
The Cube Attack on Stream Cipher Trivium

and Quadraticity Tests∗

Piotr Mroczkowski and Janusz Szmidt

Military Communication Institute

ul. Warszawska 22A, 05-130 Zegrze, Poland

Military University of Technology

ul. Kaliskiego 2, 00-980 Warsaw, Poland

November 14, 2010

Abstract

In 2008 I. Dinur and A. Shamir presented a new type of algebraic

attack on symmetric ciphers named cube attack. The method has

been applied to reduced variants of stream ciphers Trivium and Grain-

128, reduced variants of the block ciphers Serpent and CTC and to a

reduced version of the keyed hash function MD6. Independently a very

similar attack named AIDA was introduced by M. Vielhaber. In this

paper we develop quadraticity tests within the cube attack and apply

them to a variant of stream cipher Trivium reduced to 709 initialization

rounds. Using this method we obtain the full 80-bit secret key. In this

way it eliminates the stage of brute force search of some secret key bits

which occured in previous cube attacks.

1 Introduction

The cube attack has been introduced by Itai Dinur and Adi Shamir [8] as
a known plaintext attack on symmetric primitives. The method has been
further developed in [2, 3, 9, 10]. The ciphertext bits produced by this
algorithm are values of polynomials p(v1, . . . , vm, x1, . . . , xn) depending on
public variables v1, . . . , vm (bits of a plaintext for block ciphers or bits of an
initial vector for stream ciphers) and depending on secret variables x1, . . . , xn
(bits of a key). The attack consists of two stages. In the first preprocessing
stage the attacker has access to public and secret variables. He sums up
ciphertext bits obtained for chosen k-dimensional cubes in public variables

∗This papre was presented at the 10th Central European Conference on Cryptology in

Będlewo, Poland.

1



and fixed key variables. The attacker chooses different keys and obtains a
function depending on key bits. The task of this stage is to find the cases
where this function is affine or quadratic and reconstruct it. The tools to
investigate the linearity or quadraticity of the resulting Boolean functions are
the linearity and quadraticity tests, developed in [1, 5]. The preprocessing
stage is the most time consuming part of the attack. Heuristic considerations
and experiments are involved to find suitable cubes.

In the next on line stage of the attack a key is secret and the attacker
only has access to public variables. He sums up over the same cubes as in
the preprocessing stage to obtain the right hand sides of linear and quadratic
equations. Having the system of all equations the attacker tries to solve it
to get values of some key bits. To solve the resulting system of quadratic
equations, linearization methods can be applied. The remaining, unknown
bits of the key can be calculated by brute force searching. Dinur and Shamir
[8] applied the cube attack to variants of stream cipher Trivium reduced to
672, 735 and 767 initialization rounds (the whole cipher runs over 4× 288 =
1152 initial rounds before producing output key bits). They used linearity
tests and obtained a system of linear equations for key bits. In the case
of 767 initialization rounds they obtained 35 linear expressions for key bits.
The remaining 80 - 35 = 45 bits of the secret key dominate the complexity
of an attack being O(245) cipher executions which is below the complexity
O(280) of the brute force search of all key bits. In [8] it was suggested to
apply quadraticity tests within the cube attack.

We realize this idea and obtain quadratic and linear expressions involv-
ing key bits for a variant of Trivium reduced to 709 initialization rounds.
Quadratic terms appear more often than linear ones and this leads to more
equations for key bits. In our attack we used 22 and 23 dimensional cubes.
We found 41 bits of a randomly chosen secret key using linear terms and
39 remaining bits of this key using quadratic equations. In fact, quadratic
equations were solved by hand : substituting bits obtained from linear equa-
tions and doing some manipulations. This way the brute force searching of
some bits of the secret key was completely eliminated. The complexity of the
on line stage of our cube attack is about 229 executions of reduced Trivium
with 709 ÷ 713 initialization rounds. The system of linear and quadratic
expressions obtained during the preprocessing stage can be used to find any
secret key.

