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Abstract. Signcryption is a cryptographic primitive that fulfills both the
functions of digital signature and public key encryption simultaneously, at
a cost significantly lower than that required by the traditional signature-then-
encryption approach. In 2008, Barbosa and Farshim introduced the notion
of certificateless signcryption (CLSC) and proposed the first CLSC scheme
[2], but which requires six pairing operations in the signcrypt and unsigncrypt
phases. In this paper, aimed at designing an efficient CLSC scheme, we pro-
pose a new efficient CLSC scheme from bilinear maps, which requires only
two pairing operations in the signcrypt and unsigncrypt phases and is more
efficient than all the schemes available.
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1 Introduction

In a traditional public key cryptography (PKC), any user of the system who wants to
communicate with others must obtain their authorized public key, that means any public
key should be associated with the owner by a certificate, which is a signature issued by
the trusted Certificate Authority (CA). However this brings a large amount of computation,
communication cost and certificate management problems. In order to solve those prob-
lems, Shamir [21] firstly introduced the concept of identity based cryptography (ID-PKC)
in 1984. A user can use an email address, an IP address or any other information related his
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[20]. We have to re-formalize a new security model which is a little weaker than the original one. In this
model, we assume that the ciphertext from the signcryption oracle is valid under the original public key of
the sender.
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identity, that is publicly know and unique in the whole system, as his public key. The ad-
vantage of an identity based cryptography is that anyone can simply use the user’s identity
to communicate with each other. This can be done even before the user gets its private key
from the Key Generation Center (KGC). However, the user must completely trust KGC,
which can impersonate any user to sign or decrypt of any message. This issue is generally
referred to as key escrow problem in identity based cryptography.

In 2003, Al-Riyami and Paterson [1] introduced the concept of certificateless public
key cryptography (CL-PKC), which eliminate the use of certificates as in the traditional
PKC and solve the key escrow problem that is inherent in identity based cryptography. In
a certificateless cryptosystem, the KGC is involved to issue a partial private key dID for a
user with identity ID. Then the user independently generates his public/private key pair
(pkID, skID) use dID and a secret value xID chosen by himself, and publishes pkID.

In 2008, Barbosa and Farshim introduced the notion of certificateless signcryption
(CLSC) and proposed the first CLSC scheme [2], which requires six pairing operations in
the signcrypt and unsigncrypt phases. And aimed at designing an efficient CLSC scheme,
Wu and Chen proposed a new CLSC scheme [23], which requires four pairing operations in
the signcrypt and unsigncrypt phases, but unfortunately it was found insecure by Sharmila
et al. [19]. We note that in pairing based cryptosystems, although numerous papers discuss
the complexity of pairings and how to speed up the pairing computation [5, 8, 14, 15], the
computation of the pairing still remains time-consuming.

Our Contribution. It is fair to say that devising an efficient certificateless signcryption
still remains an important problem. In this paper, motivated by identity-based signcryption
scheme proposed in [4] and certificateless public key encryption scheme [13], we present
a new efficient certificateless pairing-based signcryption scheme, which requires only two
pairing operations in the signcrypt and unsigncrypt phases. Observations [22] pinpointed
problems arising when many provably secure pairing based protocols are implemented
using asymmetric pairings and ordinary curves. Our proposal avoids those problems thanks
to the fact that it does not require to hash onto an elliptic curve cyclic subgroup.

Organization. The rest of this paper is organized as follows: In next Section, we describe
some preliminaries, including bilinear map groups, our complexity assumptions and the
notion of certificateless signcryption scheme. We describe its security models in Section 3
and propose our certificateless signcryption scheme in Section 4. In Section 5, we present
its security and efficiency analysis. Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Bilinear Map Groups

Let k be a security parameter and p be a k-bit prime number. Let us consider groups G1,
G2 and GT of the same prime order p and P, Q be generators of respectively G1 and G2. We
say that (G1,G2,GT ) are bilinear map groups if there exists a bilinear map e : G1 × G2 −→
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GT satisfying the following properties:

− Bilinearity: ∀(S ,T ) ∈ G1 × G2, ∀a, b ∈ Z∗p, e(aS , bT ) = e(S ,T )ab.
− Non-degeneracy: ∀S ∈ G1, e(S ,T ) = 1 for all T ∈ G2 iff S = O.
− Computability: ∀(S , T ) ∈ G1 × G2, e(S ,T ) is efficiently computable.
− There exists an efficient, publicly computable (but not necessarily invertible) isomor-

phism ψ: G2 → G1 such that ψ(Q) = P.

Such bilinear map (called bilinear pairing) groups are known to be instantiable with ordi-
nary elliptic curves such as those suggested in [17] or [6]. In this case, the trace map can
be used as an efficient isomorphism ψ as long as G2 is properly chosen [22]. With super-
singular curves, symmetric pairings (i.e. G1 = G2) can be obtained and ψ is the identity.

2.2 Related Complexity Assumptions

Definition 1. The Discrete Logarithm Problem (DLP) in G2 is, given (Q, αQ)∈ G2
2 for

unknown α ∈ Z∗p, to compute α.

The advantage of any probabilistic polynomial time algorithmA in solving the DLP in
G2 is defined as

AdvDLP
A = Pr[A(Q, αQ) = α|α ∈ Z∗p].

The DL assumption is that, for any probabilistic polynomial time algorithm A, the advan-
tage AdvDLP

A is negligible.

Definition 2. The Computational Diffie-Hellman Problem (CDHP) inG2 is, given (Q, αQ,
βQ)∈ G3

2 for unknown α, β ∈ Z∗p, to compute αβQ.

The advantage of any probabilistic polynomial time algorithmA in solving the CDHP
in G2 is defined as

AdvCDHP
A = Pr[A(Q, αQ, βQ) = αβQ|α, β ∈ Z∗p].

The CDH assumption is that, for any probabilistic polynomial time algorithm A, the ad-
vantage AdvCDHP

A is negligible.

Definition 3. The q-Strong Diffie-Hellman Problem (q-SDHP) [10] in the groups (G1,G2)
consists of, given a (q+2)-tuple (P,Q, αQ, α2Q, . . . , αqQ)∈ G1×Gq+1

2 for unknown α ∈ Z∗p,
finding a pair (c, 1

α+c P) with c ∈ Z∗p.

The advantage of any probabilistic polynomial time algorithmA in solving the q-SDHP
in (G1,G2) is defined as

Advq-S DHP
A = Pr[A(P,Q, αQ, α2Q, . . . , αqQ) = (c,

1
α + c

P)|α, c ∈ Z∗p].

The q-SDH assumption is that, for any probabilistic polynomial time algorithm A, the
advantage Advq-S DHP

A is negligible.

Definition 4. The q-Bilinear Diffie-Hellman Inversion Problem (q-BDHIP) [9] in the
groups (G1,G2,GT) consists of, given a (q + 2)-tuple (P,Q, αQ, α2Q, . . . , αqQ)∈ G1 ×Gq+1

2
for unknown α ∈ Z∗p, computing e(P,Q)1/α ∈ GT .
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The advantage of any probabilistic polynomial time algorithm A in solving the
q-BDHIP in (G1, G2, GT ) is defined as

Advq-BDHIP
A = Pr[A(P,Q, αQ, α2Q, . . . , αqQ) = e(P,Q)1/α|α ∈ Z∗p].

