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Abstract. Multivariate Cryptography is one of the alternatives to guarantee the security
of communication in the post-quantum world. One major drawback of such schemes is the
huge size of their keys. In [PB10] Petzoldt et al. proposed a way how to reduce the public
key size of the UOV scheme by a large factor. In this paper we extend this idea to the
Rainbow signature scheme of Ding and Schmidt [DS05]. By our construction it is possible
to reduce he size of the public key by up to 62 %.
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1 Introduction

Besides lattice-, code- and hash-based cryptosystems, multivariate cryptography is one of the main
alternatives to guarantee the security of communication in the post-quantum world [BB08]. Mul-
tivariate schemes are fast and efficient and seem especially suitable for signatures on low cost
devices like RFIDs or smart cards.
In the last years, a huge variety of multivariate schemes both for encryption and for signatures have
been proposed. On the one hand, we have the so called BigField-Schemes like Matsumoto-Imai
[MI88] and HFE [Pa96]. On the other hand, we have the SingleField-Schemes like UOV [KP99]
and Rainbow [DS05]. In between, there are the so called middle field schemes like ℓ-IC [DW07]
and MFE [WY06]. For all of these schemes there exist many variations and improvements, like the
minus variation [PG98] [PC01], Internal Perturbation [Di04] and Projection [DY07]. One common
drawback of all multivariate schemes is the large size of their public and private keys. Therefore,
the question of key size reduction for multivariate schemes is an important area of research.

In the last years, a lot of work was done to look at possibilities to reduce the key sizes. Most
researchers hereby concentrated on the reduction of the private key. We mention here the propos-
als of Yang and Chen for creating schemes with sparse central maps [YC05] and approaches with
so called equivalent keys of Hu et al. [HW05]. In [PB10] Petzoldt et al. presented an idea how
to reduce the public key size of the UOV signature scheme by a large factor. The principle idea
is, to compute the coefficients of the central map in such a way, that the corresponding public
key gets a compact structure. We mention that research in the direction of reducing public key
size has been undertaken in other areas of post-quantum cryptography, such as lattice-based cryp-
tography (ideal lattices, see the survey [BL09]) and coding-based cryptography (quasi-cyclic and
quasi-dyadic constructions, see [MB09]).

In this paper we show how to extend this idea to the Rainbow signature scheme, which was
proposed by J. Ding and D. Schmidt in 2005 [DS05]. We show, that by doing so it is possible to
reduce the size of the public key by up to 62 %. Furthermore, we can reduce the number of field
multiplications needed during the verification process by 30 %.



The structure of this paper is as follows:
In Section 2 we describe the Rainbow signature scheme of Ding and Schmidt. Section 3 gives
an overview on the approach of [PB10] to create a UOV scheme with partially cyclic public key.
Section 4 deals with notations and definitions we need for our construction in Section 5. Section 6
looks at security aspects of the new scheme, whereas Section 7 gives concrete parameter sets and
compares it with other multivariate schemes of the UOV family. Finally, Section 8 concludes the
paper.

2 Multivariate Public Key Cryptography

Multivariate Public Key Cryptography is one of the main approaches for secure communication
in the post-quantum world. The principle idea is to choose a multivariate system F of quadratic
polynomials which can be easily inverted (central map). After that one chooses two affine linear
invertible maps S and T to hide the structure of the central map. The public key of the cryp-
tosystem is the composed map P = S ◦F ◦ T which is difficult to invert. The private key consists
of S, F and T and therefore allows to invert P .

2.1 The principle of Oil and Vinegar (OV)

One way to create easily invertible multivariate quadratic systems is the principle of Oil and Vine-
gar, which was first proposed by J. Patarin in [Pa97].

Let K be a finite field. Let o and v be two integers and set n = o + v. Patarin suggested
to choose o = v. After this original scheme was broken by Kipnis and Shamir in [KS98], it was
recommended in [KP99] to choose v > o (Unbalanced Oil and Vinegar (UOV)). In the following
we describe the more general approach UOV.
We set V = {1, . . . , v} and O = {v + 1, . . . , n}. Of the n variables x1, . . . , xn we call x1, . . . , xv

the Vinegar variables and xv+1, . . . , xn Oil variables. We define o quadratic polynomials fk(x) =
fk(x1, . . . , xn) by

fk(x) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑

i,j∈V, i≤j

β
(k)
ij xixj +

∑

i∈V ∪O

γ
(k)
i xi + η(k) (k ∈ O)

Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar in a salad dressing.

