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Abstract. We discuss the relationship between ID-based key agreement protocols, certificateless en-
cryption and ID-based key encapsulation mechanisms. In particular we show how in some sense ID-based
key agreement is a primitive from which all others can be derived. In doing so we focus on distinctions
between what we term pure ID-based schemes and non-pure schemes, in various security models. We
present security models for ID-based key agreement which do not “look natural” when considered as
analogues of normal key agreement schemes, but which look more natural when considered in terms
of the models used in certificateless encryption. Our work highlights distinctions between the two ap-
proaches to certificateless encryption, and adds to the debate about what is the “correct” security
model for certificateless encryption.

1 Introduction

The notion of certificateless encryption was introduced by Al-Riyami and Paterson [3] and considers the
following setting, that is similar to that of identity-based encryption. Each user is represented by a string
ID (his identity) and has a matching secret key produced by a Key Generation Center (KGC). Furthermore
each user has also a public/secret key pair, as in the traditional public key model. The main advantages
of certificateless encryption are that such public keys do not need to be certified and the KGC cannot
decrypt ciphertexts of users. In general, the security of certificateless encryption schemes is formalized by
two properties related to semantic security of standard encryption schemes: Type I and Type II security.
Type I security considers adversaries that are able to replace the public keys of users while Type II security
is stated with respect to malicious KGCs.

Ever since its introduction in [3] certificateless encryption has been the subject of debate as to what is the
“correct” definition. This is not only a question of the definition of the security model, but also the syntax
and functionality of the schemes itself. Many papers have presented differing restrictions for the adversaries
in both Type I and Type II security games, creating a lot of different security definitions, with each paper
claiming theirs to be the “correct” one. Also other papers have presented new syntax (with similar claims).
Most of the claims are actually related to what can be proved about the schemes the papers present, rather
than some deeper philosophical discussion. We refer the reader to [15] for a balanced summary of the existing
models and schemes.

* Work partially done while at University of Catania, Italy.



1.1 Our contribution.

This paper takes a different approach to the study of certificateless schemes, by studying their relationship
to identity-based encryption. We do so in order to take a step back from scheme construction and instead
concentrate on what the correct security and syntactic definitions should be. To simplify our discussion we
will concentrate on the simpler notion of key-encapsulation (KEM) rather than encryption.

We show two main results: (1) a natural transform of certain CL-KEM schemes into ID-KEM schemes.
In addition there is (2) another natural transform of all identity-based key agreement (ID-KA) protocols
into CL-KEM schemes. We note that all our security relationships under our transforms hold in the standard
model.

The motivation for this research is twofold: (i) by analyzing these transformations we are able to get a
better understanding of what are the ”correct” security notions and syntaxes for CL encryption; (ii) these
reductions may give us a generic toolbox to construct new, and potentially improved, CL and ID schemes.

PURE AND NON-PURE SCHEMES. Certificateless schemes in the literature can be syntactically classified into
two large classes, which we call pure and non-pure. This distinction between pure and non-pure schemes
also applies to existing ID-KA protocols. Informally, a pure ID-based key agreement (resp. certificateless
scheme) is one in which the parties compute their messages without using their long-term secret keys (which
is used only in the derivation of the shared session key). As we will show, such pure schemes allow various
functionalities such as encryption into-the-future etc. Interestingly there are no-known pure schemes (either
ID-KA or CL-KEM) which do not use pairing-based groups.

We show a natural standard model transformation from a pure CL-KEM to a ID-KEM and we determine
the precise security properties of the CL-KEM under which the resulting ID-KEM is secure in the usual
sense. The hope is that this generic transformation might in the future yield new constructions for ID-based
encryption. It is worthwhile to observe that this transform does not work for non-pure CL-KEMs. This is not
surprising as non-pure CL-KEMs are the only ones that can be constructed without pairings. So, in some
sense this shows that certificateless encryption is a simpler primitive than ID-based encryption, although the
reverse is commonly believed (as CL encryption is thought as an extension of ID-based one).

TOWARDS A CORRECT SECURITY MODEL FOR CL-KEMS AND ID-KA PROTOCOLS. Next we show a natural
generic transform of ID-KA protocols into CL-KEM schemes. The goal here is to gain some understanding
on the correct security models for these notions. In particular we investigate what security models in the
ID-KA setting imply, through our transform, certain specific CL-KEM security models. For lack of space,
we do not look at all CL-KEM security models, but we do consider the main ones. Our results, all proven
in the standard model, can be summarized in two distinct points. First, if one concentrates on pure schemes
[12], then the associated transforms have a tight security reduction. This supports our previous point that
pure schemes have more/better features. Second, the required security models in the ID-KA setting needed
to imply strong notions of security in the CL-KEM setting are highly non-standard security notions for key
agreement models. This last point can be interpreted in one of two ways: either the strong security models
for CL-KEM schemes are unnatural and that the weaker definitions should suffice, or the security notions
for ID-KA protocols (and by implication all other forms of key agreement protocol) are too weak.

At the end of the paper we try to draw some conclusions as to what the “correct” models for certificateless
encryption and ID-based key agreement should be. Our conclusion is that perhaps the strong security models
for certificateless encryption are probably correct, and that it is the security models for ID-KA protocols, and
indeed standard public key or symmetric key based key agreement protocols, which need to be strengthened.

Our main generic constructions can be summarized by reference to Figure 1.1, the definitions used in the
arrows will become clear as we define them in the following pages.

As a final side-result of independent interest, as part of our analysis we consider a weakened notion
of Type-I security for certificateless schemes (which we denote by Type-I* etc). This is because we have
discovered an overlap in the standard security definitions for Strong Type-I and Strong Type-II security for
CL-KEMs. By weakening the definition of Type-I security slightly, we remove this overlap and at the same
time simplify a number of our security proofs, whilst not reducing the overall security result for the resulting
CL-KEMs.
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Fig. 1. Relationships Between Schemes

OTHER RELATED WORK. Our results are similar to the work of Paterson and Srinivasan [18] on the link be-
tween ID-based non-interactice key distribution (NIKD) and ID-based encrytion. In [18] the authors present
a security model for ID-based NIKD and provide a transform from an ID-based NIKD to an ID-based encryp-
tion scheme. We note that the extension of this result to constructing ID-KEMs is immediate. However, this
transform is not generic in that it requires special syntactic properties of the base ID-based NIKD scheme.
Our transforms from ID-KA protocols (i.e. interactive protocols) to CL-KEMs and ID-KEMs are generic
and do not require any special syntactic properties of the underlying ID-KA protocol.

In addition the transform of [18] results in ID-IND-CPA ID-KEMs/ID-based encryption schemes. Indeed
to obtain full CCA secure KEMs/encryption schemes it is easy to see that one needs to extend the security
model in [18] for ID-based NIKD schemes in such a way as to provide the adversary with an analogue of our
Reveal* oracles. Thus whilst our results are syntactically stronger than those of [18], the security results are
roughly equivalent. That we can achieve more syntactically is due to us considering interactive, as opposed
to non-interactive, protocols as our starting point.

1.2 Notation

We end this introduction by recapping on the following standard notational conventions which will be used
throughout this paper. We denote by « the assigment operator, i.e., <y means that the variable x is
assigned the value y. With z+—S where S is a finite set, we denote the process to assign to x a randomly and
uniformly chosen value in S. If A is an algorithm then z+A means assign x the output value of algorithm
A, with associated probability distribution determined by the random coins of A.

2 Identity-Based Key Agreement

In this section we present the notion of ID-based key agreement. We will only consider two pass ID-based
key agreement protocols in this paper as this simplifies the algorithm descriptions somewhat.

2.1 ID-Based Key Agreement Definition

A two-pass ID-based key agreement protocol is specified by six algorithms which run in polynomial time in
the security parameter. The two passes are illustrated in Figure 2. We let ZD denote the set of possible user
identities and Ky, (mpk¥*) be the set of valid session keys for the public parameter mpkk*.

