pV,Eq denote the DAG defined in section 3.2, and let G1 denote the “locally pruned” DAG
(in fact it is a subgraph of G). Let ρ denote a function that maps equivalence classes to their canonical
representative (for instance, the variable with the smallest index), and let ΩmaxpKq denote the set of
maximal equivalence classes:

ΩmaxpKq �
!
X P ΩpKq : @Y P ΩpKq, Y £K X

)
.

Then G1 � pV,E1q where E1 � E only contains the following edges:

KÑ Propagate�pKq for all K � X

K ρpXq
ÝÝÝÑ KY tρpXqu for all K � X, X P ΩmaxpKq

We now argue that this is a valid pruning strategy. We first prove an (easy) technical lemma.

Lemma 1. If there is a path from any node K to X in G (resp. G1) that crosses k “guess” edges, then
there is a path in G (resp. G1) from any superset of K to X that crosses at most k “guess” edges.

Proof. Let us denote by X an arbitrary superset of K. We prove the result by induction on the length
of the path. If K � X, then there is nothing to prove. Otherwise, there are several cases to consider.

i) The first edge of the path is KÑ Propagate�pKq, and there exist an edge X Ñ Propagate�pXq.
In this case, Propagate�pXq is a superset of Propagate�pKq, and by induction hypothesis there
exist a path with at most k guess edges between Propagate�pXq and X. It is easy to conclude.

ii) The first edge of the path is KÑ Propagate�pKq, and there is no edge X Ñ Propagate�pXq. In
this case, X � Propagate�pXq, and the previous argument can be adapted, since X is a superset
of Propagate�pKq.

iii) The first edge of the path is K x
ÝÑ KYtxu and x P X. This case is easy, as X is a superset of KYtxu,

and by induction hypothesis there exist a path with at most k � 1 guess edges between X and X.

iv) The first edge of the path is K x
ÝÑ K Y txu and x R X, but the edge X

x
ÝÑ X Y txu exists in the

graph. Then, because X Y txu is a superset of KY txu, we can conclude by induction that there is
a path in the graph with at most k � 1 edges between X Y txu and X.

v) Lastly, the first edge of the path is K x
ÝÑ K Y txu and x R X, but the edge X

x
ÝÑ X Y txu does

not exist in the graph. This situation only occur in the “pruned” graph. However, there exist by
definition an edge X

y
ÝÑ X Y tyu such that Propagate�pX Y txu � Propagate�pX Y tyuq. It

follows that Propagate�pX Y tyuq contains both X and x, and is therefore a superset of KY txu.
We can then conclude by induction.

We are now ready to state that pruning the graph G cannot accidentally kill the best solutions.

Lemma 2. If there is a path from any node K to X in G that crosses k “guess” edges, then there is a
path from K to X in G1 that crosses at most k “guess” edges.

Proof. The proof is by induction on the total number of edges in the path between K and X in G. If
K � X, then there is nothing to prove. Otherwise, if there is a “propagate” edge going out of K, then
there exists a path in G from Propagate�pKq to X that crosses at most k guess edges. By induction
hypothesis, a path of lower cost exists in G1, and the edge KÑ Propagate�pKq always exist in G1.

If there are only “guess” edges going out of K, then we denote the first edge of the path from K to X
in G by K y

ÝÑ KY tyu, and by Y the class of y. Two cases are possible:

– Either Y is maximal (i.e., belongs to ΩmaxpKq), and there is an edge K ρpY q
ÝÝÝÑ K Y tρpY qu in G1.

By definition, we know that Propagate�pK Y tyuq � Propagate�pK Y tρpY quq. It follows that
there is a path in G with at most k � 1 guess edges from Propagate�pK Y tρpY quq to X, which
allows to conclude by induction hypothesis that a corresponding path also exists in G1. Because
Propagate�pKY tρpY quq is reachable in G1 from K, the result is established.

– Or Y is not maximal, which means that there is another class X P ΩmaxpKq such that X ¡K Y . Then

in G1 there is an edge K ρpXq
ÝÝÝÑ K Y tρpXqu. Because Propagate�pK Y tyuq � Propagate�pK Y

tρpXquq, then there is in G a path with at most k�1 guess edges between Propagate�pKYtρpXquq
and X (this is guaranteed by lemma 1), and by induction hypothesis a corresponding path exists in
G1. From there, it is easy to see that there is a path from K to X (via K Y tρpXqu) in G1 with at
most k guess edges. [\

Global Pruning. A somewhat surprising consequence of the fact that Propagate� is monotonic brings
in a interesting result, enabling us to further discard some bad guesses in a very powerful way.

Lemma 3. Let V � X be an insufficient set of variables, and let G � X be a sufficient set of variables.
Then:

GX pX�Propagate�pV qq � H

Proof. Let us reason by contradiction and assume that GX pX�Propagate�pV qq � H. Then, because
G is a subset of X, then G � Propagate�pV q. By monotonicity and idempotence of Propagate� we
find: X � Propagate�pGq � Propagate�pV q � X. [\

If G is a sufficient set of minimal size, then Lemma 3 gives us a priori knowledge on G, and it enables
to choose the first guess of the search procedure in X � Propagate�pV q without risking to throw the
best solution away.

It is possible to exploit lemma 3 even further for more pruning. Let us assume that in the explo-
ration process we currently know the variables in K, and that we have guessed the variables in G, so
that K � Propagate�pGq. Let B be a sufficient set of minimal size such that G � B, i.e., the best we
may hope to find from the current state. Lemma 3 tells us that BX pX�Propagate�pV qq � H. This
reveals us some variables in B, and could be used to direct the exploration towards B. However, if V is
badly chosen then it may very well be that all the interesting variables we learn to be in B are already
known, in which case we would not learn anything.

However, choosing V to be a superset of K ensures that KX pX�Propagate�pV qq � H, and thus
removes the previous problem. We may safely choose our next guess in X�Propagate�pV q when K � V .
The problem remains to (efficiently) find insufficient sets of variables V such that Propagate�pV q is as
big as possible. At each step of the DAG exploration, there is a trade off to make between spending time
pruning the graph and spending time exploring it. We have found a simple greedy heuristic to be quite
successful to build a good set V . It is shown in Algorithm 2, along with other the pruning strategies we
have implemented.

Algorithm 2 Pruning Strategies for Algorithm 1.

1: function GreedyGlobalPruning(V)
2: Find variable x P X� V such that |Propagate�pV Y txuq| is minimal
3: if Propagate�pV Y txuq � X then return V
4: return GreedyGlobalPruningpV Y txuq
5: end function

6: function LocalPruning(K, V)
7: Bad ÐH
8: for all x P V do
9: if x R Bad then

10: for all y P Propagate�pKY txuq do
11: if y � x then Bad Ð BadY tyu
12: end for
13: end if
14: end for
15: return V �Bad
16: end function

17: function FilterGuesses(K)
18: Candidates Ð GreedyGlobalPruningpKq
19: for all x P Candidates do
20: if there exist y P G such that x X y then Candidates Ð Candidates� txu
21: end for
22: return LocalPruning(Candidates)
23: end function

Linearly Occurring Variables. Since the equations E cannot be completely linear—unless we were
looking at a very uninteresting primitive—, then some variables appear both linearly, and under the S-
box. However, some variables may appear only linearly (this is for instance the case of the last round key
in the AES). If a variable x occurs only linearly, then it can be eliminated from all the equations except
one by taking linear combinations of the equations. Taking apart the single equation containing x, we
obtain a new system of equations E1 with one less equation and one less variable. The search procedure
can safely be run on E1.

3.4 Computing and Testing Solutions

If xi P PropagatepKq, then there exists a vector αi such that rE � αis � rxis (resp. rSpxiqs), where
the square brackets again denotes the equivalence class in the quotient E{V pKq. The vector αi can be
computed using straightforward linear algebra given xi and K, as mentioned in section 3.1. Once a
sufficient set G has been found, and all the vectors αi have been computed, we consider the subspace P
spanned by E � αi for all vectors αi corresponding to “propagated” variables in X�G. All the equations
belonging to this subspace P are satisfied by definition once the variables in X�G are “determined” from
those (in G) whose values have been guessed.

It is therefore interesting to consider a supplementary C of P in E: it describes equations that are
(linearly) independent from those used for the “determine” step of the attack. To check whether a given
choice of values for the guessed variables is correct, it suffices to a) determine the values of the other
variables and b) check whether the equations in C hold. The complexity of the resulting procedure is
roughly 256|G| encryptions.

3.5 Implementation Details

Writing a proof-of-concept implementation of Algorithm 1 is not very complicated, but writing an efficient
version thereof is a bit more challenging. The only non-trivial parts in the implementation of the search
procedure is the data structure holding the equations E and the Propagate function. To make it efficient,
we exploited the sparsity of the equations E. Recall from section 3.1 that Propagate tries to solve the
equation in α:

rE � αs � rxs (1)

The problem boils down to solving systems of linear equations. This is much more efficient if the equations
come in some kind of triangular form. We therefore first echelonize the equations E, and then use a sparse

triangular solver with sparse right-hand-side, i.e., a sparse linear algebra subroutine that solves A �x � y
when A is triangular and sparse, and y is also sparse. The interest of this procedure is that it may perform
sensibly less than n operations when A and y are sparse enough (see [Dav06] for more details).