The q-BDHI assumption is that, for any probabilistic polynomial time algorithm A, the
advantage Advq-BDHIP

A is negligible.

2.3 Certificateless Signcryption Scheme

A certificateless signcryption scheme is defined by the following seven algorithms:

Setup: This algorithm takes a security parameter k as input and returns the system
parameters params and a secret master key master-key.

Partial-Private-Key-Extract: This algorithm takes params, master-key and a user’s
identity ID as input. It returns a partial private key dID corresponding to the user.

Set-Secret-Value: Taking params and a user’s identity ID as input, this algorithm
generates a secret value xID.

Set-Public-Key: Taking params and a user’s identity ID and his secret value xID as
input, this algorithm generates pkID for the user with identity ID.

Set-Private-Key: It takes params, a user’s partial private key dID and his secret value
xID as input, and returns the user’s full private key skID.

Signcrypt: This algorithm takes as input the sender’s private key skIDS , the receiver’s
identity IDR and public key pkIDR , and a message m and returns a ciphertext σ. We write
σ = Signcrypt(skIDS , IDR, pkIDR , m).

Unsigncrypt: It takes the sender’s identity IDS and public key pkIDS , the receiver’s
private skIDR and the corresponding ciphertext σ as input, and outputs the message m if the
ciphertext σ is valid, or the symbol ⊥ otherwise. We write δ = Unsigncrypt(IDS, pkIDS ,
skIDR , σ), where δ is the message m or the symbol ⊥.

params, as an implied inputs to Signcrypt and Unsigncrypt algorithms, is omitted.
The Setup and Partial-Private-Key-Extract algorithms are performed by KGC. Once a
partial private key dID is given to a user via secure channel, the user runs Set-Secret-Value
algorithm and generates his own public/private key pair.

3 Security Model for Signcryption

In [2], Barbosa and Farshim defined the formal security notions for certificateless sign-
cryption schemes. These notions are natural adaptations from the security notions of
identity-based signcryption [11, 12] by considering two different type adversaries, a Type
I adversary AI and a Type II adversary AII , and include the indistinguishability against
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adaptive chosen ciphertext attacks and the existential unforgeability against adaptive cho-
sen message attacks. The adversaryAI represents a normal third party attacker against the
CLSC scheme. That is,AI is not allowed to access to the master-key butAI may requests
public key and replaces public keys with values of its choice. The adversaryAII represents
a malicious KGC who generates partial private key of users. The adversaryAII is allowed
to have access to the master-key but not replace a public key. Note that, as in [2, 11, 12],
we do not consider attacks targeting ciphertext where the sender and receiver identities are
the same. In particular we disallow such queries to relevant oracles and do not accept this
type of ciphertext as a valid forgery.

3.1 Confidentiality Model for Certificateless Signcryption

The confidentiality property (indistinguishability of encryptions under adaptively cho-
sen ciphertext attacks (IND-CCA2)) required for certificateless signcryption is captured by
the following two games againstAI andAII .

Game IND-CCA2-I. Now we illustrate the first game performed between a challenger
C and a Type I adversaryAI for a certificateless signcryption scheme.

Initialization: C runs the algorithm Setup on input a security parameter k, and obtains
master-key and params, and sends params toAI .

Find stage: The adversary AI performs a polynomially bounded number of queries.
These queries may be made adaptively, i.e. each query may depend on the answers to the
previous queries.

− Hash Queries: AI can request the hash values of any input.
− Partial Private Key Extraction: AI is able to ask for the partial private key dID for

any ID. C computes the partial private key dID corresponding to the identity ID and
returns dID toAI .

− Public Key Extraction: On receiving a public key extraction for any identity ID, C
computes the corresponding public key pkID and sends it toAI .

− Private Key Extraction: For any ID, C computes the private key skID corresponding
to the identity ID and sends skID toAI . Here, AI is not allowed to query this oracle
on any identity for which the corresponding public key has been replaced. This re-
striction is imposed due to the fact that it is unreasonable to expect that the challenger
is able to provide a full private key for a user for which it does not know the secret
value.

− Public Key Replacement: For any identity ID, AI can pick a new secret value x′ID
and compute the new public pk′ID corresponding to the new secret value x′ID, and then
replace pkID with pk′ID.

− Signcrypt Queries: AI produces a sender’s identity IDS, a receiver’s identity IDR
and a message m. C returns ciphertext σ=Signcrypt(skIDS , IDR, pkIDR , m) to AI .
Here, the ciphertext σ from the signcryption oracle is valid under the original public
key of the sender IDS. This assumption due to the fact that in the real world, AI

may be able to gain IDS’s some valid ciphertext from eavesdropping or the intended
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receivers, but those ciphertext are generated by IDS using his own secret value and
partial private key.

− Unsigncrypt Queries: AI produces a sender’s identity IDS, a receiver’s identity IDR
and a ciphertext σ. C sends the result of Unsigncrypt(IDS, pkIDS , skIDR , σ) to AI .
Note that, it is possible that the public key pkIDR has been replaced earlier byAI . In
this case, to correctness of the unsigncryption oracle’s answer, we assume that AI

additionally submits the corresponding secret value to C. Again, we disallow queries
where IDS = IDR.

Challenge: At the end of Find stage, AI returns two distinct messages m0 and m1

(assumed of equal length), a sender identity ID∗S and a receiver identity ID∗R, on which
it wishes to be challenged. The adversary must have made no partial private key ex-
traction and private key extraction on ID∗R. C picks randomly a bit β ∈ {0, 1}, computes
σ∗=Signcrypt(skID∗

S
, ID∗R, pkID∗R

, mβ) and returns it toAI.

Guess stage: AI asks a polynomial number of queries adaptively again as in the Find
stage. It is not allowed to extract the partial private key and private key corresponding to
ID∗R and it is not allowed to make an unsigncrypt query on σ∗ with sender ID∗S and receiver
ID∗R unless the public key pkID∗

S
of the sender or that of the receiver pkID∗R has been replaced

after the challenge was issued.

Eventually,AI outputs a bit β′ and wins the game if β=β′.

AI’s advantage is defined as AdvIND−CCA2−I
AI

= 2Pr[β = β′] − 1.

Game IND-CCA2-II. This is the second game where C interacts with adversary AII

as follows:

Initialization: C runs the algorithm Setup on input a security parameter k to generate
master-key and params, and sends master-key and params toAII .

Find stage: In this stage, AII may adaptively make a polynomially bounded number
of queries as in Game IND-CCA2-I. The only constraint is that AII can not replace any
public keys. Obviously, AII can compute the partial private keys of any identities by itself
with the master-key.

Challenge: At the end of Find stage, AII returns two distinct messages m0 and m1

(assumed of equal length), a sender identity ID∗S and a receiver identity ID∗R, on which
it wishes to be challenged. The adversary must have made no private key extraction on
ID∗R. C picks randomly a bit β ∈ {0, 1}, computes σ∗=Signcrypt(skID∗

S
, ID∗R, pkID∗R

, mβ)
and returns it toAII .

