
 1

Efficient Multicast Key Distribution Using
HOWP-based Dynamic Group Access

Structures
Jing Liu, Qiong Huang, Bo Yang, and Yang Zhang

Abstract— When assigning personal keys, stateful multicast key distribution (MKD) protocols usually rely on some type of
dynamic group access structure which helps achieve a better tradeoff among storage, communication and computation
overheads. However, there exist some stateful MKD protocols whose personal key assignments are based on two static group
access structures called Dual Hash Chain (DHC) and Binary Hash Tree (BHT). We introduce two new types of group access
structures called Dual Homomorphic One-way Function Chain (D-HOFC) and Top-Down Homomorphic One-way Function Tree
(TD-HOFT). Both can be regarded as dynamic counterparts of DHC and BHT, respectively. Our research motivation is to
investigate what benefits these two new dynamic structures will bring for MKD protocols compared with their static counterparts.
Using D-HOFC, we propose a time-based MKD protocol that counters the rejoining member attack on a DHC-based protocol,
and a stateful user-based MKD protocol that has a lower computational overhead for Group Controller (GC) than the DHC-
based protocol. Using TD-HOFT, we design a stateful user-based MKD protocol that outperforms the original EKT protocol.
Performance comparisons and experiment results show that our protocols based on dynamic structures have their own
advantages compared with those based on the corresponding static counterparts.

Index Terms— multicast key distribution, group access structure, homomorphic one-way permutation (HOWP)

—————————— ——————————

1 INTRODUCTION
1.1 The Problem of Multicast Key Distribution
With rapid evolution of Internet, more and more group-
oriented applications have been emerging, for instance,
IPTV, DVB (Digital Video Broadcast), videoconferences,
interactive group games, collaborative applications, stock
quote streaming, and so on. These applications all require
a one-to-many or many-to-many group communication
mechanism. Providing security services for group com-
munication such as traffic integrity, authentication, and
confidentiality usually requires securely establishing a
group-shared key called group key among privileged
group members. This problem is called group key estab-
lishment in the literature [1]. Compared to its two-party
counterpart, secure group key establishment in a dynamic
group is more challenging. Group key establishment may
be broadly categorized as group key exchange/agreement
and group key distribution (also called multicast key distribu-
tion). In group key exchange protocols [2],[3], each group
member contributes an equal share to the common group
key (which is then computed as a function of all members’
contributions). In (centralized) multicast key distribution
(MKD) protocols, a trust third party called group control-

ler (GC) is responsible for creating a new group key when
some change in group membership happens, and secure-
ly transferring it to all privileged group members over a
broadcast channel. MKD protocols usually aim to solve a
more specific problem called immediate group rekeying. For
security-sensitive commercial applications (e.g. pay-per-
view, video-on-demand, and highly classified confe-
rences), each message sent to a group is encrypted with a
group key, and the group key must be changed for every
membership change. To prevent a new member from de-
coding messages exchanged before it joins a group, a new
group key must be distributed to the group when a new
member joins. This security requirement is called group
backward secrecy. On the other hand, to prevent a depart-
ing member from continuing access to the group’s com-
munication, the key should be updated as soon as a
member leaves. This security requirement is called group
forward secrecy. To provide both group backward secrecy
and group forward secrecy, the group key must be up-
dated (or rekeyed) upon every single change in group
membership, and the updated group key must be distri-
buted to all legitimate members. This process is referred
to as immediate group rekeying in the literature. MKD has
been well studied since late 1990s (see [4] for an excellent
survey, and more recent surveys are available in [5] and
[6]). To the best of our knowledge, tree-based MKD pro-
tocols are the most efficient ones to date. Immediate
group rekeying following these protocols has O(log2n)
communication complexity, and O(log2n) computational
and storage complexity for users, where n is group size.
The first tree-based MKD protocol is the one based on
Logical Key Hierarchies (LKH), which was independently

————————————————
 J. Liu is with the School of Software, Yunnan University, Kunming 650091,

China. E-mail: liujing@ynu.edu.cn.
 Q. Huang is with the College of Informatics, South China Agricultural

University, Guangzhou 510642, China. E-mail:
csqhuang@alumni.cityu.edu.hk.

 B. Yang is with the School of Computer Science, Shaanxi Normal Universi-
ty, Xi'an, 710062, China. E-mail: byang@snnu.edu.cn.

 Y. Zhang is with the School of Information Science and Technology, Sun
Yat-Sen University, Guangzhou, 510006, China. E-
mail:llovzy@vip.qq.com.

2

suggested by Wong et al. [7], Wallner et al. [8], and Ca-
ronni et al. [9]. Since then, a variety of MKD protocols
based on LKH [10],[1],[11],[12] have been proposed.

1.2 Static vs. Dynamic Group Access Structures
MKD protocols can be subdivided into two categories: the
stateful and the stateless. For stateful MKD protocols, re-
ceivers must remain online and keep updating their in-
ternal states as long as they still stay attached to the
group. If a receiver happens to be off-line when a group
rekeying operation occurs, or current rekey message was
lost due to a network failure, the receiver will not be able
to decipher any future group keys from rekey messages.
A successful decipher of current group key depends on
successfully receiving all of past rekey messages. Most
MKD protocols [7],[8],[9],[10],[1],[11],[12] are stateful. On
the contrary, for stateless MKD protocols [13],[14], receiv-
ers are not allowed to maintain any internal state. Person-
al keys are given to registered receivers or reserved for
prospective receivers in a setup phase and remain un-
changed thereafter. Statelessness property is very desira-
ble for application scenarios where no feedback channel
exists (e.g., encrypted DVD distribution) or group mem-
bers go off-line frequently or communication channel is
lossy. Typical stateless MKD protocols are those based on
the subset cover framework [13]: the complete sub-tree (CS)
protocol [13], the subset difference (SD) protocol [13], and
the layered subset difference (LSD) protocol [14].

When assigning personal keys to group members, effi-
cient stateless (resp. stateful) MKD protocols usually rely
on some type of static (resp. dynamic) cryptographic
structures such as key chains or logic key trees, which
helps achieve an ideal tradeoff among storage, communi-
cation and computational overheads. We call these cryp-
tographic structures group access structures to distinguish
them from traditional access structures (e.g., secret sharing)
[15]. A stateful (resp. stateless) user-based MKD protocol
can be regarded as consisting of a personal key assign-
ment algorithm based on certain type of dynamic (resp.
static) group access structures, and join/leave rekeying
algorithms (resp. broadcast encryption algorithm) that are
again based on the personal key assignment algorithm.
Therefore, group access structures are fundamental to
MKD protocols. This fresh view centered on group access
structures helps us gain an insight into modular design of
MKD protocols.

For most stateless MKD protocols, assignment of per-
sonal keys to registered and prospective users in the se-
tup phase is usually based on some kind of pre-specified
group access structures. Typical group access structures
used by stateless MKD protocols are complete sub-tree [13],
subset difference [13],[14], flat table [16],[17], polynomial in-
terpolation [18],[19],[20], Chinese remainder theorem [21],
dual hash chain [22],[23] and top-down one-way function tree
[13],[24]. These group access structures must be pre-
specified in the setup phase and then remain unchanged
irrespective of group dynamics. That is why we say they
are static. Shares or nodes (i.e., personal keys) associated
with these group access structures cannot be reassigned
to other users even if their holder has left the group, oth-

erwise group backward secrecy would be violated. There-
fore, these static group access structures must be big
enough to accommodate all future/prospective users at
the very beginning. For large and dynamic groups, that
may cause huge storage and computational requirements
both for GC and end users.

For stateful MKD protocols, assignment of personal
keys to a joining user is on-the-fly, and usually based on
some kind of dynamically-changing group access struc-
tures. Typical group access structures used by stateful
MKD protocols are logic key hierarchies
[7],[8],[9],[10],[11],[12], bottom-up one-way function tree
[1],[25], flat table [12],[26],[27], dual hash chain [28],[23] and
top-down one-way function tree [29],[23]. When a user joins
the group, GC needs to first create one or several new
nodes/shares on these group access structures for it, and
then update relevant keys before assigning them to the
joining member to ensure group backward secrecy. When
a user leaves the group, GC needs to delete its associated
node from these group access structures, and then update
those keys held by the evictee (thus all information about
the group access structure held by the evictee is invali-
dated) to ensure group forward secrecy. In a word, these
group access structures keep expanding, contracting, and
changing as members join or leave. Their current size ex-
actly corresponds to the current number of group mem-
bers. That is why we say they are dynamic. Therefore,
most stateful MKD protocols based on dynamic group
access structures are more suitable for immediate rekey-
ing for large and dynamic groups than those stateless
MKD protocols based on static group access structures.

1.3 User-Based MKD Protocols and Time-based
Ones
Access to group keys can be controlled through two me-
thods — the user-based one [7],[8],[9],[1],[11],[12] and the
time-based one [30],[24]. The former is more intuitive and
traditional. A current group key should be only accessible
to current legitimate members, which is achieved by per-
forming group rekeying upon every change in group
membership. On the other hand, if every user’s departure
time can be predetermined at the time of join, GC can
divide the group’s lifetime into time slots and for every
time slot, generate a unique group key that is used to en-
crypt application data transmitted during that period.
When a new member joins the group, it will be provided
with some intermediate seeds that can be used to derive
those group keys corresponding to the predetermined
duration over which it will stay attached to the group. In
contrast to traditional user-based MKD protocols, group
rekeying following this way is automatic (i.e., irrespective
of membership dynamics), stateless, and requires trans-
mitting no rekey message. These merits are collectively
referred to as zero side-effect by Briscoe [24]. We also call
this type of group rekeying automatic group rekeying.

1.4 Research Motivation and Contributions
For the first time, we introduced the concept of group
access structure for MKD protocols and provided a fresh
view on modular design of MKD protocols which is cen-

J. LIU ET AL.: EFFICIENT MULTICAST KEY DISTRIBUTION USING HOWP-BASED DYNAMIC GROUP ACCESS STRUCTURES 3

tered on group access structures. This view helps gain an
insight into MKD protocol design. We also revealed the
subtle differences between dynamic group access struc-
tures and static group access structures.

Some of existing stateless and stateful MKD protocols
are based on two useful types of static group access struc-
tures — Dual Hash Chain (DHC) [24],[28] and Binary Hash
Tree (BHT) [31],[24]. In this paper, we introduced two
new types of group access structures based on Homomor-
phic One-Way Functions (HOWFs): Dual Homomorphic One-
way Function Chain (D-HOFC) and Top-Down Homomor-
phic One-way Function Tree (TD-HOFT), both of which can
be regarded as the dynamic counterparts of DHC and
BHT, respectively. We introduced two structure-
preserving operations — chain product and tree product—
for updating these structures without compromising their
structures. For a particular type of TD-HOFT called exclu-
sive key tree (EKT), we introduced an operation called tree
blinding.