The quotient operation in fact removes rows from the matrices and the vectors it is applied to. So,
when a new variable x becomes “known”, we have to remove the rows x and Spxq from the matrix
representing the equations. If one of these rows was pivotal, then removing it may leave the matrix
in a non-echelonized state. This can be fixed through a simple column permutations in some cases. In
some other cases, a new column has to be recomputed, using a variant of the sparse triangular solver.
All in all, removing rows and re-echelonizing the matrix represent a negligible fraction of the running
time, because the matrix representing E is stored in a special sparse data-structure: non-zero entries
are stored column-wise and row-wise in doubly-linked lists. This allows to efficiently remove rows and
columns. Removed entries are kept in memory, and can be efficiently restored when backtracking. An
array stores the pivot column for each (pivotal) row. A useful optimization follows from the observation
that equation (1) only has a solution if x (resp. Spxq) is a pivotal row in the matrix.

The code has been written in the OCaml language, and weights about 5000 lines, more than 1500
of them devoted to the linear algebra. Debugging the sparse linear algebra subroutines was a bit chal-
lenging because of the unusual data-structure holding the matrix. Parallelizing the DAG exploration
is not difficult, and we developed a distributed version of Algorithm 1 using a customized version of
the MapReduce framework [DG10] built on top of Leroy’s OcamlMPI library (and building on ideas by
Filliâtre and Kalyanasundaram [FK11]). We used it to run our program on two types of platform:

– Roughly 100 Intel cores of various speeds (between 2 and 3 Ghz) in parallel using all the desktop
computers of the lab during the night.

– 400 MIPS-like cores in a server containing 8 Tilera TilePRO64 CPUs with 50 available cores each
(unfortunately, the OCaml compiler cannot generate native MIPS assembly, and hence generated
bytecode. Interpreting the bytecode causes a tenfold performance penalty).

On the second platform, exploring the graph for one full round takes about a minute. For 1.5 rounds,
it takes 18 minutes (and finds an attack with 7 guessed bytes). For 2 full rounds, it takes 67 minutes. For
2.5 rounds, it takes 3 weeks. We did not have the patience to wait a few weeks for the exhaustive search
to terminate on 3 rounds (a solution faster than exhaustive search was found, but we have no guarantee
that it is the fastest attack of the considered class). At the very least, we hope that we demonstrated
that it is possible to parallelize the search process at will.

3.6 Limitations

The main limitation of this approach is that it completely fails to take into account the differential
properties of the S-box. For instance, it cannot exploit the fact that when the input and output differences
of the S-box are fixed and non-zero, then at most 4 possible input values are possible. Therefore, this
approach alone does not bring useful result when more than one plaintext is available. However, it can be
used as a sub-component in a more complex technique. We now move on to describe such a generalization
that allows to find more powerful attacks.

4 An Improved Tool for Meet-In-The-Middle Attacks

The equations describing the AES enjoy an interesting and important property. Let us consider a cover of
the set of variables, X � X1YX2 (the intersection of X1 and X2 may be non-empty). Then any equation
f P E can be written f � f1 � f2, with f1 P V pX1q and f2 P V pX2q. In some sense, these equations are
separable. We will see that this allows a recursive meet-in-the-middle approach.

4.1 Solving Subsystems Recursively

The simple algebraic structure of the equations allows us to efficiently extract from a system E a subsystem
containing only certain variables (say X1), by simply computing the vector space intersection EXV pX1q.
In the sequel we will denote it by E pX1q. We note that a solution of E is also a solution of EpX1q, for
any X1 � X, but that the converse is not true in general.

Now let us be given a partition X � X1YX2 (we first study the case X1XX2 � H) and two black-box
solvers A1 and A2 that find all the solutions of EpX1q and EpX2q, respectively. We then seek to use the

two sub-solvers A1 and A2 to find the solutions SpEq of the full problem. An obvious way would be
to compute the solutions S1 of EpX1q and S2 of EpX2q, and to test all the solutions in the Cartesian
product S1 � S2. This would require checking |S1| � |S2| candidates against the equations.

It is possible to do better though. Firstly, we observe that the vectors in S1�S2 automatically satisfy
the equations in EpX1q �EpX2q. Therefore we first compute a supplementary of EpX1q � EpX2q inside E
(let us call it M). The solutions of E are in fact the elements of S1 � S2 satisfying the equations of M.
This already makes less constraints to check. Second, sieving the elements satisfying constraints from
M can be done in roughly |S1| � |S2| operations, using variable separation and a table. Let pfiq1¤i¤m
be a basis of M, and fi � gi � hi with gi P V pX1q and hi P V pX2q. If the values of all the variables in
X1 (resp. X2) are available, then the gi’s (resp. hi) may be evaluated. We denote by G (resp. H) the
function that evaluates all the gi (resp. hi) on its input. If ` � |X1|, then:

G : px1, . . . , x`q ÞÑ
�
g1px1, . . . , x`q, . . . , gmpx1, . . . , x`q

	

We build two tables:

L1 ÐÝ tpGpx1q, x1q | x1 solution of EpX1qu

L2 ÐÝ tpHpx2q, x2q | x2 solution of EpX2qu

Then, the solutions of E are the pairs px, yq for which there exist a z such that pz, xq P L1 and pz, yq P L2.
They can be identified efficiently by various methods (sorting the tables, using a hash index, etc.). We
have just combined A1 and A2 to form a new solver, A � A1 ' A2, that enumerates the solutions of
E. Note that to extend this work at a cover of X we just have to perform the match also on variables
common to X1 and X2.

Complexity of the Combination. Given a cover X � X1 Y X2, and two sub-solvers A1 and A2

respectively computing SpEpX1qq and SpEpX2qq, the complexity and the properties of A � A1 ' A2 are
easy to determine. Let us denote by T pAq the running time of A, by MpAq its memory consumption,
and by V pAq the set of variables occurring in the corresponding equations. The number of solutions
returned by a solver A only depends on V pAq, as it is the number of solutions of E pV pAqq. For the sake
of simplicity, we denote it by OpAq, and for that of consistency we also use the notation O pE pV pAqqq.
Note that the number of solutions found by a solver cannot be greater than its running time, so that
OpAq ¤ T pAq.

The number of operations performed by the combination is the sum of the number of operations
produced by the sub-solvers plus the number of solutions (the time required to scan the tables, namely
|S1| � |S2|, is in the worst case of the same order as the running time of the two sub-solvers), so that

T pA1 ' A2q � T pA1q � T pA2q �O
�
A1 ' A2

	
.

However, we use the following approximation

T pA1 ' A2q � max
!
T pA1q , T pA2q , O

�
A1 ' A2

)
.

It is possible to store only the smallest table, and to enumerate the content of the other “on the
fly”, while looking for a collision. This reduces the memory complexity to the maximum of the memory
complexity of the sub-solvers, and the size of the smaller table. This yields:

MpA1 ' A2q � max
!
MpA1q,MpA2q,min

�
OpA1q, OpA2q

)
.

Heuristic Assumption On the Number of Solutions. Evaluating the complexity of a given (possibly
recursive) combination requires evaluating the number of solutions of various sub-systems. This is a
difficult problem in general, and in order to be able to quickly evaluate the properties of a combination,
we use the following heuristic assumption:

log256OpEpXqq � |X| � dimEpXq.

This heuristic assumption introduces a risk of failure, or of wrong estimation of the complexity. To protect
ourselves against this risk, we have tried, when possible, to implement the solvers and check whether

this assumption holds. A difficulty that we encountered in practice stems from the following “differential”
system: "

x� y � ∆i

Spxq � Spyq � ∆o
.

If S is the S-box of the AES, then this system has one solution on average (over the random choice of the
differences), and the hypothesis holds. However, in degenerate situations, for instance when ∆i � ∆o � 0,
then the system has 28 solutions... Surprisingly, an S-box with very bad differential properties would make
life more difficult for our tool. This follows from the fact that on a good S-box, there are very few pairs
of input/output values that generate a given input/output difference, and this makes our assumption
more likely to hold in “differential” situations.

This assumption makes it easy to evaluate the performance of the combination of two sub-solvers: it
boils down to computing the dimensions of a few vector spaces.

In addition, it provides this interesting property:

Lemma 4. If A1 and A2 are two solvers at least as fast as exhaustive search (on their respective systems
of equations) and if EpV pA1q Y V pA2qq � t0u then A1 ' A2 is strictly faster than exhaustive search.

Proof. Let us denote X1 � V pA1q, X2 � V pA2q and X � X1YX2. We have T pAiq ¤ 256|Xi| ¤ 256|X|�1

and O pEpXqq � 256|X|�dimEpXq ¤ 256|X|�1. So, we obtain T pA1 ' A2q ¤ 256|X|�1 256|X|. [\

4.2 Recursive Combinations of Solvers

Given a system of equations E, we would like to build an efficient solver by breaking the problem down
to smaller and smaller subsystems, recursively generating efficient sub-solver for the sub-problems and
combining them back.

Recursively combining solvers yields solving trees of various shapes. In such a tree, all the nodes are
labelled by a set of variables: the leaves are labelled by single variables and each node is labelled by the
union of the labels of its children. Each node is in fact a solver that solves the sub-system EpXq, where
X is the label of the node. The solver is obtained by combining its children according to the procedure
described in section 4.1. For obvious reasons, we enforce that the label of each node is strictly larger than
the labels of its children.