Guess stage: AII asks a polynomial number of queries adaptively again as in the Find
stage. It is not allowed to extract the private key corresponding to ID∗R and it is not allowed
to make an unsigncrypt query on σ∗ with sender ID∗S and receiver ID∗R.

Eventually,AII outputs a bit β′ and wins the game if β=β′.

AII’s advantage is defined as AdvIND−CCA2−II
AII

= 2Pr[β = β′] − 1.

Note that the security models described above deals with insider security since the
adversary is assumed to have access to the private key of the sender of ciphertext σ∗. This
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means that the confidentiality is preserved even if a sender’s private key is compromised.

Definition 5 (IND-CCA2). An CLSC scheme is said to be IND-CCA2 secure if no poly-
nomially bounded adversaryA ∈ {AI ,AII} has a non-negligible advantage wins the games
described above(Game IND-CCA2-I, Game IND-CCA-II).

3.2 Unforgeability Model for Certificateless Signcryption

The authenticity property (existential unforgeability against chosen message attacks
(EUF-CMA)) for certificateless signcryption schemes is captured by the following two
games againstAI andAII , respectively.

Game EUF-CMA-I. This is the game where AI interacts with its Challenger C as
follows:

Initialization: C runs the algorithm Setup on input a security parameter k to generate
master-key and params, and sends params toAI .

Queries: The adversaryAI performs a polynomially bounded number of queries adap-
tively as in Game IND-CCA2-I game.

Output: Finally, AI produces a new triple (ID∗S, ID∗R, σ
∗) (i.e. a triple that was not

produced by the signcryption oracle) where the partial private key and the private key of
ID∗S was not extract and wins the game if the result of Unsigncrypt(ID∗S, pkID∗

S
, skID∗R

, σ∗)
is not the ⊥ symbol.

The adversaryAI’s advantage is its probability of victory.

Game EUF-CMA-II. This is the game where AII interacts with its Challenger C as
follow:

Initialization: C runs the algorithm Setup on input a security parameter k to generate
master-key and params, and sends params and master-key toAI .

Queries: The adversaryAII performs a polynomially bounded number of queries adap-
tively as in Game IND-CCA2-II game.

Output: Finally, AI produces a new triple (ID∗S, ID∗R, σ
∗) (i.e. a triple that was not

produced by the signcryption oracle) where the private key of ID∗S was not extract and wins
the game if the result of Unsigncrypt(ID∗S, pkID∗

S
, skID∗R

, σ∗) is not the ⊥ symbol.

The adversaryAII’s advantage is its probability of victory.

Note that this definition allows the adversary have access to the secret key of the receiver
of the forgery, which guarantees the insider security.

Definition 6 (UF-CMA). An CLSC scheme is said to be EUF-CMA secure if no polyno-
mially bounded adversary A ∈ {AI ,AII} has a non-negligible advantage wins the games
described above(Game EUF-CMA-I, Game EUF-CMA-II).
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4 New efficient CLSC scheme

In this section, we propose a new efficient CLSC scheme which consists of the follow-
ing seven algorithms.

Setup: Given a security parameter k, the algorithm works as follows:

− Outputs descriptions of bilinear map groups (G1,G2,GT ) of same prime order p > 2k.
− Chooses an arbitrary generator Q of G2 and sets P = ψ(Q) ∈ G1 and g = e(P,Q) ∈
GT .

− Randomly picks s ∈ Z∗p and sets Ppub = sQ as, respectively, master-key and system
public key.

− Selects three distinct cryptographic hash functions H1 : {0, 1}∗ → Z∗p, H2 : {0, 1}n ×
G2 × GT × G3

2 → Z∗p and H3 : GT × G2 → {0, 1}n where n is the length of message to
be signcrypted.

− The system parameters are params =< G1,G2,GT , e, p, P,Q, g, Ppub, ψ,H1,H2,H3 >
and publishes params.

Partial-Private-Key-Extract: Given params, master-key and an identity ID ∈ {0, 1}∗, this
algorithm works as follows: Compute QID = H1(ID) ∈ Z∗p and dID =

1
s+QID

P and sends dID

to the user with identity ID as his partial private key via a secure channel. The user can
check its correctness by checking whether e(dID, Ppub + QIDQ) = g. For convenience, we
define TID = Ppub + H1(ID)Q.

Set-Secret-Value: This algorithm takes as input params and a user’s identity ID. It picks
a random value xID ∈R Z

∗
p and outputs xID as the user’s secret value.

Set-Public-Key: Given params, a user’s identity ID and the secret value xID, this algorithm
computes his public key pkID = xID(Ppub + H1(ID)Q).

Set-Private-Key: Given params, the user’s partial private key dID and his secret value
xID ∈ Z∗p, and output a pair (dID, xID) as the user’s private key skID.

Signcrypt: To send a message m ∈ {0, 1}n to Bob with identity B and public key pkB, Alice
with private key skA works as follow:

− Randomly picks r1 ∈R Z
∗
p and computes u = r1(Ppub + H1(B)Q) and c = m ⊕

H3(gr1 , r1 pkB).
− Computes h2 = H2(m, u, gr1 , r1 pkB, pkA, pkB), v = r1+h2

r1
dA and w = xAh2 + r1.

− Sets ciphertext σ = (c, u, v,w).

Unsigncrypt: To unsigncrypt a ciphertext σ = (c, u, v,w) from Alice with identity A and
public key pkA, Bob with private key skB acts as follows:

− Computes gr′1 = e(dB, u) and m = c ⊕ H3(gr′1 , xBu).
− Sets h2 = H2(m, u, gr′1 , xBu, pkA, pkB) and r′1TA = wTA − h2 pkA.
− Accept m if and only if e(v, r′1TA) = gr′1gh2 hold, return ⊥ otherwise.

Consistency: The correctness of the proposed scheme can be easily verified with follow-
ing:

gr′1 = e(dB, u) = e(
1

s + QB
P, r1(sQ + QBQ)) = gr1 ,
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xBu = xBr1(sQ + QBQ) = r1xB(sQ + QBQ) = r1 pkB

and

e(v,wTA − h2 pkA) = e(v, r1TA) = e(
r1 + h2

r1

1
s + QA

P, r1(sQ + QAQ)) = gr1gh2 .

5 Analysis of the Proposed Scheme

5.1 Proof of security

In this section, we will provide two formal proofs that our scheme is IND-CCA2 secure
under the q-BDHI assumption and CDH assumption and UF-CMA secure under the q-SDH
assumption and DL assumption. We now present the security analysis of our proposed
scheme in the random oracle model [7].

Theorem 1. Under the q-BDHI assumption and CDH assumption, the proposed CLSC
scheme is IND-CCA2 secure in the random oracle model.

This theorem follows from Lemmas 1 and 2.

