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Abstract: Group key transfer protocols depend on a mutually trusted key generation center (KGC) to 

transport the group key to all group members secretly. This approach requires that a trusted sever be set 

up, and it incurs communication overhead costs. In addition, the existing group key transfer protocols 

based on secret sharing all use threshold schemes that need to compute a -degree interpolating 

polynomial to encrypt and decrypt the secret group key, then it increases the computational complexity 

of system. In this paper, we first present a novel group key transfer protocol without an online KGC, 

which is based on DH key agreement and a perfect linear secret sharing scheme (LSSS). The 

confidentiality of the group key transfer phase of this protocol is information theoretically secure, 

which is ensured by this LSSS. Furthermore, this protocol can resist potential attacks and also reduce 

the overhead of system implementation. Goals and security threats of our proposed group key transfer 

protocol will be analyzed in detail. 
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1  Introduction 

In order to ensure secure communication, before exchanging communication messages, a 

key establishment protocol will distribute one-time secret session keys to all participants, 

which needs to provide confidentiality and authentication for session keys. Namely, 

confidentiality ensures the sender that the message can be read only by an intended receiver 

and authentication ensures the receiver that the message was sent by a specified sender and 
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the message was not altered en route.  

There are two types of key establishment protocols: key transfer protocols and key 

agreement protocols[5]. Key transfer protocols depend on a mutually trusted key generation 

center (KGC) to select session keys and then transport session keys to all communication 

users secretly. Generally, KGC encrypts session keys under another secret key shared with 

each user during registration. In key agreement protocols, all communication users are 

involved to determine session keys. The most commonly used key agreement protocol is 

Diffie-Hellman (DH) key agreement protocol [13]. However, DH public key distribution 

algorithm can only provide session key for two users; not for a group more than two 

members.  

When a secure communication involves more than two users, a group key is needed for 

all group members. Most well-known group key management protocols can be classified into 

two categories: centralized group key management protocols and distributed group key 

management protocols[18]. 

The class of centralized group key management protocols is the most widely used group 

key management protocols. Harney et al. [16] proposed a group key management protocol 

that requires  encryptions to update a group key, where  is the size of group. A set 

of scalable hierarchical structure-based group key protocols [11], [27], [30] have been 

proposed. Fiat and Naor [15] proposed a -resistant protocol, i.e., coalitions of up to  

users are secure. Eltoweissy et al. [14] proposed a protocol based on Exclusion Basis Systems 

(EBS), a combinatorial formulation of the group key management problem. 

( )O n n

k k

Most distributed group key management protocols took natural generalization of the DH 

key agreement protocol, such as, Ingemarsson et al. [21], Steer et al. [31], Burmester and 

Desmedt [9], and Steiner et al. [32] followed this approach. In 1996, Steiner et al. proposed a 

natural extension of DH [32] and later in 2001, it has been enhanced with authentication 

services and has proved to be secure [6]. In 2006, Bohli [8] developed a framework for robust 

group key agreement. Then, in 2007, Bresson et al. [7] constructed a generic authenticated 

group DH Key exchange. Also, in 2007, Katz and Yung [22] proposed the first 

constant-round and fully scalable group DH protocol. The main feature of the group DH key 

exchange is to establish a secret group key among all group members without depending on a 
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mutually trusted KGC. 

There are other distributed group key management protocols based on non-DH key 

agreement approach. Tzeng [33] proposed a conference key agreement protocol based on 

discrete logarithm (DL) assumption with fault tolerance in recent years. However, there is a 

serious encumbrance to efficiency. In 2008, Cheng and Laih [12] modified Tseng’s 

conference key agreement protocol based on bilinear pairing. In 2009, Huang et al. [17] 

proposed a noninteractive protocol based on DL assumption to improve the efficiency of 

Tseng’s protocol. One main concern of key agreement protocols is that since all 

communication users are involved to determine session keys, the time delay of setting up this 

group key may be too long, especially when there are a large number of group members. 