— KASetup(1?) is a PPT algorithm that takes as input the security parameter 1* and returns the master
public key mpk¥* and the master secret key msk*.

— KeyDer(msk** ID) is the private key extraction algorithm. It takes as input msk** and ID € ZD and it
returns the associated private key d;p. This algorithm may be deterministic or probabilistic.

— Initiate(mpk** d;). This is a PPT algorithm run by the initiator, with identity I, of the key agreement
protocol which produces the ephemeral public key epk; for transmission to another party. The algorithm
stores esky, the corresponding ephemeral private key, for use later?

4 Notice that we refer to the messages exchanged by the parties as public keys, and their secret states after the
computation of the message as secret keys. Jumping ahead, this is because that’s the role these values play in our
transformation from KA to CL scheme.



— Respond(mpkX*, dg). This is a PPT algorithm run by the responder, with identity R, of the key agreement
protocol which produces the ephemeral public/private key (epk g, eskg).

— Derive;(mpk**, dr, eskr, epkp, R). This is a (possibly probabilistic) algorithm run by the initiator to
derive the session key K| € Ky (mpk**) with party R.

— Deriveg(mpkX*, dr, eskr, epk;, I). This is a (possibly probabilistic) algorithm run by the responder to
derive the session key Kr € Ky (mpk®*) with party I.

Initiator Responder
dr , mpk®* dr , mpk®*
(epk;, eskr)—Initiate(mpk®*, dr) i
P (epk g, esk r)«—Respond(mpk**, dg)

K« Deriver(mpk*, dr, eskr, epk, R) K r«Deriver (mpk**, dr, eskr, epk;, I)

Fig. 2. Diagrammatic view of two-pass ID-KA protocols

For correctness we require that in a valid run of the protocol we have that K; = Kg. Notice, that
the creation of the ephemeral public/private key pairs does not depend on the intended recipient. Most
ID-KA protocols are of this form. For example in [12] ID-based key agreement protocols based on pairings
are divided into four Categories. Only in Categories 2 and 4 does the emphemeral key pair depend on the
intended recipient, these being protocols in the Scott [19] and McCullagh-Barreto [17] families. The majority
of pairing-based ID-based key agreement protocols lie in the Smart [21] family (denoted Category 1 in [12]),
with Category 3 (the Chen—Kudla family [13]) also sharing this property. The non-pairing based protocol of
Fiore and Gennaro [16] also has this property.

If the algorithms Initiate and Respond do not require access to d; and dg respectively, then we call the
protocol a pure identity based key agreement protocol. This is because the ephemeral public keys can be
created before the sender knows his long term secret key. This therefore allows forms of sending-into-the-future
which are common in many IBE style schemes. We shall return to this distinction below when discussing the
conversion of ID-KA protocols into certificateless schemes. Indeed identifying differences between these two
forms of ID-KA protocols and certificateless schemes, forms a significant portion of the current paper. In the
categorization of [12] Categories 1, 3 and 4 are all pure ID-based key agreement protocols, whilst Category
2 and the non-pairing based FG protocol are non-pure.

A key agreement protocol is said to be role symmetric if algorithm Initiate is identical to algorithm
Respond and algorithm Derive; is identical to algorithm Deriveg. The FG protocol is role symmetric, but
role symmetry is a more complex property to determine for pairing-based protocols. For example whether a
scheme is role symmetric can depend on whether one instantiates the protocol with symmetric or asymmetric
pairings. For the schemes in [12] (and focusing solely on the more practical scenario of asymmetric pairings)
all those in Categories 2 and 4 are role symmetric, those in Category 3 are not, whereas half of those in
Category 1 are. Of particular importance in Category 1 is the SCK protocols (which are a combined version
of the Smart and Chen—Kudla protocol), these are highly efficient and role symmetric.

2.2 Defining Security for ID-Based Key Agreement

We will be using a modified version of the Bellare-Rogaway key exchange model, as extended to an identity
based setting. Our model is an extension of the model contained in Chen et al. [12], but we extend it in
various ways which we will describe later. So as to be precise we describe the model in more formal detail
than that used in [12], however we shall (as stated above) be focusing solely on two-pass protocols, which
explains some of our specifications in what follows.



Security of a protocol is defined by a game between an adversary A and a challenger E. At the start of
the game the adversary A is passed the master public key mpk¥* of the key generation centre. During the
game the adversary is given access to various oracles O which maintain various meta-variables, including

— rolep € {initiator, responder, 1 }. This records the type of session to which the oracle responds.
— pidy € U. This keeps track of the intended partner of the session maintained by O.

— do € {L, accepted, error}. This determines whether the session is in a finished state or not.

— vo € {L, corrupted, revealed}. This signals whether the oracle has been corrupted or not.

— so. This denotes the session key of the protocol if the protocol has completed.

The adversary can execute a number of oracle queries which we now describe.

— NewSession(U, V) This creates a new oracle, to represent the new session, which we shall denote by
O = II}; \,, where i denotes this is the ith session for the user with identity U, and that the indented
partner is V. After calling this oracle we have

pidy, =V and sp = rolep = 0o = vo =1L .

However, if any other oracle with identity U has been corrupted then we set yo = corrupted.
— Send (O, role, msg). Recall we are only modelling two-pass protocols, hence the functionality of this oracle
can be described as follows:
e If 6» #1 then do nothing.
o If role = initiator then
x If msg =1, dp =L and rolep =L then set rolep = initiator and output a message (i.e. send the
first message flow in the protocol);
x If msg #L and rolep = initiator (i.e. msg is the second message flow in the protocol) then
compute sp and set do = accepted;
* Else set dp = error and return L
e If role = responder then
x If msg #1 and rolep =1 then compute sp, set do = accepted, rolep = responder and respond
with a message (i.e. send the second message flow in the protocol).
* Else set dp = error and return L.

— Reveal(O). If o # accepted or yo = corrupted then this returns L, otherwise it returns sp and we set
Yo = revealed.

— Corrupt(U). This returns dy and sets all oracles O in the game (both now and in the future) belonging
to party U to have v» = corrupted. Notice, that this is equivalent to the extract secret key query in
security games for other types of identity based primitives. Note, that we do not assume that the rest of
the internal state of the oracles belonging to U are turned over to the adversary.

— Test(O*). This oracle may only be called once by the adversary during the game. It takes as input a
fresh oracle (see below for the definition of freshness). The challenger E then selects a bit b € {0, 1}.
If b = 0 then the challenger responds with the value of sp-, otherwise it responds with a random key
chosen from the space of session keys. We call the oracle on which Test is called the Test-oracle.

At the end of the game the adversary will output its guess b’ as to the bit b used by the challenger in the
Test query. We define the advantage of the adversary by

Advip_xa(A) = 2Pr[b) =b] —1].
We now explain the Test(O*) query in more detail. An oracle O* = Hf]*7v* is said to be fresh if

1. o+ = accepted.

2. v¢ # revealed.

3. Party V* is not corrupted.

4. There is no oracle O’ with yo/ = revealed with which O* has had a matching conversation.



After the Test(O*) query has been made the adversary can continue making queries as before, except that
it cannot:

— corrupt party V*,
— call a reveal query on O*’s partner oracle if it exists,
— call reveal on O*.