The leaves of a solving tree are the “base solvers” associated to variables of X. Note that Eptxuq (the
intersection of the vector space E with x1, x, Spxqy cannot be further broken down because obviously txu
cannot be partitioned anymore. It is a “base case” of the decomposition, and it can be dealt with in two
ways:

– Either Eptxuq � t0u, so that we cannot easily determine how the variable x is constrained by the
equations. In that case, the set of solutions of Eptxuq is in fact the whole field F28 .

– Or Eptxuq � t0u, so that we know at least an equation involving only x and Spxq. In that case,
x can only take a few possible values, whose number typically follows a Poisson distribution of
expectation 1. To be consistent with the hypothesis introduced section 4.1, which will be used for
future combinations, it can be assumed that x takes a single value, and then x can be seen as a
known variable.

Let us denote by BaseSolverpxq, the solver performing an exhaustive search to solve Eptxuq. As we
only consider case where Eptxuq � t0u, a base solver essentially guesses a variable. Its complexity is:

 T pBaseSolverpxqq � 28.

 M pBaseSolverpxqq � 1.

 O pBaseSolverpxqq � 28.

This implies that, for considered solvers (i.e., those generated by base solvers), time, memory and number
of solutions are powers of 256. In addition, since our base solvers perform exhaustive search and according
to lemma 4, considered solvers are at least as fast as the exhaustive search and strictly faster if they solve
a system containing at least one equation. In the rest of this article, unless otherwise stated explicitly, a
“solver” always designate the recursive combinations with base solvers at the end.

Note that the guess-and-determine attacks discussed in the previous section form a particular case
of this more general framework. They can be described by a recursive combination where, at each step
of the decomposition, one of the two solvers is a base solver. However, it turns out that allowing more
general tree shapes results in better attacks.

Comparing Solvers. It is always possible to construct several solving trees for the same problem in
different ways, and sometimes more or less efficiently. Indeed, a quick calculation, with |X| � n, gives
the number of distinct covers of X:

|ttX1, X2u |X1 YX2 � X,X1 � X,X2 � Xu| �
3n � 1

2
� 2n.

The actual number of different solvers is then necessarily even larger. In addition, because our solvers
are at least as fast as exhaustive search, we observe that our approximation of the time complexity of a
solver for E pXq can take only n different values. So we deduce that there are many solvers with the same
approximate complexity solving the same system. We will therefore introduce a (quasi-)order relation
over solvers. A natural candidate is:

A1 ©1 A2 ðñ

"
V pA1q � V pA2q
T pA1q ¤ T pA2q

.

In other words, a solver is better than an other if it solves the same system in less time. Just like any
other partial quasi-order, it induces an equivalence relation:

A1 � A2 if and only if A1 ©1 A2 and A2 ©1 A1.

This quasi-order has the advantage of being compatible with the combination operation (i.e., A1 ©1 A2

implies A1 ' A3 ©1 A2 ' A3), and it is therefore also the case of the equivalence relation. We observe
that given a set of variables X1, there can be only one maximal solver (up to equivalence) for EpX1q. Thus,
our objective is now clearly identified: find a maximal (i.e., the best) solver for E (up to equivalence).

Note that many solvers are not comparable with this quasi-order. In particular, two solvers cannot
be compared if they do not enumerate the exact same set of variables. It would seem natural that if a
solver is faster and enumerates more variables, then it should be better. This prompts for the relaxation
of the V pA1q � V pA2q condition into V pA1q � V pA2q in the definition of ©1. However, a problem is
that this relaxed quasi-order relation is incompatible with the ' operation (explicit counter-examples
exist). The problem is that a faster solver that enumerates more variables may generate more solutions,
and this can slow down the subsequent combination operations. Trying to fix the problem leads to the
definition of:

A1 ©2 A2 ðñ

$&
%
T pA1q ¤ T pA2q
V pA1q � V pA2q
O pA1q ¤ O pA2q

.

Unfortunately, this new condition is not enough to ensure compatibility with the ' operation (explicit
yet subtler examples exist).

4.3 Finding the best solver

To search (and find) the best solver for a system of equations E, we have developed two algorithms. This
section is divided into four parts. In the first we give a basic algorithm to perform an exhaustive search
for the best solver. In the second, we present three results that reduce the search space. In the third,
we apply these results to obtain an algorithm a bit more efficient. Finally, in the last part we present a
probabilistic algorithm for the same problem.

Exhaustive Search for the Best Recursive Solver The procedure ExhaustiveSearch in Algo-
rithm 3 computes the set of all maximal solvers for all sub-systems of a given system of equations E (up
to equivalence). In particular, it will construct a maximal solver for E itself. The algorithm is reminiscent
of (and inspired by) the Buchberger algorithm for Gröbner bases [Buc65]. More generally Algorithm 3 is
a saturation procedure, and this also makes it similar to many automated deduction procedures (such a
Resolution-based theorem provers or the Knuth-Bendix completion algorithm). At each step, the algo-
rithm maintains a list G of solvers for subsystems of the original system E. It also maintains a list P of
pairs of solver that remain to be processed. When a new solver is found, all the solvers that are worse
(according to ©1) are removed from G (and all pairs containing it are removed as well). Then, new pairs
containing the new solver are scheduled for processing.

Algorithm 3 Exhaustive Search for an optimal solver

1: function Update-Queue(G,P,A)
2: if A1 «1 A for all A1 P G then
3: G1 Ð tAu YG� tA1 P G : A ©1 A1u
4: P 1 Ð P �

pA1,A2q P P : A ©1 A1 or A ©1 A2

(

5: P 1 Ð P 1 Y

pA,A1q : A1 P G1, V pAq � V pA1q, V pA1q � V pAq

(

6: end if
7: return pG1,P 1q
8: end function

9: function ExhaustiveSearch(EpXq, Tup)
10: G Ð

BaseSolverpxq : x P X

(

11: P Ð

pGi, Gjq : 1 ¤ i j ¤ |G|u

12: while P � H do
13: Pick pA1,A2q P P and remove it from P
14: C Ð A1 ' A2

15: if T pCq ¤ Tup then pG,Pq Ð Update-QueuepG,P, Cq
16: end while
17: return G
18: end function

termination. This search procedure only uses the compatibility of ©1 with the combination operation
'. First, we notice that, at each step of the algorithm, G can contain at most one solver (the best found
so far) for each subset of X. It follows that |G| ¤ 2|X|. Next, for a subset Y of X, there exist at most
|Y | distinct solvers (up to equivalence), thanks to lemma 4. It follows that the number time G will be
modified by UpdateQueue is upper bounded by |X| � 2|X|. Next, there can be only a finite number of
steps between two updates of G, because each iteration of the loop consumes an element of P, and only an
actual modification of G can make P grow. As a result, the ExhaustiveSearch procedure terminates
in finite time.

Correction. One of the invariants of this algorithm comes from the compatibility of ©1 with the com-
bination operation ' and is the property: ”if A1, A2 P G and T pA1 ' A2q ¤ Tup then either there is
pA3,A4q P P such that A3 ' A4 ©1 A1 ' A2 or there is A3 P G such that A3 ©1 A1 ' A2”. But, when
the algorithm terminates, P is empty and so we always are in the second case of the previous property.
This means that for each solver with an approximate time complexity smaller than Tup and generated
from solvers of G, there is a solver in G solving the same system with at least the same approximate time
complexity. But the base solvers allow to generate all solvers and G contains them, so G also allows it.
In particular G allows to generate the best solver for EpXq and, as a consequence, if Tup is high enough
then G contains it.

Complexity. The complexity of this algorithm seems difficult to evaluate. It depends on the equations,
and on the order in which the combinations are performed. The parameter Tup allows the user to enforce
an upper-bound on the time complexity of the generated solvers (by discarding the ones that are too
slow). For small values of Tup, this may for instance allow to prove the non-existence of recursive solvers
with complexity lower than a threshold. The running time of the exhaustive search also gets smaller with
lower values of Tup.

In practice, what dominates the execution of this algorithm is the computation of the dimension of
the combination C, and the bookkeeping required to update G (P can be handled implicitly).

4.4 Usage

Algorithm 3 has been developed and implemented in C. The running time is dominated by the compu-
tation of the time-complexity of a combination of solvers, which involves computing the dimension of
a vector-space intersection. Various tricks can also be used to speed this operation up (using a sparse
representation, precomputing partially echelonized forms, not computing an intersection but a sum, etc.
The program is 10’000 lines long, the majority of which is dedicated to linear algebra subroutines.

When an interesting solver for E is found by the search procedure, it is not particularly complicated
to recursively generate a C++ implementation thereof (i.e., a function that takes as input the “known”
variables, and returns the solutions of the system of equations), or a text file that describes which variables

to enumerate, which tables to join, in a nearly human-readable language. The generated C++ files are
not very optimized.

We emphasize again that this method is strictly more general than that presented in the previous
section, because any attack that could be discovered by the preliminary tool can also be found by the
algorithms discussed in this section. The next sections show multiple examples of attacks found by these
tools.

5 New Attacks on Reduced Versions of the AES

5.1 Observations on the Structure of AES

In this section we present well-known observations on the structure of AES, that we use in our attacks.
We first consider the propagation of differences through SubBytes, which is the only non-linear operation
in AES.