It is important to have an effective implementation of the cipher in ques-
tion to perform the cube attack. We used Paul Crowley’s [7] implementation
of Trivium, which was written using assembly CorePy tool. In this case 128
parallel strings of output key bits are prduced on the level of processor in-
structions. These strings are used to perform summation over chosen cubes
and speed up the preprocessing stage of the attack.

2



2 Linearity and Quadraticity Tests

Let Fn
2

be the n-dimensional vector space over the binary field F2 and f :
Fn
2
−→ F2 a Boolean function of n binary variables. The Boolean function

f is affine if it satisfies the linearity test:

f(x⊕ x′) = f(x)⊕ f(x′)⊕ f(0)

for all x, x′ ∈ Fn
2
. Such a function has the following Algebraic Normal Form

(ANF):

f(x1, . . . , xn) =
⊕

1≤i≤n

aixi ⊕ a0,

where a0, a1, . . . , an are binary coefficients.
The Boolean function f is quadratic if it satisfies the quadraticity test:

f(x⊕ x′ ⊕ x′′) = f(x⊕ x′)⊕ f(x⊕ x′′)⊕ f(x′ ⊕ x′′)

⊕f(x)⊕ f(x′)⊕ f(x′′)⊕ f(0)

for all x, x′, x′′ ∈ Fn
2
. Such a function has the following ANF form:

f(x1, . . . , xn) =
⊕

1≤i<j≤n

aijxixj ⊕
⊕

1≤i≤n

aixi ⊕ a0

for some binary coefficients aij, ai, a0.
Let us note that a function satisfying the linearity test also satisfies the

quadraticity test, with all aij equal to zero. The main phenomenon ap-
pearing in the cube attack is that quadratic or affine Boolean functions can
be detected with high probability by executing the quadraticity or linearity
tests only for a very small number of triples (x, x′, x′′) or pairs (x, x′). Lin-
earity tests and their information-theoretical applications were investigated
by Blum, Luby and Ribenfeld [5]. Testing of low-degree polynomials over F2

was developed by Alon, Kaufman, Krivelevich, Litsyn and Ron in [1].
The coefficients in the Algebraic Normal Form can be calculated by sum-

ming over suitable cubes. The task of the preprocessing stage is to collect,
for the cipher under study, as many quadratic and linear expressions in key
bits as possible.

3 Specification of Trivium

3.1 Key Stream Generation

The stream cipher Trivium contains a 288-bit inner state consisting of three
registers of lengths 84, 93 and 111. The key stream generation is an iterative
process which extracts the values of 15 specific state bits and uses them to
update 3 bits of the state and to compute 1 bit of the key stream. The

3



state bits are then rotated and the process repeats. The generation of the
ouput bitstring (zi) of the maximal length of up to N = 264 bits, can be
represented as follows:

for i=1 to N
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

3.2 Key and Initial Value Setup

The 288-bit inner state of Trivium is initialized in the following way:

(s1, s2, . . . , s93)← (k1, k2, . . . , k80, 0, . . . , 0)

(s94, s95, . . . , s177)← (IV1, IV2, . . . , IV80, 0, . . . , 0)

(s178, s179, . . . , s288)← (0, 0, . . . , 0, 1, 1, 1)

for i = 1 to 1152
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

4



4 Results of the Cube Attack

4.1 Linear Expressions

In the preprocessing stage we found linear expressions involving unknown key
bits. These expressions were obtained by summing up over cubes, which were
chosen among initial value variables. 240 linearity tests were performed for
each cube from Table 1. The dimensions of the cubes (22 and 23) were fixed
experimentally. In fact, the cubes were chosen randomly but also we found
a method to obtain a new cube from another one with a linear expression:
one must increase the indices of a cube by one (if possible) and increase the
number of initialization rounds by one.

