
2010/7/12 10:00

1

A Privacy-Flexible Password Authentication Scheme for
Multi-Server Environment

Jue-Sam Chou 1*, Yalin Chen 2, Chun-Hui Huang 3, 3

1 Department of Information Management, Nanhua University Chiayi 622 Taiwan, R.O.C

jschou@mail.nhu.edu.tw

Tel: 886+ (0)5+272-1001 ext.56226

*: corresponding author

2Institute of information systems and applications, National Tsing Hua University

d949702@oz.nthu.edu.tw

3 Department of Information Management, Nanhua University Chiayi 622 Taiwan, R.O.C

g6451519@mail.nhu.edu.tw

Abstract

Since Kerberos suffers from KDC (Key Distribution Center) compromise and
impersonation attack, a multi-server password authentication protocol which
highlights no verification table in the server end could therefore be an alternative.
Typically, there are three roles in a multi-server password authentication protocol:
clients, servers, and a register center which plays the role like KDC in Kerberos. In
this paper, we exploit the theoretical basis for implementing a multi-server password
authentication system under two constraints: no verification table and user privacy
protection. We found that if a system succeeds in privacy protection, it should be
implemented either by using a public key cryptosystem or by a register center having
a table to record the information shared with corresponding users. Based on this
finding, we propose a privacy-flexible system to let a user can employ a
random-looking dynamic identity or employ a pseudonym with the register center
online or offline to login a server respectively according to his privacy requirement.
Compared with other related work, our scheme is not only efficient but also the most
conformable to the requirements that previous work suggest.

Keywords: password authentication, impersonation attack, user privacy protection,
Kerberos, password guessing attack, smart card lost attack

1. Introduction

Password authentication has been widely used as an authentication mechanism in a
client-server architecture over networks for many years. In the mechanism, a client
generally registers his account and password to a server through a secure channel. At
later time, the client can remotely access the server if he can prove his identity by



2010/7/12 10:00

2

offering the correct password. In such system for convenience, a client may hope to
access multiple servers by applying just one pair of account and password. For this
purpose, Kerberos, which was originated by Massachusetts Institute of Technology
(MIT) in the 1980s, was proposed and now becomes a popular solution adopted by
current industry. Its version 5 appeared as RFC 1510 in 1993 was made obsolete by
RFC 4120 in 2005. In 2007, MIT formed the Kerberos Consortium to foster
continuous development. Many computer operating systems have used Kerberos, such
as Windows 2000, FreeBSD, Apple’s Mac OS X, Red Hat Enterprise Linux 4, Sun’s
Solaris, IBM’s AIX, and HP’s Open VMS, etc.

Kerberos [1] is based on symmetric Needham-Schroeder protocol and takes use of
a trust third party termed as a key distribution center (KDC) to maintain a database of
secret keys. In it, each entity–either a client or a server–shares a secret key known
only between itself and the KDC. In fact, the secret key for a client is usually the hash
result of his password, as in the system of UNIX. Knowledge of this secret key serves
to prove the entity’s identity. However, some drawbacks of Kerberos are often
concerned by researchers. Firstly, Kerberos is subject to a single point of failure; it
requires continuous availability of a center server. Under this requirement, when the
center server is down, no one can log in. Secondly, since all secret keys are stored in
the KDC, a compromising of this authentication infrastructure will allow an attacker
to launch an impersonation attack.

In recent year, some studies [2-14] (called multi-server password authentication
protocols) each proposed an alternative approach of Kerberos, which emphasize no
verification (or password) table usage in the server. This causes the server to get rid of
stolen-verifier attack. In each of these systems, there exists a trusted register center
(RC) for distributing a secret key to each entity (a server or a client) in the registration
phase. The secret key is usually a computed result of both RC’s private master key
and the entity’s identity. All the requirements RC needs is only to store his master key.
Hence, such an approach can eliminate the necessity of a verification table usage in
RC. We think this no verification table design principle would be a countermeasure to
cope with the second drawback of Kerberos. In addition to the no verification table
concept, some other multi-server authentication studies [3-8, 9-12] further advocated
RC-offline authentication. When RC (like the role of KDC in Kerberos) is down, a
client can be allowed to login a server (authentication with RC offline). We think that
this advocacy would be a countermeasure to the first drawback of Kerberos (suffering
the single point of failure). The other desirable features in this study area include: no
assumption for servers to be trustworthy, increasing servers freely, changing
password freely, and preventing the attacks like offline password guessing, insider
server spoofing, and smart-card loss attack. The smart-card loss attack [15] indicates



2010/7/12 10:00

3

that any attacker can launch an offline password guessing or impersonation attack
under the circumstance that a smart card is lost and the stored data is extracted (by an
attacker by using some means as introduced in [16, 17]).

More recently, for responding to the increasing demand of user privacy protection
demanded in many applications, some multi-server password authentication protocols
[3, 13, 14] further cooperate an untraceability function into their schemes.
Untraceability is a privacy notion which can prevent an attacker from inferring the
user’s identity in a transcript and from linking any particular user to a specific
transcript. The concept of dynamic identity (DID) is considered to be able to fulfill
this untraceability purpose since it cannot be recognized and linked to any particular
user by a network eavesdropper.

In this study, we are the first to exploit the theoretical basis for the implementation
of a multi-server password authentication system under two constraints: no
verification table and user privacy protection. We found that if a system succeeds in
privacy protection, it should be implemented through either introducing a public key
cryptosystem (PKC) or employing a table in RC to record the information shared with
corresponding users. From many observed facts, we see that our argument holds. For
example, studies [3, 13] are two failed privacy protection systems since they introduce
neither PKC nor any table in RC (The detailed analyses will be given in Section 2.3.).
Hence, in this study we propose a privacy-flexible password authentication protocol
using PKC. In our system, we let a user can employ a DID (encrypted by RC public
key) or employ a pseudonym (a random string authorized by RC) with RC online or
offline to login a server respectively according to his privacy requirement.

The remainder of this paper is organized as follows. In Section 2, we give some
preliminaries, including the design principle of multi-server password authentication
protocols, the theoretical exploration on the implementation of privacy protection
systems, and the reviews of some related privacy protection schemes. In Section 3, we
show our scheme. And its merits and security features analyses are given in Section 4.
In section 5, we demonstrate the performance comparisons among our scheme and
other related work. Then, we show the discussion in Section 6. Finally a conclusion is
given in Section 7.

2. Preliminaries

In this section, we introduce some preliminaries, including the design principle of
multi-server password authentication protocols in Section 2.1, theoretical exploration
on implementing systems with user privacy protection and table-free constraint in
Section 2.2, and related work reviews and analyses in Section 2.3.