Property 1 (the SubBytes property). Consider pairs pα � 0, βq of input/output differences for a single
S-box in the SubBytes operation. For 129/256 of such pairs, the differential transition is impossible, i.e.,
there is no pair px, yq such that x ` y � α and Spxq ` Spyq � β. For 126/256 of the pairs pα, βq, there
exist two ordered pairs px, yq such that x` y � α and Spxq ` Spyq � β, and for the remaining 1/256 of
the pairs pα, βq there exist four ordered pairs px, yq that satisfy the input/output differences. Moreover,
the pairs px, yq of actual input values corresponding to a given difference pattern pα, βq can be found
instantly from the difference distribution table of the S-box. We recall that the time required to construct
the table is 216 evaluations of the S-box, and the memory required to store the table is about 217 bytes.

Property 1 means that given the input and output difference of an S-box, we can find in constant
time the possible absolute values of the input, and there is only a single one on average.

The second observation uses the linearity of the MixColumns operation, and follows from the structure
of the matrix used in MixColumns:

Property 2 (the MixColumns property). Consider a pair pa, bq of 4-byte vectors, such that a �MCpbq, i.e.,
the input and the output of a MixColumns operation applied to one column. Denote a � pa0, a1, a2, a3q
and b � pb0, b1, b2, b3q where ai and bj are elements of F28 . The knowledge of any four out of the eight
bytes pa0, a1, a2, a3, b0, b1, b2, b3q is sufficient to uniquely determine the value of the remaining four bytes.

The third observation is concerned with the key schedule of AES, and exploits the fact that most of
the operations in the key schedule algorithm are linear. It allows the adversary to get relations between
bytes of non-consecutive subkeys (e.g., kr, kr�3 and kr�4), while “skipping” the intermediate subkeys.
The observation extends previous observations of the same nature made in [FKL�00,DK10a].

Property 3 (the key-schedule properties). Consider a series of consecutive subkeys kr, kr�1, . . . , and de-
note kr � pa, b, c, dq and:

u � RotBytespSubBytespkrr12..15sqq `RCON rr � 1s

v � RotBytespSubBytespkr�1r12..15sqq `RCON rr � 2s

w � RotBytespSubBytespkr�2r12..15sqq `RCON rr � 3s

x � RotBytespSubBytespkr�3r12..15sqq `RCON rr � 4s

Then, the subkeys kr�1, kr�2, . . . can be represented as linear combinations of pa, b, c, dq (the columns of
kr) and the 32-bit words u, v, w, x, as shown in the following table:

Round kr0..3s kr4..7s kr8..11s kr12..16s
r a b c d

r � 1 a` u a` b` u a` b` c` u a` b` c` d` u
r � 2 a` u` v b` v a` c` u` v b` d` v
r � 3 a` u` v ` w a` b` u` w b` c` v ` w c` d` w
r � 4 a` u` v ` w ` x b` v ` x c` w ` x d` x

As a result, we have the following useful relations between subkeys:

i) kr�2r0..3s ` kr�2r8..11s � krr8..11s,

ii) kr�2r4..7s ` kr�2r12..15s � krr12..15s,

iii) kr�2r4..7s ` v � krr4..7s,

iv) kr�4r12..15s ` x � krr12..15s,

v) kr�3r12..15s � krr8..11s ` krr12..15s ` w.

5.2 Attacks on Two-Round AES

In this section we consider attacks on two rounds of AES, denoted by rounds 1 and 2. First we present
attacks on two full rounds with two known plaintexts. We then study the interesting case of two chosen
plaintext. In both settings, the tools vastly outperformed human cryptanalysts:

– Given two known plaintexts, the best previously known attack had a complexity of 248 encryp-
tions [BDD�10]. The improved tool of section 4 found an attack with time complexity 232 in this
setting. The memory complexity of this attack is the space required to store lists of 224 elements,
but we describe here a more understandable version with a suboptimal memory complexity of about
232.

– Given two chosen plaintexts, the best known attack had a complexity of 228 encryptions [BDD�10],
and the same tool found an attack of complexity 28 encryptions (!).

Two Known Plaintexts. The attack is a meet-in-the-middle whose main ingredient is the possibility
to isolate a set of about 232 candidates for both k1r0..3s and k1r12..15s with only 232 operations. These
8 bytes are a sufficient set (as defined in section 3), which means that they are sufficient to recover the
full key with a complexity of about one encryption.

First, we assume that x1r12..15s is known (for the first message), and we try to derive the value of
some other bytes. We can easily obtain the differences in x1r12..15s. Then, by linearity of the MixColumns
operation, we obtain the differences in z0r12..15s. Using Property 1, we also obtain the values and the
differences in byte 1, 6, 11 and 12 of x0 (and thus of k0). Note that the values of w0r12..15s and k1r12..15s
are revealed in the process. Let us denote by A the set of bytes that can be obtained from x1r12..15s.

Similarly, if the value of x1r0..3s is known, then the values (and differences) in byte 0,2, 5,10, 13 and
15 of x0 and k0, as well as w0r0..3s and k1r0..3s could be recovered. Let us denote these bytes by B.

Even though the bytes in A Y B can take 264 values, this can efficiently be reduced to 232. Indeed,
we claim that there exist (at least) 4 linear relations between bytes of A and those of B:

f1pAq � g1pBq

f2pAq � g2pBq

f3pAq � g3pBq

f4pAq � g4pBq

Thanks to these relations, a tuple of values from A is associated to a single tuple of values of B on average:
for each one of the 232 tuples of values in A, evaluate the fi’s and store the result in a hash table. Then
for each one of the of the 232 tuples of values in B, evaluate the gi’s, and loop-up the corresponding
value(s) in A.

Two of these linear relations can be obtained very simply: given k1r0..3s and k1r12..15s, we deduce
k2r0..3s. From there, it is also possible to compute bytes 0, 5, 10 and 15 from x1 by partial decryption.
Amongst these, x1r15s occurs in A while x1r0s occurs in B. This already gives two linear equations
connecting A and B.

Two other constraints can be obtained in a more sophisticated way. First, we notice that given the
key bytes in A and B, it is possible to retrieve the full k2 except byte 4, 8 and 12 by just exploiting the
key-schedule and Property 3. Focusing on the last two columns of w1, we find that 3 bytes are known
in each column in w1 and two bytes are known in each column of z1. Thanks to Property 2, this gives a
linear relation between the known bytes of each column.

We note that [BDD�10] presents a simpler attack with the same complexity, but requiring 3 known
plaintexts.

Two Chosen Plaintexts. If the adversary is given two chosen plaintexts, then the time complexity
can be reduced. The adversary asks for the encryption of two plaintexts which differ only in four bytes
composing one column. The attack relies on Property 4 below, which cleverly uses the linearity in the
key-schedule of the AES.

Property 4. For all i ¥ 1 we have the following equations:

i) zi�1r4..7s ` zir0..3s ` zir4..7s �MC�1
�
xir4..7s ` xi�1r0..3s ` xi�1r4..7s

	

ii) zi�1r8..11s ` zir4..7s ` zir8..11s �MC�1
�
xir8..11s ` xi�1r4..7s ` xi�1r8..11s

	

iii) zi�1r12..15s ` zir8..11s ` zir12..15s �MC�1
�
xir12..15s ` xi�1r8..11s ` xi�1r12..15s

	

Proof. Here again the idea is to exploit the interaction between the linearity of MixColumns and the
linear operations in the key-schedule. We only prove the first equation (the proofs of the other two is
quite similar). Expressing y in terms of w gives:

zi�1r4..7s �MC�1 pwi�1r4..7sq

We can relate wi�1 to xi thanks to the AddRoundKey operation:

zi�1r4..7s �MC�1 pkir4..7s ` xir4..7sq

And there, we can exploit the linearity of the key-schedule:

zi�1r4..7s �MC�1 pki�1r0..3s ` ki�1r4..7s ` xir4..7sq

The sub-keys can then be expressed back in terms of w and x:

zi�1r4..7s �MC�1 pwir0..3s ` xi�1r0..3s ` wir4..7s ` xi�1r4..7s ` xir4..7sq

And then, the linearity of MixColumns can be exploited as well:

zi�1r4..7s � zir0..3s ` zir4..7s `MC�1 pxir4..7s ` xi�1r0..3s ` xi�1r4..7sq .

[\

Fig. 3 Two chosen plaintexts attack on two AES rounds. Gray bytes indicate the presence of a difference,
and hatched bytes indicate the presence of a known difference. If byte i is known in x0, then the actual
values of all the bytes with the same number can be found.

P

ARK

0

1

2

3

x0

SB

SR

0

1

2

3

z0

MC

ARK

1

1

1

1

2

2

2

2

3

3

3

3

0

0

0

0

x1

SB

SR

1

1

1

1

2

2

2

2

3

3

3

3

0

0

0

0

z1

MC

ARK

C

Assume that x0r0s is known: it is possible to deduce there from the value (and the difference) in z0r0s,
and finally the difference in x1r0..3s (by Property 2). Because the difference in y1r0..3s can be deduced
from the ciphertexts, it follows that the actual values in x1r0..3s can be deduced thanks to Property 1.
This also reveals bytes 0,7,10 and 13 of z1 (observe Figure 3). It follows that if x0r0..3s were known, then
the key could easily be deduced. The attack works by constructing a set of possibles values of x0r0..3s of
expected size 256 in which the actual solution is guaranteed to be found. This process has a complexity
of the order of 256 encryptions, and therefore dominates the complexity of the attack. A pseudo-code of
the attack is shown in Algorithm 4. The attack works in 3 stages, each one using Property 4 in a different
way.