Definition 1 A protocol II is said to be a secure ID-KA protocol (or more simply ka secure) if

1. In the presence of a benign adversary, which faithfully conveys messages, on II7; and ITt ., both oracles

J»i7
always accept holding the same session key, and this key is distributed uniformly on {0,1}";

2. For any polynomial time adversary A, Advip_xa(A) is negligible.

FORWARD SECRECY. We also define a notion of master-key forward secrecy, (or mk-fs secure) following [12].
In this model the adversary is also given the master secret key msk**. Thus the adversary can compute the
private key d;p of any party. The security game is the same as above, except that instead of a fresh oracle
for the test session it chooses an oracle O* which satisfies:

1. o+ = accepted

2. Yo~ # revealed

3. There is an oracle @’ with which O* has had a matching conversation and dp = accepted and yor #
revealed.

Weaker notions of forward-secrecy are implied by the above, for example perfect forward secrecy gives the
adversary access to a Corrupt oracle for any ID € D but does not give the adversary access to msk*. A
weaker form of simply forward secrecy is then implied where the adversary can only call the Corrupt oracle
on one party in the test session, i.e. we must have either yo~ =1 or yo =1.
The advantage for forward secrecy of an adversary is defined in the same way as above and is denoted
by one of . .
Advip i (4), Advipl, (4) or Adviy_, (4),

as appropriate.

For non-pure ID-based key agreement protocols we can consider an additional notion of forward secrecy,
which we call active perfect forward secrecy (resp. active forward secrecy). In this model we drop the third
condition above that there exists another oracle O’ with which O* has had a matching conversation. This
means that the adversary could have been active before corrupting the parties, i.e. he sent one of the two
message flows.

It is interesting to observe that such notion cannot be achieved by any pure ID-based KA protocol because
of the following attack. Assume the adversary acts as initiator and computes epk; < Initiate(mpk**) (he can
do that without d; as the protocol is pure). He can initiate a new session oracle setting epk; as first message,
then ask for the second message and later make a test query on this oracle. When the adversary corrupts I
then he will have all the informations needed to compute the correct session key and so he will be able to
distinguish wether he received the real session key or a random one. It is easy to see that such attack does
not apply to the case of non-pure protocols as the private key is needed to produce protocol’s messages.

OUR AUGMENTED SECURITY MODEL. In our analysis of converting ID-based key agreement protocols into
certificateless schemes we will require stronger security notions in which the adversary will have access to
additional oracles. We define three such oracles, the first one is relatively standard, whilst the second two are
new. The second can be motivated by similar arguments one uses to motivate resettable zero-knowledge [10],
whilst the third oracle is a natural analogue in the key agreement setting of the strong adversarial powers
one gives an adversary for certificateless schemes. One may therefore consider the extreme nature of the
third oracle as an additional argument as to why the certificateless strongest security model looks excessive.

— StateReveal(O). If rolep =1 then do nothing. Otherwise return the value of the ephemeral secret key
held within the oracle.



— Rewind(0O). If rolep = initiator and do = accepted then this returns O to the state it was in before it
received its last message, i.e. it sets dp = so =.L. If we have y» = revealed then we also reset yo to L.

— Reveal*(I, R, epk;,epky). This is a stronger version of the Reveal query in that it is not associated to an
oracle, but simply takes the two message flows and returns the associated agreed shared secret assuming
these messages had been transmitted between party I and party R. There is an obvious restriction in
that the adversary is not allowed to call this oracle on the message flows used in the Test query, nor (for
role-symmetric protocols) with the message flows used in the Test query but with the roles of initiator
and responder swapped.

The StateReveal(O) query corresponds to an adversarial power which can partially corrupt a party, but
which does not allow the adversary to obtain the long term secret. This power has been used in numerous
works starting with [11], and is often considered to be the main distinction between the CK model and the
BR model for key exchange [14].

The presence of the Rewind(O) oracle enables the adversary to extract more information for a particular
set of ephemeral and static public key pairs. To intuitively see what the Rewind(Q) oracle provides us,
imagine a standard key agreement protocol based on standard Diffie-Hellman, for example the Station-to-
Station protocol. Usually one reduces the security of this protocol to the decisional Diffie-Hellman problem
(DDH). But with the presence of a Rewind(Q) oracle the adversary can take a test oracle (which has output
the ephemeral public key ¢g*) and obtain, using a combination of the Rewind(Q) and Reveal(O) oracles,
values of the form h” for values of h of the adversaries choosing. This means the simulator is essentially
solving the DDH problem with access to a static-Diffie-Hellman oracle.

The Reveal*(I, R,epk;,epkp) is a very strong oracle. As we will show later, if a protocol is secure
even when an adversary is given such an oracle we are able to transform the protocol into a certificateless
encryption scheme which also satisfies a strong security notion.

We say a protocol is a secure ID-KA protocol in the Rewind-model (resp. Reveal*-model) if it is secure as
ID-based key agreement protocol where we give the adversary access to a Rewind (resp. Reveal*) oracle. If we
require access to two of these oracles we will call the model, for instance, the (StateReveal, Rewind)-model,
We call these extra models, augmented models, since they augment the standard security model with extra
functionality. Similarly we can define augmented notions for master-key forward secrecy.

3 From Mutual to One-Way Authentication

In many key agreement protocols one is only interested in one-way authentication. SSL/TLS is a classic
example of this, where the server is always authenticated but the user seldom is. We overview in this section
the modifications to the previous syntax of ID-KA protocols which are needed to ensure only one-way
authentication and show how to convert a mutually authenticated identity-based key agreement protocol
into one which is only one-way authenticated. The reason for introducing only one-way authentication is
that this enables us to make the jump to certificateless encryption conceptually easier, and can also result
in simpler schemes. We assume the responder in a protocol is the one who is not authenticated, this is to
simplify notation in what follows. The scheme definitions are then rather simple to extend.

We note that any protocol proved to be secure for mutual authentication, can be simplified and remain
secure in the context of one-way authentication. The transformation from mutual to one-way authentication
is performed as follows. An identity is selected, let us call it Ry, which acts as a “dummy” responder identity.
A “dummy” secret key is then created for this user and this is published along with the master public key.
Notice, that by carefully selecting the dummy secret key one can often obtain efficiency improvements. The
protocol is then defined as before except that Ry is always used as the responding party, and we drop any
reference to dg,. Thus we call Respond(mpk®*) rather than Respond(mpk**, dg,). Similarly we call

Derive (mpk™*, eskr,, epk;p, ID) and Deriver(mpk™*, dip,eskrp, epkp,)
rather than

Derive g (mpk"*, dg,, eskr,, epk;p, D) and Derive; (mpk™, d;p, eskip,epkp,, Ro).



In the security model all oracles either have Ry as an intended partner, or the oracle belongs to Ry. If
the oracle belongs to Ry then it is corrupted, since Ry’s secret key is public. This means that only oracles
belonging to Ry may be used in the Test queries.

We argue that if the original protocol is secure then its one-way version (obtained as described above) is
also one-way secure. To see this observe that an adversary A that breaks the security of the one-way protocol
can be turned into an adversary B against the original protocol. Assume A breaks the security choosing a
test session that involves a user ID (and the dummy identity Rp). Then B can trivially choose a test oracle
1T, ;p and forward the obtained key to A.

4 Certificateless Key Encapsulation Mechanisms

In this section we discuss various aspects of certificateless KEMs. The reader is referred to [8] and [15] for
further details.

4.1 CL-KEM Definition
A CL-KEM scheme is specified by seven polynomial time algorithms:

— CLSetup(1?) is a PPT algorithm that takes as input 1* and returns the master public keys mpk® and
the master secret key mskCr.

— Extract-Partial-Private-Key(msk®, ID). If ID € ID is an identifier string for party ID this (possibly
probabilistic) algorithm returns a partial private key dyp.

— Set-Secret-Value is a PPT algorithm that takes no input (bar the system parameters) and outputs a
secret value syp.

— Set-Public-Key is a deterministic algorithm that takes as input s;p and outputs a public key pk;p.

— Set-Private-Key(d;p, srp) is a deterministic algorithm that returns sk;p the (full) private key.

— Enc(mpk®, pk;, ID) is the PPT encapsulation algorithm. On input of pk;p, I D and mpk® this outputs
a pair (C, K) where K € Kcp_gen(mpk®) is a key for the associated DEM and C € C ¢ _gen(mpk®t) is
the encapsulation of that key.

— Dec(mpk®, skip, C) is the deterministic decapsulation algorithm. On input of C and sk;p this outputs
the corresponding K or a failure symbol L.