Table 1. Linear expressions.
expression cube indices round

x14 {6,8,9,13,22,24,28,30,32,36,39,40,43,45,47,48,60,63,67,68,73,76,79} 709
x15 {2,9,15,17,27,28,32,40,44,46,52,54,59,64,68,70,71,72,73,74,76,78,79} 709

x16+1 {1,3,9,10,13,14,16,28,34,37,42,51,52,56,59,60,62,68,69,72,74,79} 709
x17 {4,5,6,10,11,12,17,19,21,26,32,40,44,49,54,58,60,61,67,72,74,77,78} 709
x18 {5,9,15,16,20,21,32,33,35,38,41,43,46,52,56,58,60,61,62,69,77,78,79} 709

x19+1 {6,8,13,17,23,27,28,33,44,45,46,53,54,56,60,61,67,68,72,74,75,77,79} 709
x20 {1,2,7,13,15,18,19,23,29,34,35,36,38,47,49,54,57,62,64,65,66,68,74} 709
x21 {4,7,10,11,19,20,22,23,24,30,32,33,38,41,49,52,54,59,66,67,69,74,77} 709
x22 {8,16,18,22,24,26,29,31,34,36,40,41,45,46,47,48,50,59,63,69,72,76,78} 709

x23+1 {6,10,13,16,19,25,28,35,39,42,44,48,57,61,62,63,64,65,67,68,73,77,78} 709
x24 {2,4,7,15,17,18,20,23,24,27,29,35,45,47,48,51,57,59,63,65,67,74,77} 709
x25 {3,5,8,16,18,19,21,24,25,28,30,36,46,48,49,52,58,60,64,66,68,75,78} 710

x33+1 {5,10,13,14,15,22,26,27,32,35,36,45,46,50,51,56,59,60,63,64,77,78,79} 709
x35+1 {2,6,8,9,19,23,24,29,32,33,34,42,47,49,51,52,53,57,61,64,73,77} 710
x39 {0,3,6,8,11,17,28,34,38,39,41,43,46,51,52,53,54,56,64,65,70,72,78} 709
x40 {5,6,11,19,27,31,32,39,40,44,47,49,51,52,56,58,59,63,65,66,69,71,79} 709

x41+1 {7,9,10,15,17,24,25,26,33,36,43,45,52,56,59,60,61,63,68,71,74,77} 709
x42+1 {8,10,11,16,18,25,26,27,34,37,44,46,53,57,60,61,62,64,69,72,75,78} 710
x43+1 {9,11,12,17,19,26,27,28,35,38,45,47,54,58,61,62,63,65,70,73,76,79} 711
x47 {4,5,7,13,15,18,27,30,33,34,36,39,42,44,45,46,51,53,57,63,75,77,78} 709

x48+1 {6,7,15,19,27,30,35,37,44,45,46,47,49,50,56,59,60,67,70,71,72,75,79} 709
x49 {0,8,14,18,25,28,31,35,38,42,44,45,51,52,58,60,66,67,70,73,76,77} 709

x50+1 {0,2,8,11,14,15,17,21,22,28,31,32,39,41,52,53,59,60,65,67,74,77,78} 709
x51 {1,8,10,15,18,26,28,29,33,35,37,38,42,51,53,55,57,60,61,65,66,67,75} 709

x21+x52 {7,10,11,12,15,21,29,32,37,39,41,44,47,53,56,57,59,62,63,66,70,76} 710
x53+1 {1,4,8,10,11,12,14,15,19,22,24,29,31,33,39,42,50,52,55,58,60,61,65} 710

x23+x54+1 {9,12,13,14,17,23,31,34,39,41,43,46,49,55,58,59,61,64,65,68,72,78} 712
x24+x55+1 {10,13,14,15,18,24,32,35,40,42,44,47,50,56,59,60,62,65,66,69,73,79} 713

x57+1 {1,3,6,10,11,14,15,16,23,25,28,35,40,41,42,44,46,52,58,66,68,69,75} 709
x21+x49+x58+1 {8,12,14,19,26,28,30,40,41,42,43,48,50,53,59,62,63,67,71,72,74,79} 709