Algorithm 4 Pseudo-code of the attack on 2 rounds using 2 chosen plaintexts.

1: function 2R-2CP-Attack(P,C)
2: for all x0r2s P F28 do � Build T2

3: compute z0r10s and x1r8..11s
4: let u � x1r8..11s ` Cr4..7s ` Cr8..11s in
5: let i � z0r10s ` p0d, 09, 0e, 0bq � u in
6: T2ris Ð T2ris Y tx0r2su
7: end for
8: for all x0r3s P F28 do � Build T3

9: compute z0r7s and x1r4..7s
10: let u � x1r4..7s ` Cr0..3s ` Cr4..7s in
11: let i � z0r7s ` p0b, 0d, 09, 0eq � u in
12: T3ris Ð T3ris Y tx0r3su
13: end for
14: for all x0r1s P F28 do � Retrieve the key
15: Compute z0r13s, x1r12..15s, z1r3s, z1r6s, z1r9s, z1r12s
16: Compute z1r13s � Using property 4
17: Compute x1r1s, the difference in z0r1s, and x0r0s
18: Compute z0r0s, x1r0..3s, z1r0s, z1r7s and z1r10s
19: Read possible value(s) of x0r2s in T2

�
z1r6s ` z1r10s

�

20: Read possible value(s) of x0r3s in T3

�
z1r3s ` z1r7s

�

21: Compute k2 and check for correctness
22: end for
23: end function

1. We first show that once x0r1s is known, then x0r0s can be determined using Property 4, item iii).
The equation is:

z0r12..15s ` z1r8..11s ` z1r12..15s �MC�1
�
x1r12..15s ` Cr8..11s ` Cr12..15s

	
,

We enumerate the possible values of x0r1s and compute all the bytes marked “1” in Figure 3. At
this stage, the right-hand side the equation is fully known. In the left-hand side, z0r13s and z1r9s
are known, and therefore z1r13s can be deduced by projecting the (vector) equation on the second
component. The actual values and the differences can then be deduced in x1r1s, which reveals the
difference in z0r0s (by Property 2). The actual values in x0r0s can then be deduced by Property 1.
We expect on average one possible value of x0r0s per value of x0r1s.

2. We then seek to extend this procedure to x0r2s and x0r3s. To this end, we still use Property 4,
equation ii):

z1r4..7s ` z1r8..11s � z0r8..11s `MC�1
�
x1r8..11s ` Cr4..7s ` Cr8..11s

	
, (♣)

The third coordinate of the right-hand side can be entirely deduced from x0r2s. We can therefore
build a table yielding x0r2s from the third coordinate of the right-hand side of p♣q, as shown in
Algorithm 4, lines 2–7.
We perform the same operations with x0r3s, using Property 4, equation i):

z1r0..3s ` z1r4..7s � z0r4..7s `MC�1
�
x1r4..7s ` Cr0..3s ` Cr4..7s

	
, (♥)

Here, the fourth coordinate of the right-hand side can be entirely deduced from x0r3s. We therefore
build a table yielding x0r3s from the third coordinate of the right-hand side of p♥q (as shown in
Algorithm 4, lines 8–13).

3. Once the two tables T2 and T3 have been built, we are ready to derive x0r2s and x0r3s. For this
purpose, we enumerate the values of x0r1s, derive x0r0s as explained above. The third component
of equation (♣) and the fourth component of (♥) can be computed, and thanks to T2 and T3 the
corresponding values of x0r2s and x0r3s can be retrieved in constant time, resulting in an average of
256 suggestion for the first column of x0. From there, k2 can be deduced, and the key-schedule can
be inverted to retrieve k0.

5.3 Extensions to Three-Round AES

In this section we consider attacks on three rounds of AES, denoted by rounds 1–3. First we present a
simple attack with two chosen plaintexts.

Two Chosen Plaintexts. The 2 rounds/2-chosen plaintext attack of section 5.2 can easily be leveraged
into a 3-round attack of complexity 216, thus improving on a manually-found attack with complexity 232

described in [BDD�10].
In this improved attack, the adversary asks for the encryption of two plaintexts which differ only

in the first byte. By guessing k0r0s, the adversary obtains the differences in x1r0..3s. This is sufficient
to apply the attack of section 5.2 to rounds 2 and 3. The complexity of the process is therefore 216

encryptions.

Improvement to the Piret-Quisquater Fault Attack. In the Piret-Quisquater fault attack, against
the full AES, an unknown difference is introduced in byte 0 of the internal state x7. The adversary
observes the output difference, and recovers the secret key in time 232 [PQ03]. We show an improved
procedure that recovers the key after the equivalent of 224 encryptions.

The attack considers the last three rounds (rounds 8, 9 and 10), but to be consistent with the other
three-round attack, we number the attacked rounds 1, 2 and 3. In this setting, the plaintext is unknown,
and the only information is that there is a non-zero difference δ in x0r0s. For the sake of simplicity, we
describe the attack assuming that the final MixColumns operation has not been removed. The attack can
be replayed without it, but some details become significantly messier.

Fig. 4 Fault attack against the AES. Gray square indicates the presence of a difference. The number
indicates the step of the attack in which the value of each byte is discovered.

x0

SB

SR

1

z0

MC

ARK

2

2

5

8

x1

SB

SR

2

2

5

8

z1

MC

ARK

3

3

3

3

9

9

9

9

6

6

6

6

3

3

3

3

x2

SB

SR

3 9 6 3

39 6 3

3 96 3

3 9 63

z2

MC

ARK

C

k1 k2 k3

One possible way to view this attack would be to guess the “fault” difference δ, to guess the actual
value of x0r0s, to derive the difference in x1r0..3s, and to apply the two-round attack of section 5.2
to rounds 2-3. However, it is possible to give a more direct yet pleasantly simple description of the
key-recovery.

1. Guess the difference in z0r0s
2. Guess the actual value of x1r0s and x1r1s
3. Compute the difference in x2r0..3s and x2r12..15s, then the actual values thanks to Property 1.
4. Use Property 4, with i � 2 and j � 3 (second component of the vector equation) to filter the guesses.

Only 216 out of 224 should pass the test.
5. Guess the actual value of x1r2s
6. Compute the difference in x2r8..11s, then the actual values.
7. Use Property 4 with i � 2 and j � 2 (third component of the vector equation) to filter the guesses

of step 5. Only 216 should pass.
8. Guess the actual value of x1r3s
9. Compute the difference in x2r4..7s, then the actual values.

10. Use Property 4 with i � 2 and j � 1 (fourth component of the vector equation) to filter the guesses
of step 8. Only 216 should pass.

11. At this point we should have 216 candidates for the actual values and the differences in x1r0..3s. From
those, x2 can be reconstructed entirely, as well as k3. It remains to simply test all the candidates.

5.4 Attacks on Four-Round AES

We now consider attacks on 4-round AES and turn our attention to chosen-plaintexts attacks. The well-
known “square” attack on 4 rounds requires 256 chosen plaintexts and the equivalent of 214 encryptions.

Manually-found attacks with 10,5 or 2 chosen plaintexts with respective time complexities 240, 264 and
2104 are described in [BDD�10]. The improved tool of section 4 automatically found a practical attack
using four plaintext differing only in one byte, of complexity about 232.

We note that these attacks can be transformed into known plaintext attacks using the standard
birthday-based transformations, but these usually result in a high data complexity.

Four Chosen Plaintexts. The four plaintext only differ in byte 0 of the plaintext (but they must be

pairwise different). We use the notation x
pjq
i to denote the j-th message.

In a first phase, we construct 16 hash tables T0, . . . , T15, which are subsequently used in the remaining
steps of the attack. The table T` is constructed according to the following steps:

1. First, enumerate all the possible values of x
p0q
0 r0s. Because the differences in x0 are known, then

x
piq
0 r0s can be deduced for i � 1, 2, 3. This in turn allows to determine the differences in y0r0s, and

also in x1r0..3s.
2. Define c2 � t`{4u and r1 � σpc2q, where σ denotes the permutation p0321q.

3. Next, enumerate x
p0q
1 rr1s. Because the differences in this byte are known, then the values in x

piq
1 rr1s

can be deduced for i � 1, 2, 3. This allows to find the differences in y1rr1s, and then in x2r4c2..4c2�3s.

4. Finally, enumerate the values of x
p0q
2 r`s. Again, recover x

piq
2 r`s for i � 1, 2, 3, and thus recover the

differences in y2r`s.
5. Store the association�

y
p0q
2 r`s ` y

p1q
2 r`s, y

p0q
2 r`s ` y

p2q
2 r`s, y

p0q
2 r`s ` y

p3q
2 r`s

	
ÞÑ
�
x
p0q
0 r0s, x

p0q
1 rr1s

	

in the hash table T`.

The hash tables are now used in the following way: enumerate the values of x
p0q
3 r0..3s, compute the

differences in byte 0, 5, 10 and 15 of y2, and use the differences to look-up in T0, T5, T10 and T15. Only

keep values of x3r0..3s that suggest the same value of x
p0q
0 r0s (there should be about 28 of them). We

implemented the attack, and we could indeed verify in practice that this procedure isolates a set of about
28.5 candidates for the first column of x3. It can then be repeated for the other three columns, and we are
left with about 234.5 candidates for the full x3, each one of which suggest a full key (partial encryption
reveals w3, which in turns reveal k4 and the key-schedule can be inverted back to k0).