Since avoiding the use of encryption one by one can introduce less computation 

complexity, secret sharing has been used to design group key distribution protocols, which 

was first introduced by both Blakley [1] and Shamir [29] independently in 1979. There are 

two different approaches using secret sharing: one assumes a trusted offline server active only 

at initialization [4], [15], [28], [3] and the other assumes an online trusted server, called the 

key generation center (KGC), always active. The first type of approach is also called the key 

predistribution scheme. The main disadvantage of this approach is to require every user to 

store a large size of secrets. The second type of approach requires an online server to be 

active [24]. It is similar to the model used in the IEEE 802.11i standard [20]. In 1989, Laih et 

al. [24] proposed the first algorithm based on this approach using any  secret sharing 

scheme to distribute a group key to a group consisting of 

( ), nt

( 1t )−  members. Later, there are 

some papers [2], [25], [28] following the same concept to propose ways to distribute group 

messages to multiple users. Recently, [18] proposed a group key transfer protocol using 

 secret sharing that provided confidentiality and authentication, where KGC and each 

group member need to compute a -degree interpolating polynomial to encrypt and decrypt 

the secret group key respectively. Then [26] pointed out that [18] could not protect users’ 

long-term secrets against a malicious user and further gave an improvement. The main 

disadvantage of the approach of relying on an online KGC is that the trusted KGC is required 

in distributing the group key and it increases the overhead of system. 

( , nt )

t
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Due to the fact that linear secret sharing can be seen as a natural and useful 

generalization of threshold secret sharing and has an advantage in terms of computational 

complexity (that is, there is no need to compute a -degree interpolating polynomial to 

encrypt and decrypt the secret), linear secret sharing schemes (LSSS) have received considerable 

attention and research in this field.  

t

In this paper, we first adopt the advantages of DH key agreement and LSSS to design a 

secure and efficient key transfer protocol without an online KGC. The confidentiality of the 

group key transfer phase of this protocol is information theoretically secure, which is ensured 

by a perfect LSSS. We classify attacks into insider and outsider attacks separately, and 

analyze our protocol under these attacks in detail. 

The rest of this paper is organized as follows: In the next section, we provide some 

preliminaries. In Section 3, we describe our main objective. In Section 4, we propose our 

group key transfer protocol. We analyze the security of our proposed protocol in Section 5. 

We conclude in Section 6. 

2  Preliminaries 

In this section we review some basic definitions concerning CDH assumption and linear 

secret sharing schemes. 

2.1  CDH Assumption 

Definition 1 (The Computational Diffie-Hellman (CDH) Assumption). Let G g=  

be a multiplicative cycle group of order , and two integers  are chosen in . Given q ,a b *
q]

, ag g  and bg , a adversary has a negligible success probability ε  for obtaining an element 

Gφ ∈ , such that abgφ =  within polynomial time. 

2.2  Linear Secret Sharing Schemes and Monotone Span Programs 

Let  be the set of participants. An access structure, denoted by , is a 

collection of subsets of  satisfying the monotone ascending property: for any  and 

{1,..., }n=P� Γ

P 'A ∈Γ
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2A∈ P , 'A A⊆  implies . An adversary structure, denoted by , is a collection of 

subsets of  satisfying the monotone descending property: for any 

A∈Γ A

P 'A ∈A  and , 

 implies 

2A∈ P

'A A⊆ A∈A . Because of the monotone properties, for any access structure Γ  

and any adversary structure A , it is enough to consider the minimum access structure 

 and the maximum adversary structure 

 respectively. Generally, we deal with the complete 

situation, i.e., . In this paper, we consider a specific access structure used for 

group key distribution, that is, . 

min { |A B A }Γ = ∈Γ ∀ ⊂ ⇒

}A

Γ

B∉Γ

max { |B A B A= ∈ ∀ ⊃ ⇒ ∉A A

2= −PA

min { }Γ = Γ = P

Suppose that  is the secret-domain and  is the share-domain of participant ， 

where . When a dealer 

S iP i

1 i n≤ ≤ D  wants to share a secret s S∈  among a set of 

participants , he will give each participant a share {1,..., }n=P� i ip P∈ . The shares should be 

distributed secretly, so no participant knows the share given to another participant. At a later 

time, a subset of participants will attempt to reconstruct the secret s  from the shares they 

collectively hold. By using Shannon’s entropy function, a secret sharing scheme with respect 

to an access structure  is defined such that the following requirements are satisfiedΓ [19]. 

i) Correctness requirement: any subset  of participants enabled to recover A ⊆ P s  

can compute s . Formally, for all A∈Γ , it holds ( | ) 0H S A = . 

ii) Security requirement: any subset  of participants not enabled to recover , 

even pooling all of their shares together, can not reconstruct . Formally, for all , it 

holds . 