x59+1 {6,14,16,31,37,40,43,48,50,53,54,55,57,58,60,61,62,68,72,73,74,76} 709
x60+1 {3,4,14,16,26,29,30,38,40,43,47,54,56,58,60,64,65,67,69,70,75,76,77} 709
x61 {3,8,11,14,16,17,18,20,22,24,27,33,35,38,44,48,52,53,59,66,73,77} 711
x62 {4,9,12,15,17,18,19,21,23,25,28,34,36,39,45,49,53,54,60,67,74,78} 712

x19+x63+1 {2,5,9,17,21,27,28,30,35,37,46,48,50,53,54,60,61,63,65,69,71,73,79} 709
x67 {1,7,12,15,18,27,30,41,44,46,47,48,49,52,53,54,56,59,62,63,66,69,79} 709
x72 {6,11,16,19,26,34,36,39,41,42,47,49,52,54,57,59,66,67,71,72,76,79} 709
x73 {1,3,4,6,12,14,15,19,25,26,28,29,35,40,49,52,57,64,66,67,68,72,75} 709
x74 {2,4,5,7,13,15,16,20,26,27,29,30,36,41,50,53,58,65,67,68,69,73,76} 710
x75 {3,5,6,8,14,16,17,21,27,28,30,31,37,42,51,54,59,66,68,69,70,74,77} 711
x76 {4,6,7,9,15,17,18,22,28,29,31,32,38,43,52,55,60,67,69,70,71,75,78} 712

5



After collecting linear expressions and the corresponding cubes we per-
formed the on line stage of cube attack. We chose a random 80-bit key (the
secret in our experiment). Then we summed up the ciphertext bits obtained
for the chosen cubes and the secret key, where the bits of initial vectors be-
yond the cube indices were equal to zero. This way we got the exact values
of the terms from Table 1 and we obtained the system of linear equations

x14 = 1 x15 = 0 x16 = 0 (1)

x17 = 0 x18 = 0 x19 = 1 (2)

x20 = 1 x21 = 0 x22 = 1 (3)

x23 = 0 x24 = 0 x25 = 1 (4)

x33 = 1 x35 = 0 x39 = 1 (5)

x40 = 1 x41 = 0 x42 = 0 (6)

x43 = 1 x47 = 1 x48 = 1 (7)

x49 = 1 x50 = 1 x51 = 0 (8)

x21 + x52 = 0 x53 = 0 x23 + x54 = 1 (9)

x24 + x55 = 0 x57 = 1 x21 + x49 + x58 = 1 (10)

x59 = 1 x60 = 1 x61 = 0 (11)

x62 = 0 x19 + x63 = 1 x67 = 0 (12)

x72 = 1 x73 = 0 x74 = 0 (13)

x75 = 0 x76 = 1 (14)

The equations (1)÷ (14) give the values of 41 bits of the key:

x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x33, x35,

x39, x40, x41, x42, x43, x47, x48, x49, x50, x51, x52, x53, x54, x55,

x57, x58, x59, x60, x61, x62, x63, x67, x72, x73, x74, x75, x76.

It remained to find 39 bits of the secret key.

4.2 Quadratic Expressions

In the preprocessing stage we also found the following cubes with corre-
sponding quadratic terms (Tables 1 and 2). In fact, during this stage, 80
quadraticity tests were executed first, and if the function passed them, the
linear tests were applied to check its affineness; additionaly it was checked
whether the function was non-constant. The same method was applied to
find some cubes with quadratic terms from similar ones by increasing indices
and initialization rounds; then the corresponding quadratic polynomials have
some regular structure. Having terms from Table 2, the on line stage of the

6



cube attack was done with the same secret key obtaining this way the values
of these terms.