In this paper, we want to investigate what benefits
these two new types of dynamic structures — D-HOFC
and TD-HOFT — will bring for MKD protocols based on
them compared with their static counterparts (DHC and
BHT). Our following research results show that these
structures have their own advantages over their static
counterpart in designing efficient and secure MKD proto-
cols: (1) Employing D-HOFC, we are able to propose a
stateful time-based MKD protocol that counters the
rejoining member attack on a DHC-based protocol, and a
stateful user-based MKD protocol has a lower computa-
tional overhead for Group Controller (GC) than the cor-
responding DHC-based protocol in 60% time of a MBone
audio session; (2) Taking full advantage of TD-HOFT, we
designed a stateful user-based MKD protocol called EKT+
which outperforms the original EKT protocol; (3) We
made both quantitative and qualitative comparisons be-
tween our proposed protocols based on dynamic group
access structures and those based on the corresponding
static counterparts. To further investigate how perfor-
mance changes with time in practice for every related
user-based MKD protocol, we also performed an experi-
ment using MBone user activity data. Both the compari-
sons and experimental results show that: (a) protocols
based on tree-based group access structures have a better
performance than those based on chain-based structures;
(b) compared with the protocol based on BHT, protocols
based on the corresponding dynamic counterpart — TD-
HOFT — are more collusion-resistant and have a scalable
storage overhead while maintaining computational effi-
ciency comparable to the former; (4) Dynamic structures,
D-HOFC and TD-HOFT, are more suitable for designing
a hybrid stateful MKD protocol with collusion-
bandwidth tradeoffs than their static counterparts, DHC
and BHT. In addition, we extended a recently-proposed
symbolic security model for user-based MKD protocols to
support time-based MKD protocols. We presented rigor-
ous security proofs for all proposed protocols in a sym-
bolic security model.
 The rest of this paper is organized as follows. In Section
2, we introduce two general types of group access struc-

tures, D-OFC and TD-OFT, and review some of existing
MKD protocols based on certain instantiations of them.
Section 3 introduces two new types of group access struc-
tures — D-HOFC and TD-HOFT, and related operations
on them. In Section 4, employing dynamic D-HOFC, we
propose both a stateful time-based MKD protocol and a
stateful user-based MKD protocol. Taking full advantage
of TD-HOFT, we propose a stateful user-based MKD pro-
tocol called EKT+ that outperforms the original EKT pro-
tocol. Section 5 gives rigorous security proofs for our pro-
tocols in a symbolic security model. In Section 6, we give
comprehensive comparisons between our protocols based
on dynamic group access structures, and those based on
corresponding static counterparts. We also perform an
experiment to show how performance changes with time
in practice for every related user-based MKD protocol.
Section 7 concludes this paper and gives some interesting
topics for future research.

2 TWO TYPES OF GROUP ACCESS STRUCTURES

AND 1-RESILIENT MKD PROTOCOLS BASED ON

THEM
We first introduce a concept called 1-resilient that will be
used throughout the rest of this paper. According to the
concept of k-resilience given by Fiat and Naor [31], a pro-
tocol is called 1-resilient if it is secure against any single-
user attack, but a coalition of two users might break its
security.

In the rest of this paper, we denote by U the universe
of all users by U = {1, 2,…, n}. Denote the privileged sub-
set of users at time t by S(t) U, and the complement of set
S(t) with respect to U by R(t). For an arbitrary set S, we use
|S| to denote the order of S. The group key used to en-
crypt those data sent to S(t) is denoted by GK(t). We use
{M}K to denote the encryption of M by K. In addition, we
denote “multicast” by “”and “secure unicast” by “”.

In the following, we first introduce two general types
of group access structures, respectively called Dual One-
way Function Chain (D-OFC) and Top-down One-way Func-
tion Tree (TD-OFT). Then we review those 1-resilient
MKD protocols based on certain instantiations of them.

2.1 D-OFC

Referring to Figure 1, Dual One-way Function Chain (D-
OFC) is composed of two one-way function chains: a for-
ward chain and a backward chain. Both chains are de-
rived respectively from two different initial seeds, say v0,0
and v0,1, by repeatedly applying a one-way function h.
That is, the (i+1)-th intermediate seed vi+1,B is computed as
vi+1,B=h(vi,B) (i=0,…,n; B=0, 1). Note that specific candi-
dates for this one-way function h in practice can be a one-

Fig. 1 Time-based MKD using D-OFC (or DHC)

4

way hash function, a homomorphic one-way function
(HOWF) or any other particular type of one-way function.
Each intermediate seed on a forward/backward chain can
be used to compute a group key Ki in a time-based MKD
protocol as illustrated in Figure 1 or be assigned to a user
as its personal key in a user-based MKD protocol (see
Figure 2).

2.1.1 A time-based MKD protocol
Briscoe [24] proposed a structure called Bi-directional Hash
Chain that can be regarded as a hash-based instantiation
of D-OFC since it is derived by using a one-way hash
function in the same manner as above. In the rest of this
paper, we would rather call it Dual Hash Chain (DHC)
because we found the meaning of the original term is
somewhat self-contradictory (a hash chain must be one-
way). In [24], Briscoe also proposed a time-based MKD
protocol based on DHC which allows different portions
of a key sequence to be reconstructed from combinations
of two intermediate seeds. For convenience, we call it the
DHC protocol. We denote the group key used to encrypt
those data transmitted during the i-th time slot by Ki. As
illustrated in Figure 1, if we want to restrict a joining
member ui to the data transmitted from time slot i up to
time slot j which it has paid for, GC only needs to supply
it with two intermediate seeds vi,0 and vn-j,1 (called control
pair) when it joins the group. With this pair, i can derive
the contiguous key sequence from Ki to Kj by itself. For
convenience, we denote the time slot interval from i to j
by [i, j], and call it the authorized time slot interval for ui.

However, any member cannot be granted access to
multiple disjoint sub-sequences of the same key sequence,
otherwise this protocol is not secure even in the presence
of a single user (i.e., not 1-resilient). Suppose that we
want to grant a member ui two disjoint authorized time
slot intervals [i, j] and [k, h] (k>j), it will be supplied with
two control pairs {vi,0,vn-j,1} and {vk,0,vn-h,1} according to the
protocol. With these control pairs, the longest possible
key sequence that ui is able to reconstruct is the one from
Ki straight to Kh, which however contains a sub-sequence
from Kj+1 to Kk-1 unauthorized for ui. For the same reason,
a previously evicted member is disallowed to rejoin a
group. For convenience, we call this type of attack
rejoining member attack. This attack renders the DHC pro-
tocol useless in practice. Also for a similar reason, collu-
sion between an arbitrary pair of users would also break
security of the DHC protocol. Therefore, the DHC proto-
col is 1-resilient.

Another drawback with this protocol is that the life-
time of a group must be pre-specified in the setup phase,
and it cannot be extended thereafter even when all time
slots are used up. Because the backward hash chain of a
DHC cannot be extended in the reverse direction.

2.1.2 User-based MKD protocols
Fan et al. [28] proposed a 1-resilient user-based stateful
MKD protocol called Linear Ordering of REceivers (LORE).
We first introduce its personal key assignment algorithm
that is based on DHC. Let N denote the total number of
prospective receivers. Suppose that the entire receivers

are already linearly ordered as in Figure 2. Each receiver i
holds a set of forward keys, denoted by FSet(i), and a set
of backward keys, denoted by BSet(i). Both sets of keys
are called control keys. According to the key assignment
algorithm as illustrated in Figure 2, for receiver i, we have
FSet(i) = {fk | i k N} and BSet(i) = {bk | 1 k i}. The
effect of such control key assignment is that for any for-
ward key fi, it is known only to receivers with rank no
more than i, and for any backward key bi, it is known only
to receivers with rank no less than i. However, this kind
of key assignment algorithm requires GC to generate and
manage a huge number of keys. One simple solution to
this problem is to derive all forward keys (resp. backward
keys) from a single seed f1 (resp. bN) by repeatedly apply-
ing a one-way hash function like DHC.

Now we describe its group rekeying algorithms. When
receiver i joins the group at time t, GC sends the follow-
ing rekey message: GC i: GK(t+1), {fi, bi}. With control pair
{fi, bi}, receiver i can derive all its control keys. For the re-
maining receivers, GC simply broadcasts the following
rekey message:

All receivers except i can extract the new group key GK(t+1)
from this message. When receiver i leaves the group at
time t, GC multicasts the following rekey message:

According to the assignment of control keys, all current
members except i can extract the new group key GK(t+1)
from this message after double decryption.

A coalition of an arbitrary pair of members can break
group forward secrecy of the LORE protocol. Suppose
that members i (with rank i) and j (with rank j >i) are both
member of S(t). According to personal key assignment
algorithm, i’s (resp. j’s) control pair is (fi,bi) (resp. (fj, bj)).
Colluding with j, member i can exchange its forward key
fi for j’s backward key bj. Thus, when member i (resp. j)
leaves the group at a later time t’ (t’>t), it can use bj (resp.
fi) to derive bi+1 (resp. fj-1), and then obtain the new group
key GK(t’+1) by double decrypting the second (resp. first)
part of the rekey message transmitted by GC at time t’.
For the same reason, a rejoining member is not allowed to

 Fig. 2 Assignment of control keys in LORE

GCS(t+1): i, { }{ }
()1

(1) ()
ti

t

f GK
GK if i N

-

+ < ,

{ }{ }
()1

(1) (1)
ti

t

b GK
GK if i

+

+ > , where S(t+1)=S(t)-i.

GCS(t+1): i, ()

(1)
t

t

GK
GK .

J. LIU ET AL.: EFFICIENT MULTICAST KEY DISTRIBUTION USING HOWP-BASED DYNAMIC GROUP ACCESS STRUCTURES 5

be assigned a new rank. In fact, this kind of collusion at-
tack is inherent with the D-OFC based personal key as-
signment algorithm. For convenience, we call this type of
collusion attack member collusion attack.

In addition, the LORE protocol is also vulnerable to
another type of collusion attack called non-member collu-
sion attack. We analyze this type of attack through the fol-
lowing two cases:
1) Coalition between an arbitrary pair of evictees — Suppose

that user i (with rank i) left the group at the current
time t and user j (with rank j<i) had left before time t.
We denote by M(t) the rekey message transmitted by
GC when i left at time t. Colluding with j, user i can
first decrypt the outer encryption of the first part of
M(t) (i.e.,) to get , and
then transfer it to user j who can decrypt it to get
GK(t+1) (note that user j can derive fi-1 from its forward
control key fj since i>j). Thus, the group forward
secrecy is broken;

2) Coalition between a former evictee and a later-joining
member — Suppose that user i left the group at time t
and user j joined at time t+1. Using a similar argu-
ment as above, it is readily seen that collusion be-
tween user i and user j is also successful. In this case
both group forward secrecy (with regard to the evic-
tee i) and group backward secrecy (with regard to the
joining member j) are broken.

 In either case, both i and j are non-members with re-
spect to the privileged user set S(t+1). Therefore, we call
this type of collusion attack non-member collusion attack. In
a word, collusion between an arbitrary pair of non-
members will break the security of the LORE protocol.

2.2 TD-OFT
As illustrated in Figure
3, a Top-Down One-way
Function Tree (TD-OFT)
is a balance binary tree
which is derived from
a single root seed S0,0 in
a top-down manner
such that Si+1,2j= fL(Si,j),
Si+1,2j+1= fR(Si,j) (i=0,1,…)
where fL and fR denote
two distinct one-way

functions respectively, and Si+1,2j and Si+1,2j+1 the left child
and the right child of a seed Si,j respectively. Each leaf
node Slogn,i (n is the group size) of a TD-OFT will be asso-
ciated with a user ui in a user-based MKD protocol, or
represent a group key corresponding to a time slot in a
time-based MKD protocol.

Briscoe [24] proposed a top-down binary tree structure
called Binary Hash Tree (BHT) which can be regarded as a
hash-based instantiation of TD-OFT since it is derived by
using one-way hash functions in the same manner as TD-
OFT. Employing BHT, Briscoe [24] proposed a 1-resilient
time-based MKD protocol that overcomes some draw-
backs with the DHC protocol.