Lemma 1. Assume that an IND-CCA2-I adversary AI has non-negligible advantage ϵ
against our scheme when running in time T , asking qi queries to random oracles Hi (i =
1, 2, 3), qppk partial private key queries, qsk private key queries, qpk public key requests, qpkr

public key replacement queries, qs signcryption queries and qun unsigncryption queries.
Then there is an algorithm C to solve the q-BDHIP for q = q1 + 1 with probability

ϵ′ ≥ ϵ

q1(q2 + q3 + qs)
(1 − qs

2q2 + q3 + 2qs

2k )(1 − qun

2k )

within a time T ′ < T + [3q1 + qpk + 4qs + 3qu(q2 + qs)]Tmult + qu(q2 + qs)Texp + [2q2qs +

2q3qs + qs + 3qu(q2 + qs)]Tp where Tmult denotes the time for computing multiplication in
G1 or G2, Texp denotes the time for computing exponentiation in GT and Tp is the time for
pairing computation.

Proof. Suppose that there exists an adversary AI can attack our scheme. We want to
build an algorithm C that runsAI as a subroutine to solve q-BDHIP. Assume that C gets a
random instance of q-BDHIP in as follows: Given (P,Q, αQ, α2Q, . . . , αqQ)∈ G1×Gq+1

2 for
unknown α ∈ Z∗p. And its goal is to compute e(P,Q)1/α ∈ GT by interacting with adversary
AI . In the preparation phase, C randomly picksω0, ω1, · · · , ωq−1 ∈R Z

∗
p. As in the technique

of [4], it builds a generator G ∈ G1 such that it knows q − 1 pairs (ωi + ω0,
1

α+ωi
G) for

i ∈ {1, 2, · · · , q − 1}. To do so,

− It expands f (z) =
∏q−1

i=1 (z+ωi) to obtain c0, c1, · · · , cq−1 ∈ Z∗p so that f (z) =
∑q−1

i=0 cizi.
− It sets generator H =

∑q−1
i=0 ci(αiQ) = f (α)Q ∈ G2 and G = ψ(H) = f (α)P ∈ G1.

The system public key is fixed to Ppub =
∑q

i=1 ci−1(αiQ) − ω0(
∑q−1

i=0 ci(αiQ)) so that
Ppub = (α − ω0)H although C does not know α − ω0.
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− For 1 ≤ i ≤ q − 1, C expands fi(z) = f (z)/(z + ωi) =
∑q−2

j=0 d jz j and

q−2∑
j=0

d jψ(α jQ) = fi(α)P =
f (α)
α + ωi

P =
1

α + ωi
G. (1)

The pairs (ωi + ω0,
1

α+ωi
G) are computed using the left member of (1).

Throughout the game, we assume that H1 Queries are distinct, that the target identity
ID∗R is submitted to H1 Queries at some point and that any query involving an identity ID
comes after a H1 Queries on ID. To maintain consistency between queries made byAI , C
keeps the following lists: Li for i = 1, 2, 3 of data for query/response pairs to random oracle
Hi; Lpk of data for query/response pairs to Public Key Extraction oracle. Then, C randomly
picks µ ∈R {1, 2, · · · , q1} and runsAI on input of < G1,G2,GT, e, p,G,H, g, Ppub, ψ >where
g = e(G,H), and answers various oracle queries as follows:

H1 Queries: On the j-th non-repeat query ID j(from this point on we denote the j-th
non-repeat identity query to this oracle with ID j), if j , µ, C sets QID j = ω j + ω0. It
then adds < ID j,QID j ,

1
α+ω j

G > to the list L1 which is initially empty and returns QID j .
Otherwise, it returns QIDµ

= ω0 and adds < IDµ,QIDµ
,⊥> to L1.

H2 Queries: For each query (m, S 1, S 2, S 3, pkIDS , pkIDR), C proceeds as follows:

− If < m, S 1, S 2, S 3, pkIDS , pkIDR , S 4, h2, c >∈ L2 for some (S 4, h2, c), returns h2.
− C goes through the list L2 with entries < m, S 1, S 2,⊥, pkIDS , pkIDR , S 4, h2, c >(those

entries are added in answer AI’s signcrypt query), for some (S 4, h2, c), such that
e(ψ(S 1), pkIDR) = e(ψ(S 4), S 3). If such a tuple exists, it returns h2 and replaces the
symbol ⊥ with S 3.

− If C reaches this point of execution, it returns a random h2 ∈R Z
∗
p. Then, sets h3 =

H3(S 2, S 3) ∈ {0, 1}n and updates L2 with input < m, S 1, S 2, S 3, pkIDS , pkIDR ,⊥, h2, c =
m ⊕ h3 >.

H3 Queries: For each query (S 2, S 3), C proceeds as follows:

− If < S 2, S 3, h3, S 1, S 4, S 5 >∈ L3 for some (h3, S 1, S 4, S 5), returns h3.
− C goes through the list L3 with entries < S 2,⊥, h3, S 1, S 4, S 5 >(those entries

are added in answer AI’s signcrypt query), for some (h3, S 1, S 4, S 5), such that
e(ψ(S 1), S 5) = e(ψ(S 4), S 3). If such a tuple exists, it returns h3 and replaces the
symbol ⊥ with S 3.

− If C reaches this point of execution, it returns a random h3 ∈R {0, 1}n and updates the
list L3 with input < S 2, S 3, h3,⊥,⊥,⊥>.

Partial Private Key Extraction: For each new query ID j, if j = µ, then C fails. Other-
wise, finds < ID j,QID j ,

1
α+ω j

G > in L1 and returns dID j =
1

α+ω j
G.

Public Key Extraction: For each query ID j, C checks in list Lpk, which is initially
empty, if < ID j, xID j , pkID j >∈ Lpk for some pkID j . If so, returns pkID j . Otherwise, C
picks xID j ∈R Z

∗
p at random, sets pkID j = xID j(Ppub + H1(ID j)H), then returns pkID j and

adds < ID j, xID j , pkID j > in Lpk.

Private Key Extraction: For each new query ID j, if j = µ, then C aborts the simulation.
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Otherwise finds < ID j,QID j ,
1

α+ω j
G > and < ID j, xID j , pkID j > in L1 and Lpk, respectively,

and returns skID j = ( 1
α+ω j

G, xID j).

Public Key Replacement: For each query < ID j, pk′ID j
>, C finds < ID j, xID j , pkID j >

in Lpk and sets pkID j = pk′ID j
. If Lpk does not contain < ID j, xID j , pkID j >, C queries

Public Key Extraction oracle with ID j first.

Signcrypt Queries: For each query (IDa, IDb,m), where a, b ∈ {1, 2, · · · , q1}. We ob-
serve that, if a , µ , C knows the sender’s private key skIDa = ( 1

α+ωa
G, xIDa) and can answer

the query according to the specification of Signcrypt algorithm. We thus assume a = µ
and hence b , µ by the irreflexivity assumption. Observe that C knows the receiver’s
partial private key dIDb =

1
α+ωb

G by construction. The difficulty is to find a random triple
(c, u, v,w, h2) ∈ {0, 1}n × G2 × G1 × Z∗p × Z∗p for which

e(v,wTIDa − h2 pkIDa) = e(dIDb , u)gh2

where TIDa = Ppub + H1(IDa)H. To do so, C randomly secrets r1, r2, r3 ∈R Z
∗
p and

h3 ∈R {0, 1}n and sets v = r1dIDb , w = r2, h2 = r3, u = r1r2TIDa − r1r3 pkIDa − r3TIDb

and c = m ⊕ h3, where pkIDa = xIDa(Ppub + H1(IDa)H) is the original public key
of IDa generated by Public Key Extraction oracle. Then, C sets S 2 = e(dIDb , u), adds
< S 2,⊥, h3, u,TIDb , pkIDb > and < m, u, S 2,⊥, pkIDa , pkIDb ,TIDb , h2, c > to L3 and L2 respec-
tively (C fails if H2 or H3 is already defined in the corresponding value but this only happens
with probability small than (2q2 + q3 + 2qs)/p) , and returns ciphertext σ = (c, u, v,w).