Table 2. Quadratic expressions.
expression cube indices round

x25x26+x24+x51 {0,4,6,13,18,19,22,27,35,37,38,43,46,48,51,53,55,57,60,61,64,66,79} 709
x31x32+x30+x57 {3,10,11,24,25,30,34,38,40,41,43,44,51,54,57,59,61,62,65,66,70,76,79} 709
x32x33+x31+x58 {1,6,8,10,13,15,19,20,26,37,39,40,43,47,53,54,57,59,64,67,68,72,75} 709
x33x34+x32+x59 {1,3,10,15,16,18,24,26,28,29,33,37,39,40,43,46,49,51,52,54,59,61,78} 709
x35x36+x34+x61 {1,8,13,16,21,26,27,28,29,31,36,39,47,48,50,56,57,59,60,61,66,72,78} 709
x37x38+x36+x63 {0,1,8,9,10,12,14,18,21,22,23,26,32,33,40,49,52,54,57,67,75,78,79} 709
x38x39+x37+x64 {2,6,14,24,27,29,30,32,38,43,45,46,49,50,53,54,58,67,68,70,74,76,77} 709
x39x40+x38+x65 {0,3,4,11,13,18,20,32,36,43,48,49,52,56,59,63,64,66,67,71,73,76,78} 709
x18x19+x17+x44 {1,9,13,14,16,18,19,31,37,39,40,42,45,46,49,52,53,58,67,68,73,76,78} 709
x19x20+x18+x45 {0,8,13,14,17,19,20,21,22,24,30,32,39,44,47,52,55,59,60,66,68,77,78} 709

+x58+1
x47x48+x19+x40 {0,6,10,15,17,18,20,27,30,31,41,49,54,55,56,58,60,61,65,66,71,74,78} 709
+x46+x58+x73+1
x64x65+x21+x63 {2,4,5,7,10,13,14,16,23,25,28,33,36,42,43,56,59,61,63,68,74,76,79} 709
x66x67+x14+x23 {1,6,11,13,15,16,20,21,26,29,30,37,43,46,47,51,55,57,60,69,76,77,79} 709

+x65
x40x41+x39+x66 {3,8,12,14,22,24,26,30,32,36,43,44,45,46,49,51,52,53,57,59,72,75,78} 709
x68x69+x16+x25 {1,3,7,9,11,13,17,20,23,32,38,39,40,44,46,59,62,64,68,70,73,76,78} 709

+x67+1
x69x70+x17+x26 {0,1,6,7,8,13,16,17,18,25,26,33,37,41,49,56,58,61,62,68,71,78,79} 709

+x68
x51x52+x50+x77 {1,10,11,14,16,22,24,25,27,41,42,50,51,52,53,54,58,66,71,74,76,78} 709

x52x53+x51+x78+1 {0,1,7,13,15,18,21,29,30,32,39,42,47,48,55,57,63,65,66,67,72,76,77} 709
x53x54+x52+x79 {5,7,9,15,17,18,27,30,32,37,38,44,47,49,50,52,57,66,68,69,74,77,78} 709
x54x55+x11+x53 {2,11,13,16,25,31,36,39,42,46,47,55,58,63,65,67,68,69,70,73,75,76,77} 710

x55x56+x12+x54+1 {3,12,14,17,26,32,37,40,43,47,48,56,59,64,66,68,69,70,71,74,76,77,78} 711
x56x57+x13+x55+1 {4,13,15,18,27,33,38,41,44,48,49,57,60,65,67,69,70,71,72,75,77,78,79} 712

We got the following quadratic equations:

x25x26 + x24 + x51 = 0 (15)

x31x32 + x30 + x57 = 1 (16)

x32x33 + x31 + x58 = 0 (17)

x33x34 + x32 + x59 = 0 (18)

x35x36 + x34 + x61 = 0 (19)

x37x38 + x36 + x63 = 1 (20)

x38x39 + x37 + x64 = 0 (21)

x39x40 + x38 + x65 = 0 (22)

x18x19 + x17 + x44 = 0 (23)

x19x20 + x18 + x45 + x58 = 1 (24)

x47x48 + x19 + x40 + x46 + x58 + x73 = 0 (25)

x64x65 + x21 + x63 = 0 (26)

x66x67 + x14 + x23 + x65 = 0 (27)