Liu and Wang [23] proposed a 1-resilient stateful user-
based MKD protocol based on BHT. For convenience, we

call their protocol the LW protocol. The LW protocol is
based on a BHT-based personal key assignment algo-
rithm that is similar to the one originally suggested by
Fiat and Naor [31]. This algorithm assigns personal keys
or seeds to users simply as follows. As illustrated in Fig-
ure 3, when a user ui joins the group, GC associates it
with a free leaf node, say Slogn,i on the BHT tree, and sup-
plies it with all seeds associated with the siblings of the
nodes on its path to the root. Given these seeds, ui can
compute all the seeds except those on its path to the root.
It is readily seen that according to this algorithm, Slogn,i is
shared by all users except ui, and thus can be used to ex-
clude ui from the group. It is based on this sense that Slogn,i
is called an exclusive key for ui by Kim et al. [29]. For ex-
ample, user u2 associated with S3,2 is supplied with S3,3,
S2,0, and S1,1. And S3,2 is an exclusive key for u2 that is
shared by all users except u2. When a user ui leaves the
group, GC multicasts the following rekey message:

According to the personal key assignment algorithm,
all current members except ui can extract the new group
key GK(t+1) from this message. Using a similar argument
as given in the end of Section 2.1.2, it is readily seen that
the LW protocol is also vulnerable to both member collu-
sion attack and non-member collusion attack as the LORE
protocol.

Kim et al. [29] proposed a 1-resilient stateful user-
based MKD protocol with similar personal key assign-
ment as that of the LW protocol except that instead of
using one-way hash functions, they chose to use HOWFs
to facilitate updating the whole TD-OFT when a member
leaves or joins the group. For convenience, we call their
protocol the Exclusive Key Tree (EKT) protocol since it is
based on an important idea called exclusive key [29],[23].
In contrast to BHT used by the LW protocol, TD-OFT
used by the EKT protocol is dynamic. The leave rekeying
algorithm of the EKT protocol is similar to that of the
EKT+ protocol (refer to Section 4.3). Its join rekeying al-
gorithm is similar to that of the LORE protocol except that
the whole TD-OFT must be updated, and a root incre-
mental seed used to update TD-OFT is also encrypted in a
rekey message besides the new group key. The EKT pro-
tocol suffers similar member collusion attack as the LORE
and LW protocols, but a particular type of non-member
collusion attack is prevented. Since both the EKT and
EKT+ protocols suffer the same collusion attack, we defer
further discussion to Section 4.3.

Because both DHC and BHT are derived in either a
chain manner or a top-down tree manner by using one-
way hash functions, we cannot update any node of them
without replacing the whole chain or tree with a new one.
In this sense, we can regard DHC as a static instantiation
of D-OFC, and BHT as a static instantiation of TD-OFT.

{ }{ }
()1

(1)

ti

t

f GK
GK

-

+ { }
1

(1)

i

t

f
GK

-

+

Fig. 3 TD-OFT (or BHT)

GCS(t+1): ()
log ,

(1),
t

n i

t
i

S GK
u GK

, where ‘’

represents the exclusive-or operation and S(t+1)=S(t)-
ui.

6

3 D-HOFC AND TD-HOFT
Recall that a one-way function is a function that is easy to
compute on every input, but hard to invert given the im-
age of a random input. In this section, we instantiate D-
OFC and TD-OFT by using HOWFs to obtain two new
types of group access structures, respectively named dual
homomorphic one-way function chain (D-HOFC) and top-
down homomorphic one-way function tree (TD-HOFT). Up-
dating D-HOFC (resp. TD-HOFT) can be easily achieved
by performing a chain product (resp. a tree product) of the
original structure and a corresponding incremental struc-
ture. Before we give their formal definitions, let’s review
some basic mathematical concepts about homomorphism.
We use (G,) to denote a group G with its algebraic op-
eration “”. Given two groups (G,) and (H, ·), a group
homomorphism from (G,) to (H, ·) is a function f : G → H
such that for all u and v in G, it holds that f(uv) = f(u)·f(v).
A self-homomorphism is a group homomorphism that maps
a group G to itself. If a self-homomorphism is a one-to-one
mapping, we call it homomorphic one-way permutation
(HOWP). If every node of a structure is an element of a
group G, we say this structure is defined over G.

3.1 HOFC and D-HOFC
Definition 1 HOFC — An HOFC of length N defined over
a group (G,) and an HOWP f is a one-way chain that is
computed by repeatedly applying f in a forward manner
as follows. For an arbitrary node xi in an HOFC X, its suc-
ceeding node xi+1 = f(xi) (i = 0,…, N-2).

Definition 2 Chain product — Given two arbitrary
HOFCs of the same length, X and Y, defined over a group
(G,) and a HOWP f, a chain product of X and Y, denoted
by XY, is computed by multiplying their corresponding
nodes.

Theorem 1: Given two arbitrary HOFCs of the same length,
X and Y, both defined over a group (G,) and an HOWP f, the
result of a chain product X Y is also an HOFC.
 Proof: Let Z be the result of a chain product of X and Y,
i.e., Z = XY. We prove for an arbitrary i (0iN-1), zi+1 =
f(zi). Then the theorem would follow immediately accord-
ing to Definition 1. In fact, we have zi+1= xi+1yi+1=f(xi)
f(yi)=f(xiyi)=f(zi). �

Definition 3 D-HOFC — D-HOFC of length N, defined
over a group (G,) and an HOWP f, consist of a forward
HOFC and a backward HOFC, both of length N and de-
fined over the group (G,) as well as the HOWP f.

3.2 TD-HOFT
Definition 4 TD-HOFT — A TD-HOFT defined over a
group (G,) and two HOWPs fL and fR is a balanced bi-
nary tree that is derived in the following top-down man-
ner: for an arbitrary node xi in an HOFT X, suppose its
left child and right child are denoted by x2i and x2i+1 re-
spectively, then we have x2i = fL(xi) and x2i+1 = fR(xi).

To be used as an access control structure, TD-HOFT
must at least satisfy the following two conditions: (1) its
leaf nodes must be collision-free; (2) its leaf nodes must be
independent (from an arbitrary set of leaf nodes, it is com-

putationally infeasible to compute any leaf node outside
this set).

Definition 5 Tree product — Given two arbitrary TD-
HOFTs of the same depth, X and Y, both defined over a
(G,) and two HOWPs fL and fR, a tree product of X and Y,
denoted by XY, is computed by multiplying their corre-
sponding nodes.

Theorem 2: Given two arbitrary TD-HOFTs X and Y with
the same depth, both defined over a group (G,) and two
HOWPs fL and fR, the result of a tree product X Y is also a
TD-HOFT.

Proof: Let Z = XY. For an arbitrary node secret zi Z,
we have z2i=x2iy2i=fL(xi)fL(yi)= fL(xiyi)= fL(zi). For the
same reason, we have z2i+1 = fR(zi). Thus, Z is a TD-HOFT
according to Definition 4. �

Definition 6 Tree blinding — Given an arbitrary TD-
HOFT X, a tree blinding of X maps X to another key tree
Y, denoted by Y=B(X) such that (1) Y is still a TD-HOFT,
(2) from any set of nodes of Y, it is computationally infea-
sible to compute any node of X.

For an arbitrary type of HOWP-based TD-HOFT, a tree
blinding operation may or may not exist. Theorem 3 (re-
fer to Section 4.3.1) shows that it does exist for a particu-
lar type of TD-HOFT — the Blum-Williams function
based one.

Theorem 1 and Theorem 2 show that both chain prod-
uct and tree product are structure-preserving operations. A
tree blinding operation on a TD-HOFT helps conceal in-
formation about its every node without using any addi-
tional incremental structure and compromising its struc-
ture.

3.3 Efficient Candidates for HOWP
Considering computational efficiency, Rabin function
(modular squaring) [32] and RSA function [33] with small
encryption exponent (e.g., 3) are both good candidates for
homomorphic one-way functions. Rabin function is more
computationally-efficient than RSA function. However
modular squaring is not a permutation on Zn*, it is in fact
a 4-to-1 mapping. But a variant of Rabin function — the
Blum-Williams function is a trapdoor permutation on QR(n)
where QR(n) denotes the set of all quadratic residues
modulo n. Blum-Williams function is defined as follows:
for an integer x Zn*, compute y = x2 mod n, where n is a
Blum integer (i.e., n is a product of two distinct primes
each congruent to 3 modulo 4). In a word, the Blum-
Williams function is the best candidate for HOWP.

4 MKD PROTOCOLS BASED ON D-HOFC AND

TD-HOFT
As discussed in Section 1.2, when assigning personal
keys to new members, efficient stateful MKD protocols
usually rely on some type of dynamic group access struc-
ture which helps achieve a better tradeoff among storage,
communication and computation overheads. However,
we have already seen in Section 2 that some stateful MKD
protocols use two static types of group access structures
(DHC and BHT) instead. In this section, we further inves-
tigate what benefits the two new dynamic group access

J. LIU ET AL.: EFFICIENT MULTICAST KEY DISTRIBUTION USING HOWP-BASED DYNAMIC GROUP ACCESS STRUCTURES 7

structures (D-HOFC and TD-HOFT) will bring for MKD
protocols based on them compared with their static coun-
terparts. We use D-HOFC to design both a stateful time-
based MKD protocol and a stateful user-based MKD pro-
tocol. The former counters the rejoining member attack on
the DHC-based protocol. One of our experiment results
given in Section 6.4 shows that the latter has a lower
computational overhead for GC than the corresponding
DHC-based protocol in 60% time of a MBone audio ses-
sion. We also take full advantage of TD-HOFT to design a
stateful user-based MKD protocol called EKT+ that out-
performs the original EKT protocol. In the end of this sec-
tion, we reveal that 1-resilient stateful MKD protocols
based on dynamic group access structures are more suit-
able for constructing a hybrid stateful MKD protocol with
collusion-bandwidth tradeoffs than those based on static
group access structures.

4.1 The Stateful Time-Based MKD Protocol —
Protocol I
To counter the rejoining member attack on the DHC pro-
tocol that renders it useless, the idea is that whenever
detecting a former evictee ui is rejoining the group at time
slot c, GC updates both the forward HOFC and the back-
ward HOFC (excluding all those nodes on both chains
belonging to the past time slot interval [0, c-1]) by multip-
lying them by a corresponding incremental HOFC before
supplying ui with its new control pair. To allow other le-
gitimate members to update their control pairs, GC only
needs to broadcast two incremental root seeds. In this
way, GC establishes a whole new D-HOFC among the
group without rekeying the entire group (i.e., sending
each member its new control pair). Since the two control
pairs held by the rejoining member now belong to differ-
ent D-HOFC, it cannot use them to derive any unautho-
rized group key. Thus, the rejoining member attack is
prevented. However, the same method also causes a
drawback that GC must record a long history revocation
list during the group’s lifetime for detecting a rejoining
member.