The map F(x) = (fv+1(x), . . . , fn(x)) can be easily inverted. First, we choose the values of the v

Vinegar variables x1, . . . , xv at random. Therewith we get a system of o linear equations in the o

variables xv+1, . . . , xn which can be solved by Gaussian Elimination. (If the system doesn’t have
a solution, choose other values of x1, . . . , xv and try again).

2.2 The Rainbow Signature Scheme

In [DS05] J. Ding and D. Schmidt proposed a signature scheme called Rainbow, which is based
on the idea of (Unbalanced) Oil and Vinegar.

Let K be a finite field and S be the set {1, . . . , n}. Let v1, . . . , vu+1, u ≥ 1 be integers such
that 0 < v1 < v2 < · · · < vu < vu+1 = n and define the sets of integers Si = {1, . . . , vi} for
i = 1, . . . , u. We set oi = vi+1 − vi and Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u). The number of
elements in Si is vi and we have |Oi| = oi. For k = v1 + 1, . . . , n we define multivariate quadratic
polynomials in the n variables x1, . . . , xn by

fk(x) =
∑

i∈Ol, j∈Sl

α
(k)
i,j xixj +

∑

i,j∈Sl, i≤j

β
(k)
i,j xixj +

∑

i∈Sl∪Ol

γ
(k)
i xi + η(k),



where l is the only integer such that k ∈ Ol. Note that these are Oil and Vinegar polynomials
with xi, i ∈ Sl being the Vinegar variables and xj , j ∈ Ol being the Oil variables.

The map F(x) = (fv1+1(x), . . . , fn(x)) can be inverted as follows. First, we choose x1, . . . , xv1

at random. Hence we get a system of o1 linear equations (given by the polynomials fk (k ∈ O1)) in
the o1 unknowns xv1+1, . . . , xv2

, which can be solved by Gaussian Elimination. The so computed
values of xi (i ∈ O1) are plugged into the polynomials fk(x) (k > v2) and a system of o2 linear
equations (given by the polynomials fk (k ∈ O2)) in the o2 unknowns xi (i ∈ O2) is obtained. By
repeating this process we can get values for all the variables xi (i = 1, . . . , n) 3.

The Rainbow signature scheme is defined as follows:

Key Generation The private key consists of two invertible affine maps S : Km → Km and
T : Kn → Kn and the map F(x) = (fv1+1(x), . . . , fn(x)) : Kn → Km. Here, m = n − v1 is the
number of components of F .
The public key consists of the field K and the composed map P(x) = S ◦ F ◦ T (x) : Kn → Km.

Signature Generation To sign a document d, we use a hash function H : K∗ → Km to compute the
value h = H(d) ∈ Km. Then we compute recursively x = S−1(h), y = F−1(x) and z = T −1(y).
The signature of the document is z ∈ Kn. Here, F−1(x) means finding one (of the possibly many)
pre-image of x.

Verification To verify the authenticity of a signature, one simply computes h′ = P (z) and the
hashvalue H = h(d) of the document. If h′ = h holds, the signature is accepted, otherwise rejected.

The size of the public key is

m ·

(

n · (n + 1)

2
+ n + 1

)

= m ·
(n + 1) · (n + 2)

2
field elements, (1)

the size of the private key

m · (m + 1) + n · (n + 1) +

u
∑

l=1

ol ·

(

vl · ol +
vl · (vl + 1)

2
+ vl+1 + 1

)

field elements. (2)

The length of the needed hash value is m field elements, the length of the signature is n field
elements.
The scheme is denoted by Rainbow(v1, o1, . . . , ou). For u = 1 we get the original UOV scheme.

Rainbow over GF (28) is commonly believed to be secure for 26 equations or more [BF09],
[PB1a]. The actual design of the Rainbow layers is thereby not so important, as long as the
following four items are taken into consideration [PB1a]:

– to defend the scheme against the Rainbow-Band-Separation attack (see subsection 6.2) one
must have n ≥ ⌈ 5

3 · (m − 1)⌉.

– to defend the scheme against the MinRank attack (see subsection 6.3) one must have v1 ≥ 9.