2.1 Design principles of multi-server password authentication protocols



2010/7/12 10:00

4

According to literatures [2-14], a multi-server password authentication system
typically consists of a RC and some servers and clients. In it, RC is the only trusted
node. The servers should not be assumed to be trustworthy and the client is usually
equipped with a tamper-resistant smart card to attain a better protection for the stored
authentication data. The systems highlight no usage of any verification table in RC
and servers, and a client needs only one single registration while being able to login
multiple servers. Based on these literatures, we show a conceptual model for an ideal
multi-server password authentication system in Figure 1. In the registration phase of
Figure 1, each client or server should register his identity to RC to obtain a secrecy
shared between RC and itself. Here, we give this shared secrecy a generic form h(ID,
x) (called credential in this paper), where x is RC’s private master key, ID presents the
client or server’s identity, and h(·) is a secure one-way hash function. In the figure,
credentials A and B are belonging to client i and server j, correspondingly. Thus, RC

needs not store each shared secrecy in its database because he can compute the
secrecy on sight of ID when the entity logins.

As for the authentication phase, some studies [2, 13, 14] require RC to be always
online. However, we think such a design principle will consume more resource and
communication cost, and be easily subject to a single point of failure (like Kerberos).
Hence, we consider a RC-offline system [2, 4, 5, 7-14] would be more practical.
Under such a consideration, in the authentication phase of Figure 1, we let RC be an
intermediary when client i logins server j at first time. Through RC’s trust relationship,
both the client and server can authenticate each other based on credential A and B
correspondingly. Meanwhile, the server distributes another credential C to the client
for the client’s subsequent logins, where C = h(IDi, xj) and xj is server j’s private

master key. That is, when the client accesses the same server next time, he and the
server can base on credential C to perform mutual authentication without RC’s

involvement.



2010/7/12 10:00

5

Registeration Phase

Client i RC

master key x

Server j RC

=h (SID j , x )

=h (ID i , x )A

(secure channel)

(secure channel)

B

(a) Client i first logins Srever j

Client i Server j

master key xj

=h (ID i , xj )

intermediary

(b) Client i subsequently logins Srever j

Client i Server j

ID i ,

ID i ,

RC

C

A B

C

C

Authentication Phase

Fig. 1. Conceptual model of an ideal multi-server password authentication protocol.

2.2 Theoretical exploration on implementing systems with user privacy
protection and table-free constraint

In this section, we first demonstrate what a privacy protection system should be. Then,
we consider how to fulfill such a privacy protection system without RC having any
authentication table.

From studies [2, 13], we know that a system can be defined as a privacy protection
system if and only if it possesses two properties: (a) a user’s ID (UID) should not be
transferred in a clear way, and (b) a transcript can not be linked to any transcript to
refer to a particular user. In other words, a user’s location cannot be traced by a third
party (3rdP). To design such privacy protection systems, researchers usually introduce
a random-looking DID in the authentication procedure which can be conceptually
treated as a UID masked with a random string rs (written as UIDrs). Due to lack
the knowledge of corresponding rs, DID cannot be distinguished by a 3rdP. It should
only be identifiable by the intended recipient, i.e. RC. An intuitive implementation to
accord with this requirement is to let the client and RC keep the same rs
simultaneously. With this implementation, RC must maintain a table consisting of the
tuple <UID, rs> for various users. Therefore, when seeing DID in an authentication
request, RC can search the table to find a match, i.e., trying to match each UIDrs



2010/7/12 10:00

6

with the received DID to identify the user.
In the following, we further consider what a privacy protection system should be if

RC is not allowed to have a table to store authentication-related data, such as <UID,
rs>. Under this situation, RC will lose the capability to recognize a DID. Hence, to
implement such a system, it is reasonable to consider that DID should be formed by
some means where only RC can deform it while others cannot. A possible way we
suggest is to introduce a symmetric or public key cryptosystem (SKC or PKC). In a
SKC, the user employs a secret key to encrypt his UID with a random rs to form a
DID and RC applies the same secret key to decrypt the DID to authenticate the user.
Or in a PKC, the user employs RC’s public key to encrypt his UID with a random rs
to form a DID and RC applies his private key to decrypt the DID to authenticate the
user. In both cases, a 3rdP is unable to recognize or trace a particular DID due to the
security of SKC and PKC. However, if SKC is used, RC will need a table to store the
symmetric keys shared with corresponding users. This conflicts with the table-free
constraint. Therefore, only PKC can be used. In the following, we will use a series of
statements to formally demonstrate above reasoning. (Notations: “”indicates
implication,“”logical and, and“”logical or.)

A successful privacy protection system
RC can unmask DID with rs  3rdP can not unmask DID
DID is encrypted by using PKC (Statement I) 

DID is encrypted by using SKC (Statement II) 
rs is shared between RC and user by some other means (Statement III)

 rs is encrypted by using PKC 
RC has a table to record the information (symmetric keys or rses) shared with
corresponding users

In the above reasoning, Statement III encompasses all possible means (except for
SKC and PKC) which can make RC be able to obtain the current rs for the
corresponding user. Many methods can be adopted to achieve this goal. As an
example, a user and RC can both share a previous rs, and obtain current rs by
performing PRNG (pseudo random number generator) or hash operation on previous
rs. All such means imply that RC needs a table to record related information (such as
previous rs, initial value, etc.) for each user. As a result from Statement I, II, and III,
we can conclude that a successful privacy protection system implies that the system
should use PKC or RC should have a table to record the related information shared
with corresponding users. Therefore, we have the following argument.

Argument 1. If a system is a successful privacy protection system, then it should be
implemented either by using a public key cryptosystem or by RC having a table to



2010/7/12 10:00

7

record the information shared with corresponding users.

Proof: We prove this argument by contrapositive, i.e. show that if the system is neither
implemented by using PKC nor by RC having a table, then the system would fail to
be a privacy protection system. As we know, if the system is implemented neither by
public cryptosystem encryption (on rs) nor by recording shared information (the
symmetric keys or rses shared between RC and clients), then when a client sends a
DID to RC, RC would have no idea about how to deform DID, since he can not obtain
the corresponding symmetric keys or rs. Thus, the system fails. This completes the
proof.

2.3. Related work reviews and analyses

In this section, we use Argument 1 to investigate three multi-server privacy protection
password authentication protocols, Liao-Wang’s [3], Hsiang-Shih’s [13], and
Wang-Juang-Li’s [14]. We found that these investigations results support our
argument. In the following, we will show the investigations. The corresponding
schemes are shown in Figure 2 through 6. In these figures, we use SC to denote the
abbreviation of smart card.

2.3.1 Liao-Wang’s scheme
Liao and Wang [3] developed a DID-based multi-server authentication scheme to
achieve user privacy in 2009. In the setup phase of their scheme, RC chooses a
random number x as its master key and y as a system common secrecy which will be
shared among all registered entities. Figure 2 and 3 show the registration phase and
authentication phase, respectively.