4.1.1 Rejoin rekeying
Since the following group rekeying operation is per-
formed by GC when a former evictee rejoins the group,
we call our algorithm rejoin rekeying. As illustrated in Fig-

ure 4, suppose that the group’s lifetime is l time slots, and
the corresponding D-HOFC consists of a forward HOFC
V0 and a backward HOFC V1. When a former evictee ui
rejoins the group (suppose that its old authorized time
slot interval is [a, b]), GC detects it is a rejoining member
and assigns it a new authorized time slot interval [c, d].
After that, GC performs the following steps to complete
rejoining rekeying: (1) Updating the D-HOFC by chain
products — GC derives two incremental HOFCs of length
l-c, say R0 and R1, respectively from two randomly-chosen
seeds r0,0 and r0,1. For any chain V0, we denote its sub-
chain confined in time slot interval [a, b] by V0[a, b]. As
illustrated in Figure 4, GC could update sub-chain V0[c, l-
1] (resp. sub-chain V1[c, l-1]) by performing a chain prod-
uct as V0’[c, l-1]=V0[c, l-1]R0 (resp. V1’[c, l-1]=V1[c, l-
1]R1). However, it is not necessary for GC to update
whole D-HOFC in such a computationally-intensive way.
According to Theorem 1, performing such chain products
is equivalent to first computing both the new forward
root control key as vc,0’= vc,0 r0,0 and the new backward
root control key as vl -1,1’= vl -1,1 r0,1, and then deriving any
control key on V0’[c, l-1] (resp. V1’[c, l-1]) from vc,0’ (resp.
vl -1,1’) when needed; (2) Sending rekey messages — GC
derives ui’s new backward control key vl-d-1,1’ from vl -1,1’
(note that ui’s new control pair is {vc,0’,vl-d-1,1’}) and then
sends the following message: GC ui: c,d,{vc,0’,vl-d-1,1’}.
With this control pair, ui is able to derive group keys from
Kc’ to Kd’. For the remaining members, GC simply sends
the following message by multicast:

Note that every member who is granted access to any
group key of the key sequence from Kc to Kd can derive vl-

c-1,1. Therefore, these members can extract r0,0 and r0,1 from
this message, update their control key pair by multiplying
them by the corresponding incremental keys derived
from either r0,0 or r0,1 according to Theorem 1, and then
compute their new authorized group keys as illustrated
in Figure 4.

If the time when another former evictee rejoins after
time slot c and the new authorized time slot interval as-
signed to it, say [r, s], can be a priori known when ui
rejoins the group, then GC only needs to update sub-
chains V0[c, γ-1] and V1[c, γ-1] instead of V0[c, l-1] and V1[c,
l-1]. Thus, a lot of computational overhead will be saved
for both GC and end user.

4.1.2 Improved rejoin rekeying
In above rejoin rekeying, the computational overhead of
each user is O(l) modular multiplications if the next rejoin
event is unpredictable. This is a huge computational
overhead for end users when l is big. We provide the fol-
lowing algorithm that achieves efficiency comparable to
the original DHC protocol for end users by transferring
most amount of computational overhead from end user
side to GC side. Suppose ui rejoins the group and GC as-
signs it a new authorized time slot interval [c, d]. Also
suppose that when another former evictee rejoins after
time slot c, the new authorized time slot interval assigned

Fig. 4 A time-based MKD with 8 time-slots

GCU: c,d,

1,1
0,0 0,1,

l cv
r r

.

8

GCS(t+1): k, { } ()
1

(1) () ()
1,0 1,1, ,

t
k

t t t
n f

GK r r
-

+
-

 ()if k n< , { } ()
1

(1) () ()
1,0 1,1, , (1)

t
k

t t t
n b

GK r r if k
+

+
- >

where S(t+1) = S(t)-ui.

to it is [r, s]. We denote an HOWP by f. GC first generates
a random seed r0,0 (resp. rl-c-1) for deriving the forward
chain (resp. the backward chain in a reverse direction).
For each time slot j where cjγ, GC first derives the cor-
responding forward incremental seed rj-c,0 from its prede-
cessor rj-c-1,0, and the backward incremental seed rl-j-1 re-
versely from its successor rl-j as rl-j-1= f -1(rl-j), and then
sends the following message by multicast at the begin-
ning of the j-th time slot:

We call it the j-th rekey message for short. GC (or multi-
cast sender) may transmit the j-th rekey message by pig-
gybacking it on the application data transmitted during
the j-th time slot. Upon receipt of this message, every legi-
timate user who is granted access to the j-th time slot can
extract both incremental seeds from it and compute the
corresponding group key Kj as

Compared to above rejoin rekeying algorithm, for a us-
er with authorized time slot interval [α, α+m] (cα<α+m
γ), its total overhead for computing authorized group
keys is reduced from (l-c+m+1) modular multiplications
plus 2 decryptions to 2m decryptions plus 4m modular
multiplications.

Interestingly, the improved rekeying algorithm has a
nice property called self-healing [34] in the sense that a
user can obtain missing group keys on its own without
requesting a retransmission from GC. Denote the i-th re-
key message by Mi. Suppose that a user u with authorized
time slot interval [α, β] (cα<βγ) got both Mi (α<i<β) and
Mj+1 (i<j<β). Then even if all rekey messages within time
slot interval [i+1, j] are missing, u is still able to recover all
group keys within time slot interval [i+1, j], because u can
derive all forward incremental seeds within time slot in-
terval [i+1, j] from ri-c,0 extracted from Mi, and all back-
ward incremental seeds within time slot interval [i+1, j]
from rl-j-2,1 extracted from Mj+1.

Existing HOWPs (e.g., Rabin functions or RSA func-
tions) are usually trapdoor functions. D-HOFC based on
them can be extended in a reverse direction by GC, if it
knows the trapdoor information. Thanks to that, for Pro-
tocol I, the lifetime of a group can be extended as needed.
Of course, GC must protect the private trapdoor informa-
tion from every group members.

Remark 1: Compared with the DHC protocol, Protocol
I is stateful. Every member must remain online in order to
ensure receiving each rekey message and updating its
control pair accordingly, otherwise it will be unable to
compute any future group key.

Remark 2: To save GC from storing and managing a
long history revocation list, one solution is to let GC up-
date sub-chains of D-HOFC whenever a member (no mat-
ter whether it is a fresh new one or a former evictee) joins
the group.

4.2 The Stateful User-Based MKD Protocol —
Protocol II
In this section, we use D-HOFC to design a stateful user-
based MKD protocol. One of the experimental results
given in Section 6.4 shows that it has a lower computa-
tional overhead for GC than the corresponding DHC-
based protocol in 60% time of a MBone audio session. The
idea is that when a member joins/leaves the group, GC
extends/contracts the D-HOFC accordingly, updates
them by chain products, and then broadcasts an en-
crypted rekey message containing the new group key and
two incremental root keys such that all current members
except the joining/departing member can extract them
and then update their control pairs accordingly using
these incremental root keys. In this way, both group for-
ward and backward secrecy are ensured.

 Referring to Figure 5, we denote the forward HOFC
derived from a root key f1(t) at time t by F(t) and the back-
ward HOFC derived from a root key bn(t) at time t by B(t).
The control pair associated with rank k at time t are de-
noted by {fk(t), bk(t)}. Given an arbitrary D-HOFC, its ranks
can be deleted, added, and reassigned unlike a DHC.
Suppose that the current length of a D-HOFC defined
over a HOWP g is n. When a member ui with rank k
(1kn) leaves the group at time t, GC performs the fol-
lowing steps to complete leave rekeying: (1) Contracting
and updating the D-HOFC — GC generates two random
incremental root keys r1,0(t) and rn-1,1(t), and computes a
new forward root control key (resp. a new backward root
control key) as f1(t+1)=g(f1(t))r1,0(t) (resp. bn-1(t+1)=g(bn(t))rn-

1,1(t)). GC is now able to derive a new (n-1)-length D-
HOFC consisting of a new forward chain F(t+1) and a new
backward chain B(t+1). The former is derived from f1(t+1)
and the latter from bn-1(t+1). Referring to Figure 5, the effect
of such operations is equivalent to contracting the original
D-HOFC by one rank through chain products; (2) Multi-
casting a rekey message — GC derives fk-1(t) and bk+1(t) re-
spectively from f1(t) and bn(t) and then generates a new
group key GK(t+1). At last, GC sends the following rekey
message by multicast:

(1)

 Every member except ui can extract GK(t+1), r1,0(t) and rn-

Fig. 5 Leave rekeying based on D-HOFC

GCU: j,
1,1

,0 1,1,
l c

j c l j v
r r

 .

,0 ,0 1,1 1,1() ()j j j c l j l jK v r v r .

J. LIU ET AL.: EFFICIENT MULTICAST KEY DISTRIBUTION USING HOWP-BASED DYNAMIC GROUP ACCESS STRUCTURES 9

1,1(t) from either the first part or the second part of this
message, and then run Algorithm I to update their control
pairs. Any former evictee cannot decrypt the above mes-
sage, because its control pair had been invalidated by a
chain update operation when it left the group and thus it
can derive neither of the two control keys used to encrypt
the rekey message.

 For leave rekeying, the computational cost of GC in-
cludes 6 encryptions, n-1 evaluations of an HOWP for
computing encryption keys for rekey message, and 2
evaluations of an HOWP plus 2 modular multiplications
for updating both root control keys. The computational
cost of each group member includes n-1 evaluations of an
HOWP for computing decryption keys for rekey message
in worst case, 3 decryptions, and n-1 evaluations of an
HOWP plus 2 modular multiplications for updating its
control keys. The multicast size includes 6 encrypted keys.
Note that we do not count the bandwidth cost of user id
or rank id in a rekey message.

Suppose the current length of D-HOFC is n. When a
new member ui joins the group at time t, GC performs the
following steps to complete join rekeying: (1) Extending
the D-HOFC — GC adds a new rank n+1 at the tail of the
D-HOFC, and computes its associated control pair as
bn+1(t)=g-1(bn(t)) and fn+1(t)=g(fn(t)). The effect of such an oper-
ation is equivalent to extending the original D-HOFC at
its tail by one rank; (2) Updating the extended D-HOFC
by chain products — GC generates two random incre-
mental root keys r1,0(t) as well as rn+1,1(t), and compute a
new forward root control key as f1(t+1)=f1(t)r1,0(t) as well as
a new backward root control key as bn+1(t+1)=g-

1(bn(t))rn+1,1(t) . With these new root control keys, GC can
derive a new (n+1)-length D-HOFC; (3) Sending rekey
messages — GC generates a new group key GK(t+1) and
sends the following message: GC ui: n+1, GK(t+1), {fn+1(t+1),
bn+1(t+1)}. For members except ui, GC simply sends the fol-
lowing rekey message by multicast:

Every members except ui can decrypt this message to ob-
tain the new group key GK(t+1), r1,0(t) and rn+1,1(t), and up-
date their control keys by multiplying them by the cor-
responding incremental keys deriving from either r1,0(t) or
rn+1,1(t).
 For join rekeying, the computational cost of GC in-
cludes 3 encryptions, 1 calculation of modular square root,
1 modular multiplication for updating the forward root

control key, and 2 modular multiplications plus n evalua-
tions of an HOWP for computing the control key pair for
the joining member. The computational cost of each
group member includes 3 decryptions, and n evaluations
of an HOWP plus 2 modular multiplications for updating
its control pair. The multicast size includes 3 encrypted
keys and unicast size includes 3 keys.
 Protocol II is vulnerable to the same member collusion
attack as the LORE protocol. But for non-member collu-
sion attack, a coalition between a former evictee and a
later-joining member is useless. Suppose that a user ui
with rank k left the group at time t, and a user uj joined at
time t+1 and was assigned with rank n>k. The rekey mes-
sage M(t) transmitted by GC when ui left at time t is as (1).
The first part (resp. the second part) of M(t) was encrypted
by a forward control key fk-1(t) (resp. bk+1(t)). When uj joined
the group at time t+1, uj was provide by GC with control
key {fn(t+2), bn(t+2)}. According to Protocol II, the forward
control keys fk-1(t) and fn(t+2) (resp. backward control keys
bk+1(t) and bn(t+2)) belong to different forward chains F(t) and
F(t+2) (backward chains B(t) and B(t+2)), respectively. Since
neither of fk-1(t) and bk+1(t) can be derived from the collective
control key pairs of ui and uj, i.e., { fk(t), bk(t), fn(t+2), bn(t+2)},
both M(t) (containing GK(t+1)) and M(t+1) (encrypted by
GK(t+1)) are indecipherable to ui and uj .