Baek et al. gave in [5] a different formulation where the Set-Public-Key algorithm takes the partial private
key d;p as an additional input. In this case it is possible to combine the Set-Secret-Value, Set-Public-Key
and Set-Private-Key algorithms into a single Set-User-Keys algorithm that given as input the partial private
key drp of ID outputs pk;p and sk;p. While the Baek et al. formulation may seem at first glance to be a
simplification, it stops various possible applications of certificateless encryption, such as encrypting into the
future. Extending our definition of pure and mon-pure ID-based key agreement protocols to this situation,
we shall call certificateless schemes which follow the original formulation as pure, and those which follow the
formulation of Baek et al. as non-pure.

4.2 CL-KEM Security Model

To define the security model for CL-KEMs we simply adapt the security model of Al-Riyami and Paterson
[3] into the KEM framework, as explained in [8]. The main issue with certificateless encryption is that, since
public keys lack authenticating information, an adversary may be able to replace users’ public keys with
public keys of its choice. This appears to give adversaries enormous power. However, the crucial part of the
certificateless framework is that to compute the full private key of a user, knowledge of the partial private
key is necessary.

To capture the scenario above, Al-Riyami and Paterson [2—4] consider a security model in which an
adversary is able to adaptively replace users’ public keys with (valid) public keys of its choice. Such an
adversary is called a Type-I adversary below.



Since the KGC is able to produce partial private keys, we must of course assume that the KGC does not
replace users public keys itself. By assuming that a KGC does not replace users public keys itself, a user is
placing a similar level of trust in a KGC that it would in a PKI certificate authority: it is always assumed that
a CA does not issue certificates for individuals on public keys which it has maliciously generated itself! We
do however treat other adversarial behaviour of a KGC: eavesdropping on ciphertexts and making decryption
queries for example. Such an adversarial KGC is referred to as a Type-II adversary below.

Below we present a game to formally define what an adversary must do to break a certificateless KEM
[8]. This is a game run between a challenger and a two stage adversary A = (A;, A2). Note that X can be
instantiated with I or II in the description below and that the master secret msk® is only passed to the
adversary in the case of Type-II adversaries.

Type-X Adversarial Game

(mpk®t, msk®)«—CLSetup(1?).
(ID*, 8)« A (mpk, msk®").
(Ko, C*)«Enc(mpk®, pk*, ID*).
K, (_KCLfKEM(mkaL)‘

b—{0,1}.

b A9 (C*,5,1D*, Ky).

ANl S

When performing the encapsulation, in line three of both games, the challenger uses the current public key
pk™ of the entity with identifier ID*. The adversary’s advantage in such a game is defined to be

AdviPeor(A) = |2Pr[p) = b] — 1

where X is either I or II. A CL-KEM is considered to be secure, in the sense of IND-CCAZ2, if for all PPT
adversaries A, the advantage in both the games is a negligible function of ¢.

The crucial point of the definition above is to specify which oracles the adversary is given access and
which are the restrictions of the game. According to such specifications one can obtain different levels of
security. A detailed discussion about all possible security definitions is given by Dent in [15]. In the following
we describe the various oracles O available to the adversaries, we then describe which oracles are available
in which game and any restrictions on these oracles.

— Request Public Key: Given an ID this returns to the adversary a value for pk;p.

— Replace Public Key: This allows the adversary to replace user I D’s public key with any (valid) public
key of the adversaries choosing.

— Extract Partial Private Key: Given an I D this returns the partial private key d;p.

— Extract Full Private Key: Given an I D this returns the full private key skjp.

— Strong Decap: Given an encapsulation C' and an identity I D, this returns the encapsulated key. If the
adversary has replaced the public key of I D, then this is performed using the secret key corresponding
to the new public key. Note, this secret key may not be known to either the challenger or the adversary,
hence this is a very strong oracle.

— Weak SV Decap: This takes as input an encapsulation C, an identity I D and a secret value s;p. The
challenger uses s;p to produce the corresponding full secret key of ID that is used to decapsulate C.
Note, that s;p may not correspond to the actual current public key of entity ID. Also note that one can
obtain this functionality using the Strong Decap oracle when the certificateless scheme is pure.

— Decap: On input of an encapsulation C' and an identity I D it outputs the session key obtained decap-
sulating C with the original secret key created by ID. One can obtain this functionality using a Strong
Decap oracle if the scheme is pure.

Using these oracles we can now define the following security models for certificateless KEMs, see [15] for a
full discussion.



Strong Type-I Security: This adversary has the following restrictions to its access to the various oracles.

— A cannot extract the full private key for ID*.
— A cannot extract the full private key of any identity for which it has replaced the public key.

— A cannot extract the partial private key of ID™ if A; replaced the public key (i.e. the public key was
replaced before the challenge was issued).

— A cannot query the Strong Decap oracle on the pair (C*,ID*) unless ID*’s public key was replaced
after the creation of C*.

— A may not query the Weak SV Decap or the Decap oracles (although for pure schemes, one can always
simulate these using the Strong Decap oracle).

We note that this security notion is often considered to be incredibly strong, hence often one finds it is
weakened in the following manner.

Weak Type-Ia Security: Dent describes in [15] a weaker security definition called Weak Type-Ia that was
also used in [8]. Weak Type-Ia security does not allow the adversary to make decapsulation queries against
identities whose public keys have been replaced. In this case the restrictions on the adversaries oracle access
is as follows:

— A cannot extract the full private key for ID*.
— A cannot extract the full private key of any identity for which it has replaced the public key.

— A cannot extract the partial private key of ID™ if A; replaced the public key (i.e. the public key was
replaced before the challenge was issued).

— A may not query the Strong Decap oracle at any time.

— Ay cannot query the Weak SV Decap oracle on the pair (C*, ID*) if the attacker replaced the public
key of ID* before the challenge was issued.

— Ay cannot query the Decap oracle on the pair (C*,1D*) unless the attacker replaced the public key
before the challenge was issued.

Though this notion is clearly weaker than Strong Type-I, it still looks reasonable for practical purposes.
In fact Strong Type-1 gives to the adversary as much power as possible, but it is unclear whether a real
adversary can obtain decapsulations in practice from users whose public keys have been replaced by the
adversary itself.

We pause to note that there are weaker forms of Type-I security called Weak Type-Ib and Weak Type-Ic
security. In Weak Type-Ib security access to the Weak SV Decap oracle is denied to the adversary, whereas
in Weak Type-Ic security not only denies access to the Weak SV Decap oracle, but it also denies the ability
to the replace public keys entirely. We also can define a CPA like-notion, which we call Weak Type-I-CPA
which denies access to all forms of decapsulation oracle (this is a notion which is not used in other papers,
but which will be useful when we present our conclusions).

In addition, for each definition of Type-I security we can define a slightly weaker variant denoted by
(e.g. Strong Type-I*) in which the adversary cannot query the partial private key of the target identity
ID* at any point. This weaker variant will simplify somewhat our security theorems. But, it still allows us
to obtain a final non-weakened result due to the combination with security theorems for Type-II security,
which we define below. Dent [15] presents these different notions in the form of a table, which we present a
modified version of below.

*
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Request |Replace||[Extract Full|Extract Partial|Extract Partial||Strong|Weak SV |Decap
Public | Public ||Full Private| Private Key | Private Key | Decap| Decap
for ID*

Strong Type-I v
Weak Type-la
Weak Type-Ib
Weak Type-Ic

Weak Type-I-CPA
Strong Type-I*
Weak Type-Ta*
Weak Type-Ib*
Weak Type-Ic*

Weak Type-I-CPA*

NAIS

ANA AN

ANANANANAN

ANANAN

ANANAN

NAVANAAN RN RS
NAVAAAN RN R VS

ANA NA S SA VA NANANANAN
AN

Strong Type-II Security: In the Type-II game the adversary has access to the master secret key msk®
and so can create partial private keys itself. The strong version of this security model enables the adversary
to query the various oracles with the following restrictions:

— A cannot extract the full private key for ID*.