Ui RC
(1) IDi, PWi

SC

Li = H(IDi, x)
Vi = LiH(IDi, PWi)
Bi = h(PWi)h(x)
hi = H(Li)
Stores (Vi, Bi, hi, h(.), y)
inot a smart card

Sj y, h(x) RC

Fig. 2. Registration Phase of Liao-Wang’s Scheme

Ui Sj

Submits IDi, PWi and SIDj

1.Li
* = ViH(IDi, PWi)

Hi
* = h(Li

*) check if Hi
* = Hi

2.CIDi = h(PWi)h(Li, y, Ni)
Pij = Lih(y, Ni, SIDj)

Qi = h(Bi, y, Ni)

(1) CIDi, Pij, Qi, Ni

(note: Ni, Nj are nonces)

1.Li = Pijh(y,Ni,SIDj)

H(PWi) = CIDi h(Li, y, Ni)
Bi = h(PWi)h(x)



2010/7/12 10:00

8

(2) Mij1, Nj 2.Checks if h(Bi, y, Ni) = Qi

3.Mij1 = h(Bi, y, Ni, SIDj)

1.Checks if h(Bi,y,Ni,SIDj) = Mij1

2. Mij2 = h(Bi, y, Nj, SIDj) (3) Mij2

SK= h(Bi, y, Ni, Nj, SIDj) checks if h(Bi, y, Nj, SIDj) = Mij2

SK= h(Bi, y, Ni, Nj, SIDj)

Fig. 3. Authentication Phase of Liao-Wang’s Scheme

In Figure 2, we see that like in a generic multi-server authentication scheme, RC
and user Ui (with identity IDi) share credential Li = h(IDi, x), but RC and server Sj

share only h(x) and y. By inspecting the authentication phase of the scheme (as shown
in Figure 3), we found that without the appearance of RC, the only shared information
between Ui and Sj is y. In other words, the substantive basis of Ui and Sj’s mutual
authentication is the system common secrecy y rather than credential Li. This design

method exposes a serious vulnerability that any entity in the system knowing y can
launch an impersonation attack. Chen et al.’s study [18] and Hsiang-Shih’s study [13]
pointed out such an attack respectively. We show it as follows. Suppose that insider
client E has eavesdropped a login request {CIDi, Pij, Qi, Ni} that Ui sent to Sj. He can
first compute h(x) = h(PWE)BE, where BE is the secrecy stored in E’s smart card, Li

= Pijh(y||Ni||SIDj), h(PWi) = CIDih(Li||y||Ni), and Bi = h(PWi)h(x). Once E has
extracted Li, h(PWi), and Bi, he can impersonate Ui to login server Sj by first
randomly choosing a nonce NE, computing CIDi

(E) = h(PWi)h(Li||y||NE), Pij
(E) =

Lih(y||NE||SIDj), and Qi
(E) = h(Bi||y||NE), and then sending {CIDi

(E), Pij
(E), Qi

(E), NE}

to Sj. Sj will accept the request and regard it as being from Ui without any detection
since h(Bi, y, NE) = Qi

(E).
Other than the above demonstrated vulnerability, we also use Argument 1 to

examine Liao-Wang’s scheme as follows. Since their scheme only uses a common
secrecy y as the basis for server Sj to identify DID (represented as CIDi in
Liao-Wang’s scheme), it does not introduce PKC or any table in RC or servers. Any
entity in the system knowing the common secrecy y would have ability to identify a
user. This violates Argument 1. That is, it fails to achieve user privacy protection.
More precisely, when Sj receives message flow (1) in the authentication phase as
shown in Figure 3, any entity in the system who knows y can follow the steps as
performed by Sj to identify user Ui.

Besides, we also found that Liao-Wang’s scheme suffers from the smart-card lost
and offline password guessing attack. Since if an attacker obtains Ui’s smart card and
extracts the stored data Bi (=h(PWi)h(x)), he can first compute h(x) in the same
manner as mentioned in Chen et al.’s [18] and Hsiang-Shih’s [13] attack. Then, he can
guess a password PW* and check its correctness by matching h(PW*)h(x) with Bi.



2010/7/12 10:00

9

2.3.2 Hsiang-Shih’s scheme

Hsiang and Shih [13] proposed an improvement on Liao-Wang’s scheme. We briefly
show their improvement’s registration phase and authentication phase in Figure 4 and
5, respectively.

Ui SC RC (secrecy: x, y, r)

(1)IDi,PWi

chooses random bi,
computes h(biPWi)

(1) IDi, h(biPWi) computes Li =h(IDi, x)
Vi= Lih(IDi, h(biPWi))
Ai=h(h(biPWi), r)h(xr)
Bi= Aih(biPWi)

(2) Ri=h(h(biPWi),r), Hi=h(Li )

The smart card stores bi, Vi, Bi, Hi, Ri

Server Sj RC
Lj =h(SIDj, y)

Fig. 4 Registration Phase of Hsiang-Shih’s Scheme

Below, we use Argument 1 to investigate the privacy protection in the improvement.
Since it neither employs any table in RC nor introduces PKC to form DID, we
therefore infer that it is not a successful privacy protection system. We show the
evidence as follows. By eavesdropping on the transferred message, we can deduce all
Ui’s secrets stored in his smart card. For instance, from messages (2):{CIDi, Pij, Qi, Di,
C0, Ni}, (3):{Mjr, SIDj, Du, C0, Ni}, and (4):{C1, C2, Njr'}, transmitted among Ui, Sj and
RC (as shown in Figure 5), we can deduce Ai by computing Ai = C2h(Mjr), and then
obtain Ri, Li, h(biPWi) by calculating Ri = DiSIDjNi, Li = Pijh(Ai,Ni,SIDj),
and h(biPWi) = CIDih(Li, Ai, Ni), respectively. Hence, we break the scheme.

Ui SC Server Sj RC
1)IDi,PWi,

SIDj

Li '=Vih(IDi,H(biPWi)),
Hi'=h(Li'), check if Hi=?Hi'
Ai'=Bih(biPWi)
CIDi=h(biPWi)h(Li',Ai',Ni)
Pij=Li'h(Ai',Ni,SIDj)

Qi =h(Bi, Ai', Ni)
Di=Ri SIDj Ni

C0=h(Ai', Ni+1, SIDj)

(note: Ni, Njr, Nj are nonces)

(2)CIDi,Pij,Qi,
Di,C0,Ni

(3)Mjr,SIDj,

Di,C0,Ni

Mjr = Lj Njr

(4) C1,C2, Njr'

(5)Mij,Nj

Checks C1

Ai=C2 h(Lj, Njr)

Li =Pijh(Ai', Ni, SIDj)

Njr'= Mjr Lj

Ri'= DiSIDjNi

Ai'= Ri'h(xr)

C0'= h(Ai', Ni+1, SIDj)
Checks C0' =? C0

C1 = h(Njr', Lj, Ni)
C2 = Ai'h(Lj, Njr')



2010/7/12 10:00

10

Checks Mij

h(biPWi) = CIDi h(Li, Ai, Ni)

Bi= Aih(biPWi)

Check h(Bi,Ai,Ni) =? Qi

Mij= h(Bi,Ni,Ai,SIDj)

Fig. 5. Login and Authentication Phase of Hsiang-Shih’s Scheme

In addition, we also demonstrate a smart-card lost and offline password guessing
attack on Hsiang-Shih’s scheme as follows. When an attacker obtains Ui’s smart card
and extracts the stored data {bi, Vi, Bi, Hi (=h(Li)), Ri}, he can guess a password PW*

and compute Li
* = Vih(IDi, h(biPW*). He then computes and compares to see if

h(Li
*) is equal to Hi.