This could be refined a little bit by only considering the quadruplets of columns that suggest the
same values of x1r0..3sp0q (and there should very likely be very few of them). This would avoid testing
232 keys.

6 A Forgery Attack Against Pelican-MAC

Pelican-MAC [DR05b] is a Message Authentication Code designed by Daemen and Rijmen in 2005. It is
an instance of the more general ALRED construction by the same authors, which is reminiscent of CBC-
MAC but aims at greater speed [DR05a]. MACs derived from the ALRED construction enjoy some level
of provable security: it is shown that the MAC cannot be broken with less than 2n{2 queries (i.e., without
finding internal state collisions) unless the adversary also breaks the full AES itself. Pelican-MAC works
as follows:

1. The internal state (an AES state) is initialized to x0 � AESKp0q.
2. The message is split in 16-byte chunks, and each chunk is processed in two steps: it is XORed to the

internal state, and 4 keyless AES rounds are applied (the AddRoundKey operation is skipped).
3. Finally, the full AES is applied with the key K to the internal state, which is then truncated and

returned as the tag.

In this construction, recovering the internal state x0 is sufficient to perform nearly-universal forgeries:
first the adversary asks the MAC of an arbitrary message. Given her knowledge of x0, she can compute
the internal state xlast just before the full AES is applied and the tag T is returned. Then, given an
arbitrary message M , she computes the internal state xM after M has been fully processed. Then, she
knows that Pelican-MACKpM }xM ` xlastq � T , without querying the MAC (the extra message block
sets the internal state to xlast, which is known to result in the tag T).

The best published attacks against Alpha-MAC (another ALRED construction) and Pelican-MAC
has been recently found by Zheng Yuan, Wei Wang, Keting Jia, Guangwu Xu, Xiaoyun Wang [YWJ�09]
and aim at recovering the initial secret internal state. For Alpha-MAC, after having found an internal
state collision (this requires 265 queries), the internal state is recovered with a guess-and-determine attack
that makes about 264 simple operations. For Pelican-MAC, an impossible differential attack recovers the
internal state with data and time complexity 285.5.

The general idea of our attack on Pelican-MAC is to find a single collision in the internal state, found
by injecting message blocks following a fixed truncated differential characteristic. Then, the state recovery
problem has been encoded in equations and given to the improved tool of section 4. It must be noted that
an attack with the same global complexity has been independently found time by Dunkelman, Keller
and Shamir [DKS11], using impossible differential techniques. The “state-recovery” phase presented here
is faster though.

Our Attack. We now present our attack against Pelican-MAC, with time and data complexity 264. We
pick an arbitrary message block M1 and query the MAC with 264 random two-block messages M1 } M2,
and store the (message,tag) pair in a table. Then, we query the MAC on pM1 `∆q }M 1

2, where ∆ is zero
everywhere except on the first byte, and M 1

2 is random. When the tags collide, we check whether there
is also a collision in the internal state by checking if:

MACKpM1 } M2 } M3q � MACK

�
pM1 `∆q }M 1

2 }M3

	

for several random message blocks M3. If all the resulting tags collide, then we known that an internal
collision occurred after the first two blocks with overwhelming probability, and we have:

AES4px0 `M1q `M2 � AES4px0 `M1 `∆q `M 1
2

In other terms, the input difference ∆ goes to the output difference M2 `M 1
2 though 4 keyless AES

rounds. The most likely differential characteristic is the one shown in Figure 5, even though there could
be accidental difference cancellations with small probability.

We then write down the state-recovery problem as a system of equations: two unknown states with a
known one-byte difference yields two unknown states with a known (full) difference. The improved tool
of section 4 quickly found1 an attack that runs in time and space about 232, and which is summarized
by Figure 5. Property 2 tells us that if α, β, γ and δ denote the differences in z1, then the differences in
x2 are: �

���
02α β γ 03δ
α β 03γ 02δ
α 03β 02γ δ

03α 02β γ δ

�
��

Fig. 5 Differential path used in the attack against Pelican-MAC. Gray squares denote the presence of a
difference. Hatched squares denote a known difference.

x0 z0 x1

α

δ

γ

β

z1 x2

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

z2

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

x3 z3

The state-recovery proceeds as follows:

1-a. Guess the values in x3r0..3s and obtain the differences (thanks to the output difference).
1-b. Partially decrypt to get suggestions for α, β, γ and δ (using Property 2).
1-c. Store bytes 0–3 of x3 in a hash table T0 indexed by pα, β, γ, δq

1 it also found an attack with a smaller memory consumption 224, but the improved attack is much more
complicated to describe

2. Repeat the process with the second column of x3. Store bytes 4–7 of x3 in a table T1 indexed by
pα, β, γ, δq.

3. Repeat the process with the third and fourth column of x3. Build tables T2 and T3
4. Enumerate pα, β, γ, δq. Look-up T0, T1, T2 and T3 and retrieve the parts of x3 corresponding to
pα, β, γ, δq, if present.

5. if pα, β, γ, δq occurs in the 4 tables, then we get a complete suggestion for x3. Decrypt 3 rounds and
recover x0. Check if the input difference is right.

Alpha-MAC. Obviously, we cannot overally improve on the attack of [YWJ�09], since finding the
internal state collision dominates the running time of their attack. However, it is noteworthy that the
tool found a state-recovery procedure that requires only 232 elementary operations and lists of 216 items,
when the first input message difference contains only one active byte. This is much more efficient than
its counterpart in [YWJ�09].

7 A Key-Recovery Attack Against LEX

LEX is a stream cipher presented by Biryukov as an example of the leak extraction methodology of
stream cipher design [Bir05,Bir06a]. In this methodology, a block cipher is used in the OFB mode of
operation, where after each round of the cipher, some part of the intermediate encryption value is output
as part of the key stream. LEX itself uses the AES as the block cipher.

In the initialization step of LEX, the publicly known IV is encrypted by AES under the secret key
K to obtain S � AESKpIV q. Actually, LEX uses a tweaked version of AES where the AddRoundKey

before the first round is omitted, and the MixColumns operation of the last round is present. Then, S
is repeatedly encrypted in the OFB mode of operation under K, where during the execution of each
encryption, 32 bits of the internal state are leaked in each round. These state bits compose the key
stream of LEX. The state bytes used in the key stream are shown in Figure 6. After 500 encryptions,
another IV is chosen, and the process is repeated. After 232 different IVs, the secret key is replaced. It
follows that with a given key LEX can only generate 246.3 bytes of keystream.

Fig. 6 State Bytes which Compose the Output in Odd and Even Rounds of LEX. The gray bytes are
the leaked bytes.

Odd Round Even Round

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

7.1 Prior Art

LEX was submitted to the eSTREAM competition (see [Bir05,Bir06b]). Due to its high speed (2.5
times faster than the AES in counter mode), fast key initialization phase (a single AES encryption),
and expected security (based on the security of AES), LEX was considered a very promising candidate
and selected to the third (and final) phase of evaluation. However, it was not selected to the final
portfolio of eSTREAM due to an attack with data complexity of 236.3 bytes of key stream and time
complexity of 2112 encryptions found by Dunkelman and Keller a few weeks before the end of the
eSTREAM competition [DK08]. These authors subsequently improved their own result, and the best
published attack on LEX requires about 240 bytes of keystream and the time equivalent of 2100 AES
encryptions [DK10a].

Their attack is illustrated by Figure 7. The key idea is to find a pair of internal states, potentially
obtained with different IVs, and after different numbers of encryptions, that partially collide after 4
rounds. More precisely, the objective is to find a pair of state yielding the same bytes in x4r4..7s and
x4r12..15s. Because this is a collision on 64 bits, the birthday paradox guarantees that 232 distinct
internal states are necessary. In fact, the attack is not restricted to “start” at the first round of an AES
encryption cycle, but can be applied (with minor variations) to rounds 1, . . . , 8. Thus, only 264{8 � 261

Fig. 7 Gray squares are leaked to form the key-stream. The differences are null in squares with a 0.
The differences in the hatched squares can be deduced from the leaked bytes and the existence of zero
differences.

x1 z1 w1

k2

x2 z2

0 0

00

0 0

0 0

w2

k3

0 0

00

0 0

0 0

x3

0 0

0 0

0 0

0 0

z3

0 0

0 0

0 0

0 0

x3

k4

0 0

0 0

0 0

0 0

x4

0 0

0 0

0 0

0 0

z4 x4

k5

x5

pairs of encryptions are necessary for the collision to occur. This number of pairs can be obtained from
231 distinct encryptions, and thus from 232 � 10 � 4 � 236.3 keystream bytes.

One of the problems is that the collision needed for the attack cannot be fully detected just by
observing the keystream: it can be detected on bytes 4,6,12 and 14, but we have no way of detecting
whether bytes 5,7,13 and 15 collide or not. The only solution is to assume that the full collision occurred
and to run the next steps of the attack. In case of failure, we know a posteriori that the full collision did
not occur. Thus, the remaining steps of the attacks have to be carried out on average 232 times in order
for a full collision to occur.

In the first attack of Dunkelman and Keller (given in [DK08]), the collision is exploited by a guess-
and-determine attack that guesses 10 bytes. Their second attack (given in [DK10a]) uses an improved
key-ranking procedure that filters the guesses and discards unlikely candidates.