— A cannot extract the full private key of any identity for which it has replaced the public key.

— A;j cannot output an identity ID* for which it has replaced the public key.

— A cannot query the partial private key oracle at all.

— As cannot query the Strong Decap oracle on the pair (C*,1D*) unless the public key used to create C*
has been replaced.

— A may not query the Weak SV Decap or the Decap oracles (although for pure schemes, one can always
simulate these using the Strong Decap oracle).

Note, because we assume in this case that the adversary is the KGC, the adversary does not have access to
the partial private key oracle since all partial private keys are ones which he can compute given msk®t. This
applies even in the case where generation of the partial private key from msk® and ID is randomised.

Weak Type-II Security: As for the case of Type-I security one can consider a weaker variant of Type-II
security In this notion the adversary is not allowed to replace public keys at any point and thus it cannot
make decapsulation queries on identities whose public keys have been replaced. This is the traditional form of
Type-II security, and is aimed at protecting the user against honest-but-curious key generation centres. Again
a weak form, which we call Weak Type-II-CPA, can be defined which gives no access to any decapsulation
oracle, this form of security will only be needed in the discussion leading up to our conclusions. There are
other strengthenings of the Type-II model which try to model completely malicious key generation centres,
see [15] for a discussion of these models. But we will not consider these in this paper. We summarize the
oracle access for the security models we do consider by the following table:

Request|Replace||Extract Full|Extract Partial||Strong|/Weak SV|Decap
Public | Public ||Full Private| Private Key | Decap| Decap

Strong Type-II v
Weak Type-II

Weak Type-II-CPA

\\\5
NANNIS
\\\5

Full Type-I security from Type-I* security and Strong Type-II security: In this section we justify
our consideration of Type-I* security by showing that proving a scheme Type-I* secure is sufficient to get
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“full” Type-I security if such a scheme also satisfies the strongest notion of Type-II security. In some sense
this says that the definitions Type-I and Strong Type-II overlap in a specific case.

For ease of presentation we prove the theorem for the case of Strong Type-I security, but it is easy to see
that it holds even if the scheme is Weak-Type-Ia*, Weak Type-Ib*, Weak Type-Ic* or Weak Type-I-CPA*.
In this case one obtains the corresponding level of security (e.g. Weak Type-Ia ). To complete the picture
we recall that Dent noted in [15] that Weak Type-II security implies Weak Type-Ic security.

Theorem 1. If a CL-KEM is Strong-Type-I* and Strong Type-II secure then it is Strong Type-I secure

Proof. In order to prove this theorem we show that a Strong Type-I adversary A can be turned into another
adversary against either Strong Type-I* or Strong Type-II security. We distinguish two types of Strong
Type-I adversaries:

— A; that replace the public key of the challenge identity ID* before asking the challenge ciphertext;
— As that do not replace ID*’s public key before asking the challenge ciphertext.

Let E be the event that the adversary asks ID*’s partial private key during its attack. According to the
definition of Strong Type-I security £ can never occur in a run of .4;. This means that the game played by
an adversary A; is exactly the same of a Strong Type-I* adversary.

On the other hand it is easy to see that an adversary A5 can be turned into an adversary B that breaks
Strong Type-II security as follows. B receives in input the master secret key of the KGC so being able to
provide As with the partial private key of any identity. Moreover I3 can answer all oracle queries made by
As simply by forwarding such queries to its corresponding oracles. Since by definition Ay will not replace
ID*’s public key before asking the challenge ciphertext, then the simulations is perfect.

5 Generic Construction of CL-KEM from ID-KA

In this section we show our main result, namely a generic transform of any ID-KA protocol into a CL-KEM
scheme.

Suppose we are given algorithms for a one-way authenticated ID-KA protocol (KASetup, KeyDer, Initiate, Respond,
Deriver, Deriver). Given a one-way identity-based key agreement protocol KA, we let CL(KA) denote the
derived certificateless KEM obtained from the following algorithms.

CLSetup(1%). We run (mpk¥*, msk¥*)«KASetup(1?) and then set: mpk®«—mpk¥* and mskC®—mskk:.
— Extract-Partial-Private-Key(msk®:, I D). We set djp+ KeyDer(msk** ID).
The pair Set-Secret-Value and Set-Public-Key are defined by running

(epk;p,eskrp)«Initiate(mpk**, [d;p]).

The output of Set-Secret-Value is defined to be s;p = esk;p and the output of Set-Public-Key is defined
to be pk;p = epk;p.
Set-Private-Key(d;p, syp) creates skrp by setting skrp = (drp, sip).
Enc(mpk®, pk;p, ID). This runs as follows:
o (epky, esko)«—Respond(mpk**).
o K« Deriver(mpkt*, eskq, pk;p, ID).
o C—epk.
— Dec(mpk®, skip, C). Decapsulation is obtained by executing

K «Derive;(mpk** d;p, skip, C).

In the above construction if the underlying ID-based key agreement protocol is pure (resp. non-pure), then
we will obtain a pure (resp. non-pure) certificateless KEM, i.e. it will follow the original formulation of
Al-Riyami and Paterson (resp. Baek et al.). To see this, notice that the Set-Public-Key function calls the
Initiate(mpk®*, [d;]) operation, which itself may require d;.
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5.1 Security Results on the ID-KA to CL-KEM transforms

Once we have defined our black-box construction of CL-KEM from ID-KA protocols we prove its security
in the theorems below. As one can see, the theorems show that the resulting CL-KEM can achieve dif-
ferent types of security according to the security of the underlying ID-KA protocol. As already discussed
in the introduction, this relationship between the security models of ID-KA and CL-KEM sheds light on
understanding which are the correct notion of security for the two primitives.

Theorem 2 (Type-1 Security). Consider the certificateless KEM CL(KA) derived from the one-way ID-
based key agreement protocol KA as above:

— If KA is secure in the Reveal*-model then CL(KA) is Strong Type-I* secure as a certificateless KEM.
— If KA is secure in the Rewind model then CL(KA) is Weak Type-Ib* secure as a certificateless KEM.
— If KA is secure in the normal model then CL(KA) is Weak Type-I-CPA* secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the above sense) then there is an adversary
B against the KA scheme (also in the above sense) such that for pure schemes we have

AdvgPan(A) = Advip_ia(B)
and for non-pure schemes we have
Advel®en(A) < e (gpr +1) - Advip—ra(B)
where qpr; is the mazimum number of extract public key queries issued by algorithm B.
Proof. The proof of this theorem can be found in the appendices.

We notice that the proof technique does not allow the simulator to provide the partial private key of the
challenge identity ID*. Which is why our theorem is stated for the case of Strong Type-I* (resp. Weak Type-
Ib* or Weak Type-I-CPA*). If we then apply the result of Theorem 1, along with the following theorems,
we obtain full Strong Type-I security (resp. Weak Type-Ib or Weak Type-I-CPA) for the scheme CL(KA).

In looking at Type-II security we present two security theorems. The first one (Theorem 3) is conceptually
simpler but requires our underlying identity based key agreement scheme to have a strong security property
(i.e. it must support state reveal queries). The second theorem (Theorem 4) is more involved and does not
provide such a tight reduction. On the other hand the second theorem requires less of a security guarantee
on the underlying key agreement scheme. The proofs of both theorems can be found in the appendices.

Theorem 3 (Type-II Security — Mk I). Consider the certificateless KEM CL(KA) derived from the
one-way ID-based key agreement protocol KA as above:

— If KA satisfies master-key forward secrecy in the (StateReveal, Reveal*)-model then CL(KA) is Strong
Type-11 secure as a certificateless KEM.

— If KA satisfies master-key forward secrecy in the (StateReveal, Rewind)-model then CL(KA) is Weak
Type-11 secure as a certificateless KEM.