4.3 The EKT+ Protocol
In this section, we first prove the existence of a tree blind-
ing operation for a particular type of TD-HOFT called
Exclusive Key Tree (EKT). Then we introduce group rekey-
ing algorithms based on tree blinding and tree product.

4.3.1 Existence of a tree blinding operation for EKTs
We first introduce HOWPs used by the EKT protocol, and
then prove the existence of a tree blinding operation for
EKTs. Given two Blum integers with the same bit lengths,
say mL and mR, we use mLR to denote mLR = mLmR. The
two HOWPs fL(x) and fR(x) used by the EKT protocol are
defined as fL(x) = (x2 mod mLR) mod mL, and fR(x) = (x2
mod mLR) mod mR, respectively. We denote the key asso-
ciate with a node ni by EKi in below. GC chooses a ran-

dom root seed 1
LR

mEK Z
 and derives the whole key tree

using fL(x) and fR(x) in a top-down manner as discussed in
Section 2.2. Recall that each leaf key EKi is called an exclu-
sive key for the user associated with ni. In this sense, we
call a TD-HOFT derived in the above manner an exclusive
key tree (EKT). It is readily seen that given an arbitrary
EKT, its leaf keys satisfy the two sufficient conditions for
a TD-HOFT to be used as an access control structure: colli-
sion-freeness and independence.

Theorem 3: For an arbitrary EKT X, a tree product of X and
itself (i.e., self tree product) is a tree blinding operation.
 Proof: For an arbitrary EKT X, let Y = XX. According
to Theorem 2, Y is also an EKT. For an arbitrary node xi
(resp. yi) in an EKT X (resp. Y), we denote its left child
and right child by x2i (resp. y2i) and x2i+1 (resp. y2i+1), re-
spectively. According to Definition 5, y1 is computed as y1

= x12 mod mLR. Given i>1, if i is even, yi is computed as yi =
xi2 mod mL, otherwise yi = xi2 mod mR. Because all three

ALGORITHM I — UPDATING CONTROL PAIR
For an arbitrary member uj (ji), suppose its
associated rank is α (αk),
if α<k, then
 uj computes its new control pair as

f(t+1)
α = g(f(t+1)

α)r(t)
α,0 and

b(t+1)
α = b(t)

α r(t)
α,1;

else (i.e., α>k),
 uj first reduces its rank by one and then com-

putes its new control pair as
f(t+1)
α-1 = f(t)

α r(t)
α-1,0 and

b(t+1)
α-1 = g(b(t)

α)r(t)
α-1,1.

GCS(t+1): n+1, ()

(1) () ()
1,0 1,1, ,

t

t t t
n

GK
GK r r

 .

10

modular square functions are one-way, it is computation-
ally infeasible to compute any node of X from all nodes of
Y. Therefore, according to Definition 6, a self-tree product
is a tree blinding operation. �

4.3.2 Group rekeying algorithms
We improve the EKT protocol from the following two
aspects: (1) introducing simple operations for add-
ing/deleting nodes to/from an EKT; (2) using a tree
blinding operation to design a join rekeying algorithm
that improves the computational performance of the EKT
protocol. We call the improved protocol EKT+.

First recall that
the personal key of
each user, say ui,
includes those keys
associated with
siblings of those
nodes in its path to
the root. For con-

venience, we call these keys sibling keys of ui. Denote by
EKi(t) the key associated with node ni at time t. For exam-
ple, referring to Figure 6, u5 got three sibling keys EK2(t),
EK6(t) and EK14(t) when it joined the group at time t.

When a new member ui joins the group at time t, GC
performs the following steps to complete join rekeying: (1)
Performing a tree-growth operation (as illustrated in
Figure 6) — GC first finds a shallowest leaf node, say nk
(suppose it is currently associated with user uj), then adds
a left child node n2k and a right child node n2k+1 to nk, and
derives their corresponding exclusive keys EK2k(t) and
EK2k+1(t) as EK2k(t)=fL(EKk(t)) and EK2k+1(t)=fR(EKk(t)), respec-
tively. After those operations, GC associates users uj and
ui with n2k and n2k+1, respectively; (2) Performing a tree
blinding operation — To ensure group backward secrecy,
GC needs to perform a tree blinding operation on the ex-
panded key tree. For an arbitrary exclusive key EKi(t), we
denote its blinded version by EKi(t+1). In fact, it is not ne-
cessary for GC to actually perform a tree blinding opera-
tion on the whole key tree. According to Theorem 3, GC
only needs to compute its blinded root exclusive key
EK1(t+1) as EK1(t+1)= (EK1(t))2 mod mLR, and then derive those
sibling keys for the joining member ui from EK1(t+1); (3)
Sending rekey messages — GC derives the new group key
GK(t+1) from current group key GK(t) as GK(t+1)=h(GK(t))
where h is a public hash function, and sends the following
messages:

GC ui: n2k+1,GK(t+1), sibling keys for ui,
GC uj: n2k+1,EK2k+1(t+1).

For remaining members, GC simply sends the following
message by multicast:

GCS(t+1): a rekey notification.
After receiving this notification, all members except ui can
update the group key as GC does, and update their own
sibling keys by modular square operations as described in
the proof of Theorem 3.
 For join rekeying, the computational cost of GC includes
1 evaluation of a hash function for computing the up-
dated group key, 1 evaluations of an HOWP for updating
the root exclusive key, and 2log2n evaluations of an

HOWP for computing all blinded sibling keys for the
joining member and a new blinded sibling key for the
sibling of the joining member. The computational cost of
each group member includes 1 evaluation of a hash func-
tion for computing the updated group key and log2n
evaluations of an HOWP for updating its sibling key. The
multicast size includes one notification message and un-
icast size includes log2n+2 keys.

When a member ui (suppose that it is associate with
node n2k+1) leaves the group at time t, GC performs the
following steps to complete leave rekeying: (1) Perform-
ing a tree-contraction operation (as illustrated in Figure
6) — GC deletes both n2k+1 and its sibling n2k, and then
associates the sibling user of ui (who was associated with
node n2k) with nk; (2) Updating the shrunk key tree by a
tree product — GC generates a random incremental root
seed r1(t). From r1(t), it could derive the whole incremental
key tree T in a top-down manner. Now, to ensure group
forward secrecy, GC may update the shrunk key tree by
performing a tree product of it and T. However, it is not
necessary for GC to update the whole shrunk key tree in
such way. According to Theorem 2, GC only needs to
compute the updated root exclusive key EK1(t+1) as
EK1(t+1)= EK1(t) r1(t), and then derive the exclusive key
EK2k+1(t) for the departing member ui from EK1(t); (3) Multi-
casting a rekey message — GC generates a random new
group key GK(t+1) and sends the following rekey message
by multicast:

Every member except ui can extract GK(t+1) and r1(t) from
this message, and then update its own sibling keys by
multiplying them by their corresponding incremental key
derived from r1(t). For example, if i is even, EKi(t+1) is com-
puted as EKi(t+1)= EKi(t)ri(t) mod mL.

For leave rekeying, the computational cost of GC in-
cludes 2 encryptions, 1 modular multiplication for com-
puting updated root exclusive key, and log2n evaluations
of an HOWP for computing the encryption key for rekey
message. The computational cost of each group member
includes log2n evaluations of an HOWP for computing
decryption key for rekey message in worst case, 2 decryp-
tions, 2log2n evaluations of an HOWP for computing the
incremental keys corresponding to its sibling keys, and
log2n modular multiplications for updating its sibling
keys. The multicast size includes 2 encrypted keys.

Both the EKT and EKT+ protocols are vulnerable to the
same member collusion attack as the LW protocol. But for
non-member collusion attack, using a similar argument as
given in the end of Section 4.2, it is readily seen that a
coalition between a former evictee and a later-joining
member is useless for both the EKT and EKT+ protocols.
Both the EKT and EKT+ protocols can be easily extended
to support batch group rekeying by using one of the sub-
set-cover techniques [13] as Liu and Wang dealt with the
LW protocol [23].

4.4 From a 1-Resilient MKD Protocol to a Hybrid
MKD Protocol with Collusion-Bandwidth Tradeoffs
According to a recent research result by Liu and Wang

GCS(t+1): n2k+1, ()
2 1

(1) ()
1,

t
k

t t

EK
GK r

 where S(t+1)=S(t)-ui.

Fig. 6 EKT before and after a join (leave)

J. LIU ET AL.: EFFICIENT MULTICAST KEY DISTRIBUTION USING HOWP-BASED DYNAMIC GROUP ACCESS STRUCTURES 11

[23], all personal key assignment algorithms based on
either D-OFC (including DHC and D-HOFC) or TD-OFT
(including BHT and TD-HOFT) inherently suffer from
member collusion attack because all of them are based on
a concept called exclusive key. Therefore, stateful user-
based MKD protocols based on these personal key as-
signment algorithms are bound to be 1-resilient. However
recent research results [23], [28] clarify the significance of
research on 1-resilient MKD protocols by showing that
any 1-resilient MKD protocol with constant communica-
tion overhead can be used in conjunction with a collu-
sion-resistant tree-based protocol (e.g., the LKH protocol
[7]) to construct a hybrid protocol with tunable collusion-
bandwidth tradeoffs. Since the resulting hybrid protocol
has a lower communication overhead than the corres-
ponding collusion-resistant protocol, it is more suitable
for cost-sensitive applications or resource-constrained
environments.
 The idea of constructing a hybrid stateful protocol is
simply as follows. A group of receivers are divided into
divisions. A key called division key is shared by all receiv-
ers in a division. GC simply employs an independent in-
stance of a 1-resilient stateful MKD protocol for each divi-
sion to rekey its division key. While each division is re-
garded as a leaf node in an LKH key tree, GC uses the
LKH protocol to rekey group keys across all divisions. It
is readily seen that a group of k colluding receivers can
succeed if and only if at least two of them are allocated to
the same division since combining control keys from dis-
tinct divisions does not help the colluders. To reduce vul-
nerability to collusion attack, we must increase the num-
ber of divisions, say d. But a greater d means a higher
communication overhead. Therefore, there exists a tra-
deoff between collusion resistance and bandwidth. To
achieve the highest level of collusion protection, GC has
to allocate a receiver to a randomly-chosen division when
it joins the group. However, if we choose to use a 1-
resilient stateful MKD protocol based on static group
access structures (DHC or BHT) for constructing a hybrid
protocol, the following problem is likely to arise. Because
a static group access structure has a pre-specified limit on
its size, and cannot be extended or expanded after it is
put into use. When a joining member is randomly allo-
cated to a certain division by GC, all free ranks (for DHC)
or free leaf key nodes (for BHT) with respect to this divi-
sion have been used up, and GC has to reallocate this re-
ceiver to another division which has free ranks or leaf key
nodes. Thus, the randomness of allocating receivers to
divisions is compromised, and so is the security of the
resulting hybrid protocol. But 1-resilient stateful MKD
protocols based on dynamic group access structures (D-
HOFC or TD-HOFT) don’t have this problem because
dynamic group access structures can be extended (or ex-
panded) as needed. Therefore, Protocol II and the EKT+
protocol are more suitable for constructing a hybrid state-
ful protocol with tunable collusion-bandwidth tradeoffs
than their counterparts — the LORE protocol and the LW
protocol.