Unsigncrypt Queries: For each query (IDa, IDb, σ = (c, u, v,w)), where a, b ∈ {1,
2, · · · , q1}. we assume that b = µ (and hence a , µ by the irreflexivity assumption),
because otherwise C knows the receiver’s private key skIDb = ( 1

α+ωb
G, xIDb) and can

answer the query according to the specification of Unsigncrypt algorithm. Note that,
for all valid ciphertexts σ = (c, u, v,w), logTIDb

u = logTIDa
(wTIDa − h2 pkIDa), where

h2 = H2(m, u, gr1 , xIDbu, pkIDa , pkIDb) is the hash value obtained in the Signcrypt algorithm.
Hence, we have the relation

e(ψ(TIDa), u) = e(ψ(TIDb),wTIDa − h2 pkIDa).

C finds < IDa, xIDa , pkIDa > and < IDb, xIDb , pkIDb > in Lpk, and searches through list L2

for entries of the form < mk, u, S 2,k, xIDbu, pkIDa , pkIDb , S 4,k, h2,k, c > (Here, we needn’t to
consider the entries in L2 with S 3 =⊥, because of a , µ) indexed by k ∈ {1, 2, · · · , q2 + qs},
where xIDb is the secret value of the IDb (if pkIDb has been replaced by AI , C gets it from
AI). If none is found, σ is invalid, returns ⊥. Otherwise, each one of them is further
examined: for the corresponding indexes, C chicks if

e(ψ(TIDa), u) = e(ψ(TIDb),wTIDa − h2,k pkIDa). (2)

Note that, if (2) is satisfied, means that h2,k is the correct hash value obtained in the
Signcrypt algorithm. And after gets the correct hash value h2,k, C tests if

e(v,wTIDa − h2,k pkIDa) = S 2,kgh2,k , (3)

meaning that S 2,k = gr1 ∈ GT is the correct random value used in the Unsigncrypt algo-
rithm. If the unique k ∈ {1, 2, · · · , q2+qs} satisfying (2) and (3) is detected, the matching mk
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is returned. Overall, an inappropriate rejection occurs with probability smaller than qun/p
across the whole game.

At the end of Find stage, AI outputs two distinct messages m0 and m1 (assumed of
equal length), a sender identity ID∗S and a receiver identity ID∗R, on which it wishes to be
challenged. If ID∗R , IDµ, C aborts. Otherwise, it randomly picks c ∈R {0, 1}n, r1,w ∈R Z

∗
p

and v ∈R G
∗
1, sets u = r1H and σ∗ = (c, u, v,w), and sends σ∗ to AI as the challenge

ciphertext.

At the end of Guess stage, AI outputs its guess. Note that, AI cannot recognize that
is not a proper ciphertext unless it queries H3 on (e(dIDµ

, u), xIDµ
u). Along the guess stage,

AI’s view is simulated as before and its eventual output is ignored. Standard arguments can
show that a successful AI is very likely to query H3 on (e(dIDµ

, u), xIDµ
u) if the simulation

is indistinguishable from a real attack environment.

To produce a result C fetches a random entry < S 2, S 3, h3, S 1, S 4, S 5 > from L3. With
probability 1/(q2 + q3 + qs) (as L3 contains no more than q2 + q3 + qs records by con-
struction), the chosen entry will contain the right element S 2 = e(dIDµ

, u) = e( 1
α
G, r1H) =

e(G,H)r1/α = e( f (α)P, f (α)Q)r1/α, where f (z) =
∑q−1

i=0 cizi is the polynomial for which
H = f (α)Q. Then, q-BDHIP solution can be extracted by noting that, if γ∗ = e(P,Q)1/α,
then

e(G,H)1/α = γ∗(c
2
0)e(c0P,

q−2∑
i=0

ci+1(αiQ))e(
q−2∑
i=0

ci+1ψ(αiQ),H).

In an analysis of C’s advantage, we note that it only fails in providing a consistent
simulation because one of the following independent events:

E1 : AI does not choose to be challenged on IDµ.
E2 : A Partial Private Key Extraction or Private Key Extraction query is made on IDµ.
E3 : C aborts in answerAI’s signcrypt query because of collision on H2 or H3.
E4 : C rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = 1/q1 and we know that ¬E1 implies ¬E2. We also already
observed that Pr[E3] ≤ qs(2q2 + q3 + 2qs)/2k and Pr[E4] ≤ qun/2k. We thus find that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4] ≥ 1
q1

(1 − qs
2q2 + q3 + 2qs

2k )(1 − qun

2k ).

We obtain the announced bound by noting that C selects the correct element from L3 with
probability 1/(q2 + q3 + qs). The running time of the q-BDHI attacker C is bound by T ′ <
T +[3q1+qpk+4qs+3qu(q2+qs)]Tmult+qu(q2+qs)Texp+[2q2qs+2q3qs+qs+3qu(q2+qs)]Tp.

Lemma 2. Assume that an IND-CCA2-II adversary AII has non-negligible advantage
ϵ against our scheme when running in time T , asking qi queries to random oracles Hi

(i = 1, 2, 3), qsk private key queries, qpk public key requests, qs signcrypt queries and qun

unsigncrypt queries. Then there is an algorithm C to solve the CDHP with probability

ϵ′ ≥ ϵ

q1(q2 + q3 + qs)
(1 − qs

2q2 + q3 + 2qs

2k )(1 − qun

2k )
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within a time T ′ < T + [1 + qpk + qsk + 5qs + 2qu(q2 + qs)]Tmult + qu(q2 + qs)Texp + [qs +

7qu(q2 + qs)]Tp where Tmult, Texp and Tp denote the same quantities as in Lemma 1.

Proof. Suppose that there exists an adversaryAII can attack our scheme. We want to build
an algorithm C that runsAII as a subroutine to solve CDHP. Assume that C gets a random
instance of CDHP as follows: Given (Q, αQ, βQ) ∈ G3

2 for unknown α, β ∈ Z∗p. And its
goal is to compute αβQ by interacting with adversaryAII .

Throughout the game, we assume that H1 Queries are distinct, that the target identity
ID∗R is submitted to H1 Queries at some point and that any query involving an identity ID
comes after a H1 Queries on ID. To maintain consistency between queries made byAII , C
keeps the lists: Li for i = 1, 2, 3 and Lpk as in the proof of Lemma 1. C randomly picks s ∈R

Z∗p as the master-key, computes Ppub = sQ, and sends < G1,G2,GT , e, p, P,Q, g, Ppub, ψ >
and the master-key s to AII . Then, C randomly picks µ ∈R {1, 2, · · · , q1} and answers
various oracle queries as follows:

H1 Queries: On the j-th non-repeat query ID j (from this point on we denote the j-th
non-repeat identity query to this oracle with ID j), C randomly picks QID j ∈R Z

∗
p and adds

< ID j,QID j > to L1, which is initially empty, then returns QID j .