2.3.3 Wang-Juang-Lei’s scheme

In 2009, Wang, Juang and Lei [14] proposed a multi-server privacy protection
password authentication scheme based on quadratic residue encryption (also known as
Rabin’s PKC). In their system setting phase, RC selects two large primes p and q as
private key and computes n = pq as public key. In the user resister phase, RC
computes Li = h(IDi, x) and distributes a smart card storing {IDi, Li, h(.), n} to Ui via
a secure channel, and then Ui updates Li by computing Li' = Lih(PWi). Other than
this, RC also computes and distributes credential Lj = h(SIDi, x) to server Sj. We use

Figure 6 to demonstrate the login and authentication phase of their scheme.
Ui SC Server Sj RC

1) IDi, PWi

2)Generates Ni, Reqi=(IDi,
Li, SIDj, Ni)

2 mod n

3) Reqi

9) RS2, RC3

10)
Retrieves
H(Nj')= h(IDi,SIDj,Ni)RS2

Checks h(Li, Ni,h(Nj')) =? RC3

RSi = h(h(Nj')+1)

SK= h(SIDj,h(Nj'),h(IDi,SIDj,Ni))

4)
Generates Nj,

Reqj= LjNj

8)
Retrieves
NRC'= h(Lj, Nj)

RC1
KSC =h(Lj, Nj)

Rij'=KSCRC2

Checks h(KSC, Rij',

RC3) =? RC4
RS2=Rij'h(Nj)

5) Reqi, SIDj, Reqj

7) RC1, RC2,
RC3, RC4

6)
Decrypts Reqi(IDi,Li,
SIDj, Ni)
Checks Li =? h(IDi, x)
Checks SIDj in Reqi

Lj= h(SIDj, x)
Retrieves Nj' =LjReqj

Generates NRC

RC1=h(Lj, Nj')NRC

KSC =h(Lj, Nj',NRC)

Rij=h(IDi,SIDj,Ni)

RC2=KSC Rij

RC3=h(Li, Ni,h(Nj'))

RC4=h(KSC,Rij,RC3)

11) RSi
12)

Checks RSi =? h(h(Nj)+1)

SK= h(SIDj,h(Nj'),Rij')

Fig 6. Login and Authentication Phase of Wang-Juang-Lei’s Scheme



2010/7/12 10:00

11

From the figure, we can see that user privacy can be preserved because Reqi

containing user’s ID is protected by Rabin’s PKC; i.e., only RC knowing n’s
factorizing can decrypt Reqi. Moreover, Reqi is randomized by random nonce Ni and
thus ensures the untraceability property. However, despite this, we found that there
still exist two drawbacks. (But this does not violate Argument 1 since our argument is
an imply clause.) First, RC always needs to be online; this makes the system less
efficient and vulnerable to the single point of failure like Kerberos. Second, the
scheme violates the forward secrecy property. (Forward secrecy indicates that if a
long-term private key is compromised, the security of any session key established
earlier will not be affected [19, 20].) Since if an attacker knows the long-term secrecy
(p, q), he can computes nonce Ni in Reqi (message flow (3)) and compute Rij

' = h(IDi,
SIDj, Ni) (in step (8)). From RS2 (message flow (9)), he can obtain h(Nj). Then he can
compute the session key SK = h(SIDj, h(Nj), h(IDi, SIDj, Ni)) (as in step (10)). That is,
the session key in any earlier conversation can be extracted.

3. Proposed Scheme

In this section, we will propose a user privacy protection system. From Argument 1,
we know that if we want our system to possess both the goals of user privacy
protection and no verification table in RC and servers, the only possible approach is to
introduce a PKC. Moreover, for efficiency consideration, we only let RC have a pair
of public and private keys; whereas the others (including servers) do not. Since by
applying the encryption of RC’s public key to form a DID, a user can be identified
only by RC rather than by other servers. Hence, for a user to be identified by a server
without RC being online, we must introduce a pseudonym into the system for the user
to login the server. More precisely, the user should first login and registers a
pseudonym to the server via RC’s help (online). Thereafter, the user can use the same
pseudonym to login the server with RC offline any times until he wants to change it.
That is, a user can decide the duration of his pseudonym which is randomly chosen by
himself and authorized by RC. We characterize this design principle as flexible
privacy. Our proposed scheme consists of five phases: (1) setup phase, (2) registration
phase, (3) authentication with new pseudonym (RC online) phase, (4) authentication
with RC offline phase, and (5) password change phase. Now, we describe it in details
as follows.
(1) Setup phase
In the setup phase, RC chooses his public key and corresponding private key. It also
chooses a secret master key x, a public secure one-way hash function h(·), and a group
<g> with prime order p. In addition, a server Sj also chooses xj as his secret master
key. In the following, we use PKE(·) and PKD(·) to present an encryption and



2010/7/12 10:00

12

decryption by using RC’s public key and private key respectively.
(2) Registration phase
In the registration phase as shown in Figure 7, RC computes credential Li = h(IDi, x)
and distributes Li' = Lih(PWi, ri) to client Ui, where IDi is Ui’s identity, PWi his
password, and ri a random number chosen by Ui. Then, Ui’s smart card stores Li' and
ri. On the other hand, RC distributes credential Lj = h(SIDj, x) to server Sj, where SIDj

is Sj’s identity.

Ui SC RC (secrecy: x)

IDi,PWi

chooses random ri,
computes h(PWi ,ri) IDi, h(PWi ,ri)

Li'

computes
Li = h(IDi, x)
Li' = Li ⊕h(PWi, ri)

The smart card stores Li', ri

Server Sj RC

Lj =h(SIDj, x)

Fig. 7. The Registration Phase

(3) The authentication with new pseudonym phase
The authentication with new pseudonym phase of our scheme can be applied by Ui in
two possible cases: (a) He has never logined into server Sj before and wants to
generate a pseudonym for subsequent login to Sj with RC offline, and (b) He wants to
renew his pseudonym relating with Sj. In this phase, Ui, Sj, and RC together perform
the following steps, which are also shown in Figure 8.

Ui SC Server Sj (secrecy: xj) RC
1)
IDi,PWi,
SIDj,“1”

Retrieves Li', ri

Generates a nonce c,
Computes Nc=gc mod p,
Generates pseudonym PIDi,

Li =Li' h(PWi, ri)
Reqi=PKE(IDi,PIDi,SIDj,

Li, Nc)

Reqi, Nc

2)
Generates a nonce s,
Computes Ns=gs mod p,

VS1=h(Lj,Reqi Nc,Ns)
Reqi, SIDj,

VS1, Nc, Ns 3)
PKD(Reqi)=(IDi,PIDi,SIDj,



2010/7/12 10:00

13

Lij',Ns,VS2

4)
Retrieves PIDi=

PIDi' h(Lj,Ns)
Checks VR1=?

h(PIDi,SIDj,Lj,Ns,Nc).