– to defend the scheme against the HighRank attack (see subsection 6.4) one must have ou ≥ 10.

– to defend the scheme against the UOV attack (see subsection 6.5) one must have n−2·ou ≥ 11.

In particular, (v1, o1, o2) = (17, 13, 13) is a good choice for the parameters of Rainbow over GF (28).

3 It may happen, that one of the linear systems does not have a solution. If so, one has to choose other
values of x1, . . . xv1

and try again.



3 The approach of [PB10]

In this section we describe briefly the approach of [PB10] to create a UOV-based scheme with a
partially cyclic public key.

In the case of the unbalanced Oil and Vinegar Signature Scheme [KP99] the public key P is
given as a concatenation of the central UOV-map Q and an affine invertible map T , i.e. P = F ◦T .
The authors of [PB10] observed, that this equation (after fixing the affine map T ) leads to a linear
relation between the coefficients of quadratic momomials of P and F of the form

p
(k)
ij =

n
∑

i=1

n
∑

j=i

αrs
ij · f (k)

rs , (3)

where the coefficients αrs
ij are given as

αrs
ij =

{

tri · tsi (i = j)
tri · tsj + trj · tsi otherwise

. (4)

The relation (3) can be written in the form

p(k) = A′ · f (k), (5)

with two vectors containing the coefficients of the quadratic monomials of the k-th components of
P and F and a matrix

A′ =
(

αrs
ij

)

(1 ≤ i ≤ v, i ≤ j ≤ n for the rows, 1 ≤ r ≤ v, r ≤ s ≤ n for the columns). (6)

By inverting this relation, the authors of [PB10] were able to create a UOV like scheme, whose
public key has a coefficient matrix MP of the form

MP = (B|C),

with a partially circulant matrix B and a matrix C without apparent structure. Thereby, they
were able to reduce the public key size of the UOV scheme by a large factor.

4 Preliminaries

In this section we introduce some notations and definitions we need for the construction of our
scheme in the next section. We restrict ourselves to the case of two Rainbow layers.

4.1 Notations

We denote
D1 = v1·(v1+1)

2 + v1 ·o1 the number of quadratic terms in the central polynomials of the first layer.

D2 = v2·(v2+1)
2 + v2 · o2 the number of quadratic terms in the central polynomials of the second

layer.

D3 = n·(n+1)
2 the number of quadratic terms in the public polynomials.

For the invertible affine map S = (S, cS) we divide the m × m matrix S into four parts:

S =

(

S11 S12

S21 S22

)

, where S11 is the upper left o1 × o1 submatrix of S.



4.2 The monomial ordering

To make the description of our construction easier, we use a special ”blockwise” ordering of
monomials:

– The first block (consisting of D1 monomials) contains the monomials which appear in the first
Rainbow layer (i.e. the monomials xixj (1 ≤ i ≤ v1, i ≤ j ≤ v2)).

– The second block (consisting of D2 −D1 monomials) contains the monomials which appear in
the second but not in the first Rainbow layer (i.e. the monomials xixj ((1 ≤ i ≤ v1, v2 + 1 ≤
j ≤ n) ∨ (v1 + 1 ≤ i ≤ v2, i ≤ j ≤ n)).

– The third block contains the remaining quadratic monomials (i.e. the monomials xixj (v2+1 ≤
i ≤ j ≤ n)).

– The fourth and last block consists of the linear and constant monomials.

Inside the blocks we use the lexicographical ordering.

Example: For (v1, v2, n) = (2, 4, 6) we get the following ordering of monomials
x2

1 > x1x2 > x1x3 > x1x4 > x2
2 > x2x3 > x2x4 > x1x5 > x1x6 > x2x5 > x2x6 > x2

3 > x3x4 >

x3x5 > x3x6 > x2
4 > x4x5 > x4x6 > x2

5 > x5x6 > x2
6 > x1 > x2 > x3 > x4 > x5 > x6 > 1.

5 The scheme

In this section we describe how to construct a Rainbow scheme with a partially cyclic key. We
restrict to the case of two Rainbow layers 4.

5.1 Properties of the Rainbow public key

For the Rainbow signature scheme the public key is given as the concatenation of three maps

P = S ◦ F ◦ T .

We denote the concatenated map F ◦ T by Q and get

P = S ◦ Q.