Revisiting the Existing Attacks. The key-recovery problem can be encoded as a system of equations
and given to the tools. The improved tool of section 4 found that Dunkelman and Keller first attack
was sub-optimal, as the guess-and-determine part of the attack could be dealt with in 264 elementary
operations (versus 280 previously). This yields an attack with time complexity about 296 and data
complexity 236.3, marginally improving on their second attack.

7.2 A New Attack

It turns out that the tool can be used to mount a different, more efficient attack. This new attack proceeds
in 3 phases. The first phase is similar to the existing attacks. However, instead of looking for a pair of
states colliding on bytes 4-7 and 12-15 in x4, we look for 3-way collisions on these bytes (i.e., a triplet
of states all having the same values in these bytes). The advantage of working with 3 messages instead
of just two is that observation 1 generalizes nicely to this case: if 4 differences α, β, γ, δ are randomly
chosen in F28 , then the probability that Spx` αq ` Spxq � γ and Spx` βq ` Spxq � δ is 2�9.5. Thus, in
most cases, no single value of x satisfies these constraints.

Phase 1: Finding the 3-Collision. Finding the 3-collision requires 2128{8 � 2125 triplets of encryp-
tions, which can be obtained from 242.5 distinct encryptions. This makes 247.8 bytes of key-stream, about
three times the maximally allowed quantity for a given key. This means that in the normal setting where

LEX is restricted to produce 246.3 bytes of key stream (80 terabytes), then out attack will only succeed
with probability � 1{32. Indeed, under the normal restrictions, only 500 � 232 encryptions are allowed,
leading to 2120.3 triplets. Because each triplet leads to a 3-collision with probability 2�125, it follows that
the probability that the 3-collision exists is about 1{32. Our attack thus targets on average one key over
32.

The problem of detecting the 3-collision is even more acute than previously, because it can only be
partially observed. The strategy is again to repeat the last two phases of the attack on the expected 264

triplets matching on the observable 32 bits. The subsequent steps require about 216 simple operations,
yielding a total time complexity of 280.

Phase 2: Exploiting the 3-Collision. First of all, by exploiting the zero-difference bytes and the
known key-stream bytes, it is possible to reconstruct the differences between the 3 concurrent processes
in vast portions of the internal state. Figure 7 shows the situation.

– The differences in bytes 0, 2, 8 and 10 of w4 are given by the leakage in x5. Also, the differences are
known to be zero in bytes 1, 3, 9 and 11 of z4. Thus, thanks to observation 2n the differences can be
found in bytes 0-3 and 8-11 of both z4 and w4.

– It is also known that the differences are zero in bytes 4-7 and 12-15 of both z3 and w3, and these zero
differences propagate to x3 and w2. Accordingly, using Property 2 in z2 and w2 yields the missing
differences in x3, w2 and z2.

The second phase of the attack obtains the value of bytes 0-3 and 8-11 in x2, as well as bytes 5,7,13 and
15 in x3 and bytes 0,2,8 and 10 in x4. This requires 216 simple operations, and is illustrated by Figure 8.
In fact, four independent processes could be run in parallel:

1-a. Guess bytes 7 and 13 of x3 (these are the dotted squares). This enables to find the actual values in
the 3 concurrent states in bytes 8–11 of z3 and w3, because the differences in x3 are known. This also
yields the differences in bytes 8-11 of x4.

1-b. In both x4 and y4, the differences are now known in bytes 8 and 10. Only a fraction 2�9.5 of the
differences are consistent in each byte. Thus, we expect to sieve all the wrong guesses in the previous
step, and to be left with only the right value. In addition, the actual values in bytes 8 and 10 of x4
are revealed.

2-a. Guess bytes 5 and 15 of x3 (cross-hatched squares). This yields the differences in bytes 0–3 of x4.
2-b. Using the same sieving technique allows us to filter just the right value for the two guesses, and to

get bytes 0 and 2 in 4.
3-a. Guess bytes 1 and 3 in x2 (cross-hatched squares). This yields the corresponding differences in w1.

Then, the differences in bytes 0–3 of w1 and x2 can be found thanks to Property 2.
3-b. The differences are known in bytes 0 and 2 in both x2 and y2. Therefore, the sieving technique yields

the only feasible value for bytes 0–3 of x2.
4. Guess bytes 9 and 11 in x2 (dotted squares). Use the same difference propagation and sieving to

recover the only value of bytes 8–11 in x2.

Phase 3: a Guess-and-determine Finish. The third phase of the attack is a standard guess-and-
determine procedure that guesses 2 bytes in order to completely recover k3, and thus the master key. It
requires 216 simple operations, and is summarized by Figure 9. The actual values are known (from the
previous phase) in gray squares. Hatched squares denotes known differences. The bytes are numbered
in the order in which they can be computed. Circled bytes numbered 11 are guessed. In fact, some key
bytes can be determined from the result of the second phase without guessing anything.

Step 1,5,10,13 and 18 result from the knowledge of both wi and xi�1. Step 2,6,7,14,15,19 and 20
exploit the key-schedule equations, and bytes obtained in previous steps. Steps 3,8 and 16 are just
partial encryptions/decryptions. Step 4,9,12 and 17 use Property 2.

8 Implementations

We have implemented and verified attacks (or parts thereof) in practice. This brief section mentions
some of the techniques we used and the result we obtained.

Several attacks are meet-in-the-middle that require hash tables containing 232 entries (only in the
case of described attacks), each entry being 2 or 4-byte long. The main difficulty in implementing these

Fig. 8 Second stage of the attack.

x1 z1 w1

k2

x2 z2

0 0

00

0 0

0 0

w2

k3

0 0

00

0 0

0 0

x3

0 0

0 0

0 0

0 0

z3

0 0

0 0

0 0

0 0

w3

k4

0 0

0 0

0 0

0 0

x4

0 0

0 0

0 0

0 0

z4 w4

k5

x5

Fig. 9 Third phase of the attack.

x1

4

49

9

z1

3

3

4

49

8

9

8

8

w1

10

7

10

7

2

2

5

5

7

7

19

19

19

15

15
k2

4

4

11

11

x2

11

11

4

4

z2

3

3 12

12

12

124

4

w2

1 1

1 1

2

2

6

6

13

13

2014

14

18

20

18
k3

16

16

16

16

17

17

x3

16

16

17

17 16

16

z3

16

17

16

17

w3

1 14 1

1 14 1

k4

x4 z4 w4

k5

x5

attacks was memory management (how to represent and store the tables). Careful and“low-level”memory
management, e.g., using mmap, was necessary for the attack to be somewhat practical. The standard
techniques for hash tables (storing buckets as linked lists) incurs an important space overhead in our
case, because the pointers are 64-bit wide, and are impractical.

We also observed that the distribution of the number of entries in each bucket roughly follows a
Poisson law of expectation 1, so that the maximum number of entries in a bucket can be represented by
an 8-bit number. We thus use three arrays to store the hash table:

– An array Ac stores the size of each bucket in 8-bit entries (size = 4Gbyte)

– An array Ah stores the content of all the buckets (size=16Gbyte)

– An array Ai stores the location of each bucket in the previous array (size=16Gbyte)

The last array is useful to access the hash table in O p1q time, but it needs not be stored, which means
that such a hash table can be stored in a 20Gbyte file. We then used a two-pass approach: first count
the number of entries with the same key in the table and update Ac. Then computes the entries in Ai.
Lastly, perform a second pass and stores the actual data in Ah. This way, the peak memory consumption
is 36Gbyte.

2 AES Rounds / 2 Known Plaintext. The meet-in-the-middle part attack has been implemented
manually in C. Using the above techniques, it uses 52Gbyte of RAM, and isolates a set of about 232

candidates for the first and last column of x1 in about two hours. We checked that the set of candi-
dates actually contains the correct solution, and that the number of candidates was consistent with our
estimates.

2 AES Rounds / 2 Chosen Plaintext. The automated tools generated an implementation of this
attack, which allowed us to test it. The automatically-generated C file is 110Kbyte long. On average,
there are 28.65 candidates for x0r0..3s, which is very close to our hypothesis.

Piret-Quisquater Fault Attack. We implemented this attack manually in C and validated it in
practice. It terminates in a couple of seconds on a laptop and finds the right solution. In particular, we
could check that the actual number of tested candidates was consistent with the expected number.

4 AES Rounds / 4 Chosen Plaintext. We implemented the meet-in-the-middle part of the attack
manually in C++. Our implementation uses the above techniques for representing the hash tables, and
each one of the 16 tables requires 112Mbyte. The attack therefore runs on a laptop and uses less than
1.8Gbyte of RAM. The total running time of the meet-in-the-middle phase is about 2 hours on a single
core (the code is easily parallelized is easy using OpenMP, and actually runs in 14 minutes using eight
Xeon E5520 cores at 2.27Ghz).

Pelican-MAC. We implemented the state-recovery part of the attack (the collision-finding would not
be feasible in practice for us) and validated it experimentally. The program, written in C++ is 650 lines
long. Building the 4 tables took little less than 3 hours on one core of the above machine. Scanning
the tables looking and testing the candidates took half an hour. The number of candidates is consistent
with the expected number (232). We used C++ templates to write a single version of the function that
generates the table, indexed by the number of the table to generate ; this way, the compiler does a good
job of customizing the function for each table, while we only had to write it once.

LEX. We used our automatic code-generator to generate an implementation of phases 2 and 3 of the
attack. On average, some bytes are assigned 220.3 times, which is higher than our assumption. But their
number is very small and finally, the overall complexity is close to 216 encryptions.