Computes

Lij=h(PIDi,xj),

sks=(Nc)s mod p,

Lij'= Lijh(sk),

VS2=h(PIDi,Lij,VR2,

sks)

PIDi',VR1,VR2

Li, Nc).
Checks

Li =? h(IDi, x),
SIDj in Reqi,

VS1=? h(h(SIDj,x),
Reqi,Nc,Ns).

Computes

PIDi'= PIDi
h(h(SIDj,x),Ns),

VR1=h(PIDi,SIDj,

h(SIDi,x),Ns,Nc),

VR2=h(PIDi,SIDj,

h(IDi,x),Nc,Ns).

5)
Computes skc=(Ns)c mod p
Retrieves Lij

*= Lij'h(sk)

Computes
VR2*=h(PIDi,SIDj,Li,Nc,Ns)

Checks
VS2=?h(PIDi,Lij,VR2*,skc)

Computes
Lij'=Lij

*h(PWi, ri)

Stores or renews SIDj, PIDi, Lij'

Fig. 8. Authentication with New Pseudonym Phase

Step 1. Ui keys {IDi, PWi, SIDj, “1”} to his smart card, where “1”indicates Ui logins
Sj with RC online. On receiving the message, smart card extracts the
corresponding Li' and ri, generates a random nonce c and pseudonym PIDi,
and computes Nc = gc mod p, Li = Li'h(PWi, ri) = h(IDi, x), and Reqi =
PKE(IDi, PIDi, SIDj, Li, Nc). Then, it sends {Reqi, Nc} to Sj on behalf of Ui.

Step 2. On receiving {Reqi, Nc}, Sj generates a random nonce s, and computes Ns = gs

mod p and VS1 = h(Lj, Reqi, Ns) . Then, it sends {Reqi, SIDj, VS1, Nc, Ns} to

RC.
Step 3. On receiving {Reqi, SIDj, VS1, Nc, Ns}, RC decrypts Reqi to obtain {IDi, PIDi,

SIDj, Li, Nc}. It then performs three checks: (i) if Li = h(IDi, x) holds, (ii) if

the received SIDj is the same as the one in Reqi, (iii) if VS1 = h(h(SIDi, x), Reqi,
Nc, Ns) holds. If all three checks succeed, RC authenticates both Ui and Sj’s
identities, and accepts the login request. Then RC computes PIDi' =
PIDih(h(SIDi, x), Ns), VR1 = h(PIDi, SIDj, h(SIDi, x), Ns, Nc), and VR2 =
h(PIDi, SIDj, h(IDi, x), Nc, Ns), and sends {PIDi', VR1, VR2} to Sj.

Step 4. On receiving {PIDi', VR1, VR2}, Sj retrieves PIDi = PIDi'h(Lj, Ns), and
checks if VR1 = h(PIDi, SIDj, Lj, Ns, Nc) holds. If it holds, Sj authenticates

RC’s identity and accepts pseudonym PIDi. Then, it computes a new



2010/7/12 10:00

14

credential Lij = h(PIDi, xj) and session key sks = (Nc)s mod p, and calculates
Lij' = Lijh(sks) and VS2 = h(PIDi, Lij, VR2, sks). It then sends {Lij', Ns, VS2}

to Ui.
Step 5. On receiving {Lij', Ns, VS2}, Ui’s smart card computes skc = (Ns)c mod p,

retrieves Lij
* = Lij'h(skc), computes VR2* = h(PIDi, SIDj, Lij, Nc, Ns), and

checks to see if VS2 = h(PIDi, Lij
*, VR2*, skc) holds. If the check holds, Ui

authenticates both RC and Sj’s identities and accepts Lij
* to be the credential

for the subsequent logins to Sj. Then, the smart card stores {SIDj, PIDi, Lij' =
Lij

*h(PWi, ri)} into its storage or updates the corresponding old parameters

if SIDj already exists.
Step 6. Ui and Sj can communicate by using the session key skc ( sks = (g)cs mod p).

(4) Authentication with RC offline phase
We describe our authentication with RC-offline phase as follows which is also shown
in Figure 9.

Step 1. Ui keys {IDi, PWi, SIDj, “0”} to his smart card, where “0”indicates Ui logins
Sj without RC online. On receiving the message, the smart card extracts {SIDj,
PIDi, Lij'} and ri from its storage, generates a random nonce c, and computes
Nc = gc mod p, Lij = Lij'h(PWi, ri) = h(PIDi, xj), and VU1 = h(PIDi, SIDj, Lij,

Nc). Then,it sends {PIDi, VU1, Nc} to Sj.
Step 2. On receiving {PIDi, VU1, Nc}, Sj computes Lij = h(PIDi, xj) and checks to see

if VU1 = h(PIDi, SIDj, Lij, Nc) holds. If it holds, Sj identifies PIDi as a valid

pseudonym. It then generates a random nonce s, computes Ns = gs mod p,
session key sks = (Ns)c mod p, and VS3 = h(SIDj, PIDi, h(PIDi, xj), sks), and
then sends {VS3, Ns} to Ui.

Step 3. On receiving {VS3, Ns}, Ui computes session key skc = (Nc)s mod p and
checks to see if VS3 = h(SIDj, PIDi, Lij, skc) holds. If it holds, Ui authenticates

Sj as being valid.
Step 4. Ui and Sj can communicate to each other by using the session key skc (= sks =

(g)cs mod p).

Ui SC Server Sj

1)
IDi,PWi,
SIDj,“0”

Retrives PIDi,Lij', ri

Generates a nonce c,
Computes Nc=gc mod p,

Lij =Lij'h(PWi, ri)

Computes

VU1=h(PIDi,SIDj,Lij, Nc)



2010/7/12 10:00

15

PIDi,VU1,
Nc

VS3, Ns

2)
Computes Lij= h(PIDi, xj)

Checks VU1=?

h(PIDi,SIDj,Lij, Nc)

Generates a nonce s,
Computes Ns=gs, sks=(Nc)s,

VS3=h(SIDj,PIDi, Lij, sks)

3)
Computes skc=(Ns)c mod p
Checks VS3=?

h(SIDj,PIDi, Lij, skc)

Fig. 9. Authentication with RC Offline Phase

(5) Password change phase
Finally, our scheme provides a user with the ability to change his password freely
without RC or servers’involvement. We describe the process as follows which is also
depicted in Figure 10. In the figure, Ui keys {PWi, PWi

(new)} to the smart card, where
PWi is the old password and PWi

(new) the new one. Then, the smart card generates a
random number ri

(new) and updates Li' = Li'h(PWi, ri)h(PWi
(new), ri

(new)). Then, it
replaces ri with ri

(new) and updates each Lij' with Lij'h(PWi, ri)h(PWi
(new), ri

(new))

correspondingly.