H2 Queries: For each query (m, S 1, S 2, S 3, pkIDS , pkIDR), C proceeds as follows:

− If < m, S 1, S 2, S 3, pkIDS , pkIDR , h2, c >∈ L2 for some (h2, c), returns h2.
− Otherwise, C returns a random h2 ∈R Z

∗
p. Then, sets h3 = H3(S 2, S 3) ∈ {0, 1}n and

updates L2 with input < m, S 1, S 2, S 3, pkIDS , pkIDR , h2, c = m ⊕ h3 >.

H3 Queries: For each query (S 2, S 3), C returns the previously assigned value if it exists
and a random h3 ∈R {0, 1}n otherwise. In the latter case, C adds < S 2, S 3, h3 > to L3, which
is which is initially empty.

Public Key Extraction: For each query ID j, C proceeds as follows:

− If < ID j, xID j , pkID j >∈ Lpk for some pkID j , returns pkID j .
− Else, if j = µ, C returns pkID j = (s + H1(ID j))αQ and adds < ID j,⊥, pkID j > in Lpk.
− Else C picks xID j ∈R Z

∗
p at random, sets pkID j = xID j(Ppub + H1(ID j)Q), then returns

pkID j and adds < ID j, xID j , pkID j > in Lpk.

Private Key Extraction: For each new query ID j, if j = µ, then C aborts the simulation.
Otherwise finds < ID j, xID j , pkID j > in Lpk, and returns skID j = ( 1

s+H1(ID j)
P, xID j).

Signcrypt Queries: For each query (IDa, IDb,m), where a, b ∈ {1, 2, · · · , q1}. We ob-
serve that, if a , µ , C knows the sender’s private key skIDa = ( 1

s+QIDa
P, xIDa) and can answer

the query according to the specification of Signcrypt algorithm, we thus assume a = µ. Ob-
serve that C knows the receiver’s private key skIDb = ( 1

s+QIDb
P, xIDb) by construction. The

difficulty is to find a random triple (c, u, v,w, h2) ∈ {0, 1}n × G2 × G1 × Z∗p × Z∗p for which

e(v,wTIDa − h2 pkIDa) = e(u, dIDb)g
h2

where TIDa = Ppub + H1(IDa)Q. To do so, C randomly secrets r1, r2, r3 ∈R Z
∗
p and h3 ∈R

{0, 1}n and sets v = r1dIDb , w = r2, h2 = r3, u = r1r2TIDa − r1r3 pkIDa − r3TIDb and c =
m ⊕ h3. Then, C computes S 2 = e(dIDb , u) and S 3 = xIDbu, adds < S 2, S 3, h3 > and
< m, u, S 2, S 3, pkIDa , pkIDb , h2, c > to L3 and L2 respectively (C fails if H2 or H3 is already
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defined in the corresponding value but this only happens with probability small than (2q2 +

q3 + 2qs)/p), and returns ciphertext σ = (c, u, v,w).

Unsigncrypt Queries: For each query (IDa, IDb, σ = (c, u, v,w)), where a, b ∈
{1, 2, · · · , q1}. we assume that b = µ, because otherwise C knows the receiver’s pri-
vate key skIDb = ( 1

s+QIDb
P, xIDb) and can answer the query according to the specifica-

tion of Unsigncrypt algorithm. Note that, for all valid ciphertexts σ = (c, u, v,w),
logTIDb

u = logTIDa
(wTIDa − h2 pkIDa), where h2 = H2(m, u, gr1 , xIDbu, pkIDa , pkIDb) is the

hash value obtained in the Signcrypt algorithm. Hence, we have the relation

e(ψ(TIDa), u) = e(ψ(TIDb),wTIDa − h2 pkIDa).

C searches through list L2 for entries of the form < mk, u, e( 1
s+H1(IDb) P, u), S 3,k, pkIDa , pkIDb ,

h2,k, c > such that e(ψ(u), pkIDb) = e(ψ(TIDb), S 3,k), indexed by k ∈ {1, 2, · · · , q2 + qs}, If
none is found, σ is invalid, returns ⊥. Otherwise, each one of them is further examined:
for the corresponding indexes, C chicks if

e(ψ(TIDa), u) = e(ψ(TIDb),wTIDa − h2,k pkIDa). (4)

Note that, if (4) is satisfied, means that h2,k is the correct hash value obtained in the
Signcrypt algorithm. And after gets the correct hash value h2,k, C tests if

e(v,wTIDa − h2,k pkIDa) = e(
1

s + H1(IDb)
P, u)gh2,k , (5)

meaning that σ = (c, u, v,w) is a valid ciphertext from IDa to IDb. If the unique k ∈
{1, 2, · · · , q2+qs} satisfying (4) and (5) is detected, the matching mk is returned. Overall, an
inappropriate rejection occurs with probability smaller than qun/p across the whole game.

At the end of Find stage, AII outputs two distinct messages m0 and m1 (assumed of
equal length), a sender identity ID∗S and a receiver identity ID∗R, on which it wishes to be
challenged. If ID∗R , IDµ, C aborts. Otherwise, it randomly picks c ∈R {0, 1}n, w ∈R Z

∗
p

and v ∈R G∗1, sets u = (s + H1(IDµ))βQ and σ∗ = (c, u, v,w), and sends σ∗ to AII as the
challenge ciphertext.

At the end of Guess stage, AII outputs its guess. Note that, AII cannot recognize that
is not a proper ciphertext unless it queries H3 on (e(dIDµ

, u), xIDµ
u). Along the guess stage,

AII’s view is simulated as before and its eventual output is ignored. Standard arguments can
show that a successfulAII is very likely to query H3 on (e(dIDµ

, u), xIDµ
u) if the simulation

is indistinguishable from a real attack environment.

To produce a result C fetches a random entry < S 2, S 3, h3 > from L3. With probability
1/(q2 + q3 + qs) (as L3 contains no more than q2 + q3 + qs records by construction), the
chosen entry will contain the right element S 3 = xIDµ

u = (s + H1(IDµ))αβQ. Then, C
returns αβQ = (s + H1(IDµ))−1S 3 as the solution of CDHP.

In an analysis of C’s advantage, we note that it only fails in providing a consistent
simulation because one of the following independent events:

E1 : AII does not choose to be challenged on IDµ.
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E2 : A Private Key Extraction query is made on IDµ.
E3 : C aborts in answerAII’s signcrypt query because of collision on H2 or H3.
E4 : C rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = 1/q1 and we know that ¬E1 implies ¬E2. We also already
observed that Pr[E3] ≤ qs(2q2 + q3 + 2qs)/2k and Pr[E4] ≤ qun/2k. We thus find that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4] ≥ 1
q1

(1 − qs
2q2 + q3 + 2qs

2k )(1 − qun

2k ).