— If KA satisfies master-key forward secrecy in the StateReveal-model then CL(KA) is Weak Type-II-CPA
secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the sense described above) then there is
an adversary B against the master-key forward secrecy of the KA scheme (also in the above sense) such that

AdvgPan' (A) = Advs =1 (B).

We now turn to showing that one does not necessarily need the StateReveal query to prove security,
although the complication in the proof results in a less tight reduction.
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Theorem 4 (Type-II Security — Mk II). Consider the certificateless KEM CL(KA) derived from the
one-way ID-based key agreement protocol KA as above:

— If KA satisfies master-key forward secrecy in the Reveal*-model then CL(KA) is Strong Type-II secure
as a certificateless KEM.

— If KA satisfies master-key forward secrecy in the Rewind model then CL(KA) is Weak Type-II secure as
a certificateless KEM.

— If KA satisfies master-key forward secrecy in the normal model then CL(KA) is Weak Type-1I-CPA
secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the above sense) then there is an adversary
B against the KA scheme (also in the above sense) then we have

AdvyPee (A) < e (g +1) - AdviS 12 (B)

where qpi 1s the mazimum number of extract public key queries issued by algorithm B.

6 Identity-Based Key Encapsulation Mechanisms

In this section we are going to show the relationship between CL-KEM and identity-based KEMs. In partic-
ular we will give a generic transformation from any pure CL-KEM into an ID-KEM. As in the case of ID-KA
and CL-KEM, here it is also interesting to observe how the different security models of CL-KEM transform
into analogous models for ID-KEM.

Before giving our result, we recap on identity-based KEMs, the reader is referred to [8] for further details.

6.1 ID-KEM Definition
A ID-KEM scheme is specified by four polynomial time algorithms:

— IDSetup(1?) is a PPT algorithm that takes as input 1* and returns the master public keys mpk!P and
the master secret key msk!P.

— Extract(msk!P ID). If ID € ID is an identifier string for party ID this (possibly probabilistic) algo-
rithm returns a partial private key drp.

— Enc(mpk!P | ID) is the PPT encapsulation algorithm. On input of ID and mpk!? this outputs a pair
(C, K) where K € K p_xe(mpk!P) is a key for the associated DEM and C € C ;p_ggu(mpk!?) is the
encapsulation of that key.

— Dec(mpk!P,drp,C) is the deterministic decapsulation algorithm. On input of C' and drp this outputs
the corresponding K or a failure symbol L.

6.2 ID-KEM Security Model

The security model for ID-KEMs is as follows. The adversary A plays a game with a challenger, at any point
the adversary may request Extract queries for identities of his choice, and he may obtain decapsulations
for pairs (ID,C) of his choice. At some point the adversary outputs a challenge identity 7D*. The chal-
lenger then calls (C*, Kq)«Enc(mpk!P, ID*), flips a bit b and samples a random key K; from the space
K 7p_xen(mpk!P). The challenger then returns (C*, K3) to the adversary. The adversary then continues and
finally outputs a guess b’ for the hidden bit b.

The two oracles provided to the adversary, i.e. the Extract and Dec oracles, come with the following
restrictions:

— Extract may at no point be called on the challenge identity ID™;
— Dec may at no point be called on the pair (ID*,C*).
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The above adversary is called an ID-IND-CCA adversary, if we disallow Dec queries then the adversary is
an ID-IND-CPA adversary. The advantage of such a CCA adversary is defined to be

Advip g M (A) = [2Prlb =] 1],

with a similar definition for a CPA adversary. A scheme is deemed to be secure if for all adversaries A the
advantage is a negligible function of the security parameter.

6.3 Generic Construction of ID-KEM from pure CL-KEM

To construct an ID-KEM from a CL-KEM the obvious solution is to set the user public/private keys to be
trivial and known to all parties. This however can only be done for pure CL-KEMs since in non-pure schemes
one does not have complete control over the public/private keys, since they depend on the partial private
key d;p. We call the resulting scheme the ID(CL) scheme, as it is an ID-KEM built from a CL-KEM.

Theorem 5. Consider the pure ID-KEM ID(CL) derived from the pure CL-KEM scheme CL as above.
Then if CL is Strong Type-I* secure then ID(CL) is ID-IND-CCA secure. In particular if A is an adversary
against the ID(CL) scheme then there is an adversary B against the CL-KEM scheme such that

I1D—IND—CCA _ Strong—Type—1Ix*
Advy D ieu (A) = Adve gey (B).

Proof. Assume there is an efficient adversary A that is able to break the security of ID(CL) with non-
negligible advantage €. We build a simulator B which breaks the security of the underlying CL scheme.

The algorithm B is relatively trivial. The input master public key mpkCt for algorithm B is first passed to
algorithm A. When A makes a Extract query for identity ID, algorithm B makes a request for the partial
private key of party ID. It also replaces the public key of ID with the trivial key required for the ID(KA)
construction. Any Dec queries made by A are passed onto the Strong Decap oracle provided to algorithm
B. When A outputs the challenge identity ID* this is passed on by algorithm B to its challenger, who then
responds with a C* which is passed directly back to algorithm A.

It is clear that all restrictions on oracles queries by B do not affect the responses to oracle queries made
by A. In addition the advantage of A is equal to the advantage of 5.

7 Conclusion: Which Certificateless Model is Correct?

In this section we summarize the conclusions we have drawn from our analysis. It is worth pointing out that
these are personal conclusions, and we leave the reader to draw their own analysis.

Firstly, all our conclusions are predicated on the assumption that our transforms are all “natural”, in
that they are the obvious way to convert an ID-KA protocol into a CL-KEM and a CL-KEM into an ID-
KEM. If these are the natural transformations then the underlying security and syntactic models should also
transform naturally.

Pure vs Non-Pure First we discuss the issue of pure vs non-pure certificateless schemes. Our transform
from CL-KEMs to ID-KEMs requires the underlying CL-KEM to be pure. This is not surprising as an
essential feature of ID-based cryptography is that of the identity (and hence the associated secret key) being
independent of all parameters bar the actual identity. It is not surprising even because non-pure CL-KEMs
are the only ones that can be constructed without pairings.

We draw two conclusions from this. First, the pure syntax is more powerful as it enables functionalities
such as encryption-into-the-future (a.k.a. workflow). Second, we can say that certificateless encryption is
a primitive simpler than ID-based encryption, although people have usually thought at the former as an
extension of the latter. When ID-based encryption was proposed [20], one of its main motivations was to
avoid the certificates management issues of standard public key encryption. Then it took almost twenty years
to have IBE schemes, basically thanks to the idea of exploiting pairings. From our considerations we can say
that the “hard part” of constructing ID-based encryption is not avoiding certificates, but achieving those
additional properties (e.g. workflows); i.e. technically speaking, having a user’s public key independent of
the scheme parameters.
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CPA Security Before turning to CCA security of certificateless encryption we first consider the simpler
case of CPA security. We remarked in the introduction that the [18] construction of ID-based encryption
from ID-based NIKD schemes only produces CPA secure schemes, unless one assumes an oracle equivalent
to our Reveal® oracle.

Similar considerations apply in our case. The construction of ID-KEMs from CL-KEMs will produce a
CPA secure ID-KEM if the underlying CL-KEM is Weak Type-I-CPA* secure. Note, that we only require
Weak Type-I-CPA* and not Weak Type-I-CPA security.

In constructing CL-KEMs from ID-KA protocols we need to consider what security is required of the
underlying ID-KA protocol to ensure Weak Type-I-CPA and Weak Type-I1I-CPA security of the CL-KEM.
Our theorems show that a sufficient condition is that the underlying ID-KA protocol is secure in the standard
sense, i.e. with no Reveal®, Rewind or StateReveal oracles. Although the security reduction is tighter if we
assume the adversary has access to StateReveal oracles, i.e. we use a CK-like security model for ID-based
key agreement.