5 PROOFS OF SECURITY (1-RESILIENCE)
Panjwani [35] developed a symbolic security model for
analysing generic user-based MKD protocols. In this
model, all keys and messages generated by a user-based
MKD protocol are treated as abstract data types and cryp-
tographic primitives as abstract functions over such data
types. Security can be specified by recoverability in the
sense that some group key is safe if it cannot be recovered
by adversaries from their aggregated personal keys and
all rekey messages. Panjwani proves security of two vari-
ants of the LKH protocol [8],[7],[9], the complete sub-tree
protocol [13] and the subset difference protocol [13] using
a straightforward inductive argument in this model. Be-
low, we prove security of our user-based MKD protocols
(Protocol II and the EKT+ protocol) under this model. We
also extend Panjwani’s model to support time-based
MKD protocols and prove security of our time-based
MKD protocol (Protocol I) under the extended model.

Consider a multicast group with a lifetime of t time
slots, labelled by 0, 1,…, t-1. For a t-time-slot MKD proto-
col , we introduce the following notations. The group
key used to encrypt all data transmitted during the i-th
time slot is denoted by K(i). A rekey message generated by
protocol at the beginning of the i-th time slot is denoted

by iM .

Let

t
M denote the set of all the rekey messages

generated by protocol up to the t-th time slot.
Consider a multicast group of n users, labelled by 1,

2,…, n. For an n-user MKD protocol , we introduce the
following notations given by [35]. At any time t, the privi-
leged set of users who are authorized to receive data sent
over a multicast channel is denoted by S(t) {1,2,…, n }.
The rekey message generated by protocol for S(t) is de-

noted by ()tS
M . The group key used to encrypt all the data

sent to S(t) is denoted by K(t). Let [n] denote the set {1,…,n}
and 2[n] denote the power set of [n]. An arbitrary group
dynamics up to time t can be uniquely represented by a
contiguous sequence of privileged user sets

() (0) (1) () [](, , ,) (2)t t n tS S S S

 . A sequence () [](2)t n tS

is called simple, if for all t1, S(t-1) changes into S(t) through

a single change in group membership. Let
()tS

M denote the

set of all the rekey messages generated by protocol up

to time t, i.e., () (')
1 '

t S tS
t t

M M

 .

For both time-based MKD protocols and user-based
MKD protocols, we use the following notations. Each user
i obtains a personal key set PKSi from GC when it joins
the group. For any message-set M, we use Rec(M) to de-
note the set of all messages that are recoverable from it by
using all sorts of cryptographic transformations em-
ployed by a MKD protocol (irrespective of the number of
steps required to do so).

Definition 7: An l-time-slot MKD protocol is called
secure against single-user attacks (i.e., 1-resilient), if for any
user i with authorized time slot interval [α, β] where βl,

 ,t , () Re ()t
i l

K c PKS M .

12

Definition 8: An n-user immediate rekeying MKD pro-
tocol is called 1-resilient, if for all t0, and all simple

sequence () [](2)t n tS

, iS(t), ()

() Re ()t

t
i S

K c PKS M .

It is easy to derive that 1-resilience implies both group
forward secrecy against single-user attacks and group
backward secrecy against single-user attacks.

Definition 9: An l-time-slot MKD protocol is called
correct, if for any user i with authorized time slot interval

[α, β] whereβl, ,t , () Re ()t
i l

K c PKS M .

Definition 10: An n-user EKT-based MKD protocol
is called correct, if for all t≥0, and all simple sequence

() [](2)t n tS

, iS(t), i always knows K(t) and its sibling
keys in Tr(t) where Tr(t) denotes the key tree correspond-
ing to S(t), and no other keys in Tr(t).

The correctness of Protocol I is obvious. Below, we
only prove security of the rejoin rekeying algorithm of
Protocol I. Security of the improved version can be
proved using a similar argument.

Theorem 4: Protocol I (rejoin rekeying) is correct and 1-
resilient.
 Proof: Without loss of generality, we only need to con-
sider two types of users: (1) an arbitrary user who joined
the group only once; (2) an arbitrary user who joined the
group twice.
Case (1): Consider an arbitrary user i who joined the
group only once and whose authorized time slot interval
was [k, h]. Referring to Figure 4, according to Protocol I,
PKSi={vk,0, vl-h-1,1}. For any th, consider an arbitrary rekey
message MtI that is supposed to be used to update a chain
of group keys corresponding to time slot interval [t, s].
Without loss of generality, also suppose that there is no
other rejoin event that happens during time slot interval
[t, h]. According to Protocol I, MtI is encrypted under the
intermediate seed vl-t-1,1. User i can derive vl-t-1,1 from vl-h-1,1,
and then use it to decrypt MtI to obtain those incremental
seeds. However, with these seeds and PKSi, i is only able
to update those group keys belonging to time slot interval
[t, s]∩[k, h]. For any t>h, consider an arbitrary rekey mes-
sage MtI. According to Protocol I, MtI is encrypted under
vl-t-1,1. User i cannot derive vl-t-1,1 from vl-h-1,1 in a reverse
direction (referring to Figure 4). Therefore, MtI is useless
to i. To sum up, we have ,t k h ,

() Re ()t
i l

K c PKS M .

Case (2): Consider an arbitrary user i whose first author-
ized time slot interval is [α, β] and second authorized time
slot interval is [γ, δ]. According to Protocol I, the aggre-
gated personal key set is PKSi ={vα,0, vl-β,1, vγ,0’, vl-δ,1’}. Note
that control pairs {vα,0, vl-β,1} and {vγ,0’, vl-δ,1’} belong to two
distinct D-HOFC, respectively. Applying the same argu-
ment as Case (1) to time slot interval [0, γ-1] with respect
to the first D-HOFC, we have 0, 1 [1, 1]t ,

()
1

Re ()t
iK c PKS M

 . Applying the same argument

as Case (1) to time slot interval [r, l-1] with respect to the
second D-HOFC, we have 1, 1t l ,

() Re ()t
i l

K c PKS M . In all, we have

 , ,t , () Re ()t
i l

K c PKS M . �

Theorem 5: The EKT+ protocol is correct and 1-resilient.
Proof: In fact, we can prove an even stronger claim that

for all t0, and all simple sequence () [](2)t n tS

, iS(t),

()

() () Re ()t

t t EKT
i S

K Tr c PKS M . We prove it using in-

duction over t. For t=0, since (0)S , the claim is trivi-
ally true. Now we argue that if the claim is true for some
t≥1, then it is true for t+1 as well. For any simple sequence

(1) (0) (1) () (1)(, , , ,)t t tS S S S S

 , we only need to consider
the following cases:

Case 1 (iS(t)∧iS(t+1), and S(t) changes into S(t+1) due to
another member’s departure at time t): According to the
leave rekeying algorithm of the EKT+ protocol, i can re-
cover the root incremental seed r1(t) and group key K(t+1)

from rekey message (1)t
EKT
S

M
 . From inductive hypothesis,

i only holds K(t) and those sibling keys in Tr(t) as required
by Definition 10. From all incremental seeds (derived
from r1(t)) and those sibling keys in Tr(t), it can compute
and only compute those sibling keys in Tr(t+1) by multiply-
ing an sibling key EKi(t) in Tr(t) by its corresponding in-
cremental seed ri(t).

Case 2 (iS(t)∧iS(t+1), and S(t) changes into S(t+1) due to
another member’s join at time t): According to the join
rekeying algorithm of the EKT+ protocol, i can recover
nothing from a rekey notification message. From induc-
tive hypothesis, i only holds K(t) and those sibling keys in
Tr(t) as required by Definition 10. It can derive K(t+1) as
K(t+1)=h(K(t)), and those sibling keys as EKi(t+1)= (EKi(t))2
mod mL (if i is even) or EKi(t+1)= (EKi(t))2 mod mR (if i is
odd).

Case 3 (iS(t)∧iS(t+1)): That is to say, i joins the group at
time t. According to the join rekeying algorithm of the
EKT+ protocol, every newly joining member i can recover
just the same key materials as required by Definition 10

from the rekey message (1)t
EKT
S

M
 (note that (1)t

EKT
S

M

in-

cludes both a unicast message and a multicast message
sent by GC).

Case 4 (iS(t)∧iS(t+1)): That is to say, i is evicted at time
t. From the inductive hypothesis, all secrets that i knows
are K(t) and those sibling keys in Tr(t). According to the
leave rekeying algorithm of the EKT+ protocol, i can re-
cover neither K(t+1) nor the root incremental seed r1(t) from

(1)t
EKT
S

M
 . Without r1(t), i can never compute any sibling key

EKi(t+1) in Tr(t+1).
Case 5 (iS(t)∧iS(t+1)): That is to say, i is evicted before

time t. From the inductive hypothesis, i can never recover

(or compute) K(t) and any key EKi(t) in Tr(t). Since (1)t
EKT
S

M
 is

encrypted by some exclusive key EKi(t) in Tr(t), i can re-
cover neither K(t+1) nor the root incremental seed r1(t) from

(1)t
EKT
S

M
 . Thus i can compute no key in Tr(t+1). �

Theorem 6: Protocol II is correct and 1-resilient.

J. LIU ET AL.: EFFICIENT MULTICAST KEY DISTRIBUTION USING HOWP-BASED DYNAMIC GROUP ACCESS STRUCTURES 13

Theorem 6 can be proved using a similar argument as
above.

6 PERFORMANCE COMPARISON AND EVALUATION
In this section, we first compare the storage, communica-
tion and computation complexity of our proposed MKD
protocols with related MKD protocols in terms of the
number of keys needed to be stored or transmitted, and
the number of times that each cryptographic primitive is
called. To evaluate the computational cost of modular
multiplication operation of which our protocols makes
intensive usage, we make a speed benchmark test with
related cryptographic primitives. To further investigate
how performance changes with time in practice for every
related user-based MKD protocol, we also perform an
experiment using MBone user activity data. All those ex-
perimental results are presented in Section 6.3 and Section
6.4, respectively.

6.1 Comparison of Time-Based MKD Protocols
We summarize those performance-related discussions
dispersed in Section 4.1, and provide in Table 1 a com-
parison between the DHC protocol and Protocol I which
covers the following quantitative measures: GC storage
requirement, member storage requirement, GC’s total
computational overhead, total computational overhead of
a member, the size of the unicast rekey message, the total
size of all multicast rekey messages. Some qualitative
measures are also covered in Table 1. According to Table
1, rejoin rekeying algorithm of Protocol I counters the
rejoining member attack on the DHC protocol at the cost
of a computational complexity of O(l) for end user. The
improved rejoin rekeying algorithm greatly reduces this
complexity from O(l) to O(m) at the cost of a greater total
multicast size and a higher computational overhead for
GC.

TABLE 1
COMPARISON OF TIME-BASED MKD PROTOCOLS

For all algorithms, we assume that the group’s lifetime is l time slots. For Protocol I, we consider its performance in the case that a former evictee re-

joins and is assigned by GC with a new authorized time slot interval [c, d]. CE, CD, Ch, CM, CSqr denote the computation cost of 1 block encryption, 1
block decryption, 1 hash, 1 modular multiplication and 1 modular square root, respectively. Since a Blum-Williams function is a modular square func-
tion, its computational cost is almost equivalent to that of a modular multiplication and thus we use CM to denote its computational cost too. To count
the computational cost of a member (except the joining one), we assume that it still has m authorized time slots since the c-th time slot.