Note that the relation between the maps Q and F has the same form as the relation between
public key and central map in the UOV case. Therefore we get exactly the same equations as in
section 3.

q
(k)
ij =

n
∑

r=1

n
∑

s=i

αrs
ij · f (k)

rs (1 ≤ k ≤ m), (7)

where the coefficients αrs
ij are given as

αrs
ij =

{

tri · tsi (i = j)
tri · tsj + trj · tsi otherwise

. (8)

Due to the special structure of the central map F , we can reduce the number of terms in equation
(7). We get

q
(k)
ij =

v1
∑

r=1

v2
∑

s=r

αrs
ij · f (k)

rs (1 ≤ k ≤ o1)

q
(k)
ij =

v2
∑

r=1

n
∑

s=r

αrs
ij · f (k)

rs (o1 + 1 ≤ k ≤ m), (9)

4 By a similar construction it is possible to extend the idea to a Rainbow scheme with more than two
layers. We do not handle it here.



Analogous to the case of the UOV we want to write equation (9) in a compact form. To do
this, we define a quadratic D2 × D2 matrix A containing the coefficients αrs

ij

A =
(

ars
ij

)

(1 ≤ i ≤ v2, i ≤ j ≤ n for the rows, 1 ≤ r ≤ v2, r ≤ s ≤ n for the columns). (10)

The order in which the αrs
ij appear in the matrix, is thereby given by the monomial ordering

defined in subsection 4.2 (for both rows and columns). We divide the matrix A into the four parts

A =

(

A11 A12

A21 A22

)

,

where A11 is the upper left D1 × D1 submatrix of A.

We write down the coefficients of P , Q and F (according to the monomial ordering defined in
subsection 4.2) into three matrices P ′, Q′ and F ′ and divide these matrices as follows

B1

B2

C1

Q11 Q12

Q21 Q22

F1 0 0

F2 0

D1 D2 D3 linear

o2

o1

o2

o1

o2

o1

F’

Q’

P’

Fig. 1. Layout of the matrices P ′, Q′ and F ′

We define the matrices P , Q and F to be the matrices consisting of the first D2 columns of
P ′, Q′, resp. F ′. With these definitions we get the following relations between the three matrices
P , Q and F :

P = S · Q or

(

B1
C1

B2

)

=

(

S11 S12

S21 S22

)

·

(

Q11 Q12

Q21 Q22

)

(11)

Q = F · AT or

(

Q11 Q12

Q21 Q22

)

=

(

F1 0
F2

)

·

(

AT
11 AT

21

AT
12 AT

22

)

(12)

5.2 Construction

Additionally to the requirement that S and T are invertible, which is needed for the correctness
of the Rainbow scheme, we need the following for the construction of our scheme:

– The lower right o2 × o2 submatrix S22 of S must be invertible.
– The transformation matrix A must be invertible.
– The upper left D1 × D1 submatrix of A must be invertible.

To justify these assumptions we carried out a number of experiments. For each of the values of
(v1, o1, o2) listed in Table 1 we created 1000 matrices S and A and observed how many of them
were invertible.



Rainbow(256, v1, o1, o2) (4,2,2) (9,6,6) (11,9,9) (14,11,11) (17,13,13)

invertible matrices S22 99.6 99.8 99.5 99.4 99.6

invertible matrices A 99.8 99.7 99.6 99.8 99.7

invertible matrices A11 99.5 99.6 99.4 99.5 99.4

Table 1. Percentage of invertible (sub-)matrices

At the beginning of our construction we assign the elements of B1 and B2 elements of K, so
that they get a compact structure.

For this we choose two vectors a(1) = (a
(1)
1 , . . . , a

(1)
D1

) ∈ KD1 and a(2) = (a
(2)
1 , . . . , a

(2)
D2−D1

) ∈

KD2−D1 at random. Then we set

b
(1)
ij = a

(1)
((j−i) mod D1)+1 (13)

for the elements of the m × D1 matrix B1 and

b
(2)
ij = a

(2)
((j−i) mod (D2−D1))+1 (14)

for the elements of the o2 × (D2 − D1) matrix B2.
Our goal is to compute the coefficients of the central map F in such a way that B1 and B2

appear in the matrix P representing the public key as shown in figure 1. From equations (11) and
(12) we get

(

Q11

Q21

)

= S−1 · B1 (15)

F1 = Q11 · (A
−1
11 )T (16)

Q12 = F1 · A
T
21 (17)

Q22 = S−1
22 · (B2 − S21 · Q12) (18)

F2 = (Q21||Q22) · (A
−1)T (19)

5.3 Key generation and key sizes

Key Generation

1. Choose randomly two vectors a(1) ∈ KD1 and a(2) ∈ KD2−D1 . Compute the entries of the
matrices B1 and B2 by formulas (13) and (14).