7



x40x41 + x39 + x66 = 1 (28)

x68x69 + x16 + x25 + x67 = 0 (29)

x69x70 + x17 + x26 + x68 = 0 (30)

x51x52 + x50 + x77 = 0 (31)

x52x53 + x51 + x78 = 0 (32)

x53x54 + x52 + x79 = 1 (33)

x54x55 + x11 + x53 = 1 (34)

x55x56 + x12 + x54 = 1 (35)

x56x57 + x13 + x55 = 0 (36)

We substituted the 41 known key bits to equations (15)÷ (36) to obtain
new 22 values of key bits:

x11 = 1, x12 = 0, x26 = 0, x30 = 1, x31 = 1, x32 = 1, x34 = 0, x36 = 1

x37 = 0, x38 = 0, x44 = 0, x45 = 0, x46 = 1, x64 = 0, x65 = 1,

x66 = 0, x68 = 1, x69 = 1, x70 = 1, x77 = 1, x78 = 0, x79 = 1.

The equation (29) takes the form x68x69 = 1 and the equation (36) gives
the relation x56 = x13. At this moment we were left with the remaining 17
unknown key bits:

x0, . . . , x10, x13, x27, x28, x29, x56, x71.

These key bits were found by considering the following cubes and corre-
sponding quadratic expressions.

Table 3. Quadratic expressions.
expression cube indices round

x8x9+x7+x34 {2,4,5,8,9,11,13,15,17,23,26,41,43,56,63,64,65,67,68,70,71,73,75} 709
x7x8+x6+x33 {1,4,8,9,16,22,25,28,29,34,42,48,49,53,55,57,59,62,70,73,75,76,79} 709
x9x10+x8+x35 {3,5,6,9,10,12,14,16,18,24,27,42,44,57,64,65,66,68,69,71,72,74,76} 710
x10x11+x9+x36 {4,6,7,10,11,13,15,17,19,25,28,43,45,58,65,66,67,69,70,72,73,75,77} 711
x11x12+x10+x37 {5,7,8,11,12,14,16,18,20,26,29,44,46,59,66,67,68,70,71,73,74,76,78} 712
x70x71+x27+x69 {0,2,5,8,13,14,16,17,27,35,38,43,50,52,53,56,57,60,65,69,75,78,79} 709

x6x7+x5+x32 {0,3,6,9,13,15,16,21,27,33,40,41,43,47,53,57,58,59,61,70,71,76,78} 709
x4x5+x3+x30 {1,4,9,13,14,16,19,24,33,37,38,43,44,45,46,47,54,56,59,68,70,73,76} 709
x3x4+x2+x29 {0,1,2,5,8,9,14,16,25,30,31,40,47,53,54,58,60,61,63,69,75,77,78} 709

x30x31+x29+x56 {8,11,15,20,23,24,27,31,32,36,42,45,50,52,53,54,56,59,60,61,62,68,75} 709
x5x6+x4+x31 {0,5,7,8,9,12,20,25,31,35,42,45,46,47,51,56,58,60,67,68,69,70,71} 709

x1x2+x0+x27+1 {7,8,11,14,15,31,36,37,40,41,44,48,49,55,58,59,62,64,66,67,69,75,78} 709
x2x3+x1+x28 {1,2,6,7,8,10,13,15,23,27,30,32,35,48,49,50,52,53,56,58,68,69,70} 709

x7x8+x16x53+x19x20 {0,2,5,19,20,22,28,29,31,36,37,39,40,50,54,55,65,68,71,72,75,77,79} 710
+x6+x27+x33+1

x71x72+x19+x28+x70 {0,2,6,9,11,17,21,36,37,42,45,46,47,48,51,53,57,58,60,71,75,77,78} 710
x29x30+x28+x55 {10,14,16,19,24,25,27,32,34,35,37,38,40,42,45,49,52,60,63,70,71,76,78} 710

8



The results of the on line stage of attack led us to the second system of
quadratic equations:

x8x9 + x7 = 1 x7x8 + x6 = 0 (37)

x9x10 + x8 = 1 x9 + x10 = 0 (38)

x10 = 1 x27 + x71 = 0 (39)

x6x7 + x5 = 0 x4x5 + x3 = 1 (40)

x3x4 + x2 + x29 = 0 x29 + x56 = 1 (41)

x5x6 + x4 = 0 x1x2 + x0 + x27 = 1 (42)

x2x3 + x1 + x28 = 1 x7x8 + x6 + x27 = 0 (43)

x28 + x71 = 0 x28 + x29 = 1 (44)