Ui SC

PWi, PWi
(new)

Generates random no. ri
(new)

Updates
Li'= Li'h(PWi, ri)

h(PWi
(new), ri

(new))
Updates each
Lij'= Lij'h(PWi, ri)

h(PWi
(new), ri

(new))
Replace ri as ri

(new)

Fig. 10. Password Change Phase

4. Merits and Security Features Analyses of Our Scheme

In this section, we show the merits of our scheme in Section 4.1; then, analyze its
security features in Section 4.2.

4.1. Merits
Our scheme conforms to most of the merits previous studies suggest. For instance, the
possession of merits RC-offline authentication, no assumption of servers to be
trustworthy, increasing server freely, session key agreement, and changing password



2010/7/12 10:00

16

freely are obvious. In the following, we only give a detail discussion on other two
merits.
(a) No verification table usage: It is obvious that not only RC but also the servers do

not require a table to store user authentication data. This is because the shared
secrecy, Li = h(IDi, x), between RC and client Ui is and can only be computed by
RC. And, the shared secrecy, Lij = h(PIDi, xj), between Ui and client Sj is and can

only be computed by Sj. Hence, our scheme can prevent stolen-verifier attack.
(b) Flexible user privacy protection: In the authentication with new pseudonym

phase, both the user’s IDi and pseudonym PIDi are first randomized by nonce Nc

and then encrypted by PKE. Thus, the user privacy can be preserved on account of
the security of PKE; i.e., no one except RC who possesses the private key could
decrypt the encryption in polynomial time. On the other hand, in the
authentication with RC offline phase, Ui can use his pseudonym PIDi

(j) to login Sj,

where j = 1 to n and n is the number of servers. Those PIDi
(j)

s each is randomly
chosen by Ui and has been authorized by RC. They are independent on the real
identity UID and have no relationship to each other. Thus, Ui cannot be traced
when he logins to different servers by using different pseudonyms. However, he
could be traced when he uses the same pseudonym to login to the same server
twice since this contradicts the definition of untraceability as described in
Introduction (But the real identity of Ui still can not be revealed yet.). Hence, our
system is a privacy-flexible one where a user can decide the lifetime of his
pseudonym by himself. If he wants to use a new pseudonym, he can renew one at
any time by just performing phase (3), logining to a server through RC’s online
authorization.

4.2 Security Features Analyses
In this section, we analyze the security features of our scheme.
(a) Mutual authentication. We first examine this feature in the login with new

pseudonym phase as shown in Figure 8 (the mutual authentication among the
three parties, user Ui, server Sj, and RC). For authenticating Ui, after receiving Ui’s
login request, Sj sends {Reqi, SIDj, VS1, Ns} to RC. RC decrypts Reqi to obtain
{IDi, PIDi, SIDj, Li, Nc} and verifies the validities of both Li (=h(IDi, x)) and
VS1(=h(Lj, Reqi, Ns)). If they are valid, RC confirms that both Ui and Sj are

authentic. Here, if we use AB to represent A authenticates B, or equivalently,
B is regarded as being authentic by A, we can demonstrate these two relations by
using the two solid arrows,  and , as indicated in Figure 11. RC then sends
{PIDi' (=PIDih(Lj, Ns)), VR1, VR2} to Sj. Sj verifies the validity of VR1
(=h(PIDi, SIDj, Lj, Ns, Nc)). If it is valid, Sj confirms that RC is authentic. This is
also depicted by the solid arrow  in the figure. Sj then sends {Lij' (=Lijh(sk)),



2010/7/12 10:00

17

Ns, VS2} to Ui. Also, Ui has to verify VS2 (=h(PIDi, Lij, VR2, sk)), where VR2
(=h(PIDi, SIDj, Li, Nc, Ns)) should be computed by RC and transmitted honestly

by Sj. If VS2 is valid, Ui confirms that RC is authentic. This is depicted by using
the solid arrow in the figure.

It is obvious that authenticity relationship has transitive property by way of an
intermediate node when the identities of both communicating parties and their
common secret are committed, e.g., to a hash function. For example, if AB
and BC, then we obtain AC by way of B. According to this fact, from
UiRC (arrow ) and RC Sj (arrow ), we obtain UiSj (the dashed
arrow ); from SjRC (arrow ) and RCUi (arrow ), we obtain SjUi

(the dashed arrow ). As a result, we can see that the mutual authentications
between each pair of the three parties are satisfied in this phase.



 

 



Fig. 11. Authenticity Relationship

Next, we examine the mutual authentication in the login with RC offline phase
as shown in Figure 9, i.e., the mutual authentication between server Sj and an
anonymous user (Ui) who uses pseudonym PIDi. Before performing RC offline
login, Ui and Sj should have executed the authentication login with new
pseudonym phase (through RC). Hence, they already have shared a secrecy Lij.

Therefore, in this phase, Sj authenticates the anonymous user (Ui) by checking the
received VU1 to see if it contains Lij. If it does, Sj believes that the anonymous

user (Ui) is valid. This is because the anonymous user (Ui) can prove that he
knows secrecy Lij which is distributed by Sj before. Similarly, Ui authenticates Sj

through checking the received VS3 to see if it contains Lij. If it does, Ui believes
that Sj is the intended party because he can proves the knowledge of secrecy Lij.

As a result, we can see that the mutual authentication between Sj and Ui who uses
pseudonym PIDi is satisfied in this phase.

(b) Preventing offline password guessing attack. Each of the communication flows
in the authentication with new pseudonym phase (phase (3)) –{Reqi, Nc}, {Reqi,
SIDj, VS1, Ns}, {PIDi', VR1, VR2}, and {Lij', Ns, VS2}–are independent from the

login requester’s password PWi. More precisely, all the variables in the flows do
not contain PWi and thus this design can effectively prevent offline password

Ui Sj RC



2010/7/12 10:00

18

guessing attack. The same phenomenon also exists in the authentication with RC
offline phase (phase (4)) of our scheme.

(c) Preventing smart-card-lost attack. Assume that an attacker E obtains Ui’s smart
card, he may extract the stored data in the card including Li' = h(IDi, x)h(PWi,
ri), ri, and multiple records of <SIDj, PIDi, Lij' = h(PIDi, xj)h(PWi, ri)>. Under

this situation, firstly, we discuss the case why E cannot succeed in using the data
Li' and ri to launch an offline password guessing attack in phase (3). This is

because E does not have the knowledge of x and thus cannot determine h(IDi, x)
and therefore h(PWi, ri). Hence, without the value of h(PWi, ri), the guessing value
h(PWi

(*), ri), where PWi
(*) is the password guessed by E, will lose the basis of

matching. Similarly without the knowledge of xj, E cannot succeed in using data
Lij' and ri to launch an offline password guessing attack in phase (4) neither.