2. Choose randomly two affine invertible maps S = (S, cS) : Km → Km and T = (T, cT ) : Kn →
Kn. If the matrix S22 (see subsection 4.1) is not invertible, choose another map S.

3. Compute for T the corresponding transformation matrix A using formulas (8) and (10). Both
A and its upper left D1×D1 submatrix A11 have to be invertible. If this is not the case, choose
another map T .

4. Compute the matrix

(

Q11

Q21

)

using formula (15) .

5. Compute the quadratic coefficients of the central polynomials of the first layer by formula
(16).

6. Compute the entries of the matrices Q12 and Q22 by formulas (17) and (18).
7. Compute the quadratic coefficients of the central polynomials of the second Rainbow layer by

formula (19).
8. Choose the coefficients of the linear and constant terms of the central polynomials at random.
9. Compute the public key of the scheme by P = S ◦ F ◦ T .



The resulting public key has the form shown in figure 1.
The public key consists of the vectors a(1) and a(2), the matrix C1 = S11 · Q12 + S12 · Q22 and

the last (n+1)·(n+2)
2 − D2 columns of the matrix P .

The private key consists of the maps S, Q and T .

The size of the public key is

D1+(D2−D1)+o1·(D2−D1)+m·

(

(n + 1) · (n + 2)

2
− D2

)

= m·
(n + 1) · (n + 2)

2
−o1·D1−(o2−1)·D2

(20)
field elements, the size of the private key

m · (m + 1) + n · (n + 1) +

2
∑

l=1

ol ·

(

vl · ol +
vl · (vl + 1)

2
+ vl+1 + 1

)

field elements. (21)

Signature generation and verification work as for the standard Rainbow scheme.

5.4 Efficiency of the verification process

Besides the considerable reduction of the public key size, the number of multiplications needed in
the verification process is decreased by about 30 %.

This can be seen as follows: To evaluate an arbitrary public key, for every quadratic term two
K-multiplications are needed. Together with the n multiplications for the linear terms, one needs
n · (n + 2) multiplications for each polynomial. Hence, to evaluate the whole public key, one needs

m · n · (n + 2) K−multiplications (22)

When evaluating our partially cyclic public key, some of the multiplications can be used several

times (For example, a
(1)
1 ×x1 appears in every of the m public polynomials.) Thus, we do not have

to carry out all the multiplications one by one. A close analysis shows, that by using this strategy
we can reduce the number of K-multiplications needed in the verification process to

m · n · (n + 2) −
(m

2
· (2 · v1 · v2 − v2

1 − v1) +
o2

2
· (v2

1 − 2v1v2 − v1 + 2v2v3 − v2
2 − v2)

)

, (23)

which, for (v1, o1, o2) = (17, 13, 13), leads to a reduction of 30 %.

6 Security

In this section we look at known attacks against the Rainbow signature scheme and study their
effects against our scheme.

6.1 Direct attacks [BB08], [YC07]

The most straightforward way for an attacker to forge a signature for a message h is to solve
the public system P (x) = h by an algorithm like XL or a Gröbner Basis method. To study the
security of our scheme against direct attacks, we carried out experiments with MAGMA [BC97],
which contains an efficient implementation of Faugeres F4-algorithm [Fa99] for computing Gröbner
Bases. Table 2 shows the results of our experiments against random systems, the standard Rain-
bow scheme and our partially cyclic version.
As the table shows, F4 cannot solve our systems significantly faster than those of the standard
Rainbow scheme.



(v1, o1, o2) (8,5,6) (9,6,6) (10,6,7) (11,7,7)

cyclicRainbow 406 s 3135 s 23528 s 220372 s

Rainbow 405 s 3158 s 23560 s 222533 s

random system 408 s 3178 s 23621 s 221372 s

Table 2. Results of the experiments with direct attacks

Definition 1. Let p(x) = p(x1, . . . , xn) be a quadratic multivariate polynomial and

dp(x, c) = p(x + c) − p(x) − p(c) + p(0)

its discrete differential. For p we define a matrix Hp by

dp = xT · Hp · c

For the matrix Hpi
representing the quadratic part of the i-th public polynomial we write in short

Hi.