Group access
structure

GC stora. Mem. stora. Total GC comp. Total mem. comp. Unicast size
Total multicast
size

Rejoining
mem.
attack

Self-
Healing

Extensible
group

lifetime

BHC
(Auto. rekeying)

BHC (static) 2 keys 2 keys 2l*C h 2m*C h — — Yes — No

Protocol I
(Rejoin rekeying)

2C E + (l-d+ 1)*C M 2C D + (l -c +m +1)*C M 2 keys No

Protocol I
(improved version)

2(l -c- 1)*C E + (l-c- 1)*C M +

(l -c -1)C sqr
2m*C D + 4m*C M 2(l-c) keys Yes

Yes
BD-HOFCs

(dynamic)
2 keys 2 keys 2 keys No

TABLE 2
COMPARISON OF USER-BASED MKD PROTOCOLS

Denotations of CE, CD, Ch, CM are same as Table 1. In addition, for protocols based on static structures, we use N to denote the static group size

which is a pre-specified number of all registered and prospect users, and r to denote the number of all non-members at the time of rekeying. For
protocols based on dynamic structures, we use n to denote the dynamic group size which is the number of current group members.

LORE Protocol II EKT EKT+

BHC (static) BD-HOFCs (dynamic) TD-HOFT (dynamic) TD-HOFT (dynamic)

2 keys 2 keys 1 key 1 key

2 keys 2 keys log 2n keys log 2n keys

GC comp. 1C E +N*C h 3C E + (n+ 4)*C M 2C E + (2log 2n+ 1)*C M 1Ch +(2log 2n+ 1)*C M

Member comp. 1C D 3C D + (n+ 2)*C M 2C D + (3log 2n -1)*C M 1Ch +log 2n*C M

Unicast size 3 keys 3 keys log 2n+ 1 keys log 2n+ 2 keys

Multicast size 1 key 3 keys 2 keys 1 notification

Stateful Stateless

Wst. GC comp. 4C E + (N- 1)*C h 6C E + (n +3)*C M 1C E +log 2N*C h
1C E +[2r -

2+r *log 2(N /r)]*C h

2C E + (log 2n+ 1)*C M 2C E + (log 2n+ 1)*C M

Wst. member comp. 2C D +N*C h 3C D + 2n*C M 1C D +log 2N *C h
1C D +[2r -3+r *log 2(N /r)-

2log2r]*C h

2C D + 4log 2n*C M 2C D + 4log 2n*C M

Multicast size 2 keys 6 keys 2 keys 2 keys

No Yes Yes Yes

Yes No Yes No

 Measures
Protocols

Collusion between any two non-
members

Group access structure

Suitable for constructing a
hybird protocol

1 notification

No

GC stora.

Member stora.

Join
Rekeying

Leave
Rekeying

No

1 key

LW

BHT (static)

1 key

log 2N keys

2log 2N*C h

1C h

log 2N +1 keys

14

6.2 Comparison of User-Based MKD Protocols
We summarize performance-related discussions dis-
persed in Sections 4.2 and 4.3, and provide in Table 2 a
comprehensive comparison among five stateful user-
based MKD protocols including the LORE protocol, Pro-
tocol II, the LW protocol, the EKT protocol, and the EKT+
protocol. This comparison covers two qualitative meas-
ures (suitability for constructing a hybrid protocol and
collusion resistance) and six quantitative measures (GC
storage requirement, member storage requirement, GC
computational overhead, member computational over-
head, unicast size, and multicast size).

According to Table 2, compared with protocols based
on chain structures (DHC and D-HOFC), those based on
tree structures (BHT and TD-HOFT) greatly reduce the
computational overhead for both GC and group members
from linear complexity to logarithmic complexity. Con-
sidering a member’s computational overhead in join re-
keying, protocols based on dynamic structures (D-HOFC
and TD-HOFT) are less efficient than those based on cor-
responding static counterpart (DHC and BHT) because
the former require member to update their personal key
whereas the latter do not. Compared with protocol based
on the static tree structure (BHT), protocols based on the
dynamic counterpart (TD-HOFT) have a scalable storage
requirement for a group member, and thus make more
efficient use of storage resource. The EKT+ protocol is as
efficient as the EKT protocol in leave rekeying, but out-
performs the latter in join rekeying. According to Table 2,
all user-based MKD protocols have a constant multicast
size.

As discussed in Section 4.3.3, Protocol II, the EKT pro-
tocol and the EKT+ protocol are more suitable for con-
structing a hybrid protocol with tunable collusion-
bandwidth tradeoffs than the LORE protocol and the LW
protocol. Unlike the protocols based on static group ac-
cess structures (the LORE protocol and the LW protocol),
a particular type of non-members collusion attack (i.e., a
coalition between a former evictee and a later-joining
member) is useless for protocols based on dynamic group
access structures (Protocol II, the EKT and EKT+ proto-
cols).

6.3 Speed Benchmark Test with Related
Cryptographic Primitives

If we choose a Blum-William function as the HOWP
when implementing a D-HOFC or TD-HOFT, our pro-

posed protocols will involve intensive computations of
modular multiplications (see Tables 1 and 2). To evaluate
the performance of a modular multiplication operation,
we utilize a popular software library MIRACL (version
5.5.4) [36] to carry out a speed benchmark test with re-
lated primitives including SHA-1 [37], SHA-256, SHA-512,
modular multiplication, and modular square (Blum-
William function). All five primitives have been imple-
mented in C in MIRACL 5.5.4. The hardware and soft-
wares on which this benchmark test was conducted are a
notebook with Intel core i5-2410M 2.3 GHZ CPU and 4G
memory, Ubuntu 11.10 64-bit operating system, and GCC
4.6.1 compiler. For every primitive, we calculate its aver-
age execution time over 1000 runs. The results provided
in Table 3 show that SHA-1 is fastest of all five algorithms.
However, recent cryptanalytic advances [38],[39] sug-
gested that it is no longer safe to use either MD5 [40] or
SHA-1. The UN National Institute of Standards and
Technology (NIST) recommends that people should use
extended block-size versions SHA, such as SHA-256 or
SHA-512. According to Table 3, a modular multiplication
operation is over 2 times slower than SHA-256. To make a
fair comparison, we assume that a Blum-William function
with a 1024-bit modulus is chosen as the HOWP for both
D-HOFC and TD-HOFT, and SHA-256 as the one-way
hash function for both DHC and BHT in the rest of this
paper.

6.4 Experiment Using MBone User Activity Data
Although static group size N is far bigger than dynamic
group size n for large dynamic groups in most time of a
session, the computational cost of a modular multiplica-
tion CM is over twice bigger than that of one hash Ch
(SHA-256) according to Table 3. To compare the computa-
tional performance of a static structure based protocol
(determined by both N and Ch) with that of the corre-
sponding dynamic structure based protocol (determined
both by n and CM), we have to simulate how group size
changes with time in reality and investigate how each
protocol’s performance changes accordingly.

Almeroth and
Ammar [41],[42]
developed a tool
called Mlisten that
can collect the
join/leave times for
multicast group
members in MBone
audio sessions. Our
experiment is based
on group dynamics
data collected by
them for a UCB

Multimedia Lecture Series audio session on February 17,
1995, shown in Figure 7. Our experimental goal is to in-
vestigate how performance changes with time in practice
for every related user-based MKD protocol, and thus
compare computational performance of a protocol based
on dynamic group access structure with that of the corre-
sponding protocol based on the static counterpart.

TABLE 3
SPEED BENCHMARK

We use a 1024-bit Blum Integer as the modulus for both a modu-

lar multiplication operation and a Blum-William function (i.e., a
modular square operation).

Algorithm Input Avg. Exe. Time (μs)

SHA-1 160-bit RND 0.692

SHA-256 256-bit RND 1.268

SHA-512 512-bit RND 2.161

Mod. Mul. two 1024-bit RNDs 2.72

Mod. Sqr. 1024-bit RND 2.772

Fig. 7 UCB Seminar temporal statistics

0

20

40

60

80

100

120

140

14:30 15:15 16:00 16:45 17:30 18:15 19:00

Re
ce
iv
er
s

Time

J. LIU ET AL.: EFFICIENT MULTICAST KEY DISTRIBUTION USING HOWP-BASED DYNAMIC GROUP ACCESS STRUCTURES 15

From the experimental results shown in Figures 8-12,
we can see that except for the stateless leave rekeying
algorithm of the LW protocol, the storage and computa-
tional overhead of protocols based on static group access
structures (DHC or BHT) — the LORE protocol and the
LW protocol — remains constant. Whereas the computa-
tional overhead of protocols based on dynamic group
access structures (D-HOFC or TD-HOFT) changes with
time. For Protocol II that is based on a dynamic chain

structure — D-HOFC, the shape of computational over-

head trace (shown in Figures 9-12) matches that of group
size trace (shown in Figure 7) perfectly, because the com-
putational overhead is a linear function of group size n
(see Table 2). For the EKT and EKT+ protocols that are
based on a dynamic tree structure — TD-HOFT, the trace
of computational overhead is much smoother than that of
group size, because the computational overhead is a loga-
rithmic function of group size n (see Table 2). For the
stateless leave rekeying algorithm of the LW protocol, the
shape of computational overhead trace is like that of a
trace obtained by turning the group size trace upside
down, because the computational overhead is a nearly-
linear function of r (r=N-n). Figure 8 confirms that the
EKT and EKT+ protocols have a scalable storage re-
quirement for a member compared with the LW protocol.
According to the results shown in Figures 9 and 10, for
both join rekeying and leave rekeying, GC’s computa-
tional overhead of Protocol II is much less than that of the
LORE protocol in almost 60% time of a MBone audio ses-
sion. For leave rekeying, member’s computational over-
head of Protocol II is less than that of the LORE protocol
in almost 40% time of a MBone audio session. Figure 11
confirms that for join rekeying, a member’s computa-
tional overhead of the EKT+ protocol is much lower than
that of the EKT protocol. From Figures 9-12, we can see
that protocols based on a tree structure (BHT or TD-
HOFT) outperform those based on a chain structure
(DHC or D-HOFC). Compared with the protocol based on
BHT (the LW protocol), protocols based on TD-HOFT (the
EKT and EKT+ protocols) are more collusion-resistant
and have a scalable storage overhead while maintaining
computational efficiency comparable to the former.

7 CONCLUSION AND FUTURE RESEARCH
For the first time, we introduced the concept of group
access structure for MKD protocols and provided a fresh
view on the modular design of MKD protocols which is
centered on group access structures. This view helps us
gain an insight into MKD protocol design.