Comparison with optimal attacks. As mentioned earlier, attacks presented in this article have been
modified in order to make them more understandable. But these changes have made them, in practice,

less efficient than original attacks found by the tool. Even unoptimized C codes automatically generated
by the tool are faster than manual implementations of described attacks, as shown in the following table.

Attack Running time (minute) Memory requierement (Mbyte)

2R - 2KP 35 250

4R - 4CP 65 800

Pelican-MAC 55 1000

This is mainly due to two reasons. The first one is the memory requirement: each one of these attacks has
an optimal version with an approximate memory complexity of 224 so we can use a simple structure to
handle hash tables. Furthermore, optimal attacks use less big tables than described attacks. For instance,
the best attack on four rounds with four chosen plaintexts, instead of using 16 hash tables with 224 entries,
use only 12 lists: 3 with 224 entries, 1 with 216, and 8 with 28. The second reason comes from the fact
that two attacks with the same approximate time complexity may have different real time complexity.
For instance, the optimal attack on four rounds with four chosen plaintexts assign each byte 233.2 times
on average when the described attack do it 234.5 times.

Conclusion

We have only had a limited experience with these tools so far, yet it is possible to draw a few preliminary
observations.

Using the tools requires some knowledge of the primitive under scrutiny. For instance, the tools are
not designed to find good truncated differential paths. They can exploit such a path, for instance by
finding a conforming pair efficiently, but the path has to be found by the user (or by a different tool). In
this specific context, it is also up to the user to find a path that can be exploited by the tool. For instance,
on two AES rounds, two truncated differential paths with probability one yield two very different results:
if the 4 active byte are on the same column, the tool finds an attack of complexity about 28, whereas if
the active bytes are on a diagonal, the best attack found by the tool has complexity 232.

The tools can be used to quickly verify high-level ideas or intuitions, while taking care of the low-level
and nasty details. For instance, the idea “let us try to attack LEX with a 3-collision” could quickly be
found to be effective, even though the concrete details of the attack took some time to be fully worked
out.

In their present forms, the tools are suited to situations where all the solutions of the given equations
are wanted. If there are much more variables than equations, the number of solutions will be overwhelm-
ing, and returning them all will be very expensive (and often unnecessary). A typical example is the case
of collisions in hash functions (there are many, yet a single one is sufficient). A possible workaround would
be to arbitrary fix some of the variables, but this requires human intervention, and it is not clear how to
obtain good results this way. Another possibility would be to design a new set of tools tailored to find at
least one solution to the given equations. This would likely require different strategies though (i.e., no
expensive precomputation). This seems to be an interesting topic for future work, since AES-based hash
functions seem to be a natural target for automated techniques.

References

[BDD�10] Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Nathan Keller, and Pierre-Alain Fouque. Low
Data Complexity Attacks on AES. Cryptology ePrint Archive, Report 2010/633, 2010. Submitted to
IEEE IT. Available at http://eprint.iacr.org/.

[BDK�10] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir. Key recovery
attacks of practical complexity on aes-256 variants with up to 10 rounds. In Gilbert [Gil10], pages
299–319.

[Bir05] Alex Biryukov. A New 128-bit Key Stream Cipher LEX. ECRYPT stream cipher project report
2005/013, 2005. http://www.ecrypt.eu.org/stream.

[Bir06a] Alex Biryukov. The Design of a Stream Cipher LEX. In Eli Biham and Amr M. Youssef, editors,
Selected Areas in Cryptography, volume 4356 of Lecture Notes in Computer Science, pages 67–75.
Springer, 2006.

[Bir06b] Alex Biryukov. The Tweak for LEX-128, LEX-192,LEX-256. ECRYPT stream cipher project report
2006/037, 2006. http://www.ecrypt.eu.org/stream.

[Bir08] Alex Biryukov. Design of a New Stream Cipher-LEX. In Matthew J. B. Robshaw and Olivier Billet,
editor, The eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science, pages 48–56.
Springer, 2008.

[BK07] Alex Biryukov and Dmitry Khovratovich. Two New Techniques of Side-Channel Cryptanalysis. In
Pascal Paillier and Ingrid Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer
Science, pages 195–208. Springer, 2007.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192 and AES-
256. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2009.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-Key Attack on the
Full AES-256. In Halevi [Hal09], pages 231–249.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic Search for Related-Key Differential Characteristics in
Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others. In Gilbert [Gil10],
pages 322–344.

[BPW06] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A Zero-Dimensional Gröbner Basis
for AES-128. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer
Science, pages 78–88. Springer, 2006.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.

[Cid04] Carlos Cid. Some Algebraic Aspects of the Advanced Encryption Standard. In Dobbertin et al.
[DRS05], pages 58–66.

[CL05] Carlos Cid and Gaëtan Leurent. An analysis of the xsl algorithm. In Bimal K. Roy, editor, ASI-
ACRYPT, volume 3788 of Lecture Notes in Computer Science, pages 333–352. Springer, 2005.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overdefined systems of
equations. In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of Lecture Notes in Computer Science,
pages 267–287. Springer, 2002.

[Dav06] Timothy A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2006.

[DG10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Commun. ACM,
53(1):72–77, 2010.

[DK08] Orr Dunkelman and Nathan Keller. A New Attack on the LEX Stream Cipher. In Josef Pieprzyk,
editor, ASIACRYPT, volume 5350 of Lecture Notes in Computer Science, pages 539–556. Springer,
2008.

[DK10a] Orr Dunkelman and Nathan Keller. Cryptanalysis of the Stream Cipher LEX, 2010. Available at
http://www.ma.huji.ac.il/ nkeller/Crypt-jour-LEX.pdf.

[DK10b] Orr Dunkelman and Nathan Keller. The effects of the omission of last round’s mixcolumns on aes.
Inf. Process. Lett., 110(8-9):304–308, 2010.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks on 8-round aes-192 and
aes-256. In Masayuki Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Science,
pages 158–176. Springer, 2010.

[DKS11] Orr Dunkelman, Nathan Keller, and Adi Shamir. Alred blues: New attacks on aes-based mac’s.
Cryptology ePrint Archive, Report 2011/095, 2011. http://eprint.iacr.org/.

[DR05a] Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED and a Specific Instance
ALPHA-MAC. In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes
in Computer Science, pages 1–17. Springer, 2005.

[DR05b] Joan Daemen and Vincent Rijmen. The Pelican MAC Function. Cryptology ePrint Archive, Report
2005/088, 2005. http://eprint.iacr.org/.

[DRS05] Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors. Advanced Encryption Standard -
AES, 4th International Conference, AES 2004, Bonn, Germany, May 10-12, 2004, Revised Selected
and Invited Papers, volume 3373 of Lecture Notes in Computer Science. Springer, 2005.

[FK11] Jean-Christophe Filliâtre and K. Kalyanasundaram. Functory: A Distributed Computing Library for
Objective Caml. In Trends in Functional Programming, Madrid, Spain, May 2011.

[FKL�00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David Wagner, and Doug
Whiting. Improved cryptanalysis of rijndael. In Bruce Schneier, editor, FSE, volume 1978 of Lecture
Notes in Computer Science, pages 213–230. Springer, 2000.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 - June
3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science. Springer, 2010.

[Hal09] Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes
in Computer Science. Springer, 2009.

[KBN09] Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolić. Speeding up Collision Search for Byte-
Oriented Hash Functions. In Marc Fischlin, editor, CT-RSA, volume 5473 of Lecture Notes in Computer
Science, pages 164–181. Springer, 2009.

[Kel04] Liam Keliher. Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis for the
AES. In Dobbertin et al. [DRS05], pages 42–57.

[KMT01a] Liam Keliher, Henk Meijer, and Stafford E. Tavares. Improving the Upper Bound on the Maximum
Average Linear Hull Probability for Rijndael. In Serge Vaudenay and Amr M. Youssef, editors, Selected
Areas in Cryptography, volume 2259 of Lecture Notes in Computer Science, pages 112–128. Springer,
2001.

[KMT01b] Liam Keliher, Henk Meijer, and Stafford E. Tavares. New Method for Upper Bounding the Maximum
Average Linear Hull Probability for SPNs. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045
of Lecture Notes in Computer Science, pages 420–436. Springer, 2001.

[MR02] Sean Murphy and Matthew J. B. Robshaw. Essential Algebraic Structure within the AES. In Moti
Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 1–16. Springer,
2002.

[MV04] Jean Monnerat and Serge Vaudenay. On Some Weak Extensions of AES and BES. In Javier Lopez,
Sihan Qing, and Eiji Okamoto, editors, ICICS, volume 3269 of Lecture Notes in Computer Science,
pages 414–426. Springer, 2004.

[NIS01] NIST. Advanced Encryption Standard (AES), FIPS 197. Technical report, NIST, November 2001.
[PQ03] Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique against SPN Struc-

tures, with Application to the AES and KHAZAD. In Colin D. Walter, Çetin Kaya Koç, and Christof
Paar, editors, CHES, volume 2779 of Lecture Notes in Computer Science, pages 77–88. Springer, 2003.

[YWJ�09] Zheng Yuan, Wei Wang, Keting Jia, Guangwu Xu, and Xiaoyun Wang. New Birthday Attacks on
Some MACs Based on Block Ciphers. In Halevi [Hal09], pages 209–230.