A ⊆ P s

s A∉Γ

0 ( | ) ( )H S A H S< ≤

In the security requirement, if for any A∉Γ  it holds  (that is, 

participants in  pool their shares together obtain no information on ), we call it a perfect 

secret sharing scheme which we are interested in. If  for 

( | ) ( )H S A H S=

A s

| | | |iS P= 1 i n≤ ≤ , then the secret 

sharing scheme is called ideal. Furthermore, a perfect secret sharing scheme is linear, if 

 is a finite field,  are linear spaces over  and the reconstruction operations are 

linear [10]. 

S = K iP K
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Karchmer and Wigderson [23] introduced monotone span programs (MSP) as linear 

models computing monotone Boolean functions. Usually we denote an MSP by 

( , , )M ψM K , where M  is a d l×  matrix over a finite field  and K

:{1,..., } {1,..., }d nψ →  is a surjective labeling map which actually distributes to each 

participant some rows of M . We call  the size of the MSP. For any subset , there 

is a corresponding characteristic vector 

d A ⊆P

1( ,..., ) {0,1}n
A nδ δ δ= ∈
G

 where for 1 ,  

if and only if . Consider a monotone Boolean function  which 

satisfies that for any  and 

i n≤ ≤ 1iδ =

i A∈ :{0,1} {0,1}nf →

A ⊆ P B A⊆ , ( ) 1Bf δ =
G

 implies ( ) 1Af δ =
G

. We say that an 

MSP ( , , )M ψM K  computes the monotone Boolean function f  with respect to a target 

vector , if it holds that \ {(0,...0)}lv ∈G K { }Av span M∈
G  if and only if , where ( ) 1Af δ =

G

AM  consists of the rows  of r M  with ( )r Aψ ∈  and { }Av span M∈
G  means that there 

exists a vector  such that . wG Av w M=
G G

Beimel [10] proved that devising a linear secret sharing scheme (LSSS) for an access 

structure  is equivalent to constructing an MSP computing the monotone Boolean function Γ

fΓ  which satisfies  if and only if ( ) 1Af δΓ =
G

A∈Γ . On the other hand, an MSP 

( , , )M ψM K  can compute fΓ  if and only if there exists a vector vG  which lies in the 

space , where  is the space spanned by the row 

vectors of 

min max
ii A i BA B

V
∈∈Γ ∈

−∑ ∑∩ ∪ A iV
∈ iV

M  distributed to participant  according to i ψ  and the vector v  can be 

seemed as the target vector described above. Hence, finding the linear spaces  with the 

condition 

G

iV

min max
ii A i BA B

V
∈ ∈∈Γ ∈

− iV ≠ ∅∑ ∑∩ ∪ A
 is the key point of building an LSSS 

with respect to . Γ

3  Design Principles

In this section, we describe the model of our group key transfer protocol and the security 

goals for our group transfer protocol. 
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3.1  Model 

The conventional group key transfer protocols based on threshold secret sharing schemes 

(TSSS) rely on an online, trusted KGC as the dealer to issue the shares (shadows) for each 

members and generate a secret key as the group key, which is then transported to each 

member by TSSS. Actually, this approach can result in loss of flexibility and cause an 

increase of the overhead associated with the implementation of system. To overcome these 

drawbacks, an initiator, one of the group members, is endowed with the authority to select a 

secret key as the group key and to originate the group communications. In addition, the 

initiator must share secrets (shadows) with the other members by using a secure and efficient 

method. 

It is well known that the interactive key agreement protocol can construct a one-time 

secret between two parties in public environments. In our design, the concept of DH key 

agreement protocol is used to share secrets between the initiator and the other members of the 

group. These secrets determine a group of linearly independent vectors, where the number of 

these vectors is equal to the number of group members minus one. Further, the initiator can 

select a session key and separately compute the inner products of these vectors and a random 

vector determined by all group members. Afterwards, the initiator publishes each value of the 

session key minus each inner product, where the number of those public values is equal to the 

number of group members minus one. On the other hand, each group member except the 

initiator is able to use his/her secret and the related public value to reconstruct the session key. 

Finally, all group members share a common session key for group communications. 

3.2  Security Goals 

The main security goals for our group key transfer protocol are: 1) key freshness; 2) key 

confidentiality; and 3) key authentication. 

Key freshness is to ensure that a group key has never been used before. Thus, a 

compromised group key cannot cause any further damage of group communication. Key 

confidentiality is to protect the group key such that it can only be recovered by authorized 

group members; but not by any un-authorized user. Key authentication is to provide assurance 
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to authorized group members that the group key is distributed by the initiator; but not by an 

attacker. 