6.2 Rainbow-Band-Separation [DY08]

The goal of this attack is to find an equivalent private key by which one can forge signatures for
arbitrary messages. One tries to find a basis change of variables which transforms the matrices Hi

into ”Rainbow form” (see figure 2)

∗v1×v1

∗o1×v1

0o2×v1

∗v1×o1

0o1×o1

0o2×o1

0v1×o2

0o1×o2

0o2×o2

1 ≤ i ≤ o1

∗v1×v1

∗o1×v1

∗o2×v1

∗v1×o1

∗o1×o1

∗o2×o1

∗v1×o2

∗o1×o2

0o2×o2

o1 + 1 ≤ i ≤ m

Fig. 2. Matrices Hi in the Rainbow form

To achieve this, one has to solve several overdetermined systems of quadratic equations. The
complexity of the attack is determined by the complexity of its first step, which consits of solving
an overdetermined system of m + n − 1 quadratic equations in n variables. Table 3 shows the
results of our experiments with the Rainbow Band Separation attack. The quadratic systems were
again solved with MAGMA. As the table shows, the RBS attack can not take an advantage out

(256, v1, o1, o2) (8,5,6) (9,6,6) (10,6,7) (11,7,7)

cyclicRainbow 403 s 3163 s 23583 s 223726 s

Rainbow 412 s 3152 s 23652 s 224273 s

Table 3. Results of our experiments with the Rainbow Band Separation attack

of the special structure of our public key.



6.3 MinRank attack [GC00], [BG06]

In the MinRank attack one tries to find linear combinations H =
∑m

i=1 αiHi of the matrices rep-
resenting Hi (see definition 1) such that rank(H) ≤ v2. These linear combinations are with high
probability linear combinations of the central polynomials of the first Rainbow layer.
These linear combinations can be found by choosing randomly a vector v ∈ Kn and trying to solve
the system (

∑m

i=1 αiHi)·v = 0 for the αi (i = 1, . . . , m). After having found o1 linear combinations
of this form, the attacker is able to extract the first Rainbow layer. After that, it is possible to
recover the other layers one by one and therefore to find an equivalent private key. The complexity
of the MinRank attack is determined by the complexity of finding the linear combinations, which
is about o1 · q

v1+1 · m3.

Table 4 shows the results of our experiments with the MinRank attack. For every parameter
set listed in the table we created 100 instances of both schemes and attacked each of these schemes
by the MinRank attack. The table shows the average number of vectors v we had to test until
finding o1 linear independent combinations of rank ≤ v2.

(q, v1, o1, o2) (8,3,2,2) (8,4,3,3) (16,3,2,2) (16,4,3,3)

cyclicRainbow 7635 83534 124174 2982618

Rainbow 7724 84676 125463 3028357

Table 4. Results of experiments with the MinRank attack

As the table shows, linear combinations with rank ≤ v2 can not be found easier for our scheme
than for the standard Rainbow scheme. Furthermore, for our scheme these linear combinations do
not show any visible structure. Note that the parameters listed in the table are far below those
actually used for Rainbow. For the parameters proposed in subsection 2.2 the complexity of the
attack is much higher than 280.

6.4 HighRank attack [GC00], [DY08]

In the HighRank attack one tries to identify the variables appearing the lowest number of times
in the central equations. These are the variables of the last Rainbow layer.
To do this, one forms random linear combinations H of the matrices Hi. If H has nontrivial
kernel, one checks if the solution set of (

∑m

i=1 λiHi) · kerH = 0 has dimension n− o2. Then, with
probability q−o2 , we have

ker(H) ⊆ T (O) with O = {x ∈ Kn|x1 = · · · = xn−o2
= 0}.

After having found a basis of T −1(O), one extends this basis to a basis of the whole space Kn.
This enables an attacker to forge signatures for arbitrary messages. The complexity of the attack
is determined by the complexity of finding a basis of T −1(O), which is about qou · m3.