The above equations after solving them (by hand) gave the following key
bits:

x0 = 1 x1 = 0 x2 = 1

x3 = 1 x4 = 0 x5 = 0

x6 = 0 x7 = 1 x8 = 0

x9 = 1 x10 = 1 x27 = 0

x28 = 0 x29 = 1 x56 = 0

x71 = 0

Finally, we got x13 = 0, since x13 = x56. These are all key bits:

[x0, . . . , x79] =

[1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1,

1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0,

0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1]

We would like to indicate that, in the above cube attack with quadratic-
ity tests on a variant of Trivium reduced to 709 initialization rounds, the
resulting system of quadratic equations was fairly simple. The method of
solving it in two steps enabled us to find solutions just using only some ele-
mentary tricks. We have chosen this number of initialization rounds because
a reduced variant of Trivium (called Bivium) having only two registers and
4×177 = 708 initialization rounds was previously investigated. In an attack
on Trivium with more initialization rounds and using quadraticity tests to
recover more key bits than only those from linear tests requires more time
or computational resources.

9



References

[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing
Low-Degree Polynomials over GF(2). RANDOM 2003 and APPROX
2003, S. Arora, K. Jansen, J.D.P. Rolim, and A. Sahai, editors. LNCS,
vol 2764, pp. 188-199. Springer 2003.

[2] J-P. Aumasson, W. Meier, I. Dinur, and A. Shamir. Cube Testers and
Key Recovery Attacks on Reduced Round MD6 and Trivium. Fast Soft-
ware Encryption 2009. Orr Dunkelman, editor. LNCS, vol 5665, pp.
1-22. Springer 2009.

[3] J-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir. Effi-
cient FPGA Implementations of High-Dimensional Cube Testers on the
Stream Cipher Grain-128. IACR Cryptology ePrint Archive, 2009/218.

[4] S. S. Bedi and R. Pillai. Cube Attacks on Trivium. IACR Cryptology
ePrint Archive. 2009/15.

[5] M. Blum, M. Luby, and R. Rubinfeld. Self-Testing/Correcting with Ap-
plications to Numerical Problems. Journal of Computer and System Sci-
ences, vol 47(1993), pp. 549-595.

[6] Ch. DeCannière and B. Preneel. Trivium. M.J.B. Robshaw and O. Bilet,
editors. New Stream Cipher Designs. LNCS, vol 4817, pp. 244-246.
Springer 2008.

[7] P. Crowley, Trivium, SSE2, CorePy, and the "cube attack". Published
on http://www.lshift.net/blog/

[8] I. Dinur and A. Shamir. Cubic Attacks on Tweakable Black Box Poly-
nomials. EUROCRYPT 2009. A. Joux, editor. LNCS, vol 5479, pp.
278-299. Springer 2009.

[9] I. Dinur and A. Shamir. Side Channel Cube Attacks on Block Ciphers.
IACR Cryptology ePrint Archive, 2009/127.

[10] P. Mroczkowski and J. Szmidt. The Cube Attack on Courtois Toy Ci-
pher. IACR Cryptology ePrint Archive, 2009/497. To appear in Pro-
ceedings of WEWoRC 2009. LNCS. Springer.

[11] P. Mroczkowski and J. Szmidt. The Cube Attack on Stream Cipher Triv-
ium and Quadraticity Tests. Rump Session. CRYPTO 2010.

[12] M. Vielhaber, Breaking ONE.TRIVIUM by AIDA an Algebraic IV Dif-
ferential Attack. IACR Cryptology ePrint Archive, 2007/413.

[13] M. Vielhaber. AIDA Breaks (BIVIUM A and B) in 1 Minute Dual Core
CPU Time. IACR Cryptology ePrint Archive, 2009/402.

10