4 The Proposed Protocol 

Our group key transfer protocol consists of two phases: the secret establishment phase 

and the session key transfer phase. Suppose that a set of  participants, { , wants to 

set up a secure communication. Each participant must maintain a public/private key pair 

n 1,..., }n

puk, prk（ ）, such that modprkpuk g p= , where , *
pg ∈] p  is a large, safe prime number. 

Note that the long-term pair puk, prk（ ） is authenticated by a trusted authority with the 

corresponding certificate. Suppose that an initiator, one of the group members, is  and 

endowed with the authority to select a secret key as the group key and to originate the group 

communications. The secret establishment phase contains the following steps: 

n

i  Step 1. The initiator broadcasts a request containing a random number , 

his/her long-term public key 

*
n pr ∈]

npuk , and a list of members, , to announce the group 

communication. 

{1,..., }n

i  Step 2. Upon receiving the announcement from the initiator, each group member , 

for , selects a random number  and uses his/her private key 

i

1,..., 1i n= − p
*

ir ∈] iprk  to 

compute the secret as modi i nprk r r
i ns = puk p . Afterwards, i  computes  

and sends  to the initiator as a response. 

( )||i iAuth = h s rn

i{ }, ,i ir puk Auth

i  Step 3. After receiving the message from each , the initiator computes i

* modn i nprk r r
i is = puk p  and then checks . If the result is valid, the initiator 

believes that the secret 

?
*( ||i iAuth h s r= )n

modi n i npuk prk r r
is = g p  is shared with corresponding group member . 

Otherwise, the initiator claims that  is fraudulent and then restarts the protocol.  

i

i

In the session key transfer phase, we suppose that nV = K  is the  dimensional linear 

space over , where  is a finite field with the characteristic . Given a 

n

K K ( )char p=K
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basis  of 1,...,{ }ne e V  with  for (0,..., 0,1,0,..., 0)
j

n
je = ∈
G K 1,...,j n= , the mapping 

: V→v K  defined by 1
1

( )
n j

jj
x x e−

=
= ∑v  is determined. Upon sharing the secret with 

corresponding group member , the initiator needs to randomly select a 

group key. The initiator needs to distribute this group key to the other group members in a 

secure and authenticated manner. All communications between the initiator and the other 

group members are in a broadcast channel. The initiator  and the other group members 

 execute the following steps: 

( {1,..., 1})i i n∈ −

n

( {1,..., 1})i i n∈ −

i  Step 1. The initiator separates each shared secret is  into two parts ix  and , 

where 

iy

( )||i i ix y s=  for , and randomly generates a session key . 

Then, the initiator computes 

1,..., 1i n= − *
G pK ∈]

1n −  additional values, , for 

, and the value 

( ) modi G iU K K= − p

− 1n1,..., 1i n= 1 1( ,1,..., , ),..., , ,...,G nAuth h K n r r U U −= , where the vector 

, the inner product ( ,..., ) n
i nr r r= ∈

G K ( ( ),  )i iy x r Ki=v G  and  is a one-way hash function. 

The initiator broadcasts { , for 

h

, }iAuth U 1,..., 1i n= − , to the other group members. All 

computations are performed in . K

i  Step 2. For each group member except the initiator, ( {1,..., 1})i i n∈ − , knowing the 

public value, , is able to compute the inner product iU ( ( ),  )i iy x r Ki=v G  and recover the 

group key . Then, ( ) modG i iK U K= + p ( {1,..., 1})i i n∈ − needs to compute 

 and check whether this hash value is identical to . If 

these two values are identical,  authenticates the group key is sent from the initiator. 

1 1( ,1,..., , ),..., , ,...,G nh K n r r U U −1n Auth

i

After the above steps have been executed successfully, the session key  is 

established among all group members. Later, the key  can be used for secure group 

communications. 