For each of the parameter sets listed in Table 5 we created 100 instances of both schemes. The
table shows the average number of linear combinations H we had to test until finding a basis of
T −1(O).
As the table shows, for both the Rainbow and the cyclic Rainbow scheme we have to test nearly
the same number of linear combinations to find a basis of T −1(O). Note that the parameters
listed in the table are far below those actually used for Rainbow. For the parameters proposed in
subsection 2.2 the complexity of the attack is much higher than 280.



(q, v1, o1, o2) (8,3,2,2) (8,4,3,3) (16,3,2,2) (16,4,3,3)

cyclicRainbow 64.2 511.5 257.3 4093.7

Rainbow 65.1 512.3 256.8 4097.8

Table 5. Results of our experiments with the HighRank attack

6.5 UOV attack [KP99]

Since a Rainbow scheme can be seen as a UOV scheme with vu vinegar and ou oil variables, it can
be attacked by the UOV attack of Kipnis and Shamir [KP99]. The goal of this attack is to find
the pre-image T −1(O) of the Oil-subspace O = {x ∈ Kn|x1 = · · · = xn−o2

= 0} under the affine
invertible map T . One chooses randomly a linear combination H of the matrices H1, . . . , Hm and
sets G := H · H−1

j for some j ∈ {1, . . . , m}. After that, one computes all the minimal invariant

subspaces of G. With high probability, these invariant subspaces are also subspaces of T −1(O).
After having found a basis of T −1(O), one extends this basis to a basis of the whole space Kn.
This enables an attacker to forge signatures for arbitrary messages. The complexity of the attack
is determined by the complexity of finding a basis of T −1(O), which is about qn−2·ou · m3.

For each of the parameter sets listed in the table we created 100 instances of both schemes. Then
we attacked these instances by the UOV-attack. Table 6 shows the average number of matrices G

we had to test until finding a basis of T −1(O).

(16, v1, o1, o2) (3,2,2) (5,3,3) (9,6,6) (12,10,10)

cyclicRainbow 1734 531768 852738 1183621

Rainbow 1728 532614 847362 1146382

Table 6. Results of the experiments with the UOV attack

As the table shows, for both schemes we have to test nearly the same number of matrices G to
find a basis of T −1(O). Note that the parameters listed in the table are far below those actually
used for Rainbow. For the parameters proposed in subsection 2.2 the complexity of the attack is
much higher than 280.

6.6 Summary

As the previous five subsections showed, known attacks against the Rainbow signature scheme do
not work significantly better in our case, which means that they can not use the special structure
of our public key. So, in this sense our scheme seems to be secure and we do not have to increase
the parameters compared to those of the standard Rainbow scheme.
However, in the future we are going to study the security of our scheme under other attacks, e.g.
decomposition attacks [FP09]. It might also be possible that some dedicated attacks against our
scheme exist.

7 Parameters

Based on the security analysis in the previous section we propose for our scheme the same param-
eters as suggested for the standard Rainbow scheme (see section 2), namely

(q, v1, o1, o2) = (256, 17, 13, 13).



Scheme public key private key hash size signature size
size (kB) size (kB) (bit) (bit)

UOV(256,26,52) 80.2 76.1 208 624

cyclicUOV(256,26,52) 14.5 76.1 208 624

Rainbow(256,17,13,13) 25.9 19.1 208 344

cyclicRainbow(256,17,13,13) 10.2 19.1 208 344

UOV(256,28,56) 99.9 92.8 224 672

cyclicUOV(256,28,56) 16.5 92.8 224 672

Rainbow(256,19,14,14) 32.2 24.3 224 376

cyclicRainbow(256,19,14,14) 12.9 24.3 224 376

Table 7. Comparison of different UOV-based signature schemes

Table 7 compares our scheme with others from the UOV family. Additionally to the parameters
proposed above, the table contains key- and signature sizes for a more conservative parameter set
for m = 28.

8 Conclusion

In this paper we showed a way how to extend the approach of [PB10] to the Rainbow signature
scheme. The result is a Rainbow-like scheme, which reduces the size of the public key by 62 % and
the number of field multiplications needed during the verification process by 30 %. We believe that
our idea might be a good approach for implementing the Rainbow scheme on low cost devices,
e.g. smartcards. Points of research for the future are in particular security issues of the scheme as
well as the use of PRNG’s to construct the public key.
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