Secondly, we discuss the reason why E cannot succeed in impersonating Ui

when he obtains the data stored in Ui’s smart card. We consider that in phase (3),
E can not employ his own secrecy (LE' (=h(IDE, x)h(PWE, rE)) and rE) and the
compromised data (Li' (=h(IDi, x)h(PWi, ri)) and ri) to impersonate Ui. This is

because without the knowledge of x and Ui’s password PWi, E is not able to
extract correct Li (=Li'h(PWi, ri) = h(IDi, x)) from the two pairs (LE', rE) and
(Li', and ri). (We have shown that the password can hardly be guessed in last

paragraph). Similarly in phase (4), without the knowledge of xj and PWi, E cannot
extract Lij (=h(PIDi, xj)), which is the basis used by Sj to identify PIDi, from his
own secrecy LEj' (=h(PIDE, xj)h(PWE, rE)) and rE, and from the compromised
data Lij' (=h(PIDi, xj)h(PWi, ri)) and ri .

(d) Forward secrecy. This property indicates that the compromise of long-term keys
(i.e., RC’s private key, master key x, or Sj’s master key xj) will not affect the
security of earlier session keys. In our scheme, the session key sks (= (Nc)s = skc
=(Ns)c = gcs), is composed by one-time secrecy c and s which are chosen by client
Ui and server Sj respectively. If an attacker compromises p, q, x, and xj, all he can
obtain are Nc and Ns. However, without the secrecy c or s, he will fail in
computing sks or skc.

(e) Preventing the insider-server spoofing attack. In the authentication with new
pseudonym phase (phase (3)), if server Sj+1 wants to masquerade as Sj, he will be
rejected. Since without the knowledge of Lj (=h(SIDj, x)) shared only between Sj

and RC, he cannot be authenticated by RC successfully. Similarly in the
authentication without RC phase (phase(4)), without the knowledge of Lij

(=h(PIDi, xj)) shared only between Sj and Ui, Sj+1 cannot be authenticated by Ui

successfully. Hence, our scheme can prevent insider-server spoofing attack.



2010/7/12 10:00

19

(f) Preventing replay attack. Sine our scheme uses fresh random nonces chosen by
the two communicating parties in each session, it can prevent replay attack. In other
words, an old nonce Nc(old)=gc(old) (or Ns(old)=gs(old)) in a request (or response) can not
be used to deduce a new session key sk(new) ((Ns(old))c(new) (Nc(old))s(new)) since c(new)

(and s(new)) are computationally infeasible to be extracted from the eavesdropped
Nc(new) (and Ns(new)) due to Discrete Logarithm problem.

5. Performance Comparisons

After the discussion of merits and security features of our scheme, in the following,
we compare these features with other three related work which we have reviewed in
Section 2.3.

Firstly, we list both the function and security features comparisons among these
schemes in Table 1 and 2, respectively. In Table 1, Liao-Wang’s and Hsiang-Shih’s
schemes fail in user privacy protection (we have demonstrated this in Section 2.3),
and Hsiang-Shih’s and Wang et al.’s schemes do not provide RC-offline
authentication. As to the session key agreement, except ours is of Diffie-Hellman (DH)
type, all others are non-DH key agreement schemes. Consequently, our scheme has
the greatest degree of conformance to the listed functions.

Secondly, we compare the security features among these schemes and show the
result in Table 2. Schemes [3, 13, 14] do not have the forward secrecy property since
they are not DH type; the compromise of long-term keys will expose the content of
earlier session keys. Conversely, our scheme adopting DH key agreement can achieve
forward secrecy. We have analyzed this in just above Section 5. As for the feature of
preventing smart-card lost attack, Liao-Wang’s and Hsiang-Shih’s work both suffer
from the password guessing attack. We have demonstrated this in Section 2.3. From
the above-mentioned, we can conclude that our scheme is the most secure among
these compared schemes.

Table 1. Function comparison among our scheme and other related schemes

F e a t u r e s ours Liao-Wang’s
[3]

Hsiang-Shih’s
[13]

Wang et.al’s
[14]

No verification table in RC or server ○ ○ ○ ○

User privacy protection ○ × × ○

RC-off-line authentication ○ ○ × ×

No assuming servers to be trustworthy ○ ○ ○ ○

Increasing servers freely ○ ○ ○ ○

Changing password freely ○ × × × (No offer)

DH key agreement ○ × × ×

Table 2. Security features Comparisons



2010/7/12 10:00

20

F e a t u r e s ours
Liao-Wang’s

[3]
Hsiang-Shih’s

[13]
Wang et.al’s

[14]

Mutual authentication ○ × × ○

Forward secrecy ○ × × ×

Preventing insider-server spoofing attack ○ × × ○

Preventing off-line password guessing attack ○ × ○ ○

Preventing smart-card-lost attack ○ × × ○

Table 3. Passes comparison among our scheme and other related scheme

ours
Liao-Wang’s

[3]
Hsiang-Shih’s

[13]
Wang et.al’s

[14]

RC-online authentication 4 × 5 5
RC-offline authentication 2 3 × ×

Finally, we examine the number of needed passes in our scheme and related work
and show the result in Table 3. In the table, Hsiang-Shih’s and Wang et al’s work each
needs 5 passes and consumes much system overhead by only providing a RC-online
protocol. Liao-Wang’s scheme seems to be the most efficient by always offering
RC-offline login. But without RC transferring the trust, the scheme inherently suffers
from the impersonation attack. Therefore, our scheme with 4 passes in phase (3) (RC
online authentication) and 2 passes in phase (4) (RC offline authentication) has the
best performance in communication efficiency.

6. Discussions

In this section, we discuss some concerns.
(a).Security of secret master keys x and xjs: It can be easily seen that most

multi-server password authentication schemes including ours should set the length
of master key x to be sufficiently large. Otherwise, an insider attacker E can
launch a password guessing attack as follows. First, E tries to read his smart card
to obtain {LE', rE}, and then computes credential LE = LE' h(PWE, rE) = h(IDE,
x). Second, he guesses x* and checks whether h(IDE, x*) = LE. If the master key x

is truly random, then the searching space will be 2l, where l = |x|. Therefore, l
should be large enough to ensure the security of the master key. On the other hand,
considering the security of hash function, it is generally suggested that the output
length of h(·), i.e. k = |h(·)|, should be at least 160 bits to resist against the birthday
attack.

(b).Tradeoff between smart card access control and smart card lost password
guessing attack: Smart card access control indicates that a user must provide a
valid input to let the card perform his request; otherwise, the card will refuse it.
For example, a smart card can be designed to store the hash result of a



2010/7/12 10:00

21

cardholder’s password (hi = h(PWi)). Then it will respond to a user’s request only
when the user keys in a right password PWi

* satisfying h(PWi
*) = hi. Studies [3, 13]

have such an access control mechanism. However, this would introduce a smart
card lost and password guessing attack. Since when an attacker obtains the lost
card and its storage content, he can guess the password by finding a match. On the
other hand, without the basis of matching, a scheme without access control can
prevent from a smart card lost and password guessing attack. In fact, many current
commercial applications, such as financial IC card systems, do not adopt the
strategy that the card itself verifies the user’s password.