GK

GK

Remark 1. In our protocol, based on the CDH assumption, the initiator, , shares a 

secret, 

n

is , with each user . Adding/removing any user does not need to 

update any existing shared secret. However, for distributing a secret group key involving  

( {1,..., 1})i i n∈ −

n
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group members, the initiator needs to broadcast a message containing  elements to all the 

other group members. At the same time, each group member except the initiator needs to 

compute the inner product 

n

( ( ),  )i iy x r Ki=v G  and recover the group key 

, where the vector ( ) modG i iK U K= + p ( ,..., ) n
i nr r r= ∈

G K . It is easy to see that the 

equation used to recover the group key is a function of each group member’s random number 

and the secret shared between corresponding group member and the initiator. Observe that the 

vectors ( )xv  have Vandermonde coordinates with respect to the given basis of V . This 

implies that every set of at most  vectors of the form n ( )xv  is independent, that is, any 

less than or equal to  vectors of the form n ( )xv  are linearly independent, which can not be 

represented by each other. Thus, the LSSS in our protocol is a perfect LSSS, which will be 

described later. 

5 Security Analysis 

In this section, we first prove the proposed LSSS in our protocol is a perfect LSSS. Then, 

we consider two types of adversaries in our proposed protocol, insider and outsider. Finally, 

we prove that our proposed protocol achieves the security goals mentioned in Section 3 and is 

against inside and outside attacks. 

5.1  A Perfect and Ideal LSSS 

We now prove that the proposed LSSS in our protocol is a perfect LSSS, in which a 

dealer D  shares a secret, the inner product ( ,  )v r s=
G G  with 

1

( )i i
i n

v y
≤ ≤

= x∑ vG , among a set 

of participants {1,..., }n=P�  and gives each participant  a share, the inner product 

, such that for  any 

i

( ( ),  i iy x rv G) {{1, 2,..., }}nΓ = A∈Γ  pool their shares together can 

compute s  and any  pool their shares together obtains no information on . Firstly, 

we prove the following Proposition. 

A∉Γ s

Proposition 1.  Suppose that a group {  consists of  members, 

 and 

1,..., }n n

{{1, 2,..., }}nΓ = ,  ,  ,  ,  1i ix y V i n≤ ≤K�  are given as above. Let 
1

( )i i
i n

v y
≤ ≤

= ∑ v xG  and 
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( ){i iV span x= v } for 1 , then it holds that i n≤ ≤
min max

i ii A i BA B
v V V

∈ ∈∈Γ ∈
∈ −∑ ∑G ∩ ∪ A

. 

Proof.  Firstly, we prove that 
min

ii AA
v V

∈∈Γ
∈ ∑G ∩ . Observe that  

for  and 

( ){ }i iV span x= v

1 i n≤ ≤
1

( )i i
i n

v y
≤ ≤

= ∑ v xG . These imply that there must exist a linear combination of 

the vectors in 
1 ii n

V
≤ ≤∑  such that it equals to 

1

( )i i
i n

v y
≤ ≤

= x∑ vG . Namely, 

. Since , it implies that 

. Hence, we obtain that 

1
1

( )i i i n
i n

v y x V
≤ ≤

≤ ≤

= ∈∑ ∑vG
i

iV∑

min {{1, 2,..., }}nΓ = Γ =

min1 ii n i AA
V

≤ ≤ ∈∈Γ
=∑ ∩

min
ii AA

v V
∈∈Γ

∈ ∑G ∩ .  

Then we prove that 
max

ii BB
v V

∈∈
∉ ∑G ∪ A

. Due to the fact that ( )ixv  (1 ) is the 

form 

i n≤ ≤

( )xv  and every set of at most ( 1)n +  vectors of the form ( )xv  is independent, we 

obtain that 1( ), ..., ( )nx xv v  are linearly independent. Furthermore, observe that 

 for 1  and . These imply that for every , 

there does not exist a linear combination of the vectors in 

( ){i iV span x= v } i n≤ ≤ max{1, 2,..., }n ∉A maxB∈A

ii B
V

∈∑  such that it equals to 

. Namely, 
1

( )i i
i n

v y
≤ ≤

= ∑ vG x i
1

( )i i i B
i n

v y x V
∈

≤ ≤

= ∉∑ ∑vG  for every . Hence, 

. 

maxB∈A

max
ii BB

v V
∈∈

∉ ∑G ∪ A

As a consequence of the above, it holds that  

min max
i ii A i BA B

v V V
∈ ∈∈Γ ∈

∈ −∑ ∑G ∩ ∪ A
. 

Theorem 1.  The proposed LSSS in our protocol is a perfect LSSS. 

Proof.  From Proposition 1, seeing that 
min

ii AA
v V

∈∈Γ
∈ ∑G ∩ , it implies that all users in 

the group {  pool their shares together can reconstruct the secret  by 

computing a linear combination of their shares. Hence, it holds that  for 

.  