We obtain the announced bound by noting that C selects the correct element from L3 with
probability 1/(q2 + q3 + qs). The running time of the CDH attacker C is bound by T ′ <
T + [1 + qpk + qsk + 5qs + 2qu(q2 + qs)]Tmult + qu(q2 + qs)Texp + [qs + 7qu(q2 + qs)]Tp.

Theorem 2. Under the q-SDH assumption and DL assumption, the proposed CLSC scheme
is EUF-CMA secure in the random oracle model.

This theorem follows from Lemmas 3 and 4.

Lemma 3. Assume that there exists an EUF-CMA-I adversaryAI that makes qi queries to
random oracles Hi (i = 1, 2, 3), qppk partial key queries, qsk private key queries, qpk public
key requests, qpkr public key replacement queries, qs signcrypt queries and qun unsigncrypt
queries. Assume also that, within a time T , AI produces a forgery with probability ϵ ≥
10(qs + 1)(qs + q2)/2k. Then, there is an algorithm C to solve the q-SDHP for q = q1 + 1
with probability

ϵ′ ≥ 1
9q1

(1 − q − 1
2k )

in expected time T ′ ≤ 23q2[T + (qpk + 4qs + 3qu(q2 + qs))Tmult + qu(q2 + qs)Texp + (2q2qs +

2q3qs+qs+3qu(q2+qs))Tp][ϵ(1−qu/2k)(1−qs(q2+q3+qs)/2k)]−1+3q1Tmult where Tmult,
Texp and Tp denote the same quantities as in Lemma 1.

Proof. Suppose that there exists an adversaryAI can attack our scheme. We want to build
an algorithm C that runsAI as a subroutine to solve q-SDHP. Assume that C gets a random
instance of q-SDHP as follows: Given (P,Q, αQ, α2Q, . . . , αqQ)∈ G1 × Gq+1

2 for unknown
α ∈ Z∗p. And its goal is to find a pair (c, 1

c+αP) by interacting with adversary AI . In the
preparation phase, as in the technique of [4], C builds a generator G ∈ G1 such that it knows
q − 1 pairs (ωi,

1
α+ωi

G) for i ∈ {1, 2, · · · , q − 1}. To do so,

− It randomly picks ω1, ω2, · · · , ωq−1 ∈R Z
∗
p and expands f (z) =

∏q−1
i=1 (z + ωi) to obtain

c0, c1, · · · , cq−1 ∈ Z∗p so that f (z) =
∑q−1

i=0 cizi.
− It sets generators H =

∑q−1
i=0 ci(αiQ) = f (α)Q ∈ G2 and G = ψ(H) = f (α)P ∈ G1.

The system public key is fixed to Ppub =
∑q

i=1 ci−1(αiQ) so that Ppub = αH although
C does not know α.

− For 1 ≤ i ≤ q − 1, C expands fi(z) = f (z)/(z + ωi) =
∑q−2

j=0 d jz j and

q−2∑
j=0

d jψ(α jQ) = fi(α)P =
f (α)
α + ωi

P =
1

α + ωi
G. (6)

The pairs (ωi,
1

α+ωi
G) are computed using the left member of (6).
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Throughout the game, we assume that H1 Queries are distinct, that the target identity
ID∗S is submitted to H1 Queries at some point and that any query involving an identity ID
comes after a H1 Queries on ID. To maintain consistency between queries made by AII ,
C keeps the lists: Li for i = 1, 2, 3 and Lpk as in the proof of Lemma 1. Then, C randomly
picks µ ∈R {1, 2, · · · , q1} and runsAI on input of < G1,G2,GT , e, p,G,H, g, Ppub, ψ >where
g = e(G,H), and answers various oracle queries as follows:

H1 Queries: On the j-th non-repeat query ID j (from this point on we denote the j-th
non-repeat identity query to this oracle with ID j), if j , µ, C sets QID j = ω j. It then adds
< ID j,QID j ,

1
ω j+α

G > to the list L1 which is initially empty and returns QID j . Otherwise, it
returns a random ω∗ ∈R Z

∗
p and adds < IDµ,QIDµ

= ω∗,⊥> to L1.

AI’s queries to other oracle (except H1 Queries oracle) are answered as in the proof of
Lemma 1.

Eventually, AI outputs a valid ciphertext σ = (c, u, v,w) from ID∗S to ID∗R. If
ID∗S , IDµ, C aborts. Otherwise, having the knowledge of skID∗R , C computes h2 =

H2(m∗, u, e(dID∗R , u), xID∗Ru, pkID∗
S
, pkID∗R), where m∗ = Unsigncrypt(ID∗S, pkID∗

S
, skID∗R

, σ)
(For simplicity, we denote σ = (c, u, v,w, h2) as AI’s outputs). Then, using the oracle
replay technique [18], C generates one more valid ciphertext from σ = (c, u, v,w, h2) which
is named as σ′ = (c, u, v′,w′, h′2). This is achieved by running the turing machine again
with the same random tape but with the different hash value.

Since σ = (c, u, v,w, h2) and σ′ = (c, u, v′,w′, h′2) are both valid ciphertext for the same
message m∗ and randomness r1, we obtain the relations

w′TID∗
S
− h′2 pkID∗

S
= r1TID∗

S
= wTID∗

S
− h2 pkID∗

S
.

Then,we have
(w′ − w)TID∗

S
= (h′2 − h2)pkID∗

S
.

Hence, C can compute xID∗
S
= (w′ − w)/(h′2 − h2). From the specification of Unsigncrypt

algorithm, we know that

e(v,wTID∗
S
− h2 pkID∗

S
) = gr1gh2 = e((r1 + h2)G,H)

and
e(v′,w′TID∗

S
− h′2 pkID∗

S
) = gr1gh′2 = e((r1 + h′2)G,H).

Hence, we have

e(v,wTID∗
S
)e(v,−h2 pkID∗

S
)e(−h2G,H) = e(v′,w′TID∗

S
)e(v′,−h′2 pkID∗

S
)e(−h′2G,H),

e(wv,TID∗
S
)e(−h2v, pkID∗

S
)e(−h2G,H) = e(w′v′,TID∗

S
)e(−h′2v′, pkID∗

S
)e(−h′2G,H),

e(wv − w′v′,TID∗
S
)e(h′2v′ − h2v, pkID∗

S
) = e((h2 − h′2)G,H),

e(wv − w′v′,TID∗
S
)e(xID∗

S
(h′2v′ − h2v),TID∗

S
) = e((h2 − h′2)G,H),

and
e((h2 − h′2)−1[wv − w′v′ + xID∗

S
(h′2v′ − h2v)],TID∗

S
) = e(G,H).
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Hence, C can compute 1
α+ω∗G = (h2 − h′2)−1[wv − w′v′ + (w′ − w)(h′2v′ − h2v)/(h′2 − h2)].

From 1
α+ω∗G, C can proceed as in [4] to extract 1

α+ω∗P: it first obtains γ−1, γ0, · · · , γq−2 ∈ Z∗p
for which f (z)/(z + ω∗) = γ−1/(z + ω∗) +

∑q−2
i=0 γizi and eventually computes

1
α + ω∗

P =
1
γ−1

 1
α + ω∗

G −
q−2∑
i=0

γiψ(αiQ)


before returning the pair (ω∗, 1

α+ω∗P) as the solution of q-SDHP.