(c).Smart card storage usage: Although in our scheme, RC or servers do not keep a
verification table and thus prevent the stolen-verifier attack; however, the smart
card should consume additional storages to store RC-offline authentication data,
such as server identity SIDj, pseudonym PIDi, and credential Lij. In contrast,

Wang et al.’s scheme [14] which also bases on PKC does not require such storage
consumption but in their scheme, RC needs to be involved in each user
authentication. This scarifies system efficiency and easily suffers from the single
point of failure. Hence, we think this is a trade off between system’s efficiency and
card’s storage usage efficiency. Let’s further estimate the storage usage in our
scheme. We suppose that SIDj and PIDi each are 64-bit strings, and Lij is a 160-bit
string. Under this assumption, a tuple <SIDj, PIDi, Lij> would totally consume

288 bits, i.e. 36 bytes. Hence, if a smart card offers extra 1KB to store the
RC-offline authentication data, it can totally store 28 records for login to 28
different servers. (Accordingly, when a user wants to access the 29th server, the
smart card may overwrite the least frequently used record.) This extra card’s
storage consumption makes our system more desirable in the consideration of
system efficiency. In other words, our design is worthy in using additional card’s
storage in an acceptable range to gain system efficiency.

7. Conclusion

Multi-server password authentication schemes could be an alternative of Kerberos
which is now widely adopted by industry. Both of the systems are of one single
registration and multiple server service accesses. However, multi-server password
authentication schemes emphasizing no verification table in the server end and
RC-offline login allowance would be the remedies to the drawbacks of Kerberos. In
addition to these two emphases, some recent multi-server password authentication
schemes concern about user privacy protection as well. In this study, we are the first
one to explore the theoretical basis for implementing a multi-server password
authentication system with these three characteristics: no verification table, RC-offline



2010/7/12 10:00

22

login allowance, and user privacy protection. According to Argument 1, we propose a
privacy-flexible system possessing these three characteristics to let a user can employ
a random-looking DID with RC online, or employ a pseudonym with RC offline, to
login a server according to his privacy requirement. In addition to the characteristics,
our scheme conforms to most of the merits that previous studies suggest, including no
assumption of servers to be trustworthy, increasing server freely, Diffie-Hellman
session key agreement, and changing password freely. Also, we have proved that our
scheme can achieve mutual authentication and forward secrecy, and can prevent from
offline password guessing attack, smart card lost attack, insider-server spoofing, and
replay attack.

References

[1] Kerberos White Paper, http://www.kerberos.org/software/whitepapers.html.
[2] J. L. Tsai, “Efficient multi-server authentication scheme based on one-way hash

function without verification table”, Computers & Security, Vol. 27, No. 3-4, pp.
115-121, May-June 2008.

[3] Y. P. Liao, S. S. Wang, “A secure dynamic ID based remote user authentication
scheme for multi-server environment”, Computer Standards & Interfaces, Vol.
31, No. 1, pp. 24-29, Jan. 2009.

[4] W. J. Tsaur, C. C. Wu, W. B. Lee,“An enhanced user authentication scheme for 
multi-server Internet services”, Applied Mathematics and Computation, Vol. 170,
No. 1-1, pp. 258-266, Nov. 2005.

[5] W. J. Tsaur, C. C. Wu, W. B. Lee, “A smart card-based remote scheme for
password authentication in multi-server Internet services”, Computer Standards
& Interfaces, Vol. 27, No. 1, pp. 39-51, Nov. 2004.

[6] I. C. Lin, M. S. Hwang, L. H. Li,“A new remote user authentication scheme for 
multi-server architecture”, Future Generation Computer Systems, Vol. 19, No. 1,
pp. 13-22, Jan. 2003.

[7] J. H. Lee, D. H. Lee, “Efficient and Secure Remote Authenticated Key
Agreement Scheme for Multi-server Using Mobile Equipment”, Proceedings of
International Conference on Consumer Electronics, pp. 1-2, Jan. 2008.

[8] L. Hu, X. Niu, Y. Yang, “An Efficient Multi-server Password Authenticated Key
Agreement Scheme Using Smart Cards”, Proceedings of International
Conference on Multimedia and Ubiquitous Engineering, pp. 903-907, Apr. 2007.

[9] C. C. Chang, J. Y. Kuo, “An efficient multi-server password authenticated key
agreement scheme using smart cards with access control”, Proceedings of
International Conference on Advanced Information Networking and Applications,
Vol. 2, No. 28-30, pp. 257-260, Mar. 2005.



2010/7/12 10:00

23

[10] R. J. Hwang, S. H. Shiau, “Password authenticated key agreement protocol for 
multi-servers architecture”, Proceedings of International Conference on Wireless
Networks, Vol. 1, No. 13-16, pp. 279-284, Jun. 2005.

[11] C. C. Chang, J. S. Lee, “An efficient and secure multi-server password
authentication scheme using smart cards”, Proceedings of International
Conference on Cyberworlds, No. 18-20, pp. 417-422, Nov. 2004.

[12] W. S. Juang,“Efficient multi-server password authenticated key agreement using
smart cards”, IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, pp.
251-255, Feb. 2004.

[13] H. C. Hsiang, W. K. Shih, “Improvement of the secure dynamic ID based remote
user authentication scheme for multi-server environment”, Computer Standards
& Interfaces, Vol. 31, No. 6, pp. 1118-1123, Nov. 2009.

[14] R. C. Wang, W. S. Juang, C. L. Lei, “User Authentication Scheme with 
Privacy-Preservation for Multi-Server Environment”, IEEE Communications
Letters, Vol. 13, No. 2, pp. 157-159, Feb. 2009.

[15] I. E. Liao, C. C. Lee, M. S. Hwang, “A password authentication scheme over 
insecure networks”, Journal of Computer and System Sciences, Vol. 72(4), Jun.
2006, 727-740.

[16] P. Kocher, J. Jaffe, B. Jun, “Differential power analysis”, Proceedings of
Advances in Cryptology- CRYPTO 99, 1999, 388-397.

[17] T. S. Messerges, E. A. Dabbish, R. H. Sloan, “Examining smart-card security
under the threat of power analysis attacks”, IEEE Transactions on Computers,
Vol 51(5), 2002, 541-552.

[18] Y. Chen, C. H. Huang, J. S. Chou, “Comments on two multi-server
authentication protocols”, http://eprint.iacr.org/2008/544, December 2008.

[19] D. Z. Sun, J. P. Huai, J. Z. Sun, J. X. Li, J. W. Zhang, Z. Y. Feng, “Improvements 
of Juang et al.’s Password-Authenticated Key Agreement Scheme Using Smart
Cards”, IEEE Transactions on Industrial Electronics, Vol. 56(6), Jun. 2009,
2284-2291.

[20] X. Li, W. Qiu, D. Zheng, K. Chen, J. Li, “Anonymity Enhancement on Robust 
and Efficient Password-Authenticated Key Agreement Using Smart Cards”, 
IEEE Transactions on Industrial Electronics, Vol. 57(2), Feb. 2010, 793-800.