1, 2,..., }n ( ,  )v r s=
G G

( | ) 0H s A =

{{1, 2,..., }}A n∈Γ =

At the same time, from Proposition 1, seeing that 
max

ii BB
v V

∈∈
∉ ∑G ∪ A

, it implies that 

any subset  of users pool their shares together obtain no information on the secret 

. Due to the fact that 

B∉Γ

( ,  )v r s=
G G

1( ), ..., ( )nx xv v  are linearly independent, furthermore, 

 for 1  and , we obtain that ( ){i iV span x= v } i n≤ ≤ max{1, 2,..., }n ∉A
max

ii BB
v V

∈∈
∉ ∑G ∪ A

. 
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It implies that there does not exist a linear combination of their shares such that it equals to s . 

Hence, for any {{1, 2,..., }}B n∉Γ =  it holds that ( | ) ( )H s B H s= .  

Therefore, according to definition in Section 2, the proposed LSSS is a perfect LSSS. 

Since there has no other computational assumption based upon, this LSSS is information 

theoretically secure. 

Furthermore, it is easy to see that the proposed LSSS is an ideal LSSS. This means that 

its efficiency is optimal. 

5.2  Attacks 

Adversaries can be categorized into two types. The first type of adversaries is outsiders 

of a particular group. The outside attacker can try to recover the secret group key belonging to 

a group that the outsider is unauthorized to know. This attack is related to the confidentiality 

of group key. In our proposed protocol, the initiator broadcasts a request to announce the 

group communication. The outside attacker may also impersonate the initiator to request a 

group key service. In security analysis, we will show that the outside attacker gains nothing 

from this attack since the attacker cannot obtain the one-time shared secret. The second type 

of adversaries is insiders of a group who are authorized to know the secret group key; but 

inside attacker attempts to retrieve the previous secret between the other members and the 

initiator. Since any insider of a group is able to recover the same group key, we need to 

prevent inside attacker knowing the one-time shared secret used in each session. 

The following theorem proves that our protocol can achieve the security goals we set 

previously. 

Theorem 2. The proposed protocol achieves the following security goals: 1) key 

freshness, 2) key confidentiality, and 3) key authentication. 

Proof. We assume that a group consists of  members, { , and the one-time 

shared secrets are 

n 1,..., }n

1,..., n 1s s − . The proposed protocol achieves the following security goals: 

1) Key freshness is ensured by the initiator since a random group key is selected by the 

initiator for each request. In addition, the equation  used to recover 

the group key is a function of random number selected by each group member and the 

( ) modG i iK U K= + p
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one-time secret shared between corresponding group member and the initiator. 

2) Key confidentiality is provided due to the security features of CDH assumption and 

the proposed perfect LSSS. By employing the proposed LSSS, the initiator randomly selects a 

group key  and makes GK 1n −  values,  for ,  

publicly known. For each authorized group member, including the one-time secret 

( ) modi G iU K K= − m 1,..., 1i n= −

is  shared 

with the initiator, he/she knows the inner product ( ( ),  )i iy x r Ki=v G . Thus, any authorized 

group member is able to recover the secret group key . However, for 

any unauthorized member (or outsider), there are only 

( ) modG i iK U K= + m

1n −  values  

for  available and he obtains no information on  and . Thus, 

unauthorized member knows nothing about the group key. In other words, the proposed 

perfect LSSS is information theoretically secure, so the group key transfer phase of our 

protocol is also information theoretically secure. 

( ) modi G iU K K= − m

−1,..., 1i n= iK
1 1

i
i n

K
≤ ≤ −
∑

At the same time, the one-time secret is  generated by an interactive key agreement 

protocol with random numbers, and then the shared secret is  is used to construct the current 

group key. Even though the current group key is compromised, it does not reveal any 

information regarding the previous group keys. Therefore, our protocol achieves forward 

secrecy. 

3) Key authentication is provided through the values  and . In step 2 of the 

secret establishment phase,  is a one-way hash output with the shared secret 

iAuth Auth

iAuth is  and 

the initiator’s random number as input. Since the shared secret is  is known only to 

corresponding group member  and the initiator, unauthorized members cannot forge this 

value. In addition, any replay of  of the group member  in step 2 of the 

secret establishment phase can be detected since the shared secret 

i

{ }, ,i ir puk Authi i

is  is a function of the 

group member ’s and the initiator’s random numbers.  i

In step 1 of the group key transfer phase,  is a one-way hash output with the secret Auth
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group key and all members’ random numbers as input. Since the group key is known only to 

authorized group members and the initiator, unauthorized members cannot forge this value. 