In an analysis of C’s advantage, we note that it only fails because one of the following
independent events:

E1 : AI does not choose to be challenged on IDµ.
E2 : A Partial Private Key Extraction or Private Key Extraction query is made on IDµ.
E3 : C fails in using the oracle replay technique [18] to generate one more valid ciphertext.
E4 : ω∗ = ωi for i ∈ {1, 2, · · · , q − 1}.

We clearly have Pr[¬E1] = 1/q1 and Pr[E4] ≤ (q − 1)/2k and we know that ¬E1 implies
¬E2. From Lemma 12 in [18], we know that Pr[¬E3] ≥ 1/9. We obtain the announced
bound by noting that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4] ≥ 1
9q1

(1 − q − 1
2k ).

From the proof of Lemma 12 in [18], we know that the total running time T ′ of solving
the q-SDHP with probability ϵ′ ≥ 1

9q1
(1 − q−1

2k ) is bound by 23q2[T + (qpk + 4qs + 3qu(q2 +

qs))Tmult + qu(q2 + qs)Texp + (2q2qs + 2q3qs + qs + 3qu(q2 + qs))Tp][ϵ(1− qu/2k)(1− qs(q2 +

q3+qs)/2k)]−1+3q1Tmult where the last term accounts for the cost of the preparation phase.
Thus, this completes the proof.

Lemma 4. Assume that there exists an EUF-CMA-II adversaryAII that makes qi queries to
random oracles Hi (i = 1, 2, 3), qsk private key queries, qpk public key requests, qs signcrypt
queries and qun unsigncrypt queries. Assume also that, within a time T , AII produces a
forgery with probability ϵ ≥ 10(qs + 1)(qs + q2)/2k. Then, there is an algorithm C to solve
the DLP with probability

ϵ′ ≥ 1
9q1

in expected time T ′ ≤ 23q2[T + (qpk + qsk + 5qs + 2qu(q2 + qs))Tmult + qu(q2 + qs)Texp +

(qs + 7qu(q2 + qs))Tp][ϵ(1− qu/2k)(1− qs(q2 + q3 + qs)/2k)]−1 +Tmult where Tmult, Texp and
Tp denote the same quantities as in Lemma 1

Proof. Suppose that there exists an adversaryAII can attack our scheme. We want to build
an algorithm C that runs AII as a subroutine to solve DLP. Assume that C gets a random
instance of DLP as follows: Given (Q, αQ) ∈ G2

2 for unknown α ∈ Z∗p. And its goal is to
compute α by interacting with adversaryAII .

Throughout the game, we assume that H1 Queries are distinct, that the target identity
ID∗S is submitted to H1 Queries at some point and that any query involving an identity ID
comes after a H1 Queries on ID. To maintain consistency between queries made byAII , C
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keeps the lists: Li for i = 1, 2, 3 and Lpk as in the proof of Lemma 1. C randomly picks s ∈R

Z∗p as the master-key, computes Ppub = sQ. and sends < G1,G2,GT , e, p, P,Q, g, Ppub, ψ >
and the master-key s to AII . Then, C randomly picks µ ∈R {1, 2, · · · , q1} and answers
various oracle queries as in the proof of Lemma 2.

Eventually, AI outputs a valid ciphertext σ = (c, u, v,w) from ID∗S to ID∗R. If
ID∗S , IDµ, C aborts. Otherwise, having the knowledge of skID∗R , C computes h2 =

H2(m∗, u, e(dID∗R , u), xID∗Ru, pkID∗
S
, pkID∗R), where m∗ = Unsigncrypt(ID∗S, pkID∗

S
, skID∗R

, σ)
(For simplicity, we denote σ = (c, u, v,w, h2) as AII’s outputs). Then, using the oracle
replay technique [18], C generates one more valid ciphertext from σ = (c, u, v,w, h2) which
is named as σ′ = (c, u, v′,w′, h′2). This is achieved by running the turing machine again
with the same random tape but with the different hash value.

Since σ = (c, u, v,w, h2) and σ′ = (c, u, v′,w′, h′2) are both valid ciphertext for the same
message m∗ and randomness r1, we obtain the relations

w′TID∗
S
− h′2 pkID∗

S
= r1TID∗

S
= wTID∗

S
− h2 pkID∗

S
.

Then, we have

(w′ − w)TID∗
S
= (h′2 − h2)pkID∗

S
,

(h′2 − h2)−1(w′ − w)TID∗
S
= αTID∗

S
.

Hence, C can compute α = (h′2 − h2)−1(w′ − w) as the solution of DLP.

In an analysis of C’s advantage, we note that it only fails because one of the following
independent events:

E1 : AI does not choose to be challenged on IDµ.
E2 : A Private Key Extraction query is made on IDµ.
E3 : C fails in using the oracle replay technique [18] to generate one more valid ciphertext.

We clearly have Pr[¬E1] = 1/q1 and we know that ¬E1 implies ¬E2. From Lemma 12 in
[18], we know that Pr[¬E3] ≥ 1/9. We obtain the announced bound by noting that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3] ≥ 1
9q1

.

From the proof of Lemma 12 in [18], we know that the total running time T ′ of solving
the DLP with probability ϵ′ ≥ 1

9q1
is bound by 23q2[T +(qpk+qsk+5qs+2qu(q2+qs))Tmult+

qu(q2+qs)Texp+(qs+7qu(q2+qs))Tp][ϵ(1−qu/2k)(1−qs(q2+q3+qs)/2k)]−1+Tmult where the
last term accounts for the cost of compute the system public key in the preparation phase.
Thus, this completes the proof.

5.2 Efficiency

There are almost three CLSC schemes in the literature [2], [16] and [23]. We now
compare our CLSC scheme with the scheme proposed in [2], [16] and [23] from the aspect
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of computational cost in Table 1. In Table 1 we use Hash, Mult, Exp, and Paring as
abbreviations for hash operations, point multiplications in G1 or G2, exponentiations in GT

and pairing computations respectively.

Table 1: Comparison of the CLSC Schemes

Schemes Hash Mult Exp Paring
Barbosa-Farshim [2] 6 5 1 6

Wu-Chen [23] 3 3 8 4
Liu-Hu-Zhang-Ma [16] 2 3 1 5

Our Scheme 4 7 2 2

According to the result in [3, 5], the pairing operation is several times more expensive
than the multiplication in G1 and G2 and exponentiation in GT . Hence reducing the number
of pairing operations is critical. As shown in Table 1, our CLSC scheme only requires two
pairing operations in signcrypt and unsigncrypt phases. Above all, our scheme is more
efficient than all the schemes available.

6 Conclusion

Certificateless public key cryptography is receiving significant attention because it is a
new paradigm that simplifies the traditional PKC and solves the inherent key escrow prob-
lem suffered by ID-PKC. Certificateless signcryption is one of the most important security
primitives in CL-PKC. In this paper, we proposed a new efficient certificateless signcryp-
tion scheme based on bilinear pairing, which requires only two pairing operations in the
signcrypt and unsigncrypt phases. The security of our scheme is based on the hardness
assumptions of DLP, CDHP, q-SDHP and q-BDHIP.
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