We note that the security reductions go through more naturally when one considers the CL-KEM to have
Weak Type-I-CPA* security and Weak Type-II-CPA security. We then obtain the full Weak Type-I-CPA by
appealing to the analogue of Theorem 1.

CCA Security Our theorems show that to obtain full Strong Type-I and Strong Type-II security of the
derived CL-KEM we require the ID-based key agreement security model to give the adversary access to
our Reveal™ oracle. This is a very non-standard oracle for key agreement protocols, but this should not be
surprising. Essentially CCA security for an encryption scheme means the adversary has to be able to open
anything, even something created in an illegitimate way (even if the opening results in the L symbol). All
our Reveal* oracle does is to provide the adversary against the ID-based key agreement scheme with an
oracle to open anything.

A similar remark as to Strong Type-I* as opposed to Strong Type-I security as mentioned in the above
comments on CPA security also applies in this case.

Summary So in summary we believe the correct syntactic security definitions for CL-KEMs should be
schemes with Strong Type-I* and Strong Type-II security where the pure syntax allows for more properties.
By using Strong Type-I* as the security definition instead of Strong Type-I we obtain a natural seperation
between the two security notions, rather than dealing with the cases in the intersection twice.

However, our construction from ID-based key agreement schemes would seem to imply that the correct
security definition should be one which uses StateReveal queries (i.e. one which follows the analogue of CK-
security). However, it also implies that the model also includes Reveal® queries, which seems to provide an
extreme form of security definition for key agreement schemes. Since it would seem silly to define security
for normal key agreement schemes and ID-based key agreement schemes in a different manner, this would
imply that standard key agreement schemes should also be defined to be secure in the presence of a Reveal*
oracle. This final conclusion is somewhat unsatifactory, and we hope our work will inspire other researchers
to investigate this connection.
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A Proof of Theorem 2

Assume there exists an efficient adversary A that is able to break the Strong Type-T* (resp. Weak Type-Ib*
or Weak Type-I-CPA*) security of CL(KA) with non-negligible advantage e. Then we show how to build a
simulator B that exploits A to break the relevant security of the one-way authenticated KA protocol. We
shall deal with the three parts of the Theorem together, so we shall deal with the different types of Type-I
security in the one argument.

Setup B receives in input from its challenger the master public key mpk¥* of the KGC and hands such
key to A. The simulator also maintains a table KeyList where it stores the keys of identities involved
in the simulation and other extra informations related to them. The table contains tuples of the form
(ID,epk;p,eskip,dip, cip) where each element is explained below.

Phase 1 Let us show how to deal with each oracle. But before hand we present a generic subroutine, which
will be used by almost all oracles. If algorithm .4 adversary makes an oracle call for an identity 1D which
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has not been seen before then algorithm B before proceeding as in our examples below, first processes
the new identity as follows:
Pure case: In the case of a pure underlying key-agreement scheme the simulator executes NewSession(ID, R)
and then (epk;p,eskrp) < Initiate(mpk**) and stores (ID, epk;p,eskrp, L, 2) into KeylList.
Non-pure case: It flips a binary coin ¢;p € {0, 1} such that Pr{c;p = 0] = ¢ for some ¢ specified later.
Algorithm B creates a new session by running NewSession(ID, R) and then;
— If ¢;p = 0 the simulator obtains the value dyp by calling Corrupt(ID). It then executes (epk;p, eskip) <
Initiate(mpk**, d;p) and stores the tuple (ID, epk;p,eskrp,drp,0) into KeyList.
— If ¢;p = 1 then B queries the oracle Send(II;p g, initiator, L). It gets back a message epk;, which
is then stored in KeyList as the tuple (ID,epk;p, L, 1, 1).
Flipping the coin c;p is equivalent to make a guess on the challenge identity ID* that should remain
uncorrupted. We now turn to describing how each oracle query made by A is answered by B.

1. Request public key of ID. By the above we are gauranteed that KeyList contains an entry of
the form (ID, epk;p,*, *,*), and so algorithm B simply returns epk;,.

2. Extract partial private key of I D. First the simulator searches in KeyList for a tuple (ID, *,*,,crp)
and then proceeds as follows:

— If ¢;p = 0 then B outputs the corresponding partial private key d;p.

— If ¢;p = 1 then B terminates the simulation and outputs Abort.

— If ¢c;p = 2 then B obtains djp via corruption and updates the entry on KeyList with the obtained
value, and sets ¢;p = 0. The value of d;p is returned to A.

3. Extract full private key of I D. Algorithm B proceeds as in the previous step, note this means that
if c;p = 1 then the algorithm aborts. The entry on the KeyList is then of the form (ID, epk;, eskrp,drp,0)
and so the pair sk;p = (dyp,eskrp) is returned to A.

4. Replace the public key of I D with pk’;,,. Algorithm B looks for a tuple containing I.D in KeyList
and replaces the current public key with pk’; . Notice, these queries only occur in the case of Strong
Type-I* adversaries in our theorem.

5. Strong Decap query (C, D). Recall, these queries can occur only if A is a Strong Type-I* adver-
sary. In this case B constructs a query to the Reveal™ oracle for the pair two parties ID and R, with
the respective message flows epk; and C. Notice, that the response from this oracle will even deal
with the case where the public key has been replaced.

6. Decap query (C,ID) Recall, these queries can only occur if A is a Weak Type-Ib* adversary.

— If ¢;p = 0 we use its secret key to compute the decapsulated key.

—If ¢;p = 1 and dp7,,, = L then the simulator invokes Send(IlIp g, initiator,C') and then
K «— Reveal(II1p, r). The output K is the decapsulated key returned to the adversary.

—If ¢;p = 1 and dp1,, , = “accepted”, then algorithm B first asks Rewind(II;p,r) and then
proceeds as in the step before.

— If ¢;p = 2 then we proceed as if c;p = 1.

Challenge At some point A4 outputs a target identity ID*. If ID* ¢ KeyList then algorithm B first

generates a public key for it as above, using the case ¢;p- = 1 in the case of non-pure schemes.

If ID* € KeyList and ¢yp- = 0 then algorithm B terminates the simulation and aborts.

Otherwise, since we then know that ID* is not corrupted, the simulator performs the following actions:
1. ask to initiate a session NewSession(R,ID™)
2. C* « Send(IIR,p~, responder, epk;p-)
3. K — Test(HL]D*)

Finally B hands (C*, K) to A.

Phase 2 This is simulated as Phase 1. Notice that from now on B cannot ask a reveal query on IIp rp+
(and its matching oracle II;p+« r). However according to Type-I game’s rules A will not ask a Strong
Decap or Decap query for (C*, ID*).

Guess At the end the adversary outputs a decision bit ¥’ and B returns the same bit.

18



The simulation is perfect if B does not abort during the entire simulation. And algorithm B will only abort
in the case of non-pure schemes, in this case the probability that B wins is bounded by

Pr[B wins| = Pr[B wins|B—Abort] - Pr[B-Abort]
+ Pr[B wins|B Abort] - Pr[B Abort]

< Pr[A wins|B—Abort] - Pr[B-Abort] + % - % - Pr[B—Abort]
= % + ¢ - Pr[B-Abort]

The probability that B does not abort during the simulation is (1 — §)d%* where g, is the number of public
key queries issued by the adversary during the simulation. Since A is polynomially-bounded the value of
gpk is also bounded by a polynomial. Moreover the value (1 — §)d%* is maximised at 6 = 1 — 1/(gpx + 1).
This means that the probability that B does not abort is at least In conclusion we have that B’s

i e
advantage for non-pure schemes is at least @ T

1
e(gpr+1)”
which is non-negligible if we assume that A’s advantage

€ is also non-negligible.