Any insider also cannot forge a group key without being detected since the group key is a 

function of the secret shared between each group member and the initiator. In addition, any 

replay of , for , of the initiator in step 1 of the group key transfer 

phase can be detected since the group key is a function of each group member’s random 

number. 

{ , }iAuth U 1,..., 1i n= −

Theorem 3 (Outsider attack). Assume that an attacker wants to masquerade as a group 

member to join the group communication, then, the attacker can neither obtain the group key 

nor share a group key with any group member. 

Proof. Although any attacker can intercept the messages between the initiator and any 

other group member , the attacker cannot share the one-time secret i modi i nprk r r
i ns = puk p  

with the initiator successfully, due to the fact that the long-term private key iprk  of any 

member  is unknown. In addition, the group key , which is constructed by using the 

proposed LSSS, can only recovered by any honest member who has the correct corresponding 

shared secret 

i GK

is . Therefore, the attacker cannot masquerade as any group member to obtain 

the group key  by intercepting messages. On the other hand, since the attacker does not 

have the private key 

GK

nprk  of the initiator, thus the attacker cannot masquerade as the 

initiator successfully to share the secret is  with the other members. In other words, the 

attacker cannot share the key  with any group member by masquerading as the initiator. GK

If the attacker tries to reuse a compromised group key by replaying previously recorded 

key information from the initiator, this attack cannot succeed in sharing this compromised 

group key with any group member since the group key is a function of each member’s 

random number and the one-time secret shared between the initiator and each other group 

member. A compromised group key cannot be reused if each member selects a random 

number for every group communication. 

Theorem 4 (Insider attack). Assume that the protocol runs successfully many times, 
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then the one-time secret ( )||i i ix y s=  of each  shared with the initiator remains unknown 

to all other group members (and outsiders). 

i

Proof. In order to transfer the group key, the initiator randomly selects a group key  

and makes  values,  for 

GK

1n − ( ) modi G iU K K= − p 1,..., 1i n= − ,  publicly known. For 

each authorized group member, with knowledge of the one-time secret shared with the 

initiator and the public information, he/she knows  and is able to compute the inner 

product . Thus, any authorized group member is able to reconstruct the 

group key  , where the vector 

iU

( ( ),  )i iy x r K=v G
i

p( ) modG i iK U K= + ( ,..., ) n
i nr r r= ∈

G K . However, the 

one-time secret ( )||i i ix y s=  of each group member shared with the initiator cannot be 

traced by outsiders.  

For an insider , he/she knows the group key and , then he can obtain  from 

. However,  cannot solve the secret 

j iU iK

( ) modG i iK U K= + p ij ( )||i ix y s=  from the equation 

i  since there are two unknown quantities. At the same time, due to the fact that 

the secret 

( ( ),  )i iy x r K=v G

i( )||i ix y s=  of each group member shared with the initiator depends on the random 

numbers  and long-term private keys ( , )i nr r ( ,i n )prk prk , the one-time secret is  is still 

untraceable by insiders.  

Remark 2. Most key transfer schemes based on TSSS are claimed information 

theoretically secure. However, these schemes must pre-share secrets (shadows) between the 

dealer and the participants. It means that the secrets must be shared via a secure channel. 

Actually, it is a strong assumption to suppose that a secure channel is existed in public 

networks. That is, most existing schemes do not propose any practical method to share secrets 

in public networks. In this paper, we first used the CDH assumption to share the secrets 

between the initiator and other participants. Next, we construct a group key transfer protocol 

based on a perfect LSSS, which is no need to compute a -degree interpolating polynomial 

to encrypt and decrypt the group key. This LSSS is information theoretically secure since 

there has no other computational assumption based upon. Hence, we say that the group key 

t
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transfer phase of our scheme is also information theoretically secure. 

6 Conclusions 

We have proposed an efficient group key transfer protocol without an online KGC, 

which is based on a perfect LSSS. The confidentiality of the group key transfer phase of this 

protocol is information theoretically secure. We provide group key authentication. Security 

analysis for possible attacks is included. As a result, this protocol can resist potential attacks 

and also reduce the overhead of system implementation. It is fairly interesting for practical 

applications. 
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