We introduced two new dynamic HOWP-based group
access structures — D-HOFC and TD-HOFT. We then
proposed three protocols — Protocol I, Protocol II (both
based on D-HOFC), and EKT+ (based on TD-HOFT). By
experimental results and comprehensive comparisons, we
demonstrated that our protocols based on these dynamic
group access structures have their own advantages com-
pared with those based on the corresponding static coun-

Fig. 10 GC computational overhead in leave rekeying

0

50

100

150

200

250

300

350

400

14:30 15:30 16:30 17:30 18:30 19:30

GC
 C
om

pu
ta
tio

na
l O

ve
rh
ea
d
(μ
s)

Time

LORE

Prot. II

LW(Stateful)

LW(Stateless)

EKT(or EKT+)

Fig. 9 GC computational overhead in join rekeying

0

50

100

150

200

250

300

350

400

14:30 15:30 16:30 17:30 18:30 19:30

G
C
 C
o
m
p
u
ta
ti
o
n
al
 O
ve
rh
e
ad

 (
μ
s)

Time

LORE

Prot. II

LW

EKT(or EKT+)

Fig. 11 Member computational overhead in join rekeying

0

50

100

150

200

250

300

350

400

14:30 15:30 16:30 17:30 18:30 19:30

M
em

be
r C

om
pu

ta
tio

na
l O

ve
rh
ea
d
(μ
s)

Time

LORE

Prot. II

LW

EKT

EKT+

Fig. 8 Storage requirement for a member

0

1

2

3

4

5

6

7

8

14:30 15:30 16:30 17:30 18:30 19:30

M
e
m
b
e
r
St
o
ra
ge

 (
K
e
ys
)

Time

LW

EKT(or EKT+)

Fig. 12 Member computational overhead in leave rekeying

0

100

200

300

400

500

600

700

800

14:30 15:30 16:30 17:30 18:30 19:30

M
em

be
r C

om
pu

ta
tio

na
l O

ve
rh
ea
d
(
s)

Time

LORE

Prot. II

LW(Stateful)

LW(Stateless)

EKT(or EKT+)

16

terparts (DHC and BHT).
 So far, we have introduced three types of HOWP-

based dynamic group access structures (HOFT [25], D-
HOFC and TD-HOFT), all of which have found meaning-
ful applications in designing MKD protocols. Compared
to their hash-based counterparts (bottom-up OFT [1],
DHC, and BHT), these HOWP-based structures can be
not only derived as efficiently as the former (if we select a
Blum-William function as the HOWP), but also updated
without rekeying the entire group unlike the former. It
would be interesting to find further applications for these
HOWP-based structures.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for their helpful comments about this work. The work of J.
Liu and Y. Zhang was supported by the Faculty Team
Construction Foundation of Yunnan University under
Grant XT412001. The work of Q. Huang was supported in
part by the National Natural Science Foundation of China
under Grant 61103232. The work of B. Yang was sup-
ported in part by the National Natural Science Founda-
tion of China under Grants 60973134 and 61173164.

REFERENCES

[1] A. T. Sherman, and D. A. McGrew, “Key establishment in large
dynamic groups using one-way function trees,” IEEE Trans.
Software Engineering, vol. 29, no. 5, pp. 444-458, 2003.

[2] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in
dynamic peer groups,” IEEE Trans. Parallel and Distributed
Systems, vol. 11, no. 8, pp. 769-780, 2000.

[3] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key
agreement,” ACM Trans. Information and System Security, vol. 7,
no. 1, pp. 60-96, 2004.

[4] S. Rafaeli, and D. Hutchison, “A survey of key management for
secure group communication,” ACM Computing Surveys, vol. 35,
no. 3, pp. 309-329, 2003.

[5] Y. Challal, and H. Seba, “Group key management protocols: a
novel taxonomy,” International Journal of Information Technology,
vol. 2, no. 2, pp. 105-118, 2005.

[6] S. Zhu, and S. Jajodia, "Scalable group key management for
secure multicast: a taxonomy and new directions," Network
Security, S. C. H. Huang, D. MacCallum and D.-Z. Du, Eds., pp.
57-75, Springer US, 2010.

[7] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group
communications using key graphs,” IEEE-ACM Trans.
Networking, vol. 8, no. 1, pp. 16-30, 2000.

[8] D. M. Wallner, E. J. Harder, and R. C. Agee, "Key management
for multicast: issues and architectures," Internet Draft, Internet
Eng. Task Force, 1998.

[9] G. Caronni, K. Waldvogel, D. Sun, and B. Plattner, “Efficient
security for large and dynamic multicast groups,” Proc. 7th
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pp. 376-383, 1998.

[10] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B.
Pinkas, “Multicast security: a taxonomy and some efficient
constructions,” Proc. IEEE INFOCOM, pp. 708-716, 1999

[11] A. Perrig, D. Song, and D. Tygar, “ELK, a new protocol for
efficient large-group key distribution,” Proc. IEEE Symposium on
Security and Privacy, pp. 247-262, 2001.

[12] M. Waldvogel, G. Caronni, S. Dan, N. Weiler, and B. Plattner,
“The VersaKey framework: versatile group key management,”
IEEE J. Selected Areas in Communications, vol. 17, no. 9, pp. 1614-
1631, 1999.

[13] D. Naor, M. Naor, and J. B. Lotspiech, "Revocation and tracing
schemes for stateless receivers," Proc. Advances in Cryptology, pp.
41–62, 2001.

[14] D. Halevy, and A. Shamir, "The LSD broadcast encryption
scheme," Proc. Advances in Cryptology, pp. 47-60, 2002.

[15] R. S. Douglas, Cryptography Thoery and Practice, Third ed., CRC
Press, 2005.

[16] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport,
“Collusion-resistant group key management using attribute-
based encryption,” Cryptology ePrint Archive Report 2007/161,
2007.

[17] Z. Zhou, and D. Huang, “On efficient ciphertext-policy
attribute based encryption and broadcast encryption,” Proc.
17th ACM conference on Computer and communications security, pp.
753-755, 2010.

[18] S. Berkovits, "How to broadcast a secret," Proc. Advances in
Cryptology, pp. 535-541, 1991.

[19] M. Naor, and B. Pinkas, "Efficient trace and revoke schemes,"
Financial Cryptography, Y. Frankel, Ed., pp. 1-20, 2001.

[20] L. Harn, and L. Changlu, “Authenticated group key transfer
protocol based on secret sharing,” IEEE Trans. Computers, vol.
59, no. 6, pp. 842-846, 2010.

[21] G. H. Chiou, and W. T. Chen, “Secure broadcasting using the
secure lock,” IEEE Trans. Software Engineering, vol. 15, no. 8, pp.
929-934, 1989.

[22] D. Micciancio, and S. Panjwani, "Corrupting one vs. corrupting
many: The case of broadcast and multicast encryption," Proc.
International Colloquium on Automata, Languages and
Programming, pp. 70-82, 2006.

[23] J. Liu, and C. J. Wang, “Exclusive key based group rekeying,”
Cryptology ePrint Archive, Report 2011/575, 2011.

[24] B. Briscoe, “MARKS: zero side effect multicast key management
using arbitrarily revealed key sequences,” Proc. Networked
Group Communication, pp. 301-320, 1999.

[25] J. Liu, and B. Yang, “Collusion-resistant multicast key
distribution based on homomorphic one-way function trees,”
IEEE Trans. Information Forensics and Security, vol. 6, no. 3, pp.
980-991, 2011.

[26] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha,
“Key management for secure lnternet multicast using Boolean
function minimization techniques,” Proc. IEEE INFOCOM, pp.
689-698, 1999.

[27] Z. Zhou, and D. Huang, “An optimal key distribution scheme
for secure multicast group communication,” Proc. IEEE
INFOCOM, pp. 1-5, 2010.

[28] J. Fan, P. Judge, and M. H. Ammar, “HySOR: group key
management with collusion-scalability tradeoffs using a hybrid
structuring of receivers,” Proc. 11th International Conference on
Computer Communications and Networks, pp. 196 - 201, 2002.

[29] H. Kim, S. M. Hong, H. Yoon, and J. W. Cho, “Secure group
communication with multiplicative one-way functions,” Proc.
International Conference on Information Technology: Coding and
Computing, Vol 1, pp. 685-690, 2005.

J. LIU ET AL.: EFFICIENT MULTICAST KEY DISTRIBUTION USING HOWP-BASED DYNAMIC GROUP ACCESS STRUCTURES 17

[30] B. Briscoe, and I. Fairman, “Nark: receiver-based multicast non-
repudiation and key management,” Proc. 1st ACM conference on
Electronic commerce, pp. 22-30 , 1999.

[31] A. Fiat, and M. Naor, "Broadcast encryption," Proc. Advances in
Cryptology, pp. 480-490, 1994.

[32] M. O. Rabin, “Digitalized signatures and public-key functions
as intractable as factorization,” Research Report, Cambridge:
Massachusetts Institute of Technology, Laboratory for
Computer Science, 1979.

[33] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, no. 2, pp. 120-126, 1978.

[34] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D.
Dean, “Self-healing key distribution with revocation,” Proc.
IEEE Symposium on Security and Privacy, pp. 241-257, 2002.

[35] S. Panjwani, “Private group communication: two perspectives
and a unifying solution,” PhD thesis, Computer Science and
Engineering Department, University of California, San Diego,
2007.

[36] S. S. Ltd, “MIRACL (Multiprecision Integer and Rational
Arithmetic C/C++ Library),”, http://www.shamus.ie/, Last
accessed on Nov., 2011.

[37] NIST, "Secure hash standard," Federal Information Processing
Standard, FIPS-180-1, April 1995.

[38] X. Y. Wang, and H. B. Yu, “How to break MD5 and other hash
functions,” Proc. Advances in Cryptology, pp. 19-35, 2005.

[39] X. Y. Wang, Y. L. Yin, and H. B. Yu, “Finding collisions in the
full SHA-1,” Proc. Advances in Cryptology, pp. 17-36, 2005.

[40] R. Rivest, "The MD5 message-digest algorithm," RFC 1321,
April 1992.

[41] K. C. Almeroth, and M. H. Ammar, “Collecting and modeling
the join/leave behavior of multicast group members in the
MBone,” Proc. 5th IEEE International Symposium on High
Performance Distributed Computing, pp. 209-216 , 1996.

[42] K. C. Almeroth, and M. H. Ammar, “Multicast group behavior
in the Internet's multicast backbone (MBone),” IEEE
Communications Magazine, vol. 35, no. 6, pp. 124-129, 1997.

Jing Liu received the PhD degree in com-

puter application technology from the Uni-

versity of Electronic Science and Technolo-

gy of China in 2003. From September 2003

to July 2005, he was with No. 30 Institute of

China Electronics Technology Group Cor-

poration as a postdoctoral fellow. From

September 2005 to December 2012, he had

been an assistant professor at the School of

Information Science and Technology, Sun

Yat-Sen University. Since January 2013, he has been with Yunnan

University. His current research interests include applied cryptogra-

phy and network security.He is a member of the IEEE.

Qiong Huang received his B.S. degree and

M.S. degree from Fudan University in 2003

and 2006, respectively, and obtained Ph.D.

degree from City University of Hong Kong in

2010. After graduation, he worked as a Re-

search Fellow at Department of Computer

Science, City University of Hong Kong. Now

he is with South China Agricultural University.

His research interests include cryptography and information security.

Bo Yang received the B. S. degree from Peking

University in 1986, and the M. S. and Ph. D.

degrees from Xidian University in 1993 and

1999, respectively. From July 1986 to July

，2005 he had been at Xidian University, from

2002, he had been a professor of National Key

Lab. of ISN in Xidian University, supervisor of

Ph.D. He has served as a Program Chair for the

fourth China Conference on Information and

Communications Security (CCICS’2005) in May 2005, vice-chair for

ChinaCrypt’2009 in Nov. 2009, and general chair for the Fifth Joint

Workshop on Information Security (JWIS 2010), in Aug. 2010. He is

currently professor and supervisor of Ph.D. at School of Computer

Science, Shaanxi Normal University, a special-term professor of

Shaanxi Province. His research interests include information theory

and cryptography.

Yang Zhang received his B.S. Degree from Sun

Yat-Sen University in 2011. He is currently pur-

suing his M.S. degree in computer science at

Sun Yat-Sen University under supervision of

Lecturer Jing Liu. His research interests include

applied cryptography and network security.