B Proof of Theorem 3

Assume there exists an efficient adversary A that is able to break the relevant Type-II security of CL(KA)
with non-negligible advantage ¢. Then we show how to build a simulator B that exploits A to break the
relevant master-key forward secrecy property of the one-way authenticated KA protocol. We shall deal with
the three parts of the Theorem together, so we shall deal with the different types of Type-II security in the
one argument.

Setup Algorithm B receives in input from its challenger the master public key mpk** and the master secret
key msk** and hands such keys to A. The simulator also maintains a table KeyList where it stores the
keys of identities involved in the simulation and other extra informations related to them. The table
contains tuples of the form (ID,epk;p,eskip,drp) where each element is explained below.

When an identity I D is asked by A for the first time, algorithm B creates a new session NewSession(ID, R)
and then queries the oracle Send(II;p g, initiator, L) obtaining epk;p. It then queries Corrupt(ID) so
as to obtain drp. Algorithm B then inserts (I D, epk;p, L, drp) into KeyList.

Note that A can now construct d;p values on its own, as can . However, if the algorithm to produce d;p
given 1D and msk¥* (resp. msk®) is probabilistic then the value produced by B might not correspond
to that produced by A. This explains our need to use the Corrupt oracle provided to B above.

Phase 1 We show how to deal with each oracle query made by A.

1. Request public key of ID. By the above we know KeyList contains a tuple of the form (ID, epk;p, *,drp)
so B simply outputs epk;p.

2. Extract full private key of ID. If (ID,epk;p,eskip,drp) does not appear in KeyList then B
asks eskyp < StateReveal(II1p gr) to its challenger, and eskyp is placed in this entry of the KeyList.
In either case the pair sk;p = (drp, eskrp) is returned to A.

3. Replace the public key of ID with pk’;,. Notice, these queries only occur in the case of Strong
Type-II adversaries in our theorem. Algorithm B looks for a tuple containing ID in KeyList and
replaces the second component with the value pk’ .

4. Strong Decap query (C,ID). Recall, these queries can occur only if A is a Strong Type-1I adver-
sary. In this case B constructs a query to the Reveal™ oracle for the pair two parties ID and R, with
the respective message flows epk; (obtained from the KeyList) and C. Notice, that the response
from this oracle will even deal with the case where the public key has been replaced.

5. Decap query (C,ID) Recall, these queries can only occur if A is a Weak Type-IT adversary.

— Ifé51,, = L then the simulator invokes Send(I1rp, g, initiator,C') and then K « Reveal(Ilrp r).
The output K is the decapsulated key returned to the adversary.
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— If 011, = “accepted”, then algorithm B first asks Rewind(II;p, r) and then proceeds as in the
step before.

Challenge At some point A outputs a target identity ID*. The simulator then performs the following
actions, using the value of epk;p. from the entry in KeyList;

1.
2.
3.

ask to initiate a session NewSession(R,ID"),
C* «— Send (Il p~, responder, epkp-),
K TeSt(HL]D*)

Finally B hands (C*, K) to A.

Phase 2 This is simulated as Phase 1. Notice that from now on B cannot ask a reveal query on Il jp~
(and its matching oracle II;p+- r). However according to Type-II game’s rules A will not ask a Strong
Decap or Decap query for (C*, ID*).

Guess At the end the adversary outputs a decision bit & and B returns the same bit.

Note that the simulation is perfect and B wins with the same advantage of A.

C Proof of Theorem 4

Assume there exists an efficient adversary A that is able to break Type-II security of CL(KA) with non-
negligible advantage €. Then we show how to build a simulator B that exploits A to break the master-key
forward-secrecy of the one-way authenticated KA protocol. Again we deal with the three different types of
Type-II security in the one argument.

Setup Algorithm B receives in input from its challenger the master public key mpk¥* and the master secret
key msk¥* of the KGC and hands such key to A. The simulator also maintains a table KeyList where it
stores the keys of identities involved in the simulation and other extra informations related to them. The
table contains tuples of the form (ID, pk;p,epk;p,dip,crp) where each element is explained below.

As before everytime A mentions an identity ID for the first time algorithm B creates an entry in KeyList
before proceedings. For proving this theorem this initial entry is constructed as follows: It first queires
Corrupt(ID) to obtain dyp and then flips a binary coin ¢;p € {0, 1} such that Pr[c;p = 0] = ¢ for some
§ specified later.

— If ¢;p = 0 the simulator runs (epk;p, eskrp) < Initiate([drp], mpk**), and stores (I D, epk;p, eskip,dip,

crp) into KeyList.

— Ife;p = 1 B creates a new session NewSession(ID, R) and queries the oracle Send(II;p. g, initiator, L).

It then stores the tuple (ID,epk;p, ,dip,crp) into KeyList.

Flipping the coin c;p is equivalent to make a guess on whether the challenge identity ID* is the subject
of a extract full private key query at some point.
Phase 1 Let us now show how to deal with each oracle

1.

2.

5.

Request public key of ID. By above Keyist contains an entry of the form (I D, epk;p,*,dip,crp),
so the value of epk;p is returned to A.
Extract full private key of ID. First the simulator searches in KeyList for the tuple (ID, epk;p, eskip,drp,
crp). If ¢rp = 1 then B terminates the simulation and outputs Abort. Otherwise, if ¢;p = 0, B out-
puts the corresponding secret key skrp = (drp, eskrp).
Replace the public key of 1D with pk’ . Algorithm B looks for a tuple containing I D in KeyList
and replaces the current public key with pk’; . Notice, these queries only occur in the case of Strong
Type-II adversaries in our theorem.
Strong Decap query (C,ID). Recall, these queries can occur only if A is a Strong Type-II adver-
sary. In this case B constructs a query to the Reveal* oracle for the pair two parties ID and R, with
the respective message flows epk;p and C. Notice, that the response from this oracle will even deal
with the case where the public key has been replaced.
Decap query (C,ID) Recall, these queries can only occur if A is a Weak Type-II adversary.

— If ¢;p = 0, we use its secret key to compute the decapsulated key.
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— If ¢;p = 1 and 617, , = L then the simulator invokes Send(II;p g, initiator,C) and then
K — Reveal(II;p gr). The output K is the decapsulated key returned to the adversary.
—If ¢;p = 1 and 6p7,, , = “accepted”, then algorithm B first asks Rewind(II;p gr) and then
proceeds as in the step before.
Challenge At some point A outputs a target identity ID*. If ID* ¢ KeyList then algorithm B first
generates an entry for it as above, using the case ¢yp+ = 1. If ID* € KeyList and ¢;p- = 0 then algorithm
B terminates the simulation and aborts. Otherwise the simulator performs the following actions:
1. ask to initiate a session NewSession(R,ID™)
2. C* «— Send(IIR,p~, responder, pk;p-)
3. K «— Test(HR’ID*)

Finally B hands (C*, K) to A.

Phase 2 This is simulated as Phase 1. Notice that from now on B cannot ask a reveal query on Il ;p~
(and its matching oracle IT;p~ r). However according to Type-II game’s rules A will not ask a Strong
Decap or Decap query for (C*, ID*).

Guess At the end the adversary outputs a decision bit ¥’ and B returns the same bit.

The simulation is perfect if B does not abort during the entire simulation, hence the probability that B wins
is bounded by

Pr[B wins] = Pr[B wins|B—Abort] - Pr[B-Abort]
+ Pr[B wins|B Abort] - Pr[B Abort]

< Pr[A wins|B—Abort] - Pr[B-Abort] + % - % - Pr[B—Abort]
= % + e - Pr[B—Abort]

The probability that B does not abort during the simulation is (1 — §)d%* where gy, is the number of public
key queries issued by the adversary during the simulation. Since A is polynomially-bounded the value of gy
is also bounded by a polynomial. Moreover the value (1 — §)d%* is maximised at 6 = 1 — 1/(gpx + 1). This
means that the probability that B does not abort is at least

In conclusion we have that B’s advantage is at least

1
e(gpr+1)°

WZH) which is non-negligible if we assume that

A’s advantage € is also non-negligible